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The rate of damping of surface gravity–capillary waves is investigated, in a system which consists
of a thin layer of a Newtonian viscous fluid of thicknessd floating on a Newtonian fluid of infinite
depth. The surface and interfacial tensions, elasticities and viscosities are taken into account. In
particular, an approximate dispersion relation is derived for the case wherekd and (v/n1)

1/2d are
both small, wherek is the wavenumber,v is the angular frequency andn1 is the kinematic
viscosity of the upper fluid. Ifd→0 while n1d remains finite, published dispersion relations for
viscoelastic surface films of extremely small~e.g., monomolecular! thickness are reproduced, if we
add the surface and interfacial tensions, elasticities and viscosities together, and then add an
additional 4r1n1d to the surface viscosity, wherer1 is the density of the upper fluid. A simple
approximation is derived for the damping rate and associated frequency shift when their magnitudes
are both small. An example is given of what may happen with a slick of heavy fuel oil on water: a
slick 10mm thick produces a damping rate only slightly different from that of a film of essentially
zero thickness, but the effect of the finite thickness becomes very noticeable if it is increased to
0.1–1 mm. ©1997 American Institute of Physics.@S1070-6631~97!00905-7#
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I. INTRODUCTION

The hydrodynamic theory of wave damping by vi
coelastic films of negligible thickness~e.g., monomolecular
films! on the surface of a Newtonian fluid is we
established,1–9 the dominant effect being the increase in t
rate of damping by a factor of order (nk2/v)21/2 over the
clean-surface value10–12 of 2nk2, wheren is the kinematic
viscosity, k is the wavenumber (k52p/ wavelength), and
v is the angular frequency. This effect is due to an incre
in velocity shear in the viscous surface boundary layer
thickness (2n/v)1/2, as a result of the altered boundary co
dition for the tangential stress component.

Wave damping due to the presence of a viscous sur
fluid layer of finite thickness is also of practical importanc
for example, in the initial stages of an oil spill.13–16An im-
proved knowledge of the rates of wave damping for oil slic
of finite thickness may help to distinguish oil spills fro
other low-backscatter features in satellite and airborne ra
images.17–22 Wave damping by a finite-thickness surfa
layer has been investigated mathematically by Weber,23 who
applied his results to the damping of waves by a layer
grease ice.

II. GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

We consider motions in two dimensions,x ~horizontal!
andz ~vertical!, of a system consisting of two fluid layers: a
upper layer of thicknessd floating on a lower fluid body of
infinite depth. The horizontal and vertical velocity comp
nents areU andW, respectively, and we employ a reduc
pressure variableP5(Ã/r)1gz2g(r1 /r)d, whereÃ is
the actual pressure,r is the density~in either fluid!, r1 is the
1256 Phys. Fluids 9 (5), May 1997 1070-6631/97/9(5
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density of the upper fluid, andg is the acceleration due to
gravity. Subscripts indicate partial differentiation with r
spect to the coordinates and timet. We assume that the
nonlinear terms in the Navier-Stokes equations for both
upper layer and the lower bulk fluid can be neglected
comparison with the acceleration termsUt andWt , for both
the upper layer and the lower bulk fluid: this is the case
surface waves in the limit thatak!1, wherea is the wave
amplitude. For a further discussion of nonlinear effects a
the validity of the linearization procedure, we refer the rea
to Appendix A. In particular, the linear approximation
shown to be valid forak!1 even wherea@d.

In the notation employed below, the subscript (•)1 re-
fers to either the upper fluid layer or to the surface, wh
appropriate, and (•)2 refers correspondingly to the lowe
fluid or the interface. The linearized continuity and mome
tum equations are

Ux1Wz50, ~1!

Ut1Px5n¹2U, ~2!

Wt1Pz5n¹2W. ~3!

