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Non-existence of time-periodic solutions of the Dirac
equation in a Reissner-Nordstro ¨ m black hole background
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It is shown analytically that the Dirac equation has no normalizable, time-periodic
solutions in a Reissner–Nordstro¨m black hole background; in particular, there are
no static solutions of the Dirac equation in such a background metric. The physical
interpretation is that Dirac particles can either disappear into the black hole or
escape to infinity, but they cannot stay on a periodic orbit around the black hole.
© 2000 American Institute of Physics.@S0022-2488~00!01804-1#

I. INTRODUCTION

In recent years, there has been much interest in the gravitational collapse of matter to a
hole. Although both analytical1 and intensive numerical studies~see, e.g., Ref. 2! have given some
understanding of how the event horizon and the singularity form, little is known abou
asymptotic form of the black hole ast→`. This is mainly due to the fact that standard numeri
methods become unreliable after the solutions have formed singularities. Since all matte
microscopic level is formed out of Dirac particles, it seems especially interesting to stud
asymptotic collapse of a ‘‘cloud’’ of spin-1

2-particles. As a first step towards this goal, in this pap
we study Dirac particles in a Reissner–Nordstro¨m background field.

We remark that considerable work has been done in the study of quantum mechanica
equations in the presence of black holes. The papers which are most related are Refs. 3
where a massless Dirac particle is considered in a Schwarzschild metric background
asymptotic completeness is shown for the scattering states near the event horizon and at
However, the most physically interesting case of a massive Dirac particle near a charged
hole has not yet been considered. As we will see here, both the rest mass of the Dirac parti
the charge of the black hole lead to interesting physical effects and require new analytical

In polar coordinates (t,r ,q,w), the Reissner–Nordstro¨m metric has the form

ds25S 12
2r

r
1

q2

r 2 Ddt22S 12
2r

r
1

q2

r 2 D 21

dt22r 2~dq21sin2 q dw2!, ~I.1!

whereq is the charge of the black hole andr its ~ADM ! mass. Furthermore, we have an extern
electromagnetic potentialA of the formA5(2f,0W ) with the Coulomb potential

f~r !5
q

r
. ~I.2!

a!Electronic mail: Felix.Finster@mis.mpg.de
b!Electronic mail: smoller@umich.edu
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If q,r, the metric has two horizons; this is the so-callednonextreme case. If q5r, the metric has
only one horizon atr 5r; this extreme casedescribes a black hole at zero temperature; cf. R
5–7. Forq.r, the metric does not describe a black hole, and thus this case will not be co
ered.

We describe the Dirac particles with ‘‘classical’’ wave functions~i.e., without second quan
tization!. Both the gravitational and electric fields are coupled to the Dirac particles.We do not
assume any spatial symmetry on the wave functions. Near a collapsing black hole, it seem
reasonable that some of the Dirac particles could get into static or time-periodic states. Ou
result is to show that this is not possible.

In the following we will restrict to time-periodic solutions, noting that static solutions ar
special case. For classical point particles, the time-periodic solutions describe closed or
particles rotating around the black hole. Our goal is to investigate how this classical p
changes by the introduction of relativistic wave mechanics and spin. Since the phase of the
wave functionC is of no physical significance, we say thatC is periodic with period Tif

C~ t1T,r ,U,w!5e2 iVTC~ t,r ,q,w! ~I.3!

for some realV. Our main result in the nonextreme case is the following theorem:
Theorem I.1: In a nonextreme Reissner–Nordström black-hole background, there are n

normalizable, periodic solutions of the Dirac equation.
In the extreme case, we prove a slightly weaker statement:
Theorem I.2: In an extreme Reissner–Nordström background, every normalizable, tim

periodic solution of the Dirac equation vanishes identically for r.r.
This surprising result shows that the classical picture breaks down completely; for

particles, there are no periodic solutions. This means that Dirac particles which are attracte
Reissner–Nordstro¨m black hole either ‘‘fall into’’ the singularity or escape to infinity, but the
cannot stay on a periodic orbit around the black hole. The result can also be applied to the
particles of the matter in the gravitational collapse; it then indicates that all the matter
eventually disappear in the black hole.

Basically, our result is a consequence of the Heisenberg uncertainty principle and
particular form of the Dirac current. As a preparatory step, we analyze the behavior of the
wave functions near the event horizon and we derive conditions which relate the wave fu
outside and inside the horizon. It is essential for our methods and results that the particle
spin. This shows that the spin is an important effect to be taken into account in the stu
gravitational collapse.

In the remainder of this section, we give some basic formulas needed to describe
particles in curved space–time~for a more detailed introduction to the classical Dirac theory
curved space–time see Ref. 8!. In this paper, the Dirac equation is always of the form

S iG j~x!
]

]xj 1
i

2
~¹ jG

j !~x!1eGj~x!Aj~x! DC~x!5mC~x!, ~I.4!

wherem is the rest mass of the particle,A5Ajdxj is the electromagnetic potential, ande is the
electromagnetic coupling constant~see Refs. 9 and 10 for a derivation of this equation!. The Dirac
matricesGj (x) are real linear combinations of the usualg-matrices. We work in the Dirac repre
sentation

g05S 1 0

0 21D , g i5S 0 s i

2s i 0 D , i 51,2,3, ~I.5!

wheres i denote the Pauli matrices. The Dirac matrices are related to the Lorentzian metric v
anticommutation relations

gik~x!5 1
2$G

j~x!,Gk~x!%. ~I.6!
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The term¹ jG
j in ~I.4! is the divergence with respect to the Levi–Civita connection; it can

easily computed via the standard formula

¹ jG
j5

1

Augu
] j~AuguGj !. ~I.7!

For the normalization of the wave functions, one takes a spacelike hypersurfaceH with normal
vector fieldn and considers the scalar product

~CuF!5E
H

C̄GjFn j dm, ~I.8!

whereC̄5C* g0 is the adjoint spinor, and wheredm is the invariant measure onH induced by
the Lorentzian metric. On solutions of the Dirac equation, we impose the normalization con

~CuC!51.

Current conservation

¹ jC̄GjC50 ~I.9!

implies that this normalization condition remains unchanged if the hypersurfaceH is continuously
deformed.

II. THE DIRAC OPERATOR IN A SCHWARZSCHILD BACKGROUND

We begin by analyzing the Dirac operator in a Schwarzschild background metric. Our a
to analyze the behavior of the spinors near the event horizon. To do this, we must consid
Dirac equation in different coordinate systems.

