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Numerical investigation of a Hall thruster plasma
Subrata Roy and B. P. Pandey
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The dynamics of the Hall thruster is investigated numerically in the framework of a
one-dimensional, multifluid macroscopic description of a partially ionized xenon plasma using finite
element formulation. The model includes neutral dynamics, inelastic processes, and plasma–wall
interaction. Owing to disparate temporal scales, ions and neutrals have been described by set of
time-dependent equations, while electrons are considered in steady state. Based on the experimental
observations, a third order polynomial in electron temperature is used to calculate ionization rate.
The results show that in the acceleration channel the increase in the ion number density is related
to the decrease in the neutral number density. The electron and ion velocity profiles are consistent
with the imposed electric field. The electron temperature remains uniform for nearly two-thirds of
the channel; then sharply increases to a peak before dropping slightly at the exit. This is consistent
with the predicted electron gyration velocity distribution. ©2002 American Institute of Physics.
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I. INTRODUCTION

The stationary plasma thruster is a class of closed d
~Hall! thrusters that have evolved in several countries as
attractive electrostatic propulsion device for orbit maneuv
ing and station keeping. The reason for such popularity
due to its superior thrust (;102– 103 mN) and high effi-
ciency (.50%) over a wide range of currents. The accele
tion in a Hall thruster is not inhibited by the space char
field in quasineutral plasma.1,2 In general, the electric propul
sion devices allow for lower propellant mass by generat
higher exhaust velocities than is otherwise possible w
chemical rockets. However, the electric propulsion devi
are more challenging in comparison with chemical prop
sion devices; not only is obtaining the test results under
flight conditions difficult, but also the interaction of th
plasma plumes with the spacecraft makes the problem hi
nonlinear.

Hall thruster experimentation started in the early 196
and due to the diligent Russian effort became an enab
technology for on-board propulsion in many low earth or
~LEO! and geosynchronous equatorial orbit~GEO!
satellites.3 Present day kilowatt level Hall thrusters offer sp
cific impulses ranging from 1600 to 2000 s with 80 mN
;1 N thrust. Increasing the efficiency of the Hall thruster
a challenge. While having a lifetime of close to 8000 h, t
choice of thruster size requires an optimum selection
tween efficiency and lifetime.4 The physics inside the Hal
thruster has to be reasonably well understood in orde
make any significant change in efficiency without comp
mising the lifetime. In addition, sputter yield prediction is
considerable interest to the electric propulsion community
it is intimately related to the lifetime issues. Despite am
theoretical and experimental efforts published in the lite
ture, a recent study1 recognizes the need for an accepta
computational model that captures the details of electr
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and plasma dynamics inside the thruster annular cavity.
Figure 1 shows the annular schematic of a station

plasma Hall thruster with an external hollow cathode. T
propellant xenon~Xe! gas is injected near the anode at t
rear end. Concentric dielectric walls bound the accelera
channel. Hall thrusters are characterized by comparativ
long acceleration channel~0.02–0.03 m! and a dominant ra-
dial magnetic field (;200 G) concentrated about the chann
exit. The presence of such a strong radial magnetic fi
inhibits the transverse motion of the electrons, since th
negligible gyration radius in comparison with the width
the channel virtually glue them to the radial field lines. T
resulting high impedance of the electrons in the axial dir
tion helps to maintain an electric field between anode a
cathode. The ions, on the other hand, have a large gyra
radius and therefore, will behave as if there is no radial m
netic field. This will result in ions streaming out of the d
vice, accelerating down the potential like unmagnetiz
plasma.

Hall thruster dynamics is quite complex and thus, cert
simplifying assumptions are necessary before attacking
problem in totality. Recently, several authors have carried
numerical studies of Hall thrusters in the framework of h
brid, as well as fluid, models.5–13 In the hybrid particle-in-
cell ~PIC! model ions and neutrals are treated as partic
while electrons are streaming as fluid.9,10 In the fluid
formulation5,7,11–13all species are described by their respe
tive macroscopic equations. Several one- and tw
dimensional models are available in the literature. Manzel5

Boeuf and Garrigues,6 Ahedoet al.7 ~to name a few with no
particular order! have documented one-dimensional~1D!
Hall thruster simulations. Fife10 ~and references therein!,
Keidar et al.,12 and Roy and Pandey13 document the two di-
mensional~2D! numerical results. These studies aim towar
predicting high fidelity solution details inside the thrust
while simulating real flight conditions, and towards bett
2 © 2002 American Institute of Physics
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prediction of the performance and design issues. Des
some advances in our understanding of the thruster pla
dynamics, the need for further investigation of the subjec
improve and optimize the thruster design remains.

