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Starting from the standard supersymmetry algebra, an infinite Lie algebra is constructed by
introducing commutators of fermionic generators as members of the algebra. From this algebra a
finite Lie algebra results for fixed momentum analogous to the Wigner analysis of the Poincaré
algebra. It is shown that anticommutation of the fermionic charges plays the role of a constraint
on the representation. Also, it is suggested that anticommuting parameters can be avoided by
using this infinite Lie algebra with fermionic generators modified by a Klein transformation.

PACS numbers: 02.20.Sv, 11.30.Pb

I. INTRODUCTION

Supersymmetry is unique as a symmetry of nature in
that bosons and fermions are grouped together in the same
multiplet.”? This feature is essential for the construction of a
sensible supergravity® theory, but also means that any low
energy theory has to incorporate supersymmetry breaking.
A deeper understanding of how supersymmetry may arise
could certainly shed light on its breaking. The existence of a
fermionic charge in supersymmetry requires that the algebra
be defined by anticommutation as well as commutation rela-
tions. While this allows the evasion of the Coleman-Man-
dula no go theorem,* the resulting algebra is not a Lie alge-
bra and the parameters for infinitesimal transformations are
anticommuting numbers (Grassmann variables). This leads
naturally to an extension of Minkowski space, known as su-
perspace, in which spinors are attached to each space-time
point.? With anticommuting parameters, one has the con-
ceptual problem of nilpotent translation parameters.
Further, all continuous symmetries in nature have been re-
presented by a Lie algebra. It is therefore natural to ask
whether supersymmetry can be represented by a Lie algebra.

In this paper fermionic anticommutation relations are
used to construct the commutation relations of an infinite
Lie algebra. In this algebra successive multiplication by the
momentum operator defines new generators. The algebra
thus obtained has both the Wigner representation of the
Poincaré algebra and the standard supersymmetry represen-
tations. The latter arises when anticommutation of the fer-
mionic charges is used as a constraint. The standard superal-
gebra requires the parameters of infinitesimal
supersymmetry transformations to be anticommuting c-
numbers in order to have a finite closed algebra. With our
formalism commuting c-numbers close the algebra due to
the added generators. However, in order to preserve the spin
statistics relationship it is necessary to modify the fermionic
generators with a Klein transformation.

In Sec. II, an explicit construction of the infinite Lie
algebra is presented. Section III contains the resulting finite
Lie algebra for fixed momentum, which is analogous to the
Wigner analysis of the Poincaré algebra. This section also
contains constructions of massive and massless representa-
tions of the finite algebra with the anticommutation con-
straint. A discussion of the modification of fermionic genera-
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tors by the Klein transformation is in Sec. IV followed by
general discussion in Sec. V.

Il. THE INFINITE LIE ALGEBRA

The superalgebra is defined by the following commuta-
tion and anticommutation relations':

[le",/lp ] = i(aﬂlJVP - 5#;)‘,%» + 6VPJM - ‘SWIJJJP )’
[Jy/{ ’Pv] = i((s,uvP/l - 6AVP;L ]’
[Pu ’PV] =0,

(2.1)
[54P.] =0,

[Sa’J/lv ] = %(Uﬂ.v)aﬂsﬁ)

{§4S#) =iy, C).sP*.
Here J,,, and P, are the generators of the Poincaré algebra,
S “la = 1,2,3,4) are the fermionic Majorana generators of su-
persymmetry, and C is the charge conjugation matrix
(C*C=1,C"= —C,C 'y, C= — ) In this paper
only this simplest algebra is considered although the exten-
sion to the case of a fermionic Dirac generator or multiple
Majorana generators is trivial. In order to form the Lie alge-
bra we consider the commutator

(5%82]=T"*. (2.2)

If T was expressible as a linear combination of the gener-
ator of the superalgebra we would have

T = a(ysy,.C )P, (2.3)

where a is a dimensionless number. Note that C, (ysC), and
(¥s,.C) are antisymmetric and (y,, C) and (0,,,C) are sym-
metric. Using the Jacobi identity (2.4), where

[4,B).C]={{B.C}, 4}~ {{CA}.B] (24)

with4 = 8% B =S¥ and C = 5%, it is easy to show that
(2.3) is inconsistent. Therefore, we conclude that 7% is a
new generator. Furthermore, there is no consistent second-
order operator in the Poincaré algebra that 7°# could equal.
For example,

T = alysy, C\**W,, (2.6)
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where W# = — i/2 e#**J, P, is the Pauli-Lubanski vec-
tor,” is contradicted by the Jacobi identity (2.4) with4 = S ¢,
B = 5% and C = S°. (This is proven with an appropriate
Fierz transformation of the y-matrices.)