We let the interface between the two fluids be atz5H and
the free surface be atz5d1Z, the corresponding undis
turbed levels beingz50 andz5d, respectively. At the free
surface, the kinematic boundary condition is

W5Zt , ~4!

the tangential stress condition is1–7

r1n1~Uz1Wx!5x1jxx1ns1jxxt , ~5!

and the normal stress condition is

P2gZ22n1Wz1~g1 /r1!Zxx50, ~6!
)/1256/9/$10.00 © 1997 American Institute of Physics
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whereg1 is the surface tension,x1 is the surface elasticity
andns1 is the surface viscosity. The quantityj is the hori-
zontal fluid particle displacement, which satisfies

U5j t . ~7!

At the interface, the kinematic boundary condition is

W15W25Ht , ~8!

continuity of the velocity field gives

U15U2 , ~9!

and the tangential and normal stress conditions are
r1n1~U1z

1W1x
!1x2jxx1ns2jxxt

5r2n2~U2z
1W2x

! ~10!

and

r1~P12gH22n1W1z
!

5r2~P22gH22n2W2z
!1g2Hxx , ~11!

whereg2 , x2 andns2 are the interfacial tension, elasticity
and viscosity, respectively. We assume that the motions
cay to zero asz→2`.

Now assume that we have travelling waves in t
x-direction, so that

~U,W,P,Z,H !5~u~z!,w~z!,p~z!,z,h!eikx1nt, ~12!

wheren52 iv. We now choose nondimensional variabl
and parameters

~x* ,z* ,d* ,z* ,h* ,j* !5~x,z,d,z,h,j!k, ~13!

t*5~gk!1/2t,

k*51, ~n* ,v* !5~gk!21/2~n,v!,
Phys. Fluids, Vol. 9, No. 5, May 1997
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~u* ,w* !5~g/k!21/2~u,w!, p*5kg21p,

r*5r/r2 , ~g6* ,x6* !5k2r2
21g21~g6 ,x6!,

ns6*5k3/2r2
21g23/2ns6 , and n*5g21/2k3/2n.

We shall consider solutions for which the dimensionless f
quencyv*5O(1) in the limit asd*→0.

Dropping the asterisks again for convenience, the eq
tions of motion~1!–~3! give

F d2dz2 2S nn 11D GF d2dz2 21Gw50, ~14!

which has four independent solutions, of forme6z and
e6 lz, in each layer, wherel5(n/n11)1/2 with positive real
part.12 Dropping the (•)2 suffix for lower-layer parameters
and variables, we have in the lower layer,

w5c1e
z1c2e

2z1c3e
lz1c4e

2 lz, ~15!

where the no-motion condition forz→2` requires
c25c450. In the upper layer we choose linear combinatio
of the exponential solutions:

w5
1

2
@coshz1cosh~ l1z!#cc11

1

2
@coshz

2cosh~ l1z!#cc21
1

2
@sinh z1 l1

21 sinh~ l1z!#cs1

1
1

2
@sinh z2 l1

21 sinh~ l1z!#cs2 . ~16!

From the boundary conditions~5!–~11!, using ~1!, ~2!,
~4! and ~8! to eliminate the horizontal velocity componen
pressure, and surface and interface displacement varia
respectively, we obtain the following homogeneous syst
of linear equations for the coefficientscc6 , cs6 , c1 and
c3 :
H 2 coshd1~ l1
211!cosh~ l1d!1

nE1~ l1
221!

r1n
@sinhd1 l1 sinh~ l1d!#J cc11H 2 coshd2~ l1

211!cosh~ l1d!

1
nE1~ l1

221!

r1n
@sinhd2 l1 sinh~ l1d!#J cc21H 2 sinhd1 l1

21~ l1
211!sinh~ l1d!

1
nE1~ l1

221!

r1n
@coshd1 l1 cosh~ l1d!#J cs11H 2 sinhd2 l1

21~ l1
211!sinh~ l1d!

1
nE1~ l1

221!

r1n
@coshd2 l1 cosh~ l1d!#J cs250, ~17!

H r1n
2

~ l1
221!

@~ l1
211!sinhd12l1sinh~ l1d!#1~r11g1!@coshd1cosh~ l1d!#J cc1

1H r1n
2

~ l1
221!