As a complement to our previous work,13 the present
study generalizes the model to partially ionized plasma
corporating the neutral dynamics and the effect of inela
processes. Here a 1D numerical model is employed to s
the physics of the acceleration process inside the cha
with plasma–wall interaction. It is anticipated that the res
will provide the basic insight of the underlying thruster phy
ics, namely, the inter-relationship between the plasma t
perature and ion and neutral densities, the ion and elec
velocities and currents. To the best of our knowledge,
such study is available in the literature.

II. PHYSICAL PROCESSES IN A THRUSTER PLASMA

The Hall thruster plasma is partially ionized gas, cons
ing of electrons, ions, and neutral particles. The neutral p
ticle is xenon, which is supplied externally through the inl
anode. The plasma is formed primarily through t
collisional ionization via the electron impact to the incomi
neutral propellant, downstream of the channel, in a nar
region. The plasma in the thruster is assumed to be quasi
tral, i.e., electron number densityne is locally equal to ion
number densityni . The assumption of quasineutrality
valid except in the thin sheath layer near the walls. She
dynamics is not considered in the present work. The plas
in the thruster is sustained within the annular discha
chamber by an axial electric fieldEZ established between th
external cathode and the anode located at the inlet. The e
trons coming out of the external cathode flow towards
anode across the radial magnetic field established by
electromagnets. The interaction of these electrons with
crossed axial electric fieldEZ and radial magnetic fieldBr

redirects the electron in the azimuthal direction, greatly
ducing the electron conductivity in the axial direction. As
interesting consequence, despite the plasma being quas
tral, over the channel width the electrostatic field is ma
tained due to the charge separation inside the accelera
channel.

In such partially ionized plasma, several important el
tic and inelastic processes can take place simultaneously.
elastic collision involves only the exchange of momentu
and energy between colliding particles, whereas inela

FIG. 1. Hall thruster schematic shows partially ionized gas flow inside
channel under the influence of electric and magnetic fields.
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processes like ionization, recombination, charge-excha
collision, plasma–wall interaction, secondary emission, sp
tering, etc. can be responsible for redistributing the num
density of the particles along with its momentum and ener
As described in Appendix A, not all processes are equa
probable. For example, the momentum exchange due to C
lomb interaction is not as important as the plasma-neu
momentum exchange. Furthermore, plasma–wall interac
may play an equally important role as the plasma-neu
collision in axial electron transport to the anode.

III. GOVERNING EQUATIONS

Owing to small inertia, electron response time is mu
faster than the ion response time. As a result, electrons
attain steady state much faster than ions. Keeping this
mind, electron momentum and energy equations are so
as steady state equations, whereas for ions and neutrals,
of time independent continuity and momentum equations
simultaneously solved. The axisymmetric cylindrical thrus
plasma is modeled by 1D geometry, wherez corresponds to
axial direction andu is along the azimuth. The following
one-dimensional equations are solved in the present wor

Electron momentum equation:

Vez

]Vez

]z
52

1

mene

]

]z
~pe!2

e

me
Ez

2S vc
2

nei1nen1aBvc
DVez

2nei~Vez2Viz!2nen~Vez2Vnz!

2S S

ne
D ~Vez2Vnz!1nwVez, ~1!

where me is the electron mass,ne is the electron numbe
density.Vez, Viz , Vnz are, respectively, electron, ion, an
neutral axial velocities.Vu5EZ /Br is the azimuthal electron
drift velocity, pe5neTe is the electron pressure withTe as
the electron temperature in eV,Ez is the axial electric field,
vc5eB/me is the electron-cyclotron frequency, and th
source term due to ionization, recombination, and charge
change isS5Srecomb1Sioniz1Scex. The electron–ion (nei),
electron–neutral (nen), and electron–wall (nw) collision fre-
quencies are defined in Appendix A. The following relatio
between azimuthal and axial velocities is utilized:

Vu5S vc

nei1nen1aBvc
DVez5VVez, ~2!

where,aB is the Bohm diffusion coefficient andV is the Hall
parameter. The typical value of the Hall parameter var
between 100–1000.

