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A layer stripping procedure for solving three-dimensional Schrodinger equation inverse
scattering problems is developed. This procedure operates by recursively reconstructing the
Radon transform of the potential from the jump in the Radon transform of the scattered field
at the wave front. This reconstructed potential is then used to propagate the wave front and
scattered field differentially further into the support of the potential. The connections between
this differential procedure and integral equation procedures are then illustrated by the
derivations of two well known exact integral equation procedures using the Radon transform
and a generalized Radon transform. These procedures, as well as the layer stripping procedure,
are then reduced to the familiar Born approximation result for this problem by neglecting
multiple scattering events. This illustrates the central role of the Radon transform in both

exact and approximate inversion procedures.

|. INTRODUCTION

The inverse scattering problem for the Schrddinger
equation in three dimensions with a time-independent, local,
nonspherically symmetric potential has a wide variety of ap-
plications. In particular, the inverse seismic problem of re-
constructing the density and wave speed of an inhomogen-
eous isotropic acoustic medium from surface measurements
of the medium response to an excitation can be formulated as
a Schrddinger equation inverse scattering problem, as was
done by Coen et al.! Other applications include quantum
mechanical particle scattering problems, in which particles
are treated as wave functions,” and the propagation of elec-
tromagnetic waves in the ionosphere.?

There are several methods available for solving the in-
verse scattering problem. The most important of the exact
methods are generalized Gel’fand-Levitan and Marchenko
integral equation procedures of Newton,* and the coupled
integral equation procedure of Moses.” Newton’s Mar-
chenko integral equation procedure has been applied to an
inverse seismic problem in (Ref. 1). Moses® gave the first
exact (in principle) solution to the inverse scattering prob-
lem, but Moses’s procedure cannot be implemented in closed
form. Other exact methods have been given in Refs. 6-12;
this paper focuses on the exact procedures given in Refs. 4
and 5.

An alternative approach is to use the first Born approxi-
mation, in which the wave field inside the support of the
potential is approximated by the incident field being used to
probe the potential. This approach has been applied to the
variable-velocity wave equation by Cohen and Bleistein, '?
Devaney,'* and others.

All of these methods have shortcomings. Newton’s inte-
gral equation procedure requires that the scattering ampli-
tude (the far-field response ) be measured for all incident and
outgoing directions and all frequencies. This makes it
unsuitable for inverse seismic problems, for which data are
only available in the near field and in backscattered direc-
tions. Furthermore, the complete specification of the scat-
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tering amplitude results in an overdetermined problem, so
that a slight corruption of the data may result in an inadmis-
sible scattering amplitude. Moses’s coupled integral equa-
tions cannot be solved in closed form; power series expan-
sions are required for various quantities, and as a result a
considerable amount of computation is required to deter-
mine each higher-order correction term. The Born approxi-
mation methods, although requiring less computation, em-
ploy a single scattering approximation, and thus are only
valid for problems with weakly scattering potentials.

A completely different approach to solving the Schro-
dinger equation inverse scattering problem is layer stripping.
Layer stripping is a differential procedure, in contrast to the
above integral equation procedures. A layer stripping algo-
rithm works by recursively reconstructing the potential as
the probing wave penetrates it. By employing causality and
the inherent structure of an inverse scattering problem, a
layer stripping algorithm requires much less computation
than the integral equation procedures of Newton and Moses.
It also requires only near-field, backscattered data, making it
ideal for applications to inverse seismic problems, and avoid-
ing the overdetermined problem to which Newton’s proce-
dure is applicable. A layer stripping algorithm has been pro-
posed in Yagle and Levy'®; however, this algorithm is
numerically untested.

The objectives of this paper are twofold: (1) to present a
new layer stripping algorithm for solving the Schrodinger
equation inverse scattering problem; and (2) to present an
approach, based on the Radon transform, for interpreting all
of the various methods mentioned above for solving the in-
verse scattering problem. We thus show, for the first time,
how the integral-equation methods of Newton and Moses,
the Born approximation approach, and the layer stripping
method presented in this paper are all related to each other.
In this way, the common basis of all of these seemingly unre-
lated approaches is exposed, resulting in new insight into
their operation.