@~ l1
211!sinhd22l1 sinh~ l1d!#1~r11g1!@coshd2cosh~ l1d!#J cc2

1H r1n
2

~ l1
221!

@~ l1
211!coshd12 cosh~ l1d!#1~r11g1!@sinhd1 l1

21 sinh~ l1d!#J cs1

1H r1n
2

~ l1
221!

@~ l1
211!coshd22 cosh~ l1d!#1~r11g1!@sinhd2 l1

21 sinh~ l1d!#J cs250, ~18!
1257A. D. Jenkins and S. J. Jacobs
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cc12c12c350, ~19!

cs12c12 lc350, ~20!

1

2
r1n

l1
213

l1
221

cc12
1

2
r1ncc21nE2cs12

2n

l 221
c1

2n
l 211

l 221
c350, ~21!

2r1cc12
1

2
r1n

2
l1

213

l1
221

cs12
1

2
r1n

2cs2

1S n2 l 211

l 221
111g2D c11S 2ln2l 221

111g2D c350,

~22!

where we have introduced the effective~complex!24 surface/
interface viscositynE65x6 /n1ns6 .

III. DISPERSION RELATION AND WAVE DAMPING

A. General case

The system of equations~17!–~22! has a non-trivial so-
lution if the determinant of the coefficients is zero, fro
which condition we can derive the dispersion relation a
hence, from the real part ofn, the rate of wave damping. W
can in fact eliminatecc6 andcs6 to obtain a system of two
equations in the two unknownsc1 and c3 , and equate the
corresponding 232 determinant to zero.

From ~19!–~22! we obtaincc2 and cs2 in terms ofc1
andc3 :

cc25F l1213

l1
221

2
4

r1~ l 221!
1
2nE2

r1n
Gc11F l1213

l1
221

2
2

r1
S l 211

l 221D1
2nE2l

r1n
Gc3 , ~23!

cs25F22
r11g1

r1n
2 2

l1
213

l1
221

1
2

r1
S l 211

l 221D
1

2

r1
S 11g

n2 D Gc11F22
r11g1

r1n
2 2 l

l1
213

l1
221

1
4l

r1~ l 221!
1

2

r1
S 11g

n2 D Gc3 , ~24!

whereg5g21g1 . If we let r151, n15n, nE250, and
g250, we have the case of a single fluid, and from~19!–
~20! and ~23!–~24! we can show that

w5c1e
z1c3e

lz ~25!

also applies for 0,z<d. If nE150, Eqs. ~17!–~18! then
become equivalent to

F 2 l 211

n2~ l 211!/~ l 221!111g 2ln2/~ l 221!111gGFc1c3G
5F00G . ~26!
1258 Phys. Fluids, Vol. 9, No. 5, May 1997
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Equating the determinant of the 232 matrix of coefficients
to zero, and definings5n1/2l and e5n1/2, so that
n5s22e2, we obtain the viscous surface gravity-capilla
wave dispersion relation presented by Chandrasekhar,25

~s21e2!224se3111g50. ~27!

For ueu!1 we obtain

n56 i ~11g!1/222e21O~e3!, ~28!

so that the wave damping rate is indeed approxima
2nk2 in terms of dimensional variables.10–12

In the general case, the coefficients ofc1 andc3 which
result when we substitute~19!–~20! and ~23!–~24! into
~17!–~18! are rather complicated expressions. If we assu
thatd!1 andu l1du!1, we obtain a simpler set of equation
when we neglect terms containingd2 and higher powers of
d in the Taylor expansion of the hyperbolic functions, a
neglect terms of ordernE6d in comparison with those o
ordernE6 :

H 2

~ l 221!
1

nE
n

1F2
12r11g2

n2
1r1

l1
213

l1
221

2
l 211

l 221

1
nE1nE2~ l1

221!

r1n
2 GdJ c11H l 211

l 221
1

nEl

n

1F2
12r11g2

n2
1r1l

l1
213

l1
221

2
2l

~ l 221!