Because T °f is an independent generator we consider

the commutators with J,.,, P,, S and itself:

[T4,5%] = 2iS(y, C)gs P* — 2ily, C ). P*S”,
[T4,T™] = 2iT"(y, C)sP* — 24T *(y,C),;P*
— 24T ™(y,C)pe P* + 2T (y,C),. P* (2.7)
[T*.P,] =0,

[ Taﬁ"]pv ] = %(va )a& T&B - %(a,uv )B& Téa .
The first of these is constructed using the anticommutation
relation in (2.1) and the identity of (2.4). The rest follow from
the commutation relations in (2.1) and the identity (2.5).
From (2.7) it can be seen that there are new generators S “P,
and T"ﬁPH. Again the commutators of these new members
with all the previous generators and with themselves must be
considered. We exhibit these in Appendix A. From these
relations one must include as new members of the algebra the
operators on the right-hand side of (Al):

S<p,P,, T*P,P

ut v
S°P,P,P,, T%P,P,P,.

Obviously, there are a finite number of generators of the
form S°P, P, and T“P,...P,, added for each order of
commutation. Thus, we obtain an infinite Lie algebra with
generators J,,,, P, S,, T, s*P,, T*P,,...,S°P, P,
T P,-P,,.... The added generators are of a geometrical
series type and the resulting algebra is called an affine Lie
algebra.® Note that the Casimir operators of this algebra are
identical to the Casimir operators of the superalgebra. Also,
it will be shown that the representations of the superalgebra
are those representations of the infinite algebra satisfying the
anticommutation relation in (2.1) as a constraint. Instead of
studying the infinite Lie algebra directly, we will consider in
the next section the finite Lie algebra which results from a
fixed momentum condition. For this to be consistent we
must use the operator W, instead of J,,;, since W, com-
mutes with P, .
Incidently, note with W, alone we have the
commutators
[WH,W~] =e**W,P,
(2.8)

[WHP,,W*] = €*"*WP,P;,

and so on. This forms an infinite Lie algebra with generators
w,, W,P,, W,P,P,,.. similar to the structure above. A
finite SU(2) algebra follows for fixed timelike momentum.It
is important to realize that the analysis of the finite algebra
for fixed momentum is equivalent to an analysis of the Poin-
caré algebra.

IIl. THE FINITE ALGEBRA FOR FIXED MOMENTUM

The algebra generated by W, T, and § * for fixed
momentum is defined by the commutation relations
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[WHW™] =e“*W,P,

[WHS] = (i/4)e“(0,,)asS PP,

[(T4,W*] = (i/4)e*"**(0,, )5 TP,

— (/4" 04.)as TP,

[§°8°] =T, (3.1)

[T°%,T7) = 2Ty, C)spP* — 2iT*(y,C),z P*
— 2Ty, C)s P* + 2iT%(y,C),, P*,

[T,5°] = 2iSy, C)gs P* — 2i[y, C),s P*S*.
For fixed momentum we have the finite algebra generated by
{W,,T°%,5°] (denoted 4 ,r) and a subalgebra generated by
{W,, T} (denoted 4, 7). A Casimir operator of the super-
algebra (and therefore the infinite algebra) is also a Casimir
operator of 4 . Denoting A4 ;¢ to be the superalgebra and

C (4 ) to be the set of Casimir operators of an algebra A we
have the inclusion relations

C(A,ps) CCAp7s) CClApr)- (3.2)

Also, the irreducible representations of 4,5 correspond to
irreducible representations of 4 ;- in the same way that the
irreducible representations of 4, for fixed momentum cor-
respond to irreducible representations of the Poincaré alge-
bra. For both statements the converse is not true. In fact the
representations of 4, are obtained by enforcing the anti-
commutation relation