A. The Dirac operator in polar coordinates

In polar coordinates (t,r ,q,w), the Schwarzschild metric is

ds25S 12
2r

r Ddt22S 12
2r

r D 21

dr22r 2~dq21sin2 qdw2!,

wherer is the ~ADM ! mass. The metric has an event horizon atr 52r. In order to derive the
Dirac operator, we first choose Dirac matricesGj (x) satisfying the anticommutation relation
~I.6!. The Dirac operator is then obtained by calculating the divergence~I.7! and substituting into
~I.4!. @We point out that the choice of the Dirac matrices is not canonical; there are differen
linear combinations of theg-matrices which satisfy~I.6! However, the Dirac operators corre
sponding to different choices of the Dirac matrices are equivalent in the sense that they
obtained from each other by a suitable local transformation of the spinors~see, e.g., Ref. 8!. For
this reason, we can simply choose theGj in the way which is most convenient to us.#

Outside the horizon, we can satisfy the anticommutation relations~I.6! by choosing the Dirac
matrices in the form

Gt5
1

S
g t, Gr5Sg r , Gq5gq, Gw5gw ~r .2r! ~II.1!

with
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S~r !5U12
2r

r U1/2

,

whereg t, g r , gq, andgw are the ‘‘g-matrices in polar coordinates’’

g t5g0,

g r5g3 cosq1g1 sinq cosw1g2 sinq sinw, ~II.2!

gq5
1

r
~2g3 sinq1g1 cosq cosw1g2 cosq sinw!, ~II.3!

gw5
1

r sinq
~2g1 sinw1g2 cosw!. ~II.4!

The divergence of the Dirac matrices is computed to be

¹ jG
j5S S81

2

r
~S21! Dg r .

Substituting into~I.4!, we obtain for the Dirac operator,Gout, in the regionr .2r

Gout5
i

S
g t

]

]t
1g r S iS

]

]r
1

i

r
~S21!1

i

2
S8D1 igq

]

]q
1 igw

]

]w
. ~II.5!

For the normalization, we integrate over the hypersurfacet5const; i.e.,

~CuC!out
t
ªE

R3\B2r

~C̄g tC!~ t,xW !S21 d3x, ~II.6!

whereB2r denotes the ball of radius 2r around the origin. This normalization integral is pro
lematic near the event horizon, as will be discussed in detail later. Inside the horizon, we mu
into account that the radial directionr is timelike, whereast is a space coordinate. So, in th
region, to obtain the Dirac matrices, we reverse the roles of the matricesg t andg r ,

Gt5
1

S
g r , Gr52Sg t, Gq5gq, Gw5gw ~r ,2r!. ~II.7!

The divergence of the Dirac matrices now has the form

¹ jG
j52

2

r
g r2S S81

2

r
SDg t.

Thus the Dirac operator,Gin , in the regionr ,2r is given by

Gin5g r S i

S

]

]t
2

i

r D2g tS iS
]

]r
1

i

r
S1

i

2
S8D1 igq

]

]q
1 igw

]

]w
. ~II.8!

According to~I.8!, the naive extension of the normalization integral~II.6! to the interior of the
horizon is

~CuC! in
t
ªE

B2r

~C̄g rC!~ t,xW !S21 d3x; ~II.9!
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this will also be discussed in detail later.
Notice that as a particular freedom in the choice of the Dirac matrices, the signs in~II.1! and

~II.7! are arbitrary. As remarked above, this arbitrariness can be compensated by a suitab
transformation of the spinors. However, this transformation of the spinors may change the s
the scalar product~I.8!. This is a subtle point which needs some explanation. Assume tha
consider the spacelike hypersurface outside the horizon

H15$t5const,r .2r%. ~II.10!

Its normal vector fieldn is only determined up to a sign. Depending on whether we choosen
the future- or past-directed normals, the corresponding scalar product~I.8! will ~for a fixed choice
of the Dirac matricesGj ! be either positive or negative~semi-!definite. However, the overall sign
of the scalar product is of no physical relevance; e.g., we could just redefine~I.8! by inserting a
minus sign. In order to fix the sign convention, we will in the following always assume tha
scalar product~I.8! is positive for the future-directed normal vector field@this convention is
consistent with our choices~II.1! and ~II.6!#. The situation becomes more interesting if we a
look at the region inside the horizon. For this, we consider the ‘‘cylindric’’ spacelike hypersu

H25$r 5r 0 ,t0<t<t1% ~II.11!

for some fixedr 0,2r and t0,t1 . A short computation shows that, for our choice of the Dir
matrices~II.7!, the scalar product~I.8! corresponding toH2 is positive if we choose forn the inner
normal ~pointing towards the singularity atr 50!. According to our sign convention, this mean
that the inward radial direction points to the future. Thus the particles ‘‘fall into’’ the singula
as time progresses, and we have ablack hole. On the other hand, we could have chosen the Di
matrices such that the scalar product corresponding toH2 is positive for the outer normal@e.g., by
changing the sign ofGr in ~II.7!#. In this case, increasingr would correspond to going forward in
time, and we would have awhite hole. Notice that this argument is consistent with time revers
Namely, the replacementt→2t forces us to change the sign of the scalar product~I.8! @in order
that ~I.8! is still positive forH5H1 and future-directed normals#. As a consequence, the scal
product corresponding toH2 changes sign. This means that black holes become white holes
vice versa. We conclude that the Dirac operatorsGout andGin distinguish between a black and
white hole. This is a peculiar effect of the Dirac operator. It is quite different from, e.g., the w
operator describing scalar fields~the Klein–Gordon operator!, which does not determine th
direction of time inside the horizon.

Our description of the spinors in polar coordinates is not quite satisfactory. First of al
normalization integral inside the horizon,~II.9!, is not definite. This is a consequence of the fa
that thet-variable is spacelike inside the horizon. From the mathematical point of view, this
problem; it seems tempting to just integrate across the horizon by adding~II.6! and~II.9!. On the
other hand, it is a conceptual difficulty that the integrand in~II.9! is not positive and therefore doe
not have the interpretation as a probability density. Furthermore, the Dirac equations corre
ing to Gout andGin separately describe the wave functions outside and inside the horizon. Bu
not clear how to match the wave functions on the horizon. For a better understanding of
issues, it is useful to remove the singularity of the metric on the horizon by transformin
Kruskal coordinates.

B. Kruskal coordinates

According to Ref. 11, we introduce Kruskal coordinatesu andv by

u55A
r

2r
21er /4r coshS t

4r D for r .2r,

A12
r

2r
er /4r sinhS t

4r D for r ,2r,

~II.12!
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u55 A
r

2r
21er /4r sinhS t

4r D for r .2r,

A12
r

2r
er /4r coshS t

4r D for r ,2r,

~II.13!

The regionsr .2r outside andr ,2r inside the horizon are mapped into

O15$u.0,uvu,u%

and

I 15$v.0,uuu,v,v22u2,1%,

respectively~see Fig. 1!. The horizonr 52r corresponds to the originu505v, and the linesv
56u are reached in the limitt→6`. Finally, the singularity atr 50 corresponds to the hyper
bola v22u251, v.0.

In Kruskal coordinates (v,u,q,w), the Schwarzschild metric takes the form

ds25 f 22~dv22du2!2r 2~dq21sin2 qdw2!

with

f 225
32r3

r
e2r /2r.

This metric is regular except at the singularityv22u251; it can be extended to the entire regio
v22u2,1.