1
lnE1nE2~ l1

221!

r1n
2 GdJ c350, ~29!

H 11g

n2
1
l 211

l 221
1Fr11g1

n2
1r11

2

~ l 221!GdJ c1
1H 11g

n2
1

2l

~ l 221!
1F l r11g1

n2
1r1

1
l 211

l 221GdJ c350, ~30!

wherenE5nE11nE2 . If nE50, andd→0, keepingl1 con-
stant, we regain the relations~26!–~28! for a single viscous
fluid.

The dispersion relation is again obtained by setting
determinant of the coefficient matrix to zero. Its behav
depends on the relative values of the parameters, particu
of n1 ~hencel1), d, andnE6 .

B. Very thin film

If we let d→0, while letting n1 become large so tha
n1d→ const., we can neglect terms proportional tod which
do not havel1

221 in the denominator. We obtain

@2n1nE14r1n1d#@2nn~11n/n!1/2111g#

2@n2~112n/n!111g#@n12n1~11n/n!1/2

3~nE14r1n1d!]50, ~31!
A. D. Jenkins and S. J. Jacobs
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which is of the same form as published dispersion relati
for viscous surface films of negligible thickness,2–4,6–8if we
add 4r1n1d to the non-dimensional viscosity of the film
More specifically, we should add it to the sum of the dila
tional and shear viscosities of the film.5,26,27 Note that if
n1 is allowed to be complex and frequency-dependent it w
also make a contribution to the effective surface-film elas
ity. A further discussion of the (d→0, n1d→ const.) limit is
given in Appendix B.

C. Wave damping

We can find a closed-form expression for the pertur
tion in the complex wave frequency due to the combin
effect of the lower-fluid viscosity and the presence of t
upper fluid layer, provided that the perturbation is relative
small. We assume thatn52 iG1/22d, whereG511g, with
udu!1: the real part ofd is then the rate of wave damping.
we let s5 i21/2G1/4(11a), defining i b5eipb/2, we have

d5e212iaG1/2, ~32!

where we neglect higher-order terms ine anda. From ~29!
and~30!, we obtain, neglecting higher-order corrections w
respect tod, a, ande:

H 2e21nT1dFs2~r121!2
12r11g2

s2 G J
3F11g

s2
1d

r11g1

es G
5@11g1s41d~r11g11r1s

4!#

3S 11
nT
es

1d
r1s

e D , ~33!

where

nT5~x11x2!/n1ns11ns214r1n1d

1nE1nE2d/~r1n1!. ~34!

We thus have

a'H 2
1

2
iG21/2e22

1

4
iG21/2nT1

1

2
G21@g~12r1!

2g2#d2
1

4
i 1/2r1de21G21/4nT

1
1

4
i21/2~r1d!2e21G1/4~R221!J

3@11 i 1/2e21G21/4nT1 i21/2r1de21G1/4#21, ~35!

whereR5(r11g1)/(r1G), neglecting higher-order terms
Hence, to the same approximation,
Phys. Fluids, Vol. 9, No. 5, May 1997
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d'H 2e21
1

2
nT1 iG21/2@g~12r1!2g2#d

1
1

2
i21/2r1de21G1/4nT1

1

2
i 1/2~r1d!2e21G3/4

3~R221!J @11 i 1/2e21G21/4nT

1 i21/2r1de21G1/4#21. ~36!

If d→0 this becomes identical to the corresponding f
mula for a film of negligible thickness.8,28 If nE50, i.e., we
neglect surface and interfacial elasticity and viscosity, bu
un1u@nd21, we haved'223/2(12 i )e, which reproduces
the rate of damping for an inextensible film,4,29 and also
Weber’s23 result for a layer of grease ice which has such
high viscosity that the Stokes flow approximation can
applied in the upper layer.