(5252} = iy, C)opP" (3.3)
as a constraint on the representations of 4, (as well as the
infinite algebra). Similar to Wigner,® we give an explicit con-
struction of 4, in the rest frame and for mass zero.
A. Timelike momentum (massive particle

representation)
Choosing the rest frame P, = (0,0,0,iP,), we first rear-

range the generators so that the group structure of 4, is
transparent.” Define

L _ (TZ:S_TM) M _ (T23+TM)
? 4p, =~ 7 4P,
N _ _W___?_ _ (T23+TM)
PP, 4P,
12 24
L+ == r ’ 4+ = T_y
2P, 2P,
24
N+:(W+ _ I ) (3.4)
P, 2P,
34 13
L_ - — T N M; = — T y
2P, 2P,
13
o (2 1Y)
P, | 2P,

(note that that W, = l€;,J /Py, W, = 0). From (3.1) with P,
= (0,iP,) one has that the operators L, M, N all commute
with each other and each generate an SU(2) algebra;

[NVuN,.]=+N,, [N,N_]=2N, etc. (3.5)
In other words, 4, = SU(2) X SU(2) x SU(2). Trivially
then, the Casimirs of 4, are given by N?, L?, M?, where
N, =N, £ iN,, etc. We note that , (i = 1,2,3) commutes
with S (@ = 1,2,3,4).
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To construct 4 s we normalize Se=5 */(2P,)"/* and
have the commutation relations

~ - +’ a=1’2
a —_— l a
[Ly,89) = £+ {*, a=34
~ =~ [+, a=24
al __ 19 ¢
5= 25 9T
L.S1=S"' [L_S%=S5%
[L+,§4]=§2, [L—»§1]=§3,
[M+’§ ]= _3'42, [Mi,S'Z]: _gl»

(3.6)

M, S%= -84 [M_S%=-S57
[S'.83=L,, [S:.8%=M_,
[$384= —L , [S'.8%=-M_,
[S'54=(M,—L;), [S°5°]=(L,+ M),

with the rest zero. From the root vector diagram exhibited in
Fig. 1 for these relations, one has that the algebra generated
by L, M and S “ is Sp(4)=C, or, equivalently, SO(5)=B,.
Therefore, the algebra 4, is Sp(4) X SU(2), where SU(2) is
generated by N.

The irreducible representations of 4 ;¢ are determined
by (4,,4,,V ), where (1,,4,) are the highest weight values in
the Sp(4) representation.® Members of the representation are
designated by (1 ,,4,,L,L;,M,M;;N,N,). However, in the fol-
lowing it is shown that the anticommutation relation (3.3)
restricts the values of A, and A, while leaving N uncon-
strained due to its commuting with S

In the rest frame, (3.3) is given by

(SL,8* = — P, {S35%* =P, (SP=0, (3.7)

and all other anticommutators zero. From the Majorana
condition,

S=CS7 (3.8)

—

or
(SYt=—S' and (S})t=S2 (3.9)

We are led to identify the following operators®:

FIG. 1. Root vector diagrams for Sp(4) algebra. The generators are identi-
fied at the head of the corresponding root vector. The axes refer to the
Cartan subalgebra with H, = L, and H, = M,.
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S’ S
4= —, a¥= — s
VP, VP,
(3.10)
2 3
02: S ’ a*: S

B R,

From the commutation relations between J,, and S ®in
Eq. (2.1), we have
1
5"
Therefore, we identify a,{a,) as the annihilation operator for
J, = i( — 1) and a¥{(a%*) as the creation operator for J,
= }( — 1). Defining number operators #, = a*a, and

[Jina,] = Fla, for i= (3.11)

Ny=J,+ ; , N,=J_ —ata,

N_=J_+4aa¥, (3.12)
L:l ng—Hn, M, = m— My
? 2 T 2
and®
L*+M?=3. (3.13)

Equation (3.13) implies that the irreducible representation is
restricted to (L,M ) = (4,0) or (0,}) or, equivalently,

(A1,4,) = (1,0) with arbitrary N. This gives the identification
of n, and n, as follows:

n=0 n,=0 Ly,=1 M;=0,
n=1, n,=1, Ly= —~} M,=0,
(3.14)
ny=1 n,=0, Ly;=0, M,=],
n=0 n,=1 L;=0, My= —1

