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It is shown analytically that the Dirac equation has no normalizable, time-periodic
solutions in a Reissner—Nordstnablack hole background; in particular, there are
no static solutions of the Dirac equation in such a background metric. The physical
interpretation is that Dirac particles can either disappear into the black hole or
escape to infinity, but they cannot stay on a periodic orbit around the black hole.
© 2000 American Institute of Physidss0022-2488)0)01804-]

[. INTRODUCTION

In recent years, there has been much interest in the gravitational collapse of matter to a black
hole. Although both analytichkind intensive numerical studiésee, e.qg., Ref.)2have given some
understanding of how the event horizon and the singularity form, little is known about the
asymptotic form of the black hole as-~. This is mainly due to the fact that standard numerical
methods become unreliable after the solutions have formed singularities. Since all matter on a
microscopic level is formed out of Dirac particles, it seems especially interesting to study the
asymptotic collapse of a “cloud” of spig-particles. As a first step towards this goal, in this paper
we study Dirac particles in a Reissner—Nordstrbackground field.

We remark that considerable work has been done in the study of quantum mechanical wave
equations in the presence of black holes. The papers which are most related are Refs. 3 and 4,
where a massless Dirac particle is considered in a Schwarzschild metric background, and
asymptotic completeness is shown for the scattering states near the event horizon and at infinity.
However, the most physically interesting case of a massive Dirac particle near a charged black
hole has not yet been considered. As we will see here, both the rest mass of the Dirac particle and
the charge of the black hole lead to interesting physical effects and require new analytical tools.

In polar coordinatest(r,9,¢), the Reissner—Nordstmo metric has the form

2 2 2 2\ -1
1—Tp+?—2 dt2—(1—7p+?—2 dt*—r2(d9?+sir* 9 de?), (1)

ds?=

whereq is the charge of the black hole apdts (ADM) mass. Furthermore, we have an external
electromagnetic potenti#l of the formA=(— ¢,5) with the Coulomb potential

o=, 1.2)
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If q<p, the metric has two horizons; this is the so-caltethextreme caséf g=p, the metric has

only one horizon at = p; this extreme caseéescribes a black hole at zero temperature; cf. Refs.
5-7. Forg>p, the metric does not describe a black hole, and thus this case will not be consid-
ered.

We describe the Dirac particles with “classical” wave functidig., without second quan-
tization). Both the gravitational and electric fields are coupled to the Dirac partidlesdo not
assume any spatial symmetry on the wave functiblear a collapsing black hole, it seems
reasonable that some of the Dirac particles could get into static or time-periodic states. Our main
result is to show that this is not possible.

In the following we will restrict to time-periodic solutions, noting that static solutions are a
special case. For classical point particles, the time-periodic solutions describe closed orbits of
particles rotating around the black hole. Our goal is to investigate how this classical picture
changes by the introduction of relativistic wave mechanics and spin. Since the phase of the Dirac
wave functionW is of no physical significance, we say thltis periodic with period Tif

P(t+T,r,0,0)=e 'YW (t,r,9,¢) (1.3)

for some reak). Our main result in the nonextreme case is the following theorem:

Theorem I.1: In a nonextreme ReissneXordstran black-hole background, there are no
normalizable, periodic solutions of the Dirac equation

In the extreme case, we prove a slightly weaker statement:

Theorem 1.2: In an extreme ReissneNordstran background, every normalizable, time-
periodic solution of the Dirac equation vanishes identically for .

This surprising result shows that the classical picture breaks down completely; for Dirac
particles, there are no periodic solutions. This means that Dirac particles which are attracted by a
Reissner—Nordstr black hole either “fall into” the singularity or escape to infinity, but they
cannot stay on a periodic orbit around the black hole. The result can also be applied to the Dirac
particles of the matter in the gravitational collapse; it then indicates that all the matter must
eventually disappear in the black hole.

Basically, our result is a consequence of the Heisenberg uncertainty principle and of the
particular form of the Dirac current. As a preparatory step, we analyze the behavior of the Dirac
wave functions near the event horizon and we derive conditions which relate the wave function
outside and inside the horizon. It is essential for our methods and results that the particles have
spin. This shows that the spin is an important effect to be taken into account in the study of
gravitational collapse.

In the remainder of this section, we give some basic formulas needed to describe Dirac
particles in curved space—tin{éor a more detailed introduction to the classical Dirac theory in
curved space—time see Rej. & this paper, the Dirac equation is always of the form

(iGi(x) ﬁ#iﬁ %(VjGi)(x)+eGj(x)Aj(x))‘I’(x)= mW (x), (1.4)

wherem is the rest mass of the particla= A]-dxj is the electromagnetic potential, ards the
electromagnetic coupling constasee Refs. 9 and 10 for a derivation of this equatiditne Dirac
matricesG!(x) are real linear combinations of the usyamatrices. We work in the Dirac repre-

sentation
1 0 i 0 o )
0 _1[ ! Y _O,I 0 1 | ) 131 ( 5)

Y=

whereg' denote the Pauli matrices. The Dirac matrices are related to the Lorentzian metric via the
anticommutation relations

g™ () =4{G(x),G*(x)}. (1.6)
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The termVjGj in (1.4) is the divergence with respect to the Levi—Civita connection; it can be
easily computed via the standard formula

) 1 )
V.Gl=——9, Gl). 1.7
%= i(Vg]Gh) (1.7)

For the normalization of the wave functions, one takes a spacelike hypersttfaceh normal
vector fieldv and considers the scalar product

(\P|<I))=J VG Dy dpu, (1.8)

H

whereW = p* ° is the adjoint spinor, and wherbu is the invariant measure o induced by

the Lorentzian metric. On solutions of the Dirac equation, we impose the normalization condition
(V|¥)=1.

Current conservation
V,VGWw=0 (1.9)

implies that this normalization condition remains unchanged if the hypersutfaseontinuously
deformed.

II. THE DIRAC OPERATOR IN A SCHWARZSCHILD BACKGROUND

We begin by analyzing the Dirac operator in a Schwarzschild background metric. Our aim is
to analyze the behavior of the spinors near the event horizon. To do this, we must consider the
Dirac equation in different coordinate systems.