The damping rate will be of ordere if either d or nT are
of the same order as or greater thane. If nE50 and
un1du>O(n), but bothd and un1du are much smaller than
n1/2, we haved'2e212r1n1d. If the densities of the up-
per and lower fluids are equal (r151) andg15g250, this
is consistent with the damping rate for a fluid with nond
mensional viscosity which varies more-or-less arbitrar
with depth30,31 but which is always much smaller than 1:

d'2E
2`

0

n~z! 2e2zdz. ~37!

Keeping nE50, if d is so large that
1
2 i

21/2r1de21G1/4(4r1n1d) dominates over the other con
tributions to the numerator of~36!, and the denominator is
dominated by its final term, we find that Red'2r1n1d if
r151 andg250. This is also consistent with~37!.

D. Numerical example

In order to get some idea of the relative sizes of t
various contributions to~36!, we look firstly at waves of 2
cm wavelength on a system containing a lower fluid w
density 1000 kg m23 and kinematic viscosity 1026 m2 s21

~corresponding to water!, and an upper fluid with density
900 kg m23 and viscosity 1024 m2 s21 ~corresponding to a
heavy fuel oil!. We assume that the surface tension
25 mN m21, the interfacial tension is 15 mN m21, and the
thickness of the upper layer is 0.1 mm. We assume that
surface elasticity is 15 mN m21, the interfacial elasticity is
10 mN m21, and that the surface and interfacial viscositi
can be neglected.~The assumed surface and interfacial ela
ticities are at the lower end of the typical range32 10–50
mN m21 for surfactant materials on water.! The ak!1 re-
quirement means that the wave amplitude should be m
smaller than 3 mm, but it is permitted to be greater than
upper-layer thickness.

The various nondimensional parameters are then as
lows:
1259A. D. Jenkins and S. J. Jacobs



n

ac
e

e

a

is
o

th

th
fo
ion
-

ti
on

o

th

,
k

s-
es
the

sult

tal

ex-
y
he
ce
ce
nt.
id
ot
ary
-
us
in-
at-
a

dis-
if

-

ity
al-

er
and
der
ter
i-
yer
the

this
ks
en
and
the
in
l
m-

ent
to
r150.9, g150.2516, g250.1510,

11g51.403, x150.1510, x250.1006,

n50.001778, n150.1778, e50.04216, ~38!

l1'2.1721.93i , d50.03142,

l1d'0.068220.0605i .

The contributions to nT are x1 /n'0.1275i ,
x2 /n'0.0850i , 4r1n1d50.0201, andnE1nE2d/(r1n1)
'20.0021. We see that in this case, 4r1n1d is an order of
magnitude smaller thanx1 /n1x2 /n, and that the final
term nE1nE2d/(r1n1) is an order of magnitude eve
smaller. An increase of a factor 10 inn1 will bring
4r1n1d up to the same order of magnitude as the surf
elasticity contribution. The final term may possibly becom
significant forn1 in the ranged2!n1!1.

The various contributions to~36! are

r1de2150.6705, ~r1d!2e2150.01896,

2e250.003556,
1

2
nT50.0090910.1062i ,

iG21/2@g~12r1!2g2#d520.00294i ,
~39!

1

2
i21/2r1de21G1/4nT'0.059410.0502i ,

1

2
i 1/2~r1d!2e21G3/4~R221!520.0014520.00145i ,

i 1/2G21/4nTe
21'23.0013.55i ,

and

i21/2r1de21G1/450.51620.516i .

We find thatd'0.031320.0385i , which is of the same or-
der of magnitude ase, and is dominated by the effect of th
surface and interfacial elasticities.

Figures 1~a!–1~h! show the damping ratioy( f ), the
computed wave damping rate divided by the damping r
for pure water, as a function of frequencyf5v/(2p). Using
non-dimensional variables,y( f )5 1

2e22 Re d. This ratio is
plotted for eight different cases, covering three different v
cosity ratios n1 /n2 , and the presence and absence
surface/interfacial elasticitiesx6 and of interfacial tension
g2 . For each case, results for various thicknesses of
upper fluid layer are plotted. The other parameters are
specified previously. The frequency corresponding to
wavelength of 2 cm is also indicated. The damping ratio
a surfactant film of oleic acid on water of surface tens
73 mN m-1, from Ref. 8, is also shown in all plots for ref
erence.