Since the metric is regular at the origin, we can smoothly extend the Dirac operator acro
horizon. To do this, we simply viewv and u as the time and space variables, respectively.
choose for the Dirac matrices

Gv5 f g t, Gu5 f g r , Gq5gq, Gw5gw.

A straightforward computation yields for the Dirac operator

FIG. 1. Kruskal coordinates.
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G5g tS f i
]

]v
1

i

r
f ~]vr !2

i

2
]v f D1g r S f i

]

]u
1

i

r
„f ~]ur !21…2

i

2
]uf D1 igq]q1 igw]w .

~II.14!

The normalization integrals~II.6! and~II.9! on the surfacet50 correspond in Kruskal coordinate
to the integral~I.8! with

H5$u50,0<v<1%ø$v50,u.0%.

We choose the normaln as in Fig. 1. Using the current conservation~I.9!, one can continuously
deform the hypersurfaceH without changing the value of the normalization integral. In particu
we can avoid integrating across the horizon by choosing the hypersurfaceĤ in Fig. 1. This is a
major advantage of Kruskal coordinates; it gives a physically reasonable positive normali
integral even inside the event horizon. However, this method must be done with care wh
considered solution of the Dirac equation has singularities near the origin. Unfortunately
time-periodic solutions of the Dirac equation will, after transforming to Kruskal coordinate
general be highly singular at the origin. Therefore, the deformation of the hypersurface as
1 would be problematic, and we will not use this method. In order to avoid any difficulties o
normalization integral near the horizon,we shall only consider the normalization integral outsi
and away from the event horizon.

C. Transformation of the Dirac operator

We now consider how the Dirac operator~II.5! and~II.8! in polar coordinates transforms int
the Dirac operator~II.14! in Kruskal coordinates. This transformation consists of transform
both the space–time coordinates and the spinors. For clarity, we perform these transforma
two separate steps. Under the transformation of the space–time coordinates, the partial der
transform as

]

]t
5

]v
]t

]

]v
1

]u

]t

]

]u
5

1

4r S u
]

]v
1v

]

]uD ,

]

]r
5

]v
]r

]

]v
1

]u

]r

]

]u
5H 1

4rS2 S v
]

]v
1u

]

]uD , for r .2r,

2
1

4rS2 S v
]

]v
1u

]

]uD , for r ,2r

.

Substituting into~II.5! and~II.8! gives for the Dirac operatorsGout andGin in Kruskal coordinates

Gout5
i

4rS
~ug t1vg r !

]

]v
1

i

4rS
~vg t1ug r !

]

]u

1S i

r
~S21!1

i

2
S8Dg r1 igq

]

]q
1 igw

]

]w
, ~II.15!

Gin5
i

4rS
~vg t1ug r !

]

]v
1

i

4rS
~ug t1vg r !

]

]u

2S i

r
S1

i

2
S8Dg t2

i

r
g r1 igq

]

]q
1 igw

]

]w
. ~II.16!

These Dirac operators do not coincide with~II.14!, and we must therefore perform a furth
transformation; namely a transformation of the spinors. Under general coordinate transform
the wave functions transform according to
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C~x!→U~x!C~x!; ~II.17!

in the case considered here,U is the time-dependent (434) matrix

U~ t !5coshS t

8r D 11sinhS t

8r Dg tg r . ~II.18!

Under this transformation, the Dirac operatorsGout/in transform as

Gout/in→UGout/inU
21. ~II.19!

This gives the Dirac operator~II.14! in Kruskal coordinates,

G5UGoutU
215UGinU

21,

and this can be verified as follows: Under the transformation~II.19!, the Dirac matrices behav
like

Gj~x!→U~x!Gj~x!U~x!21.

Using the form of the Dirac matrices in~II.15! and~II.16! and the explicit formula~II.18!, a short
calculation shows that the Dirac matrices of the operatorsUGout/inU

21 coincide with the Dirac
matricesf g t, f g r , gq, andgw in ~II.14!. According to~I.4!, the Dirac operator in the gravitationa
field is formed from the Dirac matrices and their covariant derivatives; it is thus compl
determined by the Dirac matrices. Therefore, the operatorsUGout/inU

21 must coincide withG.
~One can also verify explicitly that the zeroth-order terms of the operatorsUGout/inU

21 andG are
equal. This is a longer computation, however.! We conclude that the Dirac operatorsGout andGin

can be identified with the Dirac operatorG in the regionO1øI 15$u1v.0,v22u2,1%.
We remark that it is not possible to map the interior of the horizon into the region

I 25$v,0,uuu,2v,v22u2,1%

and still match the Dirac operatorGin with G, because this would contradict the fact discussed
the previous section that the Dirac operator distinguishes between black and white holes.

Finally, we note that the transformation~II.17! and ~II.19! of the spinors can be viewed as
local U ~2, 2! gauge transformation; see Ref. 8.

D. Matching of the spinors on the horizon

We now come to the question of how the wave functions inside and outside the horizo
related to each other. For this, we analyze the behavior of solutions of the Dirac equation
origin in Kruskal coordinates. After transforming back to polar coordinates, this will give ma
ing conditions for the wave functions on the event horizon. The physical situation which we
in mind is a Dirac particle attracted by a Schwarzschild black hole. It suffices to do the mat
for static solutions~and not time-periodic solutions!, since in Sec. IV, we reduce the problem
static solutions.

Let C be a static wave function, i.e., in polar coordinates

C~ t,r ,q,w!5e2 ivtC~r ,q,w!.

We assume thatC(r ,q,w) is a smooth function both inside and outside the horizon, i.e., in
regions r ,2r and r .2r; this will be justified later by a separation of variables techniq
Furthermore, we assume thatC is a solution of the Dirac equations (Gin2m)C50 and (Gout

2m)C50, respectively. According to the transformation rules~II.17! and~II.18!, the wave func-
tion C in Kruskal coordinates takes the form
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C~u,v,q,w!5U~ t !e2 ivtC~r ,q,w!, ~II.20!

wherer and t are given implicitly in terms ofu andv by

S r

2r
21Der /2r5u22v2, ~II.21!

tanhS t

4r D5H v
u

for r .2r,

u

v
for r ,2r.

~II.22!

With this procedure,C is only defined inO1øI 1 , the upper right half of the Kruskal domain.
solves the Dirac equation

~G2m!C50 ~II.23!

in the open setO1øI 1 . If C is to be a physically reasonable solution of the Dirac equation, it m
be possible to extend it to the entire regionv22u2,1 between the two hyperbolas. If thi
extended wave function was not zero in the regionu1v,0, our system would be connected to
white hole or to another universe~through a worm hole!, and the Dirac particle would have
certain probability to be in these extensions of space–time. Since we are only interested in
holes, this is not the situation we want to consider. Therefore, we demand that the extensioC
must vanish identically in the half-planeu1v,0. We conclude that in Kruskal coordinates, w
must analyze a solutionC of the Dirac equation~II.23! of the form

C~u,v,q,w!5H U~ t !e2 ivtC~r ,q,w! for u1v.0,uÞv,

0 for u1v,0.
~II.24!