A. The Dirac operator in polar coordinates

In polar coordinatest(r, ¥, ¢), the Schwarzschild metric is

-1

2 2
dszz(l— Tp) diz— ( 1-"E] dr2—r2(d9?+si? 9de?),

wherep is the (ADM) mass. The metric has an event horizorr at2p. In order to derive the
Dirac operator, we first choose Dirac matricB§(x) satisfying the anticommutation relations
(1.6). The Dirac operator is then obtained by calculating the divergéri©eand substituting into
(1.4). [We point out that the choice of the Dirac matrices is not canonical; there are different real
linear combinations of the~matrices which satisfyl.6) However, the Dirac operators corre-
sponding to different choices of the Dirac matrices are equivalent in the sense that they can be
obtained from each other by a suitable local transformation of the spisees e.g., Ref.)8 For
this reason, we can simply choose tBé&in the way which is most convenient to Us.

Outside the horizon, we can satisfy the anticommutation relatioisby choosing the Dirac
matrices in the form

Gt:E t Gr:Sr Gl?: 9 GP= ¥ (r>2 ) (” 1)
871 Y Yo Y P '

with
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2 1/2
S(r)=‘1—Tp

wherev!, ", ¥, andy* are the “y-matrices in polar coordinates”

Y=,
¥ =v3cosd+ ysind cose+ y? sind sing, (11.2)
0] 1 3 i 1 2 ;
vy =F(—y sind+ y~ cosd cose+ y* cosd sing), (1.3)
o= (—y*sing+ y?cose). (11.4)

T rsing

The divergence of the Dirac matrices is computed to be

2
S’+F(S—1))'yr.

Substituting into(l.4), we obtain for the Dirac operatoG,,;, in the regionr>2p

i t& ; . P J
Goutzé’yEﬁ"y +ly %+I’y¢£. (”5)

o i
IS(?_I’+F(S_1)+§S

For the normalization, we integrate over the hypersurtaceonst; i.e.,
(W[W)h o= f (V' W)(t,)S 1 d, (11.6)
RS\BZP

whereB,, denotes the ball of radiuspZaround the origin. This normalization integral is prob-
lematic near the event horizon, as will be discussed in detail later. Inside the horizon, we must take
into account that the radial directianis timelike, whereag is a space coordinate. So, in this
region, to obtain the Dirac matrices, we reverse the roles of the matylcasd ',

Gl=ly, G'=-Sy, G'=y" Ge=y* (r<2p) (1.7)
s?: Vo Yo Y P :

The divergence of the Dirac matrices now has the form

2 2
ViGl=— "y~ S'+ 5|

Thus the Dirac operatof;,, in the regionr <2p is given by
i 0 i

a i i
I o R I f Y < _ _cl
Gin 7<S&t r) y(lsar+rs+28

. 6(9 ) J
+ly %+I’y"o£. (11.8)

According to(1.8), the naive extension of the normalization integii&l6) to the interior of the
horizon is

(\Ir|\1/)}n=:JB (W W)(t,X)S Ld3x; (1.9)
2p
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this will also be discussed in detail later.

Notice that as a particular freedom in the choice of the Dirac matrices, the sigmd jrand
(I1.7) are arbitrary. As remarked above, this arbitrariness can be compensated by a suitable local
transformation of the spinors. However, this transformation of the spinors may change the sign of
the scalar productl.8). This is a subtle point which needs some explanation. Assume that we
consider the spacelike hypersurface outside the horizon

‘H,={t=consty >2p}. (11.10)

Its normal vector fieldv is only determined up to a sign. Depending on whether we choose for
the future- or past-directed normals, the corresponding scalar prdd)awill (for a fixed choice

of the Dirac matrice$s!) be either positive or negatiygemijdefinite. However, the overall sign

of the scalar product is of no physical relevance; e.g., we could just redéBndy inserting a
minus sign. In order to fix the sign convention, we will in the following always assume that the
scalar product(.8) is positive for the future-directed normal vector fidlthis convention is
consistent with our choice@l.1) and (11.6)]. The situation becomes more interesting if we also
look at the region inside the horizon. For this, we consider the “cylindric” spacelike hypersurface

H2={r=ro,t0$t$t1} (”11)

for some fixedr<2p andty<t,. A short computation shows that, for our choice of the Dirac
matrices(11.7), the scalar produdl.8) corresponding t@<, is positive if we choose for the inner
normal (pointing towards the singularity at=0). According to our sign convention, this means
that the inward radial direction points to the future. Thus the particles “fall into” the singularity
as time progresses, and we havalack hole On the other hand, we could have chosen the Dirac
matrices such that the scalar product correspondirig,t@ positive for the outer normaé.g., by
changing the sign o&" in (11.7)]. In this case, increasingwould correspond to going forward in
time, and we would have w&hite hole Notice that this argument is consistent with time reversals.
Namely, the replacement- —t forces us to change the sign of the scalar produ8j [in order

that (1.8) is still positive for H="H; and future-directed normdlsAs a consequence, the scalar
product corresponding t&{, changes sign. This means that black holes become white holes and
vice versa. We conclude that the Dirac operategs; and G;, distinguish between a black and a
white hole. This is a peculiar effect of the Dirac operator. It is quite different from, e.g., the wave
operator describing scalar fieldthe Klein—Gordon operatpr which does not determine the
direction of time inside the horizon.

Our description of the spinors in polar coordinates is not quite satisfactory. First of all, the
normalization integral inside the horizofil.9), is not definite. This is a consequence of the fact
that thet-variable is spacelike inside the horizon. From the mathematical point of view, this is no
problem; it seems tempting to just integrate across the horizon by addiégand(11.9). On the
other hand, it is a conceptual difficulty that the integrandli9) is not positive and therefore does
not have the interpretation as a probability density. Furthermore, the Dirac equations correspond-
ing to G, andG;, separately describe the wave functions outside and inside the horizon. But it is
not clear how to match the wave functions on the horizon. For a better understanding of these
issues, it is useful to remove the singularity of the metric on the horizon by transforming to
Kruskal coordinates.

B. Kruskal coordinates

According to Ref. 11, we introduce Kruskal coordinateandv by

[r
2 1e'"# cosh
\ll—Le"“Psinh L for r<2p,
2p 4p

t
_) for r>2p,
4p

U= (11.12)
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FIG. 1. Kruskal coordinates.

r t
— —1e"¥ sinh| —| for r>2p,
\/2p le smh(4p) p
\ll—Le”‘“’ cosh L) for r<2p,
2p 4p

The regions >2p outside and <2p inside the horizon are mapped into

U= (11.13)

0,={u>0v|<u}
and
I, ={v>0u|<v,v?—u?<1},
respectively(see Fig. 1 The horizonr =2p corresponds to the origin=0=v, and the lines
==u are reached in the limit— *. Finally, the singularity at =0 corresponds to the hyper-
bolav2—u?=1,v>0.
In Kruskal coordinatesy(,u, ¥, ¢), the Schwarzschild metric takes the form
ds?=f"2(dv?—du?)—r?(d9?+sir’ 9de?)
with

3 3
f*2=—2rp e

—ri2p

This metric is regular except at the singulanty— u®>=1; it can be extended to the entire region
v2—u?<1.