It can be seen that the effect of surface/interface elas
ity generally dominates the wave damping, the excepti
being for n1 /n251000 with ~dimensional! d.1 mm, and
for n1 /n2510 000 with d.30 mm. Nevertheless, the
damping is affected significantly by the finite thickness
the film whenn1 /n25100 andd>1 mm. If the upper layer
is extremely viscous, we approach the rigid-film limit wi
y( f )5225/2e21, which is proportional tof23/2 in the low-
1260 Phys. Fluids, Vol. 9, No. 5, May 1997
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frequency limit. For a fixed value ofn1 , at a sufficiently low
frequency the rigid-film approximation will break down
which explains why even atn1 /n2510 000 we see a pea
in the y( f ) curves.

The effect of removing the interfacial tension and ela
ticity, as may be expected if an oil/water interface becom
emulsified, does not produce any qualitative difference in
wave damping@see Figs. 1~c! and 1~d!#. The main effects are
probably due to changes in the dispersion relation as a re
of the reduced value ofg5g11g2 in the case of zero
surface/interfacial elasticity, and due to the reduction in to
surface/interfacial elasticityx5x11x2 where the surface
elasticity is non-zero.

IV. CONCLUSION

In this paper we have derived a simple approximate
pression for the damping rate~and associated frequenc
shift! of linear surface gravity–capillary waves due to t
presence of a thin layer of a Newtonian fluid on the surfa
of a Newtonian fluid of infinite depth. The effects of surfa
and interfacial elasticity and viscosity are taken into accou
The vertical variation of the fluid motions within each flu
layer is described exactly by exponential functions: it is n
necessary to use approximations to the governing ordin
differential equation~14!. Applying the surface and interfa
cial boundary conditions leads to two linear simultaneo
equations in two unknowns which have coefficients conta
ing hyperbolic functions of the upper layer thickness. Equ
ing the determinant of the coefficients to zero leads to
rather complicated transcendental equation for the wave
persion relation; considerable simplification is achieved
the upper fluid layer is sufficiently thin (kd!1 and
uvn1

21u1/2d!1 in dimensional units!.
The dispersion relation for a ‘‘monomolecular’’ vis

coelastic film of essentially zero thickness4,6–8 is reproduced
if we let d→0, if we replace the surface tension, elastic
and viscosity by the sums of the surface and interfacial v
ues of the respective quantities, and then add 4r1n1d to the
surface viscosity. Additional effects of finite surface-lay
thickness also arise due to the fluid density difference
interfacial tension. Calculations of wave damping rates un
conditions representative of slicks of heavy fuel oil on wa
indicate that the effect of surface elasticity generally dom
nates the wave damping, but that the finite surface-la
thickness causes significant changes in the damping if
surface layer is 100mm thick or greater.

It should be possible to use the theory presented in
paper to compute from first principles the effect of oil slic
of finite thickness in damping wind-generated waves, giv
accurate laboratory data on viscosity, surface tension
interfacial tension. It is still necessary to take account of
effect of surfactants which are present both in the oil and
the surrounding water,13,33as the effect of surface/interfacia
elasticity dominates the wave damping under normal circu
stances.

The wave damping rate approximation is also consist
with previously published results for damping due
vertically-varying~eddy! viscosity,30,31 and due to a surface
A. D. Jenkins and S. J. Jacobs



