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Elastic constants for zinc-blende AlN, GaN, and InN have been estimated from the elastic 
constants of the wurtzite phase. This has been accomplished by recognizing that the 
crystal structures of the wurtzite and zinc-blende phases are related by a simple rotation. 
This rotation was then applied to the elastic constants and a least-squares fit is used to match 
the results. Using the zinc-blende elastic constants the critical. thickness of the nitrides 
on &Sic substrates was calculated. The critical thickness of a-single overlayer of AlN was 
calculated to be 14.1 nm, and for GaN the critical thickness was found to be 0.7 nm. 
In the elastic continuum model used there was no solution for the critical thickness of InN. 

Aluminum, gallium, and indium nitrides are of poten- 
tial interest as optical devices. Most of the work done in the 
past with these materials has been on sapphire substrates, 
growing the nitride in a wurtzite crystal form. Recently, it 
has been demonstrated that the cubic phase of GaN, and 
possibly AlN, will grow on &Sic or even GaAs sub- 
strates.“2 It is expected that cubic phase nitrides will have 
unique electrical properties. Certainly the relatively close 
lattice match to P-Sic makes them interesting. 

Prediction of the critical layer thickness of pseudomor- 
phic cubic nitride films on P-Sic substrates requires a 
knowledge of the lattice parameter and the elastic con- 
stants of the nitride overlayer. Since only a few small sam- 
ples of cubic phase nitrides have been fabricated, very little 
is known about any of the electronic, optical, or mechan- 
ical properties thereof. In this paper, the measured elastic 
constants of all three nitrides in the wurtzite phase are 
collected for the first time in a single report and used to 
predict the elastic properties of the cubic phase crystals. 
These results are then used to calculate critical layer thick- 
nesses for cubic phase AlN, Gab& and InN on /?-Sic. 

The elastic properties of the wurtzite and zinc-blende 
crystal structures may be correlated by observing that the 
two structures are identical through the second nearest 
neighbor. It has also been recognized that it is possible to 
construct both lattices from a simple (zinc-blende) tetra- 
hedral building block.3 Martin has developed a procedure 
for relating the elastic constants of a zinc-blende crystal to 
its wurtzite counterpart.4 Martin’s method consists of ap- 
plying two inequivalent rotations to the fourth-rank elastic 
tensor of the zinc-blende crystal defining two trigonal elas- 
tic tensors corresponding to the two inequivalent tetrahe- 
dral building blocks which, when superimposed, result in 
the wurtzite structure. Minimizing the internal strain of 
the resulting system results in a simple relationship be- 
tween the elastic constants of the zinc-blende crystal and 
the wurtzite crystal. In writing out this relationship, the 
fourth-rank tensors are reduced to simple vectors with the 

following definitions: 

cqB=cyy, cfB==cyf, cfB=cg$ 
and - 

cy = crz, cy=c7, cy = cEZ, 
cwz= c;=, 4 cy= = I$$=, cy = cg=, 

The equations relating the two vectors are 

C?z=~w~ -D. I i I, i=l ,a*-, 6 
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As written, these equations will produce the wurtzite elas- 
tic constants from known zinc-blende data.5 To perform 
the opposite and desired operation, it was necessary to use 
a least-squares fitting routine to find the zinc-blende con- 
stants that provided the closest reverse transformation to 
the known wurtzite elastic constants. Martin demonstrated 
the method for the test case of ZnS for which experimental 
data were available for both crystal structures. Although 
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TABLE I. Wurtzite and zinc-blende elastic constants for AlN, GaN, and 
InN. All units are 10” dynes/cm’. 

AlN GaN IflN 

wz ZB wz ZB wz ZB 

Cl, 34.5 32.8 29.6 26.4 19.0 17.2 
c33 39.5 26.7 18.2 
Cl, 12.5 13.9 13.0 15.3 10.4 11.9 
Cl3 12.0 15.8 12.1 
C44 11.8 13.3 2.4 6.8 1.0 3.7 
G6 11.0 8.3 4.3 

Ref. 11 12 13 

the accuracy of the experimental elastic constants is not 
perfect a correspondence of 6% or better in the wurtzite to 
zinc-blende transformation was obtained. The known 
wurtzite and calculated zinc-blende elastic constants of the 
III-N nitrides are summarized in Table I. 