Since the metric is regular at the origin, we can smoothly extend the Dirac operator across the
horizon. To do this, we simply view andu as the time and space variables, respectively. We
choose for the Dirac matrices

GU:f’yt, Gu:f’yr, Gf): ,yf}, ch:,)/(p'

A straightforward computation yields for the Dirac operator
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9 i [ , .
f|£+F(f((9ur)—1)—§an +iyPag+iyea,.
(1.14)

Ja i i
= fi— 4+ — - — r
G=v| fi 7 + ; f(d,r) zﬂvf)—Fy

The normalization integraldl.6) and(11.9) on the surfacé=0 correspond in Kruskal coordinates
to the integral(1.8) with

H={u=0,0sv<1}U{v=0u>0}.

We choose the normal as in Fig. 1. Using the current conservatidm®), one can continuously
deform the hypersurfack without changing the value of the normalization integral. In particular,
we can avoid integrating across the horizon by choosing the hypersdffaceig. 1. This is a
major advantage of Kruskal coordinates; it gives a physically reasonable positive normalization
integral even inside the event horizon. However, this method must be done with care when the
considered solution of the Dirac equation has singularities near the origin. Unfortunately, our
time-periodic solutions of the Dirac equation will, after transforming to Kruskal coordinates, in
general be highly singular at the origin. Therefore, the deformation of the hypersurface as in Fig.
1 would be problematic, and we will not use this method. In order to avoid any difficulties of the
normalization integral near the horizome shall only consider the normalization integral outside
and away from the event horizon

C. Transformation of the Dirac operator

We now consider how the Dirac operattit5) and(lI1.8) in polar coordinates transforms into
the Dirac operato(ll.14) in Kruskal coordinates. This transformation consists of transforming
both the space—time coordinates and the spinors. For clarity, we perform these transformations in
two separate steps. Under the transformation of the space—time coordinates, the partial derivatives
transform as

R S
At otaw atou ap\Yaw Vau)

! a+ J for r>2
Yau You) p:

9 _dwd oud 4pS°

ar I dv Ir du 1 d d ¢ <2'
- —+u— orr
4p\ Vo TYou) P

Substituting inta(1.5) and(11.8) gives for the Dirac operatoiG,,; andG;, in Kruskal coordinates

[ d i d
Gout=4/TS(U7t+v7'r)5+ 2,8 YHuy) o

+(i S 1)t o5 |ty iyt (11.15)
F(S=D+5S [y +iyToa iy o’ :
G—i(t+uf)a+i(ut+ )2
N 4pS CYTEY Mgy 4pS YUY G
lsela]po gt iyl (11.16)
r 2 YTEY T s Iy&qo' '

These Dirac operators do not coincide with14), and we must therefore perform a further
transformation; namely a transformation of the spinors. Under general coordinate transformations,
the wave functions transform according to
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W(x)—=U(X)¥(X); (11.17)
in the case considered hekg,is the time-dependent (44) matrix

t

U(t)=cosh 5 1+sinh

t
tor
8p>yy . (1.18)

Under this transformation, the Dirac operat@g,yi, transform as
Gouyin—UGuyinlU . (1.19)
This gives the Dirac operatgtl.14) in Kruskal coordinates,
G=UG U =UG;,,uY,

and this can be verified as follows: Under the transformatibh9), the Dirac matrices behave
like

G/(x)=UX)GI(x)U(x) ™

Using the form of the Dirac matrices iifi.15) and(l.16) and the explicit formuldll.18), a short
calculation shows that the Dirac matrices of the operattb®s, ;iU ! coincide with the Dirac
matricesfy!, fy", y?, andy® in (I1.14). According to(1.4), the Dirac operator in the gravitational
field is formed from the Dirac matrices and their covariant derivatives; it is thus completely
determined by the Dirac matrices. Therefore, the operatd®s,,i,\U ~* must coincide withG.
(One can also verify explicitly that the zeroth-order terms of the operat@s,,;,U ! andG are
equal. This is a longer computation, howey&ke conclude that the Dirac operatdsg,; and G,
can be identified with the Dirac operat@rin the regionO,Ul;={u+v>0p?—u2<1}.

We remark that it is not possible to map the interior of the horizon into the region

l,={v<O0Ju|<—v,v?2—u?<1}

and still match the Dirac operat@;, with G, because this would contradict the fact discussed in
the previous section that the Dirac operator distinguishes between black and white holes.

Finally, we note that the transformatigh.17) and(11.19) of the spinors can be viewed as a
local U (2, 2) gauge transformation; see Ref. 8.

D. Matching of the spinors on the horizon

We now come to the question of how the wave functions inside and outside the horizon are
related to each other. For this, we analyze the behavior of solutions of the Dirac equation at the
origin in Kruskal coordinates. After transforming back to polar coordinates, this will give match-
ing conditions for the wave functions on the event horizon. The physical situation which we have
in mind is a Dirac particle attracted by a Schwarzschild black hole. It suffices to do the matching
for static solutiongand not time-periodic solutiohssince in Sec. IV, we reduce the problem to
static solutions.

Let ¥ be a static wave function, i.e., in polar coordinates

P(t,r,9,0)=e W (r,9,0¢).

We assume tha¥ (r,9,¢) is a smooth function both inside and outside the horizon, i.e., in the
regionsr<2p andr>2p; this will be justified later by a separation of variables technique.
Furthermore, we assume thidt is a solution of the Dirac equation&(,—m)¥ =0 and Gy
—m)W¥ =0, respectively. According to the transformation rulgsl7) and(l1.18), the wave func-
tion W in Kruskal coordinates takes the form
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Y(u,v,9,0)=U(t)e "W (r,9,0¢), (11.20)

wherer andt are given implicitly in terms ofi andv by

r
(——1)er’2”=u2—v2, (11.21)
2p
% for r>2p,
tanh —)= (1.22)
p u
— for r<2p.
v

With this procedure¥ is only defined inO, Ul 4, the upper right half of the Kruskal domain. It
solves the Dirac equation

(G—m)¥=0 (11.23)

in the open se®,U1,. If ¥ is to be a physically reasonable solution of the Dirac equation, it must
be possible to extend it to the entire regioA—u?<1 between the two hyperbolas. If this
extended wave function was not zero in the regionv <0, our system would be connected to a
white hole or to another univerdéhrough a worm holg and the Dirac particle would have a
certain probability to be in these extensions of space—time. Since we are only interested in black
holes, this is not the situation we want to consider. Therefore, we demand that the extenBion of
must vanish identically in the half-planet+ v <0. We conclude that in Kruskal coordinates, we
must analyze a solutioW of the Dirac equatiorill.23) of the form

Ut)e ' (r,9,¢) for u+v>0u#v,

v, de)= 0 for u+v<0.