This wave function may be singular on the linesu56v; in this case,C must solve the Dirac
equation in a generalized weak sense.

For the calculation of the weak derivatives ofC, we rewrite the wave function in the form

C5U~u1v !U~u2v !CO1U~v1u!U~v2u!C I ,

whereCO5C uO1
and C I5C uI 1

are the components ofC outside, resp. inside, the horizon@U
denotes the Heaviside functionU(x)51 for x>0 andU(x)50 otherwise#. SinceC satisfies the
Dirac equation inO1øI 1 , we need only consider the singular contributions on the lineu
56v. A formal calculation gives

05~G2m!C 5
~ II.14!

f i ~g t1g r !d~u1v !„U~u2v !CO1U~v2u!C I… ~II.25!

2 f i ~g t2g r !d~u2v !U~u1v !~CO2C I !. ~II.26!

If CO and C I were smooth up to the boundary ofO1 , resp.I 1 , this equation would be wel
defined in the distributional sense. In general, however,CO andC I might be singular in the limit
u→6v. In order to treat this general case, we multiply~II.25! and ~II.26! with test functions
h(u,v) which, asu→6v, decay so fast that the integral over the resulting expression is
defined. Since the matrices (g t1g r) and (g t2g r) are linearly independent, we get the tw
conditions

E
R2

h f d~u1v !~g t1g r !„U~u2v !CO1U~v2u!C I… dudv50, ~II.27!
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E
R2

h f d~u2v !~g t2g r !U~u1v !~CO2C I ! dudv50. ~II.28!

In ~II.27!, we compensate the possible divergence ofC for u→2v by choosingh in the region
O1øI 1 to be of the formh uO1øI 1

5(11u(g t1g r)Cu)21g with a smooth functiong. Then the
integrand in~II.27! is of the formd(u1v)3g3~bounded function!, and the integral makes sens
Sinceg is arbitrary, we conclude that the integrand on the lineu52v must vanish, which implies
that

lim
u→2v

~g t1g r !C~u,v,q,w!50. ~II.29!

In ~II.28!, we can proceed similarly; namely, ifC is singular on the lineu5v, we compensate the
divergence of the integrand in~II.28! by choosingh to have an appropriately fast decay near t
line u5v. One must keep in mind, however, thath cannot be chosen independently inO1 andI 1 ,
because the smoothness ofh on the lineu5v may impose restrictions onh. For example, ifCO

andC I have poles nearu5v,

C I~u,u1«,q,w!5c1~u,q,w!«2p1¯ ,

CO~u,v2«,q,w!5c2~u,q,w!«2q1¯ , ~«.0!,

then we must chooseh in the form

h~u,u1«,q,w!5c3~u,q,w!«max~p,q!1¯ ~«.0 or «,0!.

Thus the asymptotic behavior ofh nearu5v in O1 and I 1 must be the same. In the integr
~II.28!, this means that the leading order singularities ofCO andC I may cancel each other for an
choice ofh. Therefore, the condition for the leading order singularity takes the form

~g t2g r !~C~u,u1«,q,w!2C~u,u2«,q,w!!

5o„11u~g t2g r !C~u,u1«,q,w!u… as«→0. ~II.30!

If the singularity ofC on the lineu5v is worse than polynomial or of different form, there ma
be no obstructions for the choice ofh in O1 and I 1 . In this case,~II.30! will still be a necessary
condition. It will no longer be the strongest possible condition, but this is irrelevant for
purposes. For simplicity, we will use~II.30! in the general case.

Next we evaluate the conditions~II.29! and ~II.30! for our wave functionC(u,v,q,w) in
~II.24!. Using ~II.18!, we have inO1øI 1

~g t1g r !C~u,v,q,w!5~g t1g r !et/8pe2 ivtC~r ,q,w!,

~g t2g r !C~u,v,q,w!5~g t2g r !e2t/8pe2 ivtC~r ,q,w!.

The explicit formulas~II.12! and~II.13! enable us to write the time exponential in terms ofu and
v as

e6t/8r5Uu1v
u2vU

61/4

.

Using the relation~II.21! betweenr, u, andv, the condition~II.29! in polar coordinates takes th
form

lim
«→0

~g t1g r !u«u1/4C~ t,2r1«,q,w!50. ~II.31!
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Similarly, condition~II.30! can be written in polar coordinates as

~g t2g r !u«u1/4
„C~2r1«,q,w!2C~2r2«,q,w!…

5o„11u«u1/4u~g t2g r !C~2r1«,q,w!u… as«→0. ~II.32!

In order to simplify this formula, we consider the decomposition ofC in the form

u«u1/4C5 1
2g

t~~g t1g r !u«u1/4C1~g t2g r !u«u1/4C!. ~II.33!

According to condition~II.31!, the first summand in the bracket in~II.33! vanishes on the horizon
r 52r. Since the matrixg t is invertible, we conclude thatC and (g t2g r)C are of the same orde
on the horizon. Thus we can take out the matrices (g t2g r) in ~II.32! and finally obtain the
equivalent condition

u«u1/4
„C~ t,2r1«,q,w!2C~ t,2r2«,q,w!…5o„11u«u1/4C~ t,2r1«,q,w!… ~II.34!

as«→0. The relations~II.31! and ~II.34! are ourmatching conditions.
We briefly explain what these matching conditions mean, without being mathematically

cise. First of all, we point out that the matrix (g t1g r) in the first matching condition~II.31! is not
invertible. Therefore,~II.31! does not imply thatu«u1/4C(2r1«,q,w) goes to zero in the limit
«→0; in general, this limit need not even exist. Although the matching conditions have a
special form, they can be understood intuitively if one considers the Dirac current in polar
dinates. We first look at the total normalization integral~II.6!1~II.9!:

~CuC!out1~CuC! in5E
B2r

C̄~g r1g t!C dm2E
B2r

C̄g tC dm1E
R3B2r

C̄g tC dm.

The condition~II.31! ensures that the integral of the first summand is small near the hor
Using the matching condition~II.34!, one sees that the integrals in the second and last summ
behave similarly near the horizon. Because of the opposite sign of the second and third sum
this tends to make the normalization integral finite even ifC is singular on the horizon~if the
current had a pole, for example, one could define the normalization integral as a principal v!.
Thus our matching conditions ‘‘regularize’’ the normalization integral across the horizon. It is
interesting to look at the current in radial direction. For this, we consider the normaliz
integral through the hypersurfaceH2 , ~II.11!. For the outer normaln, this gives inside the horizon

~CuC!H2
52E

H2

C̄g tC dm ~r ,2r!. ~II.35!

For r .2r, on the other hand, we get the expression

~CuC!H2
5E

H2

C̄g4C dm5E
H2

C̄~g r1g t!C dm2E
H2

C̄g tC dm ~r .r!. ~II.36!