The paper is organized as follows. The Radon transform
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is quickly reviewed in Sec. II, including a generalized Radon
transform noted in Rose et al.” The basic Schrodinger equa-
tion inverse scattering problem that is the subject of this
paper is set up in Sec. III, and the basic integral equation
procedures of Newton and Moses for solving this problem
are specified. In Sec. IV a new layer stripping procedure for
solving this problem is presented and discussed. In Sec. V the
same basic equations used in deriving the layer stripping al-
gorithm are used to derive the integral equation procedures
of Newton and Moses. This illustrates that all three proce-
dures have a common basis. The basic Born approximation
result is also derived from all three procedures by neglecting
multiple scattering events. Finally, Sec. VI concludes by
summarizing the results of the paper and noting directions in
which further research is needed.

Il. THE RADON TRANSFORM

The Radon transform of a function in three-dimensional
space is the integral of the function over a plane. It is thus a
slice or sample of the function. Specifically, the Radon trans-
form Z{ f(x)} of a function f(x) is given by

A{f(x)} =f(r,e) = ff(x)a(f—e-x)dx. (2.1)

Given the projections }('r,e) for all 7~ and all angles e, the
function f(x) may be recovered by the inverse Radon trans-
form

Sx)

A f(r,e)}

2 A
= — (87%)! —a—f(r=e-x,e)d2e, 2.2)

s2 977
where S 2 is the unit sphere in R . This result is originally due
to Radon'$; a good treatment is Deans."’

Following Rose et al.,’ a generalized Radon transform
can be defined from the fact that the solutions of the Schro-
dinger equation in the absence of bound states form a com-
plete set. If u(x,k,e) is a solution of the Schrédinger equa-
tion, where e is the direction of initial probing, and f(x) is
square integrable, then we may write

f(x) = (27)73 fw f u(x,k,e)
0 s

x f w*(yke) f (y)dy d ek dk, (2.3)

and if u(x,k,e) is extended to negative k by u(x, — k,e)
= u*(x,k,e) then an inverse Fourier transform from k to ¢

u(x,te) = F Hu(x,ke)} = _Zl_f u(x,k,e)e™ dk
T J—

2.4)
results in

f(x) = —(8#2)—'f°° ffu(x,t,e)
— o JS?

2
X g’t—z u(t,e,y)f(y)dydZed:,

which can be written as the pair of equations

(2.5)
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fite) = 9{f(x)} = fu(y,t,e)f(y)dy, (2.6a)

f(x) = 9~ { fir,e)}

o 2

=—sﬂ2~1f f ., a—“,d’-
(87°) . szu(xte)atzf(te) e dt,
(2.6b)

which is the generalized Radon transform pair.

In the particular case where u(x,z,e) is chosen to be the
impulse §(¢ — e * x), then it is clear that the generalized Ra-
don transform pair (2.6) reduces to the standard Radon
transform pair (2.1) and (2.2). This explains why (2.6) is
termed a generalized Radon transform.

lll. THE INVERSE SCATTERING PROBLEM

The inverse scattering problem considered in this paper
is as follows. The wave field u(x,k) satisfies the Schrodinger
equation

(A + k2 — V(x)) u(x,k) =0, (3.1)

where the potential ¥(x) is real-valued, smooth, and has
compact support. It is also assumed that ¥(x) does not in-
duce bound states; a sufficient condition for this is for V(x)
to be non-negative.

Scattering solutions of (3.1) are given by the Lippman—
Schwinger equation

u(x,k,e;) =g kex _ f (4r|x —y|) !