(11.24)

This wave function may be singular on the lines = v; in this case, must solve the Dirac
equation in a generalized weak sense.
For the calculation of the weak derivativesf we rewrite the wave function in the form

T=0(Uu+v)0(Uu—0)Vo+0(v+u)O(v—u)¥,,

Where\lfozllf‘o1 and ‘If,z‘I'“l are the components oF outside, resp. inside, the horiz¢®
denotes the Heaviside functidih(x) =1 for x=0 and©O (x) =0 otherwisg. SinceV satisfies the

Dirac equation inO,;Ul,, we need only consider the singular contributions on the lines
==*yp. A formal calculation gives

(11.14)
0=(G—-m)W¥ = fi(y'+9")d(u+v)(OU—v)¥Po+O(v—u)¥)) (11.25)

—fi(y' =y o(u—v)B(Uu+v)(Po—T)). (11.26)

If 5 and ¥, were smooth up to the boundary 6f;, resp.l;, this equation would be well
defined in the distributional sense. In general, howe¥ey,and ¥, might be singular in the limit
u—*v. In order to treat this general case, we multigliy25) and (11.26) with test functions
n(u,v) which, asu— *v, decay so fast that the integral over the resulting expression is well
defined. Since the matricesy'+y") and (y'—9") are linearly independent, we get the two
conditions

LGfé(u+v)(yt+ Y)Y OU—-0)Po+O(v—u)¥,)dudy =0, (11.27)
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JRznfé(u—v)(yt— YO (U+v)(Vo—V,) dudv=0. (11.28)

In (11.27), we compensate the possible divergenc&dfor u— —uv by choosingz in the region
0,Ul, to be of the formmolu,lz(1+|(yt+ Y ¥|) g with a smooth functiorg. Then the

integrand in(11.27) is of the formd&(u+wv) X g X (bounded functiopy and the integral makes sense.
Sinceg is arbitrary, we conclude that the integrand on the lime— v must vanish, which implies
that

lim (y'+9)¥(u,v,9,¢)=0. (11.29)

U——vu

In (11.28), we can proceed similarly; namely,\f is singular on the lin@i=v, we compensate the
divergence of the integrand iil.28) by choosingn to have an appropriately fast decay near the
line u=v. One must keep in mind, however, thatannot be chosen independentlydn andl ,
because the smoothness»bn the lineu=v may impose restrictions on. For example, if¥' 5
andV¥, have poles neau=v,

P (u,u+e,%,¢)=ci(u,d,¢0)e P+---,
To(u,v—e,%,¢)=Cy(U,d,@)e”" 4+, (£>0),
then we must choose in the form
n(u,u+te, ¥, @)=cy(u,d,@)e™PDt... (£>0 ore<0).

Thus the asymptotic behavior of nearu=v in O, andl; must be the same. In the integral
(11.28), this means that the leading order singularitied’gf and¥, may cancel each other for any
choice of 5. Therefore, the condition for the leading order singularity takes the form

(Y= Y)(P(u,ute,9,¢0)—¥(uu—s,9,0))
=o(1+|(y'— ")V (u,u+e,d,¢)|) ase—0. (11.30)

If the singularity of ¥ on the lineu=uv is worse than polynomial or of different form, there may
be no obstructions for the choice gfin O, andl,. In this case(11.30) will still be a necessary
condition. It will no longer be the strongest possible condition, but this is irrelevant for our
purposes. For simplicity, we will us@l.30) in the general case.

Next we evaluate the conditiord.29) and (11.30) for our wave function¥ (u,v,d,¢) in
(11.24). Using (11.18), we have inO;UI 4

(Y'+ Y)W (u,0,9,¢0)=(¥'+y)e®me W (r,9,¢),
(Y= Y)W (u,v,9,¢)=(y'—y)e Be W (r,9,¢).

The explicit formulag(l1.12) and(11.13) enable us to write the time exponential in termsuaind
v as

u+u +1/4

u—v

eit/8p —

Using the relatior(11.21) betweerr, u, andv, the condition(l.29) in polar coordinates takes the
form

lim (y'+ ") |e| Y (t,2p+&,9,¢)=0. (11.31)

e—0
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Similarly, condition(l1.30) can be written in polar coordinates as

(Y= el " (¥ (2p+e,9,0) -V (2p—¢,9,¢))
=o(1+|e|Y(y'— Y)WV (2p+e,9,0)|]) ass—0. (11.32)

In order to simplify this formula, we consider the decompositiontoin the form
|40 =37 (Y + D) M4 + (o' = ) e V). (11.33)

According to condition(11.31), the first summand in the bracket ({h.33) vanishes on the horizon
r=2p. Since the matrix/! is invertible, we conclude thak and (*— ") ¥ are of the same order
on the horizon. Thus we can take out the matricg5—(y") in (11.32) and finally obtain the

equivalent condition

| VAW (t,2p+e,3,0) =V (t,20—&,9,¢))=o(1+|e| VW (t,20+¢,0,¢))  (11.34)

ase—0. The relationg11.31) and(11.34) are ourmatching conditions

We briefly explain what these matching conditions mean, without being mathematically pre-
cise. First of all, we point out that the matrix'(+ y") in the first matching conditiofil.31) is not
invertible. Therefore(11.31) does not imply thats| YW (2p+¢,9,¢) goes to zero in the limit
£—0; in general, this limit need not even exist. Although the matching conditions have a quite
special form, they can be understood intuitively if one considers the Dirac current in polar coor-
dinates. We first look at the total normalization integialb)+(11.9):