According to~II.31!, the first integral in~II.36! is small near the horizonr 52r. The matching
condition ~II.34! gives that the second summand in~II.36! behaves similar to~II.35! near the
horizon. Thus our matching conditions tend to make the normalization integral throughH2 a
continuous function inr 0 on the horizonr 052r. Since the integrand of the normalization integ
has the interpretation as the ‘‘probability density’’ or ‘‘probability current,’’ this means physic
that a particle which disappears in the event horizon must reappear in the interior of the ho
This is in accordance with our physical assumption that there are no other universes or whit
where the particle could disappear into or emerge from.
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III. SEPARATION OF THE ANGULAR AND TIME DEPENDENCE

We next study Dirac particles in the external Reissner–Nordstro¨m background fields~I.1! and
~I.2!. Since the external fields are spherically symmetric and time independent, we can se
out the angular and time dependence of the wave functions via spherical harmonics and
waves, respectively. This is done in a manner similar to the central force problem in Minko
space~see e.g., Ref. 12!.

We start with a compilation of some formulas involving the angular momentum operaLW

52 i (xW3¹W ) ~see, e.g., Ref. 13!. Its square is

L252DS25L1L21Lz
22Lz5L2L11Lz

21Lz

with L65Lx6 iL y . The spherical harmonicsYl
k , l 50,1,...,k52 l ,...,l , are simultaneous eigen

functions ofL2 andLz , namely,

L2Yl
k5 l ~ l 11!Yl

k , LzYl
k5kYl

k . ~III.1!

They are orthonormal,

E
S2

Yl
k* Yl 8

k85d l l 8d
kk8,

and form a basis ofL2(S2). The operatorsL6 serve as ‘‘ladder operators,’’ in the sense that

L6Yl
k5Al ~ l 11!2k~k61!Yl

k61. ~III.2!

In preparation for the four-component Dirac spinors, we consider two-component Pauli spin
analogy to~II.2!–~II.4!, we denote the ‘‘Pauli matrices in polar coordinates’’ bys r , sq, andsw;
i.e.,

s r5s3 cosq1s1 sinq cosw1s2 sinq sinw,

sq5
1

r
~2s3 sinq1s1 cosq cosw1s2 cosq sinw!,

sw5
1

r sinq
~2s1 sinw1s2 cosw!.

We have

sq]q1sw]w5sW ¹W 2s r] r5
s r

r
~sW xW !~sW ¹W 2s r] r !5

s r

r
~r ] r1 isW ~xW3¹W !2r ] r !52

s r

r
sW LW ,

~III.3!

and thus

sW LW 52rs r~sq]q1sw]w!. ~III.4!

For j 51/2,3/2,... andk52 j ,2 j 11,...,j , we introduce the two-spinors

x j 21/2
k 5Aj 1k

2 j
Yj 21/2

k21/2S 1
0D1Aj 2k

2 j
Yj 21/2

k11/2S 0
1D ,

x j 11/2
k 5Aj 112k

2 j 12
Yj 11/2

k21/2S 1
0D2Aj 111k

2 j 12
Yj 11/2

k11/2S 0
1D .



as
of

rm

mb

s of
e

2185J. Math. Phys., Vol. 41, No. 4, April 2000 Non-existence of time-periodic Dirac solutions
These spinors form an orthonormal basis ofL2(S2)2. They are eigenvectors of the operatorK

5sW LW 11. More precisely,~III.1! and ~III.2! imply that

Kx j 21/2
k 5S Lz11 L2

L1 2Lz11D x j 21/2
k 5S j 1

1

2Dx j 21/2
k , ~III.5!

Kx j 11/2
k 52~ j 1 1

2!x j 11/2
k . ~III.6!

Furthermore, multiplication withs r again gives an eigenvector ofK; namely,

Ks rx j 21/2
k 5

~ III.4 !

„2rs r~sq]q1sw]w!11…s rx j 21/2
k

52s rx j 21/2
k 2rs r~sqs r]q1sws r]w!x j 21/2

k

52s rx j 21/2
k 2s r~sW LW !x j 21/2

k

52s rKx j 21/2
k 52~ j 1 1

2!s
rx j 21/2

k .

Taking into account the normalization factors, we obtain the simple formula

s rx j 21/2
k 5x j 11/2

k . ~III.7!

Finally, we choose for the Dirac wave functions the two ansatz

C jkv
1 5e2 ivt

S21/2

r S x j 21/2
k F jkv1

1 ~r !

ix j 11/2
k F jkv2

1 ~r ! D , ~III.8!

C jkv
2 5e2 ivt

S21/2

r S x j 11/2
k F jkv1

2 ~r !

ix j 21/2
k F jkv2

2 ~r ! D , ~III.9!

with the two-spinorsF jkv
1 andF jkv

2 . A general solution of the Dirac equation can be written
a linear combination of these wave functions~this is because one can obtain every combination
spherical harmonics in the four spinor components!.

In the regions where thet-variable is timelike, we choose the Dirac matrices again in the fo
~II.1!, whereby the functionS is now given by

S~r !5U12
2r

r
1

q2

r 2U1/2

. ~III.10!

According to ~I.4!, the formula for the Dirac operator is obtained by inserting the Coulo
potential into~II.5!,

G5g tS i

S

]

]t
2

e

S
f D1g r S iS

]

]r
1

i

r
~s21!2

i

2
S8D1 igq

]

]q
1 igw

]

]w
. ~III.11!

The identity~III.3! allows us to rewrite the angular derivatives of the Dirac operator in term
the operatorK. If we substitute the ansatz~III.8! and~III.9! into the Dirac equation and apply th
relations~III.5!–~III.7!, we obtain the two-component Dirac equations

S
d

dr
F jkv

6 5F S 0 21

1 0 D ~v2ef!
1

S
6S 1 0

0 21D 2 j 11

2r
2S 0 1

1 0DmGF jkv
6 . ~III.12!

In the regions where thet-direction is spacelike, we obtain the generalization of~II.8! for the Dirac
operator; namely,



al
stro

-

.

2186 J. Math. Phys., Vol. 41, No. 4, April 2000 Finster, Smoller, and Yau
G5g r S i

S

]

]t
2

i

r
2

e

S
f D1g0S iS] r1S

i

r
1

i

2
S8D1 igq]q1 igw]w . ~III.13!

We again choose the ansatz~III.8! and ~III.9!. This gives the two-component Dirac equations

S
d

dr
F jkv

6 5F S 0 21

1 0 D ~v2ef!
1

S
6 i S 0 1

1 0D 2 j 11

2r
1 i S 1 0

0 21DmGF jkv
6 . ~III.14!

IV. NONEXTREME REISSNER–NORDSTRÖM BACKGROUND

In this section, we consider the caseqÞr, so that the metric coefficientS(r ), ~III.10!, has two
zeros

r 05r2Ar22q2 and r 15r1Ar22q2.