The dynamics of the electron is determined by the pr
sure gradient, by the electric and magnetic forces, and
collisional exchange of momentum in Eq.~1!. In the regions
of sharp flow gradients, the effect of the convective te
may become finite and therefore, the convective term is
tained in this formulation. Similarly, since collision tim
scales are much larger than the electron-cyclotron gyra
time scale, one may ignore elastic and inelastic collis

e
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terms in comparison with the Lorentz force termV3B in the
momentum equation. Such an approach will exclude the
namics of the momentum exchange, as well as the effec
ionization and recombination, severely limiting the applic
bility of the model to the thruster plasma. Furthermore,
addition to the presence of electron–ion and electron–neu
collisions, the electron–wall collision is thought to play a
important in the electron transport.1 Therefore, all the colli-
sion terms are retained in the electron momentum Eq.~1!.

It is known that the classical short-range, binary co
sion between plasma particlesnei and plasma-neutralsnen is
not sufficient to explain the cross field transport of the el
trons and such behavior is explained either by invok
Bohm diffusion7 or by invoking plasma side-wal
interaction.1,6 We model the plasma–wall interaction by in
troducing the electron–wall collision frequencynw ~please
see Appendix A for details!. Further, the effect of anomalou
Bohm conductivity has been included qualitatively by i
cluding the equivalent frequencynB5aB vc , which incor-
porates the effect of magnetic field fluctuations.

Neglecting the effect of radiation, viscous dissipatio
and thermal conduction, the electron energy equation ca
written as

d

dzFneVezH me~11V2!Vez
2

2
1

5

2
TeJ G2neeVez

dw

dz

53
me

mi
nenei~Ti2Te!13

me

mn
nenen~Tn2Te!

1SS 3

2
Te1aEi D2nenwE8. ~3!

HereTe , Ti (;0.1 eV) andTn (;0.1 eV) are electron, ion
and neutral temperatures in eV, respectively, andEi is the
ionization energy of the xenon. Further,

nwE85H 2TeVthe

h
ewF ~22w!2dS 2

Tse

Te
2w8D G ; w8<0,

4TeVthe

h S 12
Tse

Te
D ; w>0.

~38!

Here,Tse is the temperature of secondary electrons. Equa
~3! includes the effect of Joule heating, the contribution d
to the exchange of random thermal energy and due to
ionization and recombination and interaction of the plas
with the wall. The convective flux of kinetic energy include
the flux of azimuthal electron kinetic energyV25Vez

2

1Veu
2 . The value ofa is between~2–3!.7

The ion continuity equation is

]ni

]t
1

]~niViz!

]z
5S2nwni . ~4!

In an ion momentum, the momentum exchange due to c
sion with electrons will not be significant, as the ion me
free path is generally larger (;0.3 m) than the size of the
thruster (;0.02 m). Also, we consider ions as unmagn
tized, since the gyration radius of ions is typically large fo
200 G field with an ion velocity 43103 m/s. Thus we ignore
y-
of
-
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-
g

,
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n
e
e
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the effect of magnetic field on the ion transport. The press
term in the ion momentum equation can be ignored, as
thermal energy of the ions is much smaller than their kine
energy, i.e.,Ti!miVi

2. Then the ion momentum becomes

]Viz

]t
1Viz

]Viz

]z
5S e

mi
DEz1S me

mi
D nei~Vez2Viz!

2S mn

mi
D n in~Viz2Vnz!

2S S

ne
D ~Viz2Vnz!1nwViz . ~5!

Neutral continuity,

]nn

]t
1

]~nnVnz
!

]z
52Sn . ~6!

Here Sn5Srecomb1Sn, ioniz1Scex and Sn, ioniz5ki
01nenn

1ki
011nenn . Equations~1!–~6! are supplemented with th

current and mass conservation equations, respectively, a

eni~Viz2Vez!5JT , ~7!

mnnnVnz1miniViz5
ṁ

A
. ~8!

Here JT5I d /A is the total current density,I d is the total
discharge current,A is the cross section of the thruster cha
nel, andṁ is the mass flow rate.