W) (V)= [ T+ ywap— | Fywans [ wyvdn
By, B, R3B,,

The condition(l1.31) ensures that the integral of the first summand is small near the horizon.
Using the matching conditiofil.34), one sees that the integrals in the second and last summands
behave similarly near the horizon. Because of the opposite sign of the second and third summands,
this tends to make the normalization integral finite evei’ifs singular on the horizofif the

current had a pole, for example, one could define the normalization integral as a principal value
Thus our matching conditions “regularize” the normalization integral across the horizon. It is also
interesting to look at the current in radial direction. For this, we consider the normalization
integral through the hypersurfaéé,, (11.11). For the outer normai, this gives inside the horizon

(«If|qf)H2=—fH VyWdu (r<2p). (11.35)
2

Forr>2p, on the other hand, we get the expression

(V| W)y,= fH WAy dM:JH V(¥ + )W dM—fH VyWdu (r>p). (1.36)
2 2 2

According to(I1.31), the first integral in(11.36) is small near the horizon=2p. The matching
condition (11.34) gives that the second summand (ih36) behaves similar tqll.35) near the
horizon. Thus our matching conditions tend to make the normalization integral thraygdn
continuous function imy on the horizorr y=2p. Since the integrand of the normalization integral

has the interpretation as the “probability density” or “probability current,” this means physically
that a particle which disappears in the event horizon must reappear in the interior of the horizon.
This is in accordance with our physical assumption that there are no other universes or white holes
where the particle could disappear into or emerge from.
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Ill. SEPARATION OF THE ANGULAR AND TIME DEPENDENCE

We next study Dirac particles in the external Reissner—Nomtstrackground fieldél.1) and
(1.2). Since the external fields are spherically symmetric and time independent, we can separate
out the angular and time dependence of the wave functions via spherical harmonics and plane
waves, respectively. This is done in a manner similar to the central force problem in Minkowski
space(see e.g., Ref. 12

We start with a compilation of some formulas involving the angular momentum opd}ator
=—i(xxV) (see, e.g., Ref. 13Its square is

L2=—Ag=L L_+L2—L,=L_L,+L2+L,

with L..=L,*iL,. The spherical harmoniCélk, [=0,1,...k=—1,... |, are simultaneous eigen-
functions ofL2 andL,, namely,

L2YI=10+ DY, LY =Ky, (In.1)
They are orthonormal,
f Y Y|kf,: 811 8,
52

and form a basis of >(S?). The operatoré .. serve as “ladder operators,” in the sense that

LYY= I(I+1)—k(k+=1)YfL, (11.2)

In preparation for the four-component Dirac spinors, we consider two-component Pauli spinors. In
analogy to(11.2)—(1.4), we denote the “Pauli matrices in polar coordinates” &y o?, ando?;
ie.,

o'=03cosd+ alsind cose+ o?sind sing,
b 1 3 qj 1 2 H
o =F(—a' sind+ o cosY cosp+ o“ cosy sing),

1

O'(P:.—
r sind

(—otsing+o?cose).

We have
o' o' o'
9 O _ 2O Ta __ (=oNccT S _ VIR v AN _ =0
0"dyto¥d,=aV—o'd,= ; (aX)(aV—0a'9,)= ; (ré,+iag(XxXV)—rd,)= ; oL,
(1.3)
and thus
GL=—ra"(0%9y+0%3,). (111.4)

Forj=1/2,3/2,... anck=—],—j+1,...J, we introduce the two-spinors

kK _ jtk k12 1 + -k k172 O
Xj-12~ 2j 'i-12l0 T2j limvza)

kK _ j+1_kYk—1/2 1 _ /j+1+kYk+1/2 0
Xj+12= —2j+2 j+12\ o —2j+2 j+12\ 1 /-
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These spinors form an orthonormal basisL3{S?)2. They are eigenvectors of the operakor
=gL+1. More precisely(lll.1) and(l1l.2) imply that

) L,+1  L_ ’ A
KXj - 1= L, —L+1/Xi1e I+ 5 X2 (11.5)
KX}(+1/2:_(J'+%)X}(+1/2- (1.6)

Furthermore, multiplication withr" again gives an eigenvector &f namely,

(n.4)
k k
KO'er,l/Z = (—I’G‘r(O'ﬂ(?,g}-l—U‘D&‘P)-i-l)O'er,l/z

k k
=—0'x{ 110" (0?0 95+ %01 0,) X[ 12
k Sy Lk
:_‘Ter—1/2_‘Tr(U|—)Xj—1/2
k ; k
=—0'Kx{_1p=—(j D" X{ 112
Taking into account the normalization factors, we obtain the simple formula
k k
O'er71/2:Xj+1/2' (n.7)

Finally, we choose for the Dirac wave functions the two ansatz

—1/2 k +
v, me o> (-Xjk 2l o) (11.8)
ko r X+ 12Pjkea(r) )
—12( Kk -
Yo —eiot _Xigl’zq)ik‘"l(r)) (11.9)
ko rVix—12Pjkea(r))’

with the two-spinorsbfkw and®,, . A general solution of the Dirac equation can be written as

a linear combination of these wave functidtisis is because one can obtain every combination of
spherical harmonics in the four spinor compongnts

In the regions where thievariable is timelike, we choose the Dirac matrices again in the form
(I1.1), whereby the functiors is now given by

2p q2 1/2

S(r)=‘l—7+r—2 (111.10)

According to (1.4), the formula for the Dirac operator is obtained by inserting the Coulomb
potential into(ll.5),

i e +r'Sﬁ+i 1 iS’
sa s/ TYSgTrsThT3

At
C=vlsa s

a9
oG Y5 (1.11)

The identity(111.3) allows us to rewrite the angular derivatives of the Dirac operator in terms of
the operatoK. If we substitute the ansatill.8) and(111.9) into the Dirac equation and apply the
relations(I11.5)—(111.7), we obtain the two-component Dirac equations

0 1
10

2j+1
2r

d o 0 -1 1 /1 O o

R = = — p— o
Sdr ik 1 0 (w eqS)S_ 0 -1 m| Py, (1n.12)
In the regions where thiedirection is spacelike, we obtain the generalizatioflio8) for the Dirac
operator; namely,
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G id i e
“7lsa 1 s?