We can, therefore, replace L and M by n, and n, and arrive at
the set {N,N,,n,n,} or {N,J,,,n,,n,} as the commuting op-
erators. These bases are used by Salam and Strathdee to con-
struct the explicit representations of the superalgebra.? For
completeness we reconstruct this representation. Using Eq.
(3.12) one constructs the N = O representations containing
J = {1,0,0} and the N = ] representation with J = {1,},1,0}.
For arbitrary N > 0 the representation contains

J={N+ LN,N,N — 1] with atotal of 42N + 1) states. The
two states with J = N correspond to (n,,n,) = (0,0) and (1,1).
The parity operation

S$—S' = e"™,S, (3.15)

with the Majorana condition S’ = CS'7, requires that
n=mu/2{or —7/2)and

PlNyN3)n1!n2) =( - 1)n|+"2|N3N3)nl’n2>y (316)
where P is the parity operator. Thus the J = N states are of
opposite parity.

As described above, among the representations of 4 ;.
= Sp(4) X SU(2) only the Sp(4) spinor representation is al-
lowed by the constraint (3.3). Therefore, the only noncon-
stant Casimir is N%. Note from Eq. (3.4) this can be written

N = LW, —i/asC 7.8 (3.17)

J P()
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and can be generalized relativistically by defining

K, =W, — (i/4)SC"7/#y5S, (3.18)

with
2
N? = (K; — @) . (3.19)
P P =(0,iP,)

From the commutators

[K,S%] = — }¥s)asS?P, (3.20)
and

[K..P,] =0, (3.21)

we have (K, P, — K P, }? commuting with all operators S ¢,
J ..., and P, . This is the relativistic expression of the Casimir
operator N2, This operator, with P2, forms the set of Casimir

operators for 4 ;ps.

B. Lightlike momentum (massless particles)

Taking P, = (0,0,p,ip) in Appendix B, all commutation
relations for 4 45 are given, where
S (S'+57) §2— (S* 459
2 bl 2 b
(3.22)
G 828 o._ (5'-5?
2 2
and
Ter = [§257].
Note from Eq. (B7) that the group structure of 4,35 is
G xU(1), where U(1} is generated by T ?*, which commutes

with all generators of 4 ,45. From Eq. (B6) the Casimir oper-
ator is
K:, = —2T»pp? (3.23)

Instead of analyzing G and its representations, we con-

sider the constraint condition (3.3),
(5.8 = —p, (3.24)

and all other {3’ ",$7} = 0. Define creation and annihilation
operators

5! 54
— =a, — — =a*
Vp P
(3.25)
2 o3
2 _, _5 _,.
P P
with
{a,a*} =1, (3.26)
(bb*] =0, (3.27)

and all others vanish. Equation (3.26) leads us to identify
ala*)as the annihilation (creatlon)\operator of a spin up state.
(Note [J,z,S M= lS and [J,,,S*] = gS“) Equation (3.27)
implies the operation of b on any state |1)is zero:

blg)=b*¢) =0 (3.28)
It immediately follows that
»=plbb*] =0. (3.29)
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In fact, all T except 7 ' vanish. With this result it follows
that K, and K + , defined in Eq. (B5), form the Euclidean
algebra E,. As seen from Eq. (B9),

[K + K 7] =0,
(3.30)

[K3K, 1=K, p

As is shown in Appendix C, this implies that
K, = K_ = 0for a finite dimensional representation. This
is analogous to the W? = 0 condition in the Wigner analysis
of lightlike momentum. In this case the representation is
characterized by generalized helicity A,

- KP _ K _ (W, —4T™)
2

p P p
=Jp—n+1i),

where n = a*a. As is shown by Salam and Strathdee,? the
representation is characterized by two states, | j,) and

| js+ 4n=1), wherea|j;) =0and | j; + L,n=1)

= a*| j;). Bothhave A = (j; + }). Itis obvious that the par-
ity operator acting on these states gives a basis set of the
opposite helicity. It should be emphasized that, as for the
massive case, among all possible representations of 4 45 the
supersymmetry representation obtained above is selected by
the constraint (3.3).