Before numerically solving the above set of basic eq
tions, the physical variables are normalized using experim
tal data. The mass flow rate of the propellant isṁ5rVA.
Then the flux of the propellant isG51023 m22 s21. Tem-
peratureTe is normalized to the first ionization potential o
xenon, T* 5Ei ~12.1 eV!. Then all dependent variable
can be normalized from V* 5A(T* /mi) m/s, n*
5G* /V* m23, n* 5s* G* s21, where s* 5s0A(mi /me),
s0>3.6310220 m2 for Xe ~see Appendix A for details!. The
fundamental length scale can be defined in terms of the c
acteristic velocity and collisional frequency as,l 0

5V* /n* . The time scale ist05n
*
21.

Initial and boundary conditions:In order to numerically
solve the formulations~1!–~8!, proper initial and boundary
condition specifications are necessary to make the prob
well posed. In a typical Hall thruster experiment, the rad
field is dominant in comparison with the axial field. Thus,

FIG. 2. Imposed magnetic field distribution. The magnetic field has a m
mum near the exit plane.
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one-dimensional radial magnetic field is considered in
present work. A shifted Gaussian~bell-shaped! magnetic
field profile is assumed~see Fig. 2!, which reaches maximum
just upstream of the exit plane,

Br~z!5B0~z!1Bmaxexp~2~z2zexit!
2!. ~9!

The neutral number density at the inlet is assumed as g
and is equal to the reference density. The axial ion velocit
not fixed at the inlet. Under typical conditions, next to t
anode, a plasma sheath~typical width;Debye length! forms
and ions must flow into the sheath from the quasineu
region.14 The axial velocity is near zero close to the ano
and then begins to rise at the edge of the acceleration z
and reaches maximum velocity beyond the exit.15 Such flow
behavior has also been observed in the classical nozzle p
lem, where flow changes smoothly from subsonic~in the
narrow region! to the supersonic flow in the divergent regio
Therefore, a sonic point, where the flow velocity equals
characteristic speed of the medium, is always expected a
exit. In conformity with the available experimental resu
and numerical model7 we shall impose ion velocity at th
exit boundary, whereas electron velocity is assumed zer
the inlet. At the inlet, the plasma density is fixedni

50.14n* and, a homogeneous Neumann condition for
electrostatic potential is imposed. At the downstream bou
ary ~thruster exit plane!, we specify an electron temperatu
Te510 eV, that is close to the experimental results.16

Since at the cathode, the potential is zero, a vanish
potential is assumed at the outlet. For neutral and ion de
ties along with the electron velocity, a homogeneous N
mann condition is assumed at the exit. The electron temp
ture is fixed toTe50.44T* at the outlet. The velocity of the
neutral is consistently calculated from the mass flow eq
tion.

The basic set of Eqs.~1!–~8! is solved using finite ele-
ment based numerical model detail of which is given in A
pendix B.

IV. RESULTS AND DISCUSSION

Equation set~1!–~8! has been solved over a comput
tional domain (z/L:0,1) whereL is the channel length with
the exit plane located at 2 cm. The mesh consists of 40 e
length 1D quadratic finite elements~i.e., 81 nodes! for all
numerical results presented here.

The ion number density~Fig. 3! increases rapidly from a
base value of 2.831017 m23 and attains a maximum valu

FIG. 3. Ion density increases towards the exit by an order of magnitu
e

en
is

l

ne

b-

e
he

at

e
d-

g
si-
-
a-

-

-

al

1.631018 m23 upstream of the acceleration channel befo
decreasing near the exit. The experimental results14 show
that the plasma density reaches its peak value inside the
celeration channel, at the right bottom corner of the e
plane. In this region, the radial magnetic field is maximu
and thus a large number of electrons are inhibited from m
ing in the axial direction, resulting in the high probability o
impact ionization and hence, plasma production. The ma
mum plasma density inside the acceleration channel is
agreement with the fact that the ionization channel is w
inside the thruster. The computed ion number density pro
suggests that the ionization region is well inside the chan
at about 0.60.

The rapid increase in the ion number density is reflec
in the rapid decrease in the neutral number density~Fig. 4!
from 231018 m23 to approximately 1.631017 m23. This is
consistent with the fact that as the neutral enters the thru
chamber it undergoes the impact ionization. Our results
at variance with the result of Bouef and Garigues6 where the
minimum in neutral density is not reflected in the corr
sponding increase of the ion density. This has been attribu
to the fact that once ionization takes place, ions due to
presence of electric field are accelerated and leave the a
eration channel faster than the replenishment of the neu
A correlation between ion and neutral density is apparen
the present case. This correlation may be attributed to
temperature dependent, self-consistent calculation of the
ization rate.