.
m

er

by
be-
ave
viscous or viscoelastic fluid layer representing grease ice23

For applications such as distinguishing oil slicks fro
natural films by their radar backscatter characteristics,17–22 it
will also be necessary to consider in detail the atmosph
Phys. Fluids, Vol. 9, No. 5, May 1997
ic

boundary layer processes leading to wave generation
wind forcing, and the nonlinear interaction processes
tween the different Fourier components of the surface-w
field.7,8,34–37
cy
s show the

s
f 2 cm.
FIG. 1. The ratio,y( f ), of the wave damping rate to the damping rate for a single fluid~water! with an uncontaminated surface, as a function of frequen
f , for various thicknesses of the upper fluid. The thicknesses corresponding to the different line types are shown in the key. The sub-figure heading
viscosity ration1 /n2 , and whether either or both of:~i! the surface/interfacial elasticityx6 ; ~ii ! the interfacial tensiong2 and also the elasticityx2 ; are
set to zero. Other physical parameters are as specified in Sec. III D. The corresponding values ofy( f ) for an oleic acid surfactant film on water, from Alper
and Hühnerfuss~see Ref. 8! are shown for reference on each sub-figure, and also a vertical line at the frequency corresponding to a wavelength o
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APPENDIX A: NONLINEAR EFFECTS

In this section we treat nonlinear effects, with viscos
and surface tension neglected. Again takingÃ as the actual
pressure, we let

Ã15r1~P12gz!1gr1d,
~A1!

Ã25r2~P22gz!1gr1d,

where the subscripts refer to the layers, and we scale
variables through

~x* ,z* !5~x,z!k, t*5~gk!1/2t,

~U* ,W* !5~1/D!~g/k!21/2~U,W!, P*5@k/~gD!#P,
~A2!

Z*5~k/D!Z, H*5~k/D!H, d*5kd, r*5r1 /r2 ,

whereD is a small parameter. Then, omitting the asteris
and lettingu5x2ct, the equations governing irrotationa
flow take the form

]U

]u
1

] W

] z
50, ~A3!

]

] u
@P1~D/2!~U21W2!2cU#50, ~A4!

2c
] W

] u
1

]

] z
@P1~D/2!~U21W2!#50, ~A5!
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where we assume that the motion is steady when expre
in terms of the coordinates (u,z). The boundary conditions
are

W152c
] Z

] u
1DU1

] Z

] u
, P15Z, ~A6!

at z5d1DZ, and

W652c
] H

] u
1DU6

] Z

] u
, P22rP15~12r!H,

~A7!

at z5DH.
We now letF denoteU, W, P, Z, orH, and we expand

F andc in the form

F5F ~0!1DF ~1!1D2F ~2!1 . . . ,
~A8!

c5c~0!1D2c~2!1 . . . ,

as in the Stokes expansion for waves on the surface
homogeneous fluid.38 Our aim here is to determine the e
fects of nonlinearity when the upper layer depthd is small.

TakingH (0)5A cosu, we find that

U6
~0!5A~a6 coshz1b6 sinh z!cosu,

P6
~0!5c~0!U6

~0! , ~A9!

W6
~0!5A~a6 sinh z1b6 coshz!sin u,

where

a25b251, a15
~c~0!!22~12r!

rc~0! , b15c~0!.

~A10!

Herec(0) solves

@~c~0!!221#F ~c~0!!22
~12r!sinhd

coshd1r sinhdG50, ~A11!

a dimensionless form of a well-known equation.39 There are
two solutions describing waves travelling in the positivex
direction, the barotropic mode,c(0)51, and the baroclinic
A. D. Jenkins and S. J. Jacobs
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mode, for which the second factor in~A11! vanishes. For the
latter mode the wave speed isO(d1/2) in the cased!1.

Our calculation of wave decay is concerned exclusiv
with the barotropic mode, and we therefore restrict our att
tion to this mode by takingc(0)51. Then theO(1) solution
becomes

U6
~0!5P6

~0!5Aez cosu, W6
~0!5Aez sin u,

~A12!

Z~0!5Aed cosu, H ~0!5A cosu,

and a short calculation shows that theO(D) solution is

U6
~1!5W6

~1!50, P6
~1!52

1

2
A2e2z,

~A13!

Z~1!5
1

2
A2e2d cos 2u, H ~1!5

1

2
A2 cos 2u.

Using ~A12! and ~A13!, we find that theO(D2) equations
can be reduced to

] 2W6
~2!

] u2
1

] 2W6
~2!