(3.31)

IV. SPIN STATISTICS IN THE INFINITE LIE ALGEBRA

In the previous sections it has been shown that the re-
presentations of superalgebra are equivalent to the represen-
tations of the infinite Lie algebra with the anticommutation
relations among the fermionic charges as a constraint. From
states in the irreducible representations of 4 ., field opera-
tors can be constructed by a standard method.'® The infinite-
simal tranformation of the field operator @ (x) by fermionic
generators is given by

SP=ie?[s%,P], (4.1)

where € is a constant spinor. The choice of €% to be a com-
muting parameter contradicts the spin statistics relation in
the case of fermionic fields @ =. The standard procedure is
to use anticommuting c-numbers as parameters for super-
symmetry transformations. These parameters also anticom-
mute with fermionic fields.

For the infinite Lie algebra we require commuting para-
meters because the commutator of two supersymmetry
transformations should be a generator of the algebra,

[€,S,€,5 ] = €T~ (4.2)
In order to resolve the spin statistics problem in Eq. (4.1), we

use the Klein transformation'® to define a new fermionic
operator,
S'e=il—
where N, is the fermionic number operator. Note that the
fermionic content of S * is not defined; that is, being a Major-
ana spinor, .S “ is a mixture of the + 1 eigenvectors of Np.
However, the Klein operator ( — I)NF has definite anticom-

mutation relations with all fermionic operators regardless of
Dirac or Majorana properties:

1% se, (4.3)
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{(— 1"} =0 (4.4)
and
{(— 1S} =0, (4.5)

where ¥ and .S * are Dirac or Majorana. This is seen by the
following argument. Letting 4 be a Dirac field satisfying

[Ne ] = + ¥ (4.6)
we have
eiﬂNF¢e —iNE _ ot = — 4. 4.7)

This equation implies (4.4) for Dirac fields with definite fer-
mion number. A Majorana field ¥, or ¥, can be expressed in
terms of a Dirac field ¢ by

_ w+¥9) 4.8)
2 G (

or

C
==y (49)
J2i
It is easy to see that Eq. (4.7) and therefore (4.4) is valid for
Majorana fields without definite fermion number.
With these new operators, Eq. {4.3), we have

&y =[S y) = —e(Sey)(—1)'F (4.10)
for fermionic fields 3. Therefore, we have
[e2S ' gfS"# ) = efT (4.11)

because ( — 1)*"F = 1. In terms of operators we have the
equation

[S'2S8] = TF=T""®, (4.12)
The constraint is given by
(987} =i(y,C)pP* (4.13)

The infinite Lie algebra should be modified using S’
Equations (2.1), (2.7), (3.3), and those in Appendix A are
altered by the replacement

S a__.)S ILZ’

TPT°f, (4.14)

This modification alters neither the structure nor the

physical content of 4 ;. Note that the Majorana condition
for S’ implies

S =i- 1) CST=CS"T. (4.15)

Therefore, the sign change in the constraint Eq. (4.13) does
not alter the definition of creation and annihilation opera-
tors in Eq. (3.10).

V. CONCLUSION

The standard supersymmetry transformation is expon-

entiated'? using infinitesimal anticommuting parameters.
We have avoided this by constructing an infinite Lie algebra
and using the Klein transformation. The anticommutation
relations of fermionic generators becomes a constraint on
the representations of the infinite Lie algebra which yields
the standard supersymmetry representations.
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While anticommuting parameters are natural in super-
space and the superspace formalism is convenient for con-
structing field theories, it is extremely difficult to compre-
hend a physical reality in such a space. Our formalism
replaces this difficult concept with an infinite Lie algebra
which uses commuting parameters. This new viewpoint of
supersymmetry may help in understanding the nature of the
symmetry, its breaking, and supergravity.
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APPENDIX A

Consider the commutation relations for
{§°P,,T*"P,} which appear on the right-hand side of Eq.
(2.7). These operators are generators for the infinite Lie
algebra.