Figure 5 describes the axial ion velocity profile. The v
locity peaks downstream of the channel, before the exit. T
indicates that the location of the acceleration channel is
side the acceleration channel at 0.75. The ions are acc
ated mainly due to the presence of the potential gradi
which is maximum near the channel exit, Fig. 6. Further, o
may infer from the location of the acceleration channel t

.
FIG. 4. The neutral density decreases toward the exit and reaches a pla

FIG. 5. The ion velocity profile suggests that the ions are accelerated
wards the exit.
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FIG. 6. Electric field E and potential differencef
2fE . The potential remains unchanged for 2/3rd
the channel and then sharply drops to the exit poten
fE .
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the width of the ionization region is narrower (;0.15) than
the width of the acceleration channel (;0.25). This is in
conformity with the results of Bishaev and Kim.14

Figure 6 shows the potential profile inside the accele
tion channel. The potential is highest at the inlet~near anode!
and zero at the outlet~near cathode!. We see that the poten
tial has a zero gradient inside the thruster channel, simila
the experimental data.14 However, the computed potentia
vanishes at the channel exit, while observations14,17 indicate
that only one-half to one-third of the potential drop tak
place downstream of the thruster exit. This difference is d
to the imposition of the zero potential boundary condition
the exit plane in numerical simulation, i.e., full potential dr
is forced to occur inside the channel.

Figure 7~a! shows the electron velocity profile. This
consistent with the physical picture, where the electrons fr
the cathode, located just outside the chamber of a H
thruster, is accelerated towards the anode. Large neg
velocity near the exit is consistent with the large electric fi
~Fig. 6, dotted line!, which are responsible for acceleratin
the electrons towards the inlet. These inward moving e

FIG. 7. ~a! Electron velocity. Electrons are moving toward the anode~lo-
cated atz50!. ~b! Electron drift velocity is maximum just upstream of th
channel exit.
-

to

e
t

m
ll

ive

c-

trons, on their way to the anode, collide with the neutrals a
ionize them. As a result, electron velocity decreases towa
the anode, as reflected in the figure.

The axial electron motion is shown in Fig. 7~b! The azi-
muthal electron drift velocity is a consequence of the cros
electric and magnetic field and gives rise to Hall curre
density, JH'eneVu . The peak in the azimuthal velocit
downstream is consistent with the electron temperature
file ~Fig. 8!. The drift velocity may significantly enhance th
ionization rate, at least by an order of magnitude, as d
speed becomes comparable to the electron thermal spe15

One further notes that Hall current density may become s
eral times larger than the discharge current and may give
to a self-field, which can play an important role in contro
ling performance of the thruster.

Figure 8 describes the electron temperature profile. T
increase in the temperature is not uniform in the chann
The maximum increase occurs just downstream of the ce
of the channel. This peak in electron temperature can
attributed to the Ohmic heating due to the maximum gyrat
energy in this region. This trend in temperature distributi
is similar to the results reported in the literature.7 The nu-
merical prediction also resembles the measured electron
perature near the exit.14,15,18The uncertain nature of tempera
ture data inside the channel was noted by Bishaev
Kim.14 However, for a 3 kWclass thruster,18 the experimen-
tal electron temperature peak is spread like a radial line c
centrated near the channel exit. Our 1D numerical elect
temperature results do not exactly reproduce this pro
pointing to the limitation of the present 1D model~Fig. 9!.

V. CONCLUSIONS

In this paper, a finite element, 1D formulation of pa
tially ionized plasma using the multicomponent fluid equ

FIG. 8. Electron temperature in eV. It can be seen from the curve that,
the exit plane, the computed profile is in agreement with the experim
~Refs. 15, 20!.



ic
le
de

a

tr
m
tio
ity
Xe

o

ee
pr
i

l

te
st

s
he
an

it
il

te
li

ng
re
el
ra
s

ys

us
rc

o.
r.

lf-
ge
ou-
bye

a

ed

ue
-

ex-
all

ns.
r

f
-

le
ort.
nd

on.
c-

ffi-
ay

the
dy
e

is

is

4057Phys. Plasmas, Vol. 9, No. 9, September 2002 Numerical investigation of a Hall thruster plasma
tion is given and the model is applied to study the dynam
of the Hall thruster. Owing to the disparate temporal sca
the ions have been described by the set of time-depen
equations, whereas electrons have been described by
steady state equations. Based on the experimental dat
Xe→Xe1, Xe→Xe11, and Xe1→Xe11 ionization pro-
cesses, a third order polynomial has been used in elec
temperature as a fit to these processes. Such a polyno
has been used for self-consistent calculation of the ioniza
rate in the ion continuity equation. For the neutral continu
equation, a third order polynomial corresponding to
→Xe1 and Xe→Xe11 has been used.