We again choose the ansdtid.8) and (l1.9). This gives the two-component Dirac equations

+iyPay+iyea,. (1N.13)

[
+y°(iSar+SF+§S’

d .
S——dj,=

2ji+1 (1 O
dr

——+
or o -1

—1) 1 .<o 1
1 o )@7ePgT |

)m}cbi*kw. (111.14)

IV. NONEXTREME REISSNER-NORDSTROM BACKGROUND

In this section, we consider the case p, so that the metric coefficie®(r), (I11.10), has two
zeros

ro=p—p?-d®> and r;=p+\p’—q>

These zeros are transversal(r;)#0; in addition, the potentiad(r) is regular atr =r;. Since

our matching conditiondll.31) and(11.34) for the Schwarzschild metric only depend on the local
behavior of the external field around the horizon, they are also valid for the Reissner—Nuardstro
horizons(for the inner horizon, we must reverse thdirection. We will show in this section that
these matching conditions do not admdrmalizable time-periodic solutions of the Dirac equa-
tion. More precisely, we will show that for evefpontrivial) solution of the Dirac equatiofi.4),

the normalization integral outside and away from the horizons,

(\If|llf)§0:=f3 Vs g3y, (IV.1)
R

2ry

is infinite for somet. Notice that for a normalized wave function, the integiid.1) gives the
probability that the particle lies outside the ball of radiug 2which must be smaller than one.
Thus, if (IV.1) is inifinite, the wave function cannot be normalized.

Suppose that we have a periodic solut{oB) of the Dirac equation with perio@. Expanding
the periodic functione'®W (t,r,9,¢) in a Fourier series gives the representatiorifofas the
Bloch wave

W(tr,9,p)=e' MY W(r,9,¢)e 2T, (IV.2)
neZ
Decomposing the function®, in the basiglll.8) and(111.9) and substituting intdlV.2) gives

\I'(t,r,19,<p)=n2 o (L 9,@), (IV.3)

J.ks
where the indexs= *, and wherew is related ton by

_o 2mn
w(n)— +?.

Using the orthonormality of the two-spinoﬁil,z, the normalization integral takes the form

(\WP);IJ 2 2 Wi Y VS A

R’3\BZ,1n’n' iks

The integrand has an oscillating time dependence of the formi@xf) — w(n’))t). In order to
eliminate the oscillations, we take the average over one peridd,(@jving
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1 (T
t —
?Jo (‘I’|‘I’)wdt—n§‘5( o ¥ Skw(n) -

For a normalizable wave functioW, this expression is finite. Since the scalar produtd{.is
(semijpositive definite, we conclude that all the summands must be finite; thus

(Vo ¥ ka(m) < (IV.4)
for all s==,j,k,n.

This inequality allows us to turn our attention to the individual wave functirs,. As a
first step we show that the wave functiods™ in the ansatz111.8) and(111.9) are not zero on the
horizon.

Lemma IV.1: The functiohbﬁ(w(r)|2 has finite boundary values on the horizon. If it is zero
on a horizon k=rgorr=rq, then(bjikw vanishes identically

Proof: For ease in notation, we omit the indicek, and w. For a givens, 0<6<rg, the
t-direction is timelike in the regions&rg) and (r1,%). In these regions, the Dirac equations
(1.12) give

sdqu —sdcbicbi c1>isd<1>i

a| |(r)_ a ) + 1&
2j+1
r

==

(|®T2=|P5|*) —4mRe((®1)* D3),
and thus
+ d + +
—c|<I>*|2$Sa|<I>*|2sc|<I>*|2

with c=2m-+(2j+1)/4. Dividing by |®*|? and integrating yields, fob<r<r'<r, orr,<r
<r’, the inequality

—cfr S‘lslog|d>i|2|{'scfr st (IV.5)
r r

In the regionry<r<r,, the Dirac equationélll.14) give similarly

Sd O|2(r)= quJi(I)i + CIDide)i =0
a| | (r)_ a ’ ’ a — Y,
since the square bracket {iil.14) is an anti-Hermitian matrix. Thugb=|? is constant in this
region, and, so(lV.5) also (trivially) holds forro<r<r'<r.

Notice thatS™ ! is integrable on the event horizons. Therefore, the inequéhty) implies
that the left- and right-sided boundary valueg ®f|? on the horizon are finite, and are nonzero
unless® = vanishes identically in the corresponding regiahre), (rq,r1), or (r,«).

Next we consider the matching conditi@ih34). If we substitute the ansat#dl.8) and(l11.9),
we get for®™* the conditions

CDt(rj-f-s)—(I)t(rj—s)=o(1+|<Dt(rj+s)|) at e—0,)=0,1.

Since we have already shown thét™(r)|? has two-sided limits as= ri, this last equality shows
that the left- and right-sided boundary valueg ®f"|? must coincide,

lim |®*(rj+e)[?= lim |®*(r;—¢)]?, j=0,1.

0<e—0 0<e—0
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We conclude that the wave function can only be zero on one of the horizons if it vanishes in the
whole interval(§, «). Taking the limit6—0 gives the result. |

We point out that this lemma does not imply that the wave funcfiois continuous on the
horizon. In generalp (r) will oscillate faster and faster asapproaches a horizon. Nevertheless,
its absolute valuéd| tends to a finite value in this limit.

The next step is to use current conservation for analyzing the decmfkgfn) at infinity.

Theorem IV.2 (radial flux argument): Either ¥, vanishes identically, or the normaliza-
tion condition (I1V.4) is violated

Proof: To simplify the notation, we again omit the indicgs, k andw. Assume thatV is not
identically zero. For;<r<R and T>0, let V=(0,T) X(B,g\B,;) be an annulus outside the
horizon. As a consequence of the current conservation, the flux integral over the boundasy of
zero, thus

0= fv+vj(\17ei\1fw@d4x
:detrZS(r)fz(q_fyf\lf)(t,r)—detRZS(R)fz(x?yfxp)(t,R)
0 S 0 S

2R _
- ds 528*1(3)[Z(Wyt‘P)(t,f)“ig’
S

2r

where [ denotes the integral over the angular variables. Since the integrand is static, the last
integral vanishes, and we obtain that the radial flux is independent of the radius,

st [ Ly -RSR [ (TR (V.6)

We want to show that the radial flux is not zero. For this, we first substitute the gH&&ty
and(111.9) into the right side of1V.6) and get

r28<r>f (v 'W><r>=f <I>*(r)< ° i)cb(r) (IV.7)
<? Y <? —-i 0 ' '

According to Lemma IV.1|®| has finite, nonzero boundary values on the horizpnExpressed
in ®, the matching conditiorill.31) gives

I (ll _‘1)@:0_

r<r—rq

Using this equation, we take the limit-r4 in (IV.7),

_ 1 i
lim rZS(r)LZ(\Ifyr\If)(r)= lim JSZ[CD*(_i 1)<I>—|<I>|2}

ry<r—ry ry<r—ry
= lim . -
rp<rorg 4 0 —-1/1i -1 [

=— lim f|c1>|2¢o,
82

r<r—rq

where we used Lemma IV.1 in the last inequality
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Now we consider the radial flux for large Since the flux is nonzero and independenRof
we have