These zeros are transversal,S8(r j )Þ0; in addition, the potentialf(r ) is regular atr 5r j . Since
our matching conditions~II.31! and~II.34! for the Schwarzschild metric only depend on the loc
behavior of the external field around the horizon, they are also valid for the Reissner–Nord¨m
horizons~for the inner horizon, we must reverse ther-direction!. We will show in this section that
these matching conditions do not admitnormalizable, time-periodic solutions of the Dirac equa
tion. More precisely, we will show that for every~nontrivial! solution of the Dirac equation~I.4!,
the normalization integral outside and away from the horizons,

~CuC!`
t
ªE

R3B2r 1

C̄g tCS21 d3x, ~IV.1!

is infinite for somet. Notice that for a normalized wave function, the integral~IV.1! gives the
probability that the particle lies outside the ball of radius 2r 1 , which must be smaller than one
Thus, if ~IV.1! is inifinite, the wave function cannot be normalized.

Suppose that we have a periodic solution~I.3! of the Dirac equation with periodT. Expanding
the periodic functioneiVtC(t,r ,q,w) in a Fourier series gives the representation ofC ~as the
Bloch wave!

C~ t,r ,q,w!5e2 iVt (
nPZ

Cn~r ,q,w!e22p int/T. ~IV.2!

Decomposing the functionsCn in the basis~III.8! and ~III.9! and substituting into~IV.2! gives

C~ t,r ,q,w!5 (
n, j ,k,s

C jkv~n!
s ~ t,r ,q,w!, ~IV.3!

where the indexs56, and wherev is related ton by

v~n!5V1
2pn

T
.

Using the orthonormality of the two-spinorsx j 61/2
k , the normalization integral takes the form

~CuC!`
t 5E

R3\B2r 1

(
n,n8

(
j ,k,s

C jkv~n!
s g tC jkv~n8!

s
S21 d3x.

The integrand has an oscillating time dependence of the form exp (i„v(n)2v(n8)…t). In order to
eliminate the oscillations, we take the average over one period (0,T), giving



ro

s

ro

2187J. Math. Phys., Vol. 41, No. 4, April 2000 Non-existence of time-periodic Dirac solutions
1

T E
0

T

~CuC!`
t dt5 (

n, j ,k,s
~C jkv~n!

s uC jkv~n!
s !` .

For a normalizable wave functionC, this expression is finite. Since the scalar product (.u.)` is
~semi-!positive definite, we conclude that all the summands must be finite; thus

~C jkv~n!
s uC jkv~n!

s !,` ~IV.4!

for all s56, j ,k,n.
This inequality allows us to turn our attention to the individual wave functionsC jkv

s . As a
first step we show that the wave functionsF6 in the ansatz~III.8! and~III.9! are not zero on the
horizon.

Lemma IV.1: The functionuF jkv
6 (r )u2 has finite boundary values on the horizon. If it is ze

on a horizon r5r 0 or r 5r 1 , thenF jkv
6 vanishes identically.

Proof: For ease in notation, we omit the indicesj, k, andv. For a givend, 0,d,r 0 , the
t-direction is timelike in the regions (d,r 0) and (r 1 ,`). In these regions, the Dirac equation
~III.12! give

S
d

dr
uF6u2~r !5 K S

d

dr
F6,F6L 1 K F6,S

d

dr
F6L

56
2 j 11

r
~ uF1

6u22uF2
6u2!24m Re„~F1

6!* F2
6
…,

and thus

2cuF6u2<S
d

dr
uF6u2<cuF6u2

with c52m1(2 j 11)/d. Dividing by uF6u2 and integrating yields, ford,r ,r 8,r 0 , or r 1,r
,r 8, the inequality

2cE
r

r 8
S21< log uF6u2ur

r 8<cE
r

r 8
S21. ~IV.5!

In the regionr 0,r ,r 1 , the Dirac equations~III.14! give similarly

S
d

dr
uF6u2~r !5 K S

d

dr
F6,F6L 1 K F6,S

d

dr
F6L 50,

since the square bracket in~III.14! is an anti-Hermitian matrix. ThusuF6u2 is constant in this
region, and, so,~IV.5! also ~trivially ! holds for r 0,r ,r 8,r 1 .

Notice thatS21 is integrable on the event horizons. Therefore, the inequality~IV.5! implies
that the left- and right-sided boundary values ofuF6u2 on the horizon are finite, and are nonze
unlessF6 vanishes identically in the corresponding region (d,r 0), (r 0 ,r 1), or (r 1 ,`).

Next we consider the matching condition~II.34!. If we substitute the ansatz~III.8! and~III.9!,
we get forF6 the conditions

F6~r j1«!2F6~r j2«!5o„11uF6~r j1«!u… at «→0,j 50,1.

Since we have already shown thatuF6(r )u2 has two-sided limits asr 5r j , this last equality shows
that the left- and right-sided boundary values ofuF6u2 must coincide,

lim
0,«→0

uF6~r j1«!u25 lim
0,«→0

uF6~r j2«!u2, j 50,1.
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We conclude that the wave function can only be zero on one of the horizons if it vanishes
whole interval~d, `!. Taking the limitd→0 gives the result. j

We point out that this lemma does not imply that the wave functionF is continuous on the
horizon. In general,F(r ) will oscillate faster and faster asr approaches a horizon. Nevertheles
its absolute valueuFu tends to a finite value in this limit.

The next step is to use current conservation for analyzing the decay ofC jkv(n)
s at infinity.

Theorem IV.2 „radial flux argument…: Either C jkv
s vanishes identically, or the normaliza

tion condition (IV.4) is violated.
Proof: To simplify the notation, we again omit the indicess, j, k, andv. Assume thatC is not

identically zero. Forr 1,r ,R and T.0, let V5(0,T)3(B2R\B2r) be an annulus outside th
horizon. As a consequence of the current conservation, the flux integral over the boundaryV is
zero, thus

05E
V

1¹ j~C̄GjC!Augu d4x

5E
0

T

dt r2S~r !E
S2

~C̄g rC!~ t,r !2E
0

T

dt R2S~R!E
S2

~C̄g rC!~ t,R!

2E
2r

2R

ds s2S21~s!E
S2

~C̄g tC!~ t,r !u t50
t5T ,

where*S2 denotes the integral over the angular variables. Since the integrand is static, th
integral vanishes, and we obtain that the radial flux is independent of the radius,

r 2S~r !E
S2

~C̄g rC!~r !5R2S~R!E
S2

~C̄g rC!~R!. ~IV.6!

We want to show that the radial flux is not zero. For this, we first substitute the ansatz~III.8!
and ~III.9! into the right side of~IV.6! and get

r 2S~r !E
S2

~C̄g rC!~r !5E
S2

F* ~r !S 0 i

2 i 0DF~r !. ~IV.7!

According to Lemma IV.1,uFu has finite, nonzero boundary values on the horizonr 1 . Expressed
in F, the matching condition~II.31! gives

lim
r 1,r→r 1

S 1 i

i 21DF50.