The plasma and neutral density profiles are in go
agreement with reported experimental data.14,15 The self-
consistent calculation displays a direct correlation betw
the ion and neutral densities. The electron temperature
dicts a maximum downstream of the channel exit and is
agreement with the experimental observations18 that show a
peak next to the exit for a 3 kWclass thruster. The potentia
profile agrees with the recent experimental studies.15 The
axial ion velocity distribution shows that ions are accelera
down the channel, as would be expected for a thru
plasma.

Our 1D model has several simplifying assumption
which will be relaxed in subsequent work. Namely, t
quasineutrality assumption is not valid near the anode,
the sheath effect should be taken into consideration. The
sue of anomalous plasma transport near the channel ex
crucial in understanding the dynamics and future work w
include this phenomena by modeling plasma sidewall in
actions, in a proper, 2D framework. This calls for genera
zation of 1D model to 2D, which shall be carried out to bri
the geometry and physics of the problem close to the
thruster dynamics. Furthermore, a time-dependent mod
necessary for a self-consistent study of plasma–wall inte
tions and anomalous electron transport, which may be cau
by the presence of very low-frequency oscillation in the s
tem.
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FIG. 9. Ionization rateki as a function of electron temperature in eV
plotted as the sum of all the ionization rateski5ki

011ki
0111ki

111 corre-
sponding to Xe→Xe1, Xe→Xe11, and Xe1→Xe11, respectively.
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APPENDIX A: CHARGE INTERACTION PROCESS IN A
THRUSTER

The main force responsible for charged particle se
interactions, as well as with each other, is the long ran
Coulomb force. Because of the long-range nature of the C
lomb force, plasma particles can be deflected over the De
lengthlD . The electron–ion collision frequency is

nei5
4A2p

3Ame

e4niLe

Te
3/2 5

Le

3A2p
S ni

ne
D S vpe

nelDe
3 D . ~A1!

Here,vpe
2 54pnee

2/me is the square of the electron plasm
frequency with an electron massme and chargee, lDe

2

5Te /(4pnee
2). Le5 ln(L) is the Coulomb logarithm. It has

a typical value around 10–20. The collision term determin
by electron–electron and ion–ion collision is equal to

naa5
4A2p

3Ama

e4naLa

Ta
3/2 5

La

3A2p
S vpa

nalDa
3 D . ~A2!

The ratio between different collision frequencies is

nee

nei
'&;

n i i

nei
'&S me

mi
D 1/2 Li

Le
~A3!

for ne'ni andTi'Te . The momentum exchange terms d
to electron–electron and ion–ion interaction will not be im
portant in comparison with the electron–ion momentum
change as the relative drift between similar particles is sm
in comparison with the drift between electrons and io
Therefore,nee, n i i frequencies shall be ignored from furthe
consideration.

For typical conditions of a Hall thruster, the effect o
Coulomb collision (nei) may not be significant in compari
son with the plasma-neutral collisionnen .6 Further,
electron–wall collisions may play an equally important ro
as the plasma–neutral collision in momentum transp
Plasma interaction with the walls leads to recombination a
secondary emission, thermal losses, and electron diffusi7

The probability of recombination is considerable at low ele
tron energy as the electron–ion interaction time is su
ciently large. The following recombination process m
occur:19

e1Xe11e→Xe1e, e1Xe11Xe1→Xe1Xe1,

e1Xe11Xe→Xe1Xe, e1Xe1→Xe1hn.

Not all processes are equally probable. For example,
probability of the recombination with the ion as a third bo
~second reaction! is always negligibly small compared to th
first reaction.