] z2
50, ~A14!

with boundary conditions

W1
~2!2

] W1
~2!

] z
5~2c~2!2A2e2d!Aed cosu, ~A15!

at z5d, and

W6
~2!2

1

12r F ] W2
~2!

] z
2r

] W1
~2!

]z G5~2c~2!2A2!A cosu,

~A16!

at z50. The solution takes the form

W2
~2!5Aaez sin u,

~A17!

W1
~2!5A~b coshz1g sinh z!sin u,

wherea, b, andg are constants.
Substituting~A17! into the boundary conditions yield

three linear equations for these constants, for which the
terminant of the coefficients vanishes. A solvability con
tion is required, and is given by

c~2!5
1

2 F11r~e4d21!

11r~e2d21!GA2, ~A18!

which reduces to the standard solution38 in the cased→0. As
can be seen, the perturbation expansion~A8! remains well-
ordered in this limit, and therefore it appears that the line
ization procedured employed earlier is valid ford!1. In
particular, it is valid ford!D, so that the wave amplitude i
permitted to be much greater than the upper-layer thickn

The linearization procedure should also be valid in
case where we include fluid viscosity. This is certainly t
case for waves on a single fluid which haveak!1 but where
a can exceed the thickness (2n/v)1/2 of the viscous surface
boundary layer. One way to show this is to employ a L
grangian description of the hydrodynamic equations,
which the O(ak) perturbation allowsa to exceed the
Phys. Fluids, Vol. 9, No. 5, May 1997
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boundary-layer thickness without any conceptual difficulti
although it is formally identical to theO(ak) perturbation in
the Eulerian description.40,41

Finally, the fact that we have imposed boundary con
tions at the mean surface can be justified with reference
Miles.42 In these studies of the generation of surface wa
by shear flows, he found that imposing the boundary con
tion at the mean surface rather than at the surface wave m
no difference to the results.

APPENDIX B: LIMIT AS d˜0

If interfacial surfactant effects are omitted and if we co
sider a thin upper layer, as in Sec. III B, the dimension
dynamic boundary conditions atz50 become

p22n2

] w

] z
5Fg1

k2

r2
~g11g2!GH, ~B1!

~4r1n1k
2d!u1r2n2S ] u

] z
1 ikwD50, ~B2!

with errors ofO(d). Equations~B1! and~B2! were obtained
by taking the small-d limit of the exact solution, withn1d
fixed, and were checked by lettingz5z/d denote a scaled
variable and by solving for the flow in the upper lay
through the use of an ordinary perturbation series ind.

For the flow of a single layer of fluid covered by a
insoluble surface film atz5H, Miles,26 generalizing earlier
work by Dorrestein,2 assumes a tangential surface force

¹sg1h1¹s~¹s•us!1h2¹s
2us , ~B3!

whereg is the surface tension,¹s is the surface gradient
us is the tangential velocity at the surface, andh1 andh2 are
surface viscosity coefficients. Miles also definesG as the
concentration of the surface film, with reference valueG0 ,
andx as the surface elasticity, with mathematical definiti

x52G0~dg/dG!G5G0
. ~B4!

When expressed in terms of the present notation, Mil
theory shows that the linearized normal and tangen
boundary conditions for two-dimensional flow in th
xz-plane are

p22n2

] w

] z
5S g1

k2

r2
g DH, ~B5!

and

S x

n
1h11h2D k2u1r2n2S ] u

] z
1 ikwD50, ~B6!

where the sumh11h2 plays the role of the surface viscos
tiesns6 in ~5! and~10!. Hence, by comparing~B1! and~B5!,
and ~B2! and ~B6!, we see that a thin (d→0) but very vis-
cous@n15O(d21)# upper layer of Newtonian fluid has ex
actly the same properties as regards wave decay as a
soluble surface film if we replaceg in the surface film theory
by g11g2 , and (x/n1h11h2) in the surface film theory
by 4r1n1d.
1263A. D. Jenkins and S. J. Jacobs
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