Using this equation, we take the limitr→r 1 in ~IV.7!,

lim
r 1,r→r 1

r 2S~r !E
S2

~C̄g rC!~r !5 lim
r 1,r→r 1

E
S2

FF* S 1 i

2 i 1DF2uFu2G
5 lim

r 1,r→r 1

E
S2

FF* S 1 0

0 21D S 1 i

i 21DF2uFu2G
52 lim

r 1,r→r 1

E
S2

uFu2Þ0,

where we used Lemma IV.1 in the last inequality
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Now we consider the radial flux for largeR. Since the flux is nonzero and independent ofR,
we have

0, lim
R→`

uR2S~R!E
S2

~C̄g rC!~R!u.

Using the positivity of the formC̄g tC and the fact that the Reissner–Nordstro¨m metric is
asymptotically Minkowskian, we get~using the Cauchy–Schwarz inequality! the estimate

0, lim
R→`

uR2S~R!E
S2

~C̄g rC!~R!u< lim
R→`

uR2S~R!E
S2

~C̄g tC!~R!u

5 lim
R→`

uR2S21~R!E
S2

~C̄g tC!~R!u

We have shown that the integrand of our normalization integral

~CuC!`5E
2r 1

`

dR R2S21~R!E
S2

~C̄g tC!~R!

converges to a positive number. Thus the normalization integral must be infinite.
j

This theorem shows that the wave functionsC jkv
s in the decomposition~IV.2! and ~IV.3!

must all be identically zero. Thus there are no normalizable solutions of the Dirac equation
proves Theorem I.1.

Remark IV.3:We point out that the radial flux argument is based only on our match
conditions for the wave functions and on the Dirac current conservation. Therefore, it can i
diately be applied to more general static, spherically symmetric background fields. This ge
zation may, for example, be relevant if the coupling of the gravitational and electric field to m
or other force fields is taken into account. Although the exact formulas of the Reissner–Nord¨m
solution will then no longer be valid, the qualitative behavior of the fields on the horizons may
be the same. To give an example of the possible generalizations, we state the following th
which can be proved with very similar methods:Let gi j be a static, radially symmetric back
ground metric,

ds25gi j dxidxj5
1

T2~r !
dt22

1

A~r !
dr22r 2~dq21sin2 qdw2!,

whereby the metric coefficient A(r ) has N zeros at r5r 1 ,..., r N,0,r 0,¯,r N . Assume the
following conditions hold:

(1) The zeros of A are all transversal,

A8~r j !Þ for j 51,...,N.

(2) The determinant of the metric is regular except at the origin,

T22~r !A21~r !PC`~0,̀ !.

Furthermore, assume there is a spherically symmetric electric fieldf(r ) which is regular except
at the origin,fPC`(0,̀ ). Then there are no normalizable, time-periodic solutions of the Di
equation with these background fields.
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V. EXTREME REISSNER–NORDSTRÖM BACKGROUND

We now consider the caseq5r of an extreme Reissner–Nordstro¨m background field, i.e.,

S5
r 2r

r
.

The metric coefficientSnow has only one zero atr 5r; the t-direction is timelike both inside and
outside the horizon. This situation can be thought of as the limiting case that the two horizor 0

andr 1 considered in the previous section come arbitrarily close. Unfortunately, the argumen
the nonexistence proof do not carry over in this limit, so we must rely on a different metho

Since thet-direction is always timelike, thet-component of the currentC̄GtC is positive and
has the usual interpretation as probability density. Therefore, the normalization integral

~CuC! t5E
R3

C̄g tCS21 d3x

causes no conceptual difficulties.
Suppose that we had a normalizable, periodic solution~I.3! of the Dirac equation with period

T. Again, using the representation as the Bloch wave~IV.2! and averaging over one period give

`.
1

T E
0

T

~CuC! t dt5 (
n, j ,k,s

~C jkv~n!
s uC jkv~n!

s !.

Substituting the ansatz~III.8! and ~III.9! yields

1

T E
0

T

~CuC! t dt5E
0

`

dr S22~r ! (
n, j ,k,s

uF jkv~n!
s u2.

Using the positivity of the summands, we obtain the conditions

E
0

`

dr S22~r !uF jkv~n!
s u2,` ~V.1!

for all s, j, k, andn.
We will now study the individual functionsF jkv

s for r .r. To simplify the notation, we again
omit the indicesj, k, andv. Our first task is to consider under which conditions on the parame
v, j, andm the normalization integral~V.1! can be finite nearr 5r. We first discuss the situation
qualitatively: SinceS22(r )5r 2/(r 2r)2 has a nonintegrable singularity on the horizon, the n
malization integral will only be finite ifFs becomes small nearr 5r. For generic paramete
values, the dominant term in the Dirac equation~III.12! nearr 5r is the first summand, i.e.,

d

dr
F6'

v2ef

S2 S 0 21

1 0 DF6.

Since, in this limiting case, the eigenvalues of the matrix on the right are purely imaginary
Dirac equation describes fast oscillations of the wave function. The eigenvalues of the seco
third summands in~III.12! are real; they describe an exponential increase or decay ofF. If the
oscillating term is dominant, we expect thatF will not go to zero in the limitr→r. In the
following lemma, these ideas are made mathematically precise in a slightly more general s

Lemma V.1: LetF(x), x.0, be a nontrivial solution of the ODE

F8~x!5Fa~x!S 0 21

1 0 D 1b~x!S 1 0

0 21D 1c~x!S 0 1

1 0D GF~x! ~V.2!
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with smooth, real functions a,b,cPC`(0,̀ ) and aÞ0. If, near the origin, the quotients b/a and
c/a are monotone and

b~x!21c~x!2,a~x!2, ~V.3!

then uFu2(x) is bounded from above and from below near x50,

0, lim
0,x→0

inf uF~x!u2< lim
0,x→0

supuF~x!u2,`.

Proof: Let ~0,«! be an interval where the functionsb/a andc/a are monotone and where~V.3!
holds. Assume thatF is a nontrivial solution of~V.2!. According to the uniqueness theorem f
the solutions of ODEs,F(x) is nonzero for all 0,x,`. Now consider the functional

F~x!5^F~x!,A~x!F~x!& with A~x!5S 11b/a 2c/a

2c/a 12b/aD .

According to~V.3!, the matrixA is close to the identity; i.e., there is a constantc,1 with

u12A~x!u,c for all x with 0,x,«.

Thus the functionalF is uniformly bounded inuFu2 on ~0, «!,

1

C
uF~x!u2<F~x!<CuF~x!u2 ~V.4!

for someC.0. Using the special form ofA and of the differential equation~V.2!, the derivative
of F takes the simple form

F8~x!5^F8,AF&1^F,AF8&1^F,A8F&5^F,A8F&. ~V.5!

The sup-norm of the matrixA8 is bounded by

$A8%<US b

aD 8U1US c

aD 8U. ~V.6!

Putting together~V.4!–~V.6!, we get the bounds

2CS US b

aD 8U1US c

aD 8U DF~x!<F8~x!<CS US b

aD 8U1US c

aD 8U DF~x!.

Now we divide byF(x) and integrate. Sinceb/a and c/a are monotone, we can just integra
inside the absolute values,

2CS UbaU1UcaU D U
x

y

< logFux
y<CS UbaU1UcaU D U

x

y

. ~V.7!