The recombination in the presence of a neutral body
important at the low degree of ionization. Therecombination
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coefficient a can be approximated as20 a51.09
310220 neT

29/2 m3/s. Then the recombination rate can
written as

Srecom521.09310220T29/2ne
3 m3/s, ~A4!

where assuming quasineutralityni has been replaced byne .
The inelastic electron collision with the wall allows th

electrons to move across the magnetic field toward the
ode, giving rise to ‘‘near wall conductivity.’’ Thus, for mod
eling the near wall conductivity, one needs to specify
secondary emission and sheath potential. Furthermore,
believed that the wall with high secondary electron emiss
d gives rise to high cross-field conductivity, since a lar
fraction of the incident energetic electrons are returned to
plasma as cold electrons with new guiding center drift alo
the direction of the electric field. Thus for a near wall she
potential,

w852F0.51 lnH ~12d!S mi

2pme
D 1/2J G ~A5!

electron–wall collision frequency, for a channel of widthh
can be given as

nw5H 2Vthe

h
ew8~12d!; w8<0,

2Vthe

h
; w8>0.

~A6!

Herew85ew8/Te and coefficient of secondary emission a
for Boron nitride wall is given as

d50.1983Te
0.576. ~A7!

Electron collisions with the xenon atom is the main source
ion production in propulsion plasma. The rate of ion produ
tion in plasma is determined by the total cross section of
process. Thus,

Sioniz5nenn^Vs i~V!&5ken
i nenn , ~A8!

where, forthe process constant ki5^Vs i(V)&, the averaging
is done over the velocities of the electrons whose energ
sufficient for ionizationmV2/2.Ei . The ionization process
can be described ase1Xe→Xe11e1e8, wheree and e8
as
ns
n-

e
is
n

e
g
h

f
-
e

is

have different energy level. Processes like Xe→Xe11 and
Xe1→Xe11 may also play important role. The ionizatio
source term, which takes into account all the above p
cesses, is

Sionization5ki
01nenn1ki

011nenn1ki
111ne

2, ~A9!

where 01, 011 represents the transition from neutral
singly and doubly ionized state, respectively, and 111 rep-
resents the transition from singly to doubly ionized state. T
ionization cross section for Xe is given by Darwin,20

s j~u!52.66pa0
2S Ei

H

Ei
klD 2

jklb1S u21

u2 D ln~1.25b2u!. ~A10!

HereEi
H is the ionization energy of hydrogen~13.6 eV!, Ei

kl

is the threshold ionization energy,jkl is the number of
equivalent electrons in thekth level, i.e., those electrons hav
ing principal and azimuthal quantum number same,u
5E/Ei

kl , andb1 andb2 are adjustable parameters. For X
gasb151.0 andb250.87. After doing the averaging over
Maxwellian electron, theprocess constantis given by10

ken
i 54.13310213

E
1

`

du ln~1.25b2u!e(2u/u)S u21

u D
u3/2 ,

~A11!

whereu5kTe /Ei . The process constantis typically about
1310214 for Xe→Xe1. Processes like Xe→Xe11 and
Xe1→Xe11 may also play important role. For electron e
ergies,80 eV, s(Xe→Xe11) can be calculated using Dar
win’s form with « i533.3 eV andj53.

No data exist fors(Xe1→Xe11). Once again, Dar-
win’s form can be used withEi521.2 eV,j55. The thresh-
old energy Ei521.2 eV is the difference betweenEi

(Xe11533.3 eV) andEi (Xe1512.1 eV). For the Hall
thruster,nenn /ne

2;102, one may conclude that the contribu
tion due to Xe1→Xe11 to the ionization will be small in
comparison to the Xe→Xe11 sinceki

111,ki
011 .

A general third order temperature dependant polynom
can be fitted to the experimental value of ionization rateki

5ki
011ki

0111ki
11 . The matrix form is
S ki
01

ki
011

ki
111

D 5S 1.943531025 20.0068 0.6705 21.6329

23.035231025 0.0024 0.0515 20.1431

22.11731025 0.0022 20.0119 0.0161
D S Te

3

Te
2

Te
1

Te
0
D 310214. ~A12!
ctric
ar-
i-
wn

es
wo
ate
Figure 9 plots the sum of all three ionization rates as

ki5~23.208731025Te
320.0022Te

210.7101Te21.76!

310214. ~A13!

Please note that the above estimate of ionization rate is b
on the Maxwellian distribution function. However, electro
ed

are accelerated toward the anode by the imposed ele
field before their head-on collision with the neutral gas p
ticles. Therefore, a drifting Maxwellian will be an appropr
ate description of the electron distribution. It has been sho
recently21 that for a drift speed between one to five tim
electron thermal velocity, the ionization rate increases by t
to seven order of magnitude. Therefore, our ionization r
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calculation may be slightly under estimated, especially n
the thruster exit, where the electron drift may become co
parable to the electron thermal speed.