[$eP,.SPP, | = T*P,P,,
[SeP,,T#"P; ] = —2iS*(y,C),.P*P,P,
+ 20y, CpaS "PPE,P;,

[T*P,,T™P,] = [2T™(y,C)sP*
— 24T%(y, C),sP*
— 2T (,C)so P
+2T%(y,C),.P*|P;P,,
[S°P,.,8%]=T*P,,
(A1)
[T*4P,,S"] = 2iS<(y,C),,P*P,
—2i(y,C),,SPP*P,,
[S°P,.P,]=0,
[T°°P,.P;] =0,
[S°P,,T#1] = —2iSP(y,C),,P*P,
+ 2i(y,C)z S"P?P,,

[T"BPA,T”‘S] = [2T"(y,C)spP* — 2iT’5"(7/“C),73P",

— 2iT’7B(y#C)§aP“

+ 2iT‘5”(7#C)WP“]P,1,
[SaPI"J}«V] = l‘sa( - 5&#1)1/ + 6#VP11)
+ %(U/lv )aBSﬁP#;
. R. Y. Levine and Y. Tomozawa 1419



[TaﬂP#)J/{v] = lTaﬁ( - 5iqu + (SvaA)
+ 404 )as TsP,

—Howlps Tsa by
Note that Eqgs. (A1) are obtained from Eq. (2.7) by multiply-
ing by the appropriate momentum operators. Equation (A2)

has no new generators on the right-hand side.

(A2)

APPENDIX B: MASSLESS CASE P, = (0,0, p,ip)

Introduce the variables

2 2
(B1)
3= <S3—S‘)’ S4 ( S“—Sz).
2 2
With the constraint equation (3.3) we have
(5154 = —p,
[§1’§2} _ {§1,§3} _ {§2,§4}
= {525 =(5°5% =0 (B2)

In terms of the S variables the commutators T4 are given by
T2 = [gv:,gz] —_ %(le L TH T84T,

’7\113:%T13’
TM:‘%(_ T12_+_ T14+ T23+ T34),
(B3)
’7\23 :}‘(le_*_ TW LT _ T,
’7\124:%T24’
T34 :}‘(le_ THL T2 4T
Also,
W,={n+iup, Wi=U0p,
(B4)
W,= — s+ iTp, Wi=ilJ

Expressing the components of K, [Eq. (3.18)] in terms of 7’
amd W,

K, =W, —\sT¥ =W, -T2,

K =(W_+4T")=(W_+T7)
(BS)

K3 — W3 _ }‘(Tld + T23) — W3 _ %(?114 _+_ /7\*23),
K =iWy— - T"?+T%)
—iW,— 4T -T™),
and the Casimir operator is given by
K2, = — 2K, P = — 2T )2 (B6)

The commutation relations for 4 435 are given by the
following:

T2 commutes with all S and W' as seen from Eq.
(B6), (B7)

K. ,K_ commute with all :S\”", ?’“ﬁ, (B8)
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KK 1= —2T% (B9)

(KiK. ]= %K, p (B10)
[K;;/P,le] — le,

(B11)
[Ks/Py%M] - _ _71\34’
[K;/pS'] =15,
[K:/pS?] =452,

(B12)
[Ks/P»§3] = - {\3’
[K,/pS*) = — 15,
[TAS'] = —2p5%, j=1,2,3

(B13)
[TYS*] =255, j=2734
[TUT%]) = —2oT'%, k=23
[T™T#] =2pT#, j=23

(B14)

[’7\1 12,’7\~ ¥ = 2p’]\~23,
[’7‘~ 13”7\24] — 2p’7\23’

the rest is zero.

APPENDIX C: PROOF THAT K, = 0FOR FINITE
REPRESENTATION OF E,

Consider the Euclidean algebra E, commutation rela-
tions for (K ,K_,K;3}:

K. ,K_]1=0, (C1)

KoK, = £K., (C2)
where K7, = K_. The Casimir operatoris K_K , and Eq.
(C2)implies K | (K _)is the raising (lowering) operator for the
K, eigenvalues. Consider the minimum K eigenstates,
|k min »» defined by K _ |k, ) = 0 and K|k, )

= Kein |Kmin »- From (C1),

K_K, |ky.)=0, (C3)

and therefore K_K | = O for the entire representation be-
causeitisa Casimir operator. Thisimplies K, = K_ = Ofor
any finite representation.
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