Since the extreme left and right sides of this inequality converge in the limitx→0, we conclude
that logF(x) is bounded from above and below near the origin. After exponentiating and su
tuting ~V.4!, the result follows. j

Applied to ~III.12!, this lemma says thatuF6(r )u2 is bounded away from zero nearr 5r
unless

v2ef~r!50. ~V.8!

Thus we can turn our attention to this special case.
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If we substitute the condition~V.8! into ~III.12!, the Dirac equation simplifies to

U12
r

r U d

dr
F6~r !5F S 0 21

1 0 D e6S 1 0

0 21D 2 j 11

2r
2S 0 1

1 0DmGF6. ~V.9!

We want to study how the solutions of this equation behave for smallr 2r.0. For this, we
rewrite the equation in the new variable

u~r !52r 2r ln ~r 2r!,

which gives

d

du
F6~u!5F2S 0 21

1 0 D e7S 1 0

0 21D 2 j 11

2r
1S 0 1

1 0DmGF6. ~V.10!

The region nearr 5r corresponds to large values ofu. The matrix in the bracket in~V.10! depends
smoothly onu and converges in the limitu→` to a finite limit, in view of the definition ofu given
above. According to the stable manifold theorem~Ref. 14, Thm. 4.1!, the solutions of~V.10!
which are not bounded away from zero for largeu tend exponentially to zero. After transformin
back to the variabler, this justifies the power ansatz

F1
6~r !5F10

6 ~r 2r!s1o„~r 2r!s
…, F2

6~r !5F20
6 ~r 2r!s1o„~r 2r!s

… ~V.11!

with constantsF10
6 , F20

6 and a parameters.0. Substituting into~V.9! yields the system of linea
equations

„s7~ j 1 1
2!…F10

6 52r~m1e!F20
6 , ~V.12!

„s6~ j 1 1
2!…F20

6 52r~m2e!F10
6 , ~V.13!

which can be solved forF10
6 and F20

6 . In this way, we have found a consistent ansatz for
spinors nearr 5r. However, the corresponding solutions of the Dirac equation are all not
malizable, as the following theorem shows.

Theorem V.2: Every nontrivial solutionF6(r ), r.r, of the Dirac equation (V.9) with the
boundary conditions (V.11) violates the normalization condition (V.1).

Proof: Let F6 be a nontrivial solution of the Dirac equation. Since the Dirac equation has
coefficients, we can assume thatF6 are real. In the new variableu5r 21, the Dirac equation
~V.9! takes the form

u12ruu
d

du
F6~u!5F2

e

u2 S 0 21

1 0 D 7
2 j 11

2u S 1 0

0 21D 1
m

u2 S 0 1

1 0D GF6.

If e.m, Lemma V.1 yields thatuF6(u)u2 is bounded from above and below nearu50. Thus
uF6(r )u2 does not decay at infinity, and the normalization integral~V.1! will diverge. We con-
clude that we must only consider the casem>e.

In the casem5e, the system~V.12! and ~V.13! yields that eitherF10
6 or F20

6 is zero. Fur-
thermore, the Dirac equation~V.9! shows that eitherF1

6 or F2
6 vanishes identically. SinceF6(r )

has no zeros for finiter ~otherwise, the uniqueness of the solution yields thatF6 vanishes
identically!, we can assume that the vectorF6(r ) will lie in the fourth quadrant,

F6~r !P$~x,y!ux>0,y<0% ~V.14!

for all r.
Next we want to show that~V.14! also holds in the casem.e. In this case, from~V.12! and

~V.13!, we can assume thatF10
6 is positive, whereasF20

6 is negative. Thus~V.14! holds for small
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r 2r.0. In order to show that the fourth quadrant is an invariant region forF6, first notice that
F6(r ) cannot become zero for a finite value ofr. Thus, ifF6(r ) leaves the quadrant for somer,
we have either

F1
6~r !50, ~F1

6!8~r !<0, and F2
6~r !,0

or

F1
6~r !.0, F2

6~r !50, and ~F2
6!8~r !>0.

However, the Dirac equation gives in the first case that (F1
6)8.0 and in the second case th

(F2
6)8(r ),0, which is a contradiction.
We conclude thatF6(r ) lies for all r in the fourth quadrant. Figure 2 shows the flow of E

~V.9! for larger. From this one sees immediately that the origin is repelling, so thatuF6u2 will be
bounded away from zero for larger. j

It follows that our periodic solutionC must vanish identically outside the horizon. Th
proves Theorem I.2.

We point out that in contrast to the situation in Sec. IV, we do not make any statement o
behavior of the wave function forr ,r. Indeed, it appears that the extreme Reissner–Nordst¨m
background does admit periodic solutions forr ,r; these can be constructed by taking the bou
ary conditions~V.11! on the horizon and solving the Dirac equation backwards inr.
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APPENDIX: JUSTIFICATION OF TIME PERIODICITY INSIDE THE HORIZON

Throughout this paper, we have considered a Dirac wave function~I.3! which is time periodic
both inside and outside the event horizon. Since an outside observer has no knowledge ab
physical situation in the interior of the event horizon, the assumption of time periodicity insid
horizon might not seem physically reasonable. In this short appendix, we clarify why time
odicity inside the horizon is natural to assume. Namely, we show that every solutionC(t,r ,q,w)

FIG. 2. Flow ofF6 for large r, schematic.
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of the Dirac equation which is time periodic outside the event horizon and~locally uniformly!
bounded int, gives rise to a solutionC̃ of the Dirac equation, which coincides withC outside the
horizon and is also time periodic inside. Using this argument, the results of this paper co
immediately generalized to Dirac wave functions which are only time periodic outside the
horizon.

Let C(t,r ,q,w) be a solution of the Dirac equation which is time periodic outside the e
horizon,

C~ t1T,r ,q,w!5e2 iVTC~ t,r ,q,w! for r .r 1 , ~A1!

and locally uniformly bounded int,

uC~ t,r ,q,w!u<F~r ! with FPC0
„~0,r 0!ø~r 0 ,r 1!… ~A2!

~r 0 andr 1 again denote the Cauchy and event horizons, respectively!. We consider forN>1 the
functions

C̃N~ t,r ,q,w!5
1

2N11 (
n52N

N

C~ t1nT,r ,q,w!.

Since our Dirac operator is static, the functionsC̃N satisfy the Dirac equation. Time-periodicit
~A1! implies thatC̃N andC coincide outside the event horizon. Inside the event horizon, one
use the bound~A2! to show that theC̃N form a Cauchy sequence. Thus we can take the li
N→`; we setC̃5 limN→` C̃N . Again using~A2!, we conclude that the functionC̃ is time
periodic,

C̃~ t1T,r ,q,w!2C̃~ t,r ,q,w!5 lim
N→`

1

2N11
~C„t1~N11!T,r ,q,w…2C~ t2NT,r ,q,w!!50,

and satisfies the Dirac equation,

~G2m!C̃5 lim
N→`

~G2m!C̃N50.
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