To,compare these results to existing theoretical estima- 
tions of the elastic properties of cubic III-N crystals we 
note that Van Camp et al.6’7 have calculated the bulk mod- 
ulus of GaN and InN using the local density approxima- 
tion with norm-conserving nonlocal pseudopotentials. 
They report the bulk moduli of GaN and InN to be 158 
and 155 GPa, respectively. The bulk modulus of zinc- 
blende crystals may be derived from the elastic constants as 
B= (c,, + 2c,,)/3. The calculated values of the bulk mod- 
ulus (in GPa) for AlN, GaN, and InN are 202, 185, and 
136, respectively:These values agree to within 20% of the 
calculations of Van Camp et al. Although the agreement is 
not very good Van Camp observes that the pseudopotential 

* results for nitride compounds is expected to be relatively 
poor as compared to phosphide and arsenide compounds 
due to the small size of the nitrogen atom. 

In calculating the critical layer thicknesses for the 
three nitride compounds on a P-Sic substrate, the force 
balance method of Matthews and Blakeslee8 is used. This 
method balances the line tension present on a dislocation 
against the glide force present in a strained film. For a 
single overlayer with only one interface, the equation for 
the critical film thickness is given by 

h= 
a( 1 - v/4) 

[h(p) +e], 

where h is the film thickness, a is the substrate lattice 
constant, E = (anitride - asiC)/Unitride is the strain present in 
the film, and 8~ 1 represents the dislocation core energy. 
There are several assumptions that must be made for this 
equation to be valid in the following analysis. To relieve 
strain effectively the a dislocation must run along the in- 
terface between the substrate and the overlayer. In the 
present case, the interface is between a IV-IV zinc blende 
and III-V zinc blende semiconductor. The nature of such a 
dislocation is problematic and it must be assumed that it 
does not significantly modify our analysis. Second, for 
large mismatches the elastic constants themselves are mod- 
ified by lattice distortion as is the dislocation core energy. 

TABLE II. Estimated cubic lattice constants, strain relative to P-Sic, 
Poisson’s ratio, and pseudomorphic critical layer thickness for cubic ni- 
trides on B-Sic. In the case of InN no solution exists within the contin- 
uum elastic approximation for an overlayer on D-Sic. 

AlN 
GaN 
IIlN 

a (nm) e (%I 

0.438 0.6 
0.454 4.1 
0.503 15.3 

Y h (nm) 

0.297 14.1 
0.366 0.7 
0.408 . . . 

These two effects appear to compensate one another, at 
least in the case of III-V/III-V strained layer systems.! In 
the present context it is expected that the results of the 
critical layer thickness caltiulations are accurate to within a 
factor of two. 

The lattice constant of P-Sic is 0.4359 nm. in calcu- 
lating the strain in the nitride film, the zinc-blende lattice 
constants were derived from the wurtzite data in Refs. 
W-13. For an ideal wurtzite structure, c/a = 1.633 and the 
equivalent cubic lattice constant is related to the wurtzite 
data by the relation aza = ( 3/2)cwz. Beyond this simple 
relationship, experimental data are available for GaN.2 
These data indicate that the nonideal wurtzite structure 
has a scaling factor to the zinc-blende structure other than 
( G/2) = 0.8660.~ This scaling factor was found to be 
0.881. As a first-order approximation, this scaling factor 
was also used for AlN and InN. Poisson’s ratio is obtained 
by first transforming the elastic constants to compliances 
(.@ then Y = - slZ/sll. Values of a, E, and Y for the three 
nitrides are listed in Table II. Inserting these values into 
the Matthews and Blakeslee equation gives the following 
critical layer thicknesses: h(AlN) = 14.1 nm and 
h(GaN) = 0.7 nm. No solution was found for InN within 
the elastic continuum model. 

Although these thicknesses appear to place consider- 
able limitations on device structures, it appears that it may 
still be possible to alleviate the strain in thick nitride films 
without introducing dislocations. Paisley’ has noticed a 
thin “amorphous” region between a P-Sic substrate and an 
overgrown GaN film. After this amorphous region the 
GaN film grows in an undislocated cubic phase. Instead of 
an amorphous region, we speculate that this region could 
be due to a unique hexagonal stacking sequence, since it is 
possible that GaN can exist in numerous polytypes as is 
true of Sic. It is possible that some of the strain present is 
accommodated by this stacking sequence. Although this 
phenomenon may preclude the growth of pseudomorphic 
thin films it seems to offer promise for growing thick films 
of cubic nitrides. 

The elastic constants of wurtzite phase AlN, GaN, and 
InN have been collected. From these data a set of elastic 
constants for the zinc-blende phases has been estimated. 
Using the calculated values of Poisson’s ratio and the lat- 
tice constants, critical layer thicknesses were calculated for 
cubic phase growth on /?-Sic substrates. Critical layer 
thicknesses of 14.1 and 0.7 nm were derived for AlN and 
GaN, respectively. In the case of InN, the lattice mismatch 
is estimated to be sufficiently large that no solution for the 
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critical layer thickness exists within the elastic continuum ‘In the paper by Martin, there was a typographical error in the definition 
model. of the Q matrix. 
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