0< lim |R?S(R) Lz(\Fyf\P)(R)L

R— o

Using the positivity of the form\I_fy‘\If and the fact that the Reissner—Nordstranetric is
asymptotically Minkowskian, we gdtising the Cauchy—Schwarz inequalithe estimate

0< lim |R25(R)Lz(x17yqu)(m|s lim |R2S(R) Sz(x?ytqf)(Rn

R— o0 R— o

= lim [R?S"Y(R) Jsz(@yt‘P)(R)l

R—x

We have shown that the integrand of our normalization integral

Wiy~ [ arRS R [ (FywR)

converges to a positive number. Thus the normalization integral must be infinite.
|

This theorem shows that the wave functioﬂ%w in the decompositior{lV.2) and (IV.3)
must all be identically zero. Thus there are no normalizable solutions of the Dirac equation; this
proves Theorem I.1.

Remark 1V.3:We point out that the radial flux argument is based only on our matching
conditions for the wave functions and on the Dirac current conservation. Therefore, it can imme-
diately be applied to more general static, spherically symmetric background fields. This generali-
zation may, for example, be relevant if the coupling of the gravitational and electric field to matter
or other force fields is taken into account. Although the exact formulas of the Reissner—Nurdstro
solution will then no longer be valid, the qualitative behavior of the fields on the horizons may still
be the same. To give an example of the possible generalizations, we state the following theorem,
which can be proved with very similar methodset g; be a static, radially symmetric back-
ground metric,

- 1 1
—a.dxdy = 2_ T 42 20492 o 2
ds? g”dXdX ?Zmdt A(r)dr re(dd +3|n21‘}d<p ),
whereby the metric coefficient() has N zeros at #r4,..., r\,0<r <---<ry. Assume the

following conditions hold:
(1) The zeros of A are all transversal,

A'(rj)# for j=1,..N.
(2) The determinant of the metric is regular except at the origin,
T 2(r)A Y(r)e C*(0).
Furthermore, assume there is a spherically symmetric electric #¢rJ which is regular except

at the origin, ¢ € C*(0,). Then there are no normalizable, time-periodic solutions of the Dirac
equation with these background fields
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V. EXTREME REISSNER-NORDSTROM BACKGROUND

We now consider the case=p of an extreme Reissner—Nordstidbackground field, i.e.,

The metric coefficienS now has only one zero at= p; thet-direction is timelike both inside and

outside the horizon. This situation can be thought of as the limiting case that the two harjzons

andr, considered in the previous section come arbitrarily close. Unfortunately, the arguments for

the nonexistence proof do not carry over in this limit, so we must rely on a different method.
Since the-direction is always timelike, thecomponent of the currenk G'¥ is positive and

has the usual interpretation as probability density. Therefore, the normalization integral

(\1f|11f)‘=f Y yWs td3x
R

causes no conceptual difficulties.
Suppose that we had a normalizable, periodic solufié) of the Dirac equation with period
T. Again, using the representation as the Bloch wdve?) and averaging over one period gives

1 (T
0>2 JO VA= S, (Pl Vi)

Substituting the ansatll.8) and(111.9) yields
(T t ” -2 S 2
ffo (V| ¥)tdt= fo drs (r)n’jE’k’s D%l
Using the positivity of the summands, we obtain the conditions
J dr S‘Z(r)|d>jskw(n)|2<oo (V.1
0

for all s, j, k, andn.

We will now study the individual function@fkw for r>p. To simplify the notation, we again
omit the indiceg, k, andw. Our first task is to consider under which conditions on the parameters
o, J, andm the normalization integralV.1) can be finite near=p. We first discuss the situation
qualitatively: SinceS™2(r)=r?/(r —p)? has a nonintegrable singularity on the horizon, the nor-
malization integral will only be finite if®° becomes small near=p. For generic parameter
values, the dominant term in the Dirac equat{tih12) nearr =p is the first summand, i.e.,

. w—eqS(O -1

~~s |1 o/¥

d

dr
Since, in this limiting case, the eigenvalues of the matrix on the right are purely imaginary, the
Dirac equation describes fast oscillations of the wave function. The eigenvalues of the second and
third summands ir{lll.12) are real; they describe an exponential increase or decdy. dff the
oscillating term is dominant, we expect thdt will not go to zero in the limitr—p. In the
following lemma, these ideas are made mathematically precise in a slightly more general setting.

Lemma V.1: Letb(x), x>0, be a nontrivial solution of the ODE

1 0 01
0 —1)+C(X)<1 o)

d'(x)=|a(x) -

+b(x) d(x) (V.2)

1 0
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with smooth, real functions,a,ce C*(0,) and a# 0. If, near the origin, the quotients/a and
c/a are monotone and

b(x)%+ c(x)2<a(x)?, (V.3)
then|®|?(x) is bounded from above and from below near

0< lim inf|®(x)[?< lim sup|®(x)|?<e.
0<x—0 0<x—0

Proof: Let (0,¢) be an interval where the functiobsa andc/a are monotone and whe(¥.3)
holds. Assume thab is a nontrivial solution ofV.2). According to the uniqueness theorem for
the solutions of ODEsP(x) is nonzero for all B<x<<ec. Now consider the functional

l1+b/la —cla
—c/la 1-bl/a

F(x)=(D(x),A(x)®P(x)) with A(x)=

According to(V.3), the matrixA is close to the identity; i.e., there is a constartl with
[I-A(x)|<c for all x with 0<x<e.

Thus the functionaF is uniformly bounded irff®|2 on (0, ¢),
1
6|‘1>(X)|2<F(X)$C|‘I>(X)|2 (V.4)

for someC>0. Using the special form ok and of the differential equatiofV.2), the derivative
of F takes the simple form

F'(X)=(D' AD)+(D AD')+(D A’ ®)=(D A’ D). (V.5)

The sup-norm of the matrid’ is bounded by

! !