Charge exchange is related to the transfer of one or m
electrons between an atom and an ion. Slow propellant
are created due to resonant charge-exchange collisions o
following type between the fast ‘‘beam’’~current! ions and
slow thermal neutrals,

Xefast
1 1Xeslow

0 →Xeslow
1 1Xefast

0 ,

Xefast
111Xeslow

0 →Xeslow
111Xefast

0 , ~A14!

Xefast
111Xeslow

0 →Xeslow
1 1Xefast

1 .

The last process may not be significant in comparison w
the preceding ones. The spatial volumetric production rat
given bySCEX5nnni^v is(v i)&, where relative collision ve-
locity is taken to be the ion velocity. The process can
important for creating slow ions. The cross section
Xe– Xe1 for example, is given by22

s~Xe– Xe1!5~142.21223.30 log10~Du!!310220 m2.

~A15!
For a relative velocity between 10 and 23103 m/s, the
charge exchange cross section is between 10220– 10219 m2.

APPENDIX B: FINITE ELEMENT BASED MODELING

In the present work, a 1D finite element formulation
employed to solve Eqs.~1!–~8! which may be expressed a
L(U)50, where U5(ni ,nn ,Vi ,Vn ,Ve ,Te ,f) and L is a
differential operator. The weak statement underlines the
velopment of the range of numerical algorithms. Such
integral statement associated with~1!–~8! is

E
V

wL~U!dV50, ~B1!

wherew denotes any admissible test function.23 Thereafter,
the finite element~FE! spatial semidiscretization of the do
main V of ~1!–~8! employs the meshVh5øeVe andVe is
the generic computational domain. Using superscript ‘‘h’’ to
denote ‘‘spatial discretization,’’ the FE weak stateme
implementation for~B1! defines the approximation as

u~xj !'uh~xj !5ø
e

ue~xj ! and ue~xj !5NkUe , ~B2!

where subscripte denotes elements, and the trial space
basis setNk(xj ) typically contains Chebyshev, Lagrange
Hermite interpolation polynomials complete to degreek,
plus perhaps ‘‘bubble functions.’’23 The spatially semidis-
crete FE implementation of theweak statementWSh for ~B2!
leads to

WSh5SeS E
Ve

NkLe~U!dt D . ~B3!

Se symbolizes the ‘‘assembly operator’’ carrying local~ele-
ment! matrix coefficients into the global arrays. Applicatio
of the Green–Gauss divergence theorem in~B3! will yield
ar
-

re
ns
the

h
is

e
r

e-
n

t

E

natural homogenous Neumann boundary conditions and
surface integral that contains the unknown boundary flu
wherever Dirichlet~fixed! boundary conditions are enforced

Independent of the physical dimension ofV, and for
general forms of the flux vectors, the semidiscretized we
statement of~B1! always yields an ordinary differentia
equation~ODE! system,

M dU/dt1R~U!50, ~B4!

whereU(t) is the time-dependent finite element nodal vect
The time derivativedU/dt, is generally replaced by using
u-implicit or t-step Range–Kutta time integration procedu
In ~B4!, M5Se(Me) is the ‘‘mass’’ matrix associated with
element level interpolation,R carries the element convectio
information and the diffusion matrix resulting from genuin
~not for Euler! or numerical elemental viscosity effects, an
all known data. For the steady state,~B4! is usually solved
using a Newton–Raphson scheme,

Ut11
i 11 5Ut11

i 1DUi5Ut1 (
p50

i

Up11,

where

DUi52@M1uDt~]R/]U!#21R~U!. ~B5!

The obvious numerical issues will be associated with cal
lation of the ‘‘Jacobian’’]R/]U and inversion of theM
1uDt(]R/]U) matrix with sufficient accuracy. Here, an im
plicit (u51) time stepping procedure is employed.

The choice of time step is dictated by the Couran
Fredrich–Levy condition.24 The code uses variable tim
steps until the transient features die down as the itera
converges to a steady state. The solution is declared con
gent when the maximum residual for each of the state v
able becomes smaller than a chosen convergence criterio
P51024. Here, the convergence of a solution vectorU on
node j is defined as the norm,

iUj2Uj 21i
iUj i

<e. ~B6!
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