C

a

+ (V.6)

e

Putting togetherV.4)—(V.6), we get the bounds

! ! ! !

b

a

b
a

+

F(x)sF’(x)sC( )F(x).
Now we divide byF(x) and integrate. Sincb/a andc/a are monotone, we can just integrate
inside the absolute values,

y
<logF|}<C
X

b y

c b
+
a |a

a

C

a

—Cl|=z+|z + V.7)

X

Since the extreme left and right sides of this inequality converge in the}imi0, we conclude

that logF(x) is bounded from above and below near the origin. After exponentiating and substi-

tuting (V.4), the result follows. [ |
Applied to (111.12), this lemma says thdd=(r)|? is bounded away from zero nearp

unless

w—ed(p)=0. (V.8)

Thus we can turn our attention to this special case.
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If we substitute the conditiofv.8) into (111.12), the Dirac equation simplifies to
0 -1 1 0
e+
1 0 0 -1
We want to study how the solutions of this equation behave for smap>0. For this, we
rewrite the equation in the new variable

2j+1
2r

Pl o=
rlar ® 0=

0 1 .
1 O)m}(b . (V.9

u(ry=—r—pin(r—p),

0 -1
1 o er
The region near = p corresponds to large valueswfThe matrix in the bracket ifV.10) depends
smoothly onu and converges in the limit— o to a finite limit, in view of the definition ofi given
above. According to the stable manifold theoréRef. 14, Thm. 4.}, the solutions of(V.10)

which are not bounded away from zero for latgéend exponentially to zero. After transforming
back to the variable, this justifies the power ansatz

which gives

1 0
0 -1

d . 2 +1

du +

o= (V.10)

01
1 o/™

Dr(N)=dir—p)>+ol(r—p)%, @;(r)=yr—p)>+o((r—p)° (V.11)

with constantsb,, ®,,and a parametes™0. Substituting intqV.9) yields the system of linear
equations

(57 (j+2)P1p=—p(m+e)D3, (V.12)
(s=(j+3)P3=—p(m—e) Dy, (V.13)

which can be solved fo;, and @,. In this way, we have found a consistent ansatz for the
spinors near =p. However, the corresponding solutions of the Dirac equation are all not nor-
malizable, as the following theorem shows.

Theorem V.2: Every nontrivial solution®=(r), r>p, of the Dirac equation (V.9) with the
boundary conditions (V.11) violates the normalization condition (V.1)

Proof: Let ®* be a nontrivial solution of the Dirac equation. Since the Dirac equation has real
coefficients, we can assume thht are real. In the new variable=r 1, the Dirac equation

(V.9) takes the form
1 0} mfo 1] .
+— =,
0 -1/ u?l1 o

If e>m, Lemma V.1 yields that®*(u)|? is bounded from above and below nega#0. Thus
|®*(r)|? does not decay at infinity, and the normalization integ¥all) will diverge. We con-
clude that we must only consider the casee.

In the casem=e, the systemV.12) and (V.13) yields that eitherd, or ®,, is zero. Fur-
thermore, the Dirac equatigiv.9) shows that eithe; or @, vanishes identically. Sinc@ *(r)
has no zeros for finite (otherwise, the uniqueness of the solution yields tibat vanishes
identically), we can assume that the vectbr(r) will lie in the fourth quadrant,

d .

e(o —1)_2]+1

®=(r)e{(x,y)|x=0y=<0} (V.14)

for all r.
Next we want to show thglv.14) also holds in the cas@>e. In this case, froni{V.12) and
(V.13), we can assume thétfo is positive, wherea§>§0 is negative. ThugV.14) holds for small
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™

N—|— S/
N~ /] /gl
/ool v L
e U N NN
P e UL NN
e N O\
e U N N

FIG. 2. Flow of®* for larger, schematic.

r—p>0. In order to show that the fourth quadrant is an invariant regiomdfér first notice that
®*(r) cannot become zero for a finite valuerofThus, if®*(r) leaves the quadrant for somg
we have either

dE(N=0, (OI)'(r)=0, and d3(r)<0
or
®(r)>0, ®,(r)=0, and (®,)'(r)=0.

However, the Dirac equation gives in the first case tlbi)'>0 and in the second case that
(®,)'(r)<0, which is a contradiction.

We conclude tha® = (r) lies for allr in the fourth quadrant. Figure 2 shows the flow of Eq.
(V.9) for larger. From this one sees immediately that the origin is repelling, so/@at? will be
bounded away from zero for large |

It follows that our periodic solutiol must vanish identically outside the horizon. This
proves Theorem |.2.

We point out that in contrast to the situation in Sec. IV, we do not make any statement on the
behavior of the wave function far<p. Indeed, it appears that the extreme Reissner—Nordstro
background does admit periodic solutions ifet p; these can be constructed by taking the bound-
ary conditions(V.11) on the horizon and solving the Dirac equation backwards in
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APPENDIX: JUSTIFICATION OF TIME PERIODICITY INSIDE THE HORIZON

Throughout this paper, we have considered a Dirac wave fun@ti®nwhich is time periodic
both inside and outside the event horizon. Since an outside observer has no knowledge about the
physical situation in the interior of the event horizon, the assumption of time periodicity inside the
horizon might not seem physically reasonable. In this short appendix, we clarify why time peri-
odicity inside the horizon is natural to assume. Namely, we show that every solafign, ¥, ¢)
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of the Dirac equation which is time periodic outside the event horizon(kx@ally uniformly)
bounded irt, gives rise to a solutio¥ of the Dirac equation, which coincides with outside the
horizon and is also time periodic inside. Using this argument, the results of this paper could be
immediately generalized to Dirac wave functions which are only time periodic outside the event
horizon.

Let W(t,r,9,¢) be a solution of the Dirac equation which is time periodic outside the event
horizon,

Y(t+T,r,9,¢)=e YW (t,r,9,¢) for r>ry, (A1)
and locally uniformly bounded it
|W(t,r,d,¢)|<F(r) with FeCo(0rq)U(rg,ry)) (A2)

(ro andr, again denote the Cauchy and event horizons, respectivdly consider foN=1 the
functions

N

2N+1n:E_N V(t+nT,r,d,0).

~ 1
“I,N(t!riﬁa(P):

Since our Dirac operator is static, the functiolig satisfy the Dirac equation. Time-periodicity
(A1) implies that¥ and¥ coincide outside the event horizon. Inside the event horizon, one can
use the boundA2) to show that theé¥, form a Cauchy sequence. Thus we can take the limit

N—o; we set¥=limy_.. ¥,. Again using(A2), we conclude that the functiol is time
periodic,

~ ~ 1
Y(t+T,r,d,¢)—W(t,r,d,¢)= lim m(‘l’(t+(N+l)T,r,ﬁ,go)—‘I’(t—NT,r,l‘},gD))ZO,
N— o

and satisfies the Dirac equation,

(G-m)¥ = lim (G—m)¥y=0.

N— o0
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