Xe~ * =YY (y)u(y,k.e,)dy, (3.2)

where the incident field is an impulsive plane wave propagat-
ing in the direction of the unit vector e,. Letting x = |x]e,
and taking |x|— oo we have, in the far field,

u(x,ke;) = PN P *Ix/4qr|x])

XA(ke,e) + O(|x| ), (3.3)

where

Alke,e,) = — fe”“*’V(y)u(y,k,e.ady (3.4)

is the scattering amplitude for incident direction e; and scat-
tered direction e;.

An inverse Fourier transform of (3.1) yields the plasma
wave equation

az
(A —_—_— V(x)) u(x,t) =0. (3.5)

ar?
This equation models the propagation of electromagnetic
waves in the ionosphere.®> An inverse Fourier transform of
(3.3) results in

u(x,te) =8(t —e; - x) + (4rjx|) ™"
XR(t—e, *x,e..€;) +O(x]"%), (3.6)

where R(te.e;) is the inverse Fourier transform of
A(k,e;,e;). Since R (-) represents the time response in the far
field to the probing impulse 5(z — e, « x), it is termed the
impulse response.

Exact solutions to this inverse scattering problem have
been given by Newton* and Moses® (and others as well).
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Both of these methods involve the solution of integral equa-
tions. Newton’s method is to solve the Marchenko integral
equation

us(x,t,e,-)=f f M(t+ 1e,e)u, (x,7, —e,)
S§2J —ex

Xdrd?’e, + J M(t—e, - x,e,e)d %,
s (3.7)
for the scattered field u, (x,2,e;), which is defined by
(3.8)

In (3.7) the quantity M(t,e,,e, ) is obtained from the scatter-
ing data using

u(x,t,e;) =6(t—e; *x) +u,(x1e;).

)
872 Ot
Finally, the potential ¥(x) is recovered from the scattered
field using the miracle equation*

M(te,.e) = — R(te,,e;). (3.9)

(3.10)

Note the redundancy in this equation. Newton* notes that
the right side of this equation characterizes admissible scat-
tering amplitudes: only a subset of all possible 4(%,e,.e;)
(five independent variables) can result from all possible
V(x) (three independent variables). Thus the inverse scat-
tering problem solved by this method is overdetermined;
clearly there is a great amount of unnecessary computation
to reconstruct V(x). In addition, the use of far-field data and
transmission data makes this procedure unsuitable for solv-
ing inverse seismic problems, as noted in (Ref. 1).

Moses’s method is to solve the coupled set of integral
equations:

Vix) = —2e; - Vu,(x,t=¢; *x,¢;).

TK) = V(KK + J V(kk")

Xy(k'? —k")T(k" X )dk", 3.11)
W(k) = b(k) + JT( — KK (1) (k= k2)
+1(—R)yk?—k®)IT*(kk)dKk, (3.12)
Vkk') = W((k' —k)/2), (3.13)
where b(k) is the backscattering amplitude
b(k) = b(k’e) =A(k, - eye), k>03 (3-14)

1(k) is the Heaviside or unit step function, and y(k) is de-
fined by

y(k) = —imb(k) + P/k = lim (1/k +ie), (3.15)
o]

€ +
which is the Fourier transform of 1(¢) (P denotes the
Cauchy principal value). The potential ¥(x) is recovered
from W(k) using the inverse Fourier transform

V(x) = (217)‘3f W(k)e > dk. (3.16)
Note that Moses’s method is not overdetermined, since only
the backscattering amplitude b(k), not the entire scattering
amplitude A4 (k,e,,e;), is used to reconstruct the potential
V(x). However, the coupled integral equations cannot be
solved in closed form. Moses® employs power series expan-
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sions for T(k,k'), V(k,k'), and W(k); clearly an easier pro-
cedure for solving this problem is desirable. However, Mo-
ses’s approach has been suggested for solving an inverse
seismic problem in (Ref. 18).

An alternative to these integral equation methods is a
differential or layer stripping approach. Such an approach
was used to derive a layer stripping algorithm in (Ref. 15). A
different layer stripping algorithm, employing the Radon
transform, is derived below.

IV. ALAYER STRIPPING SOLUTION TO THE INVERSE
SCATTERING PROBLEM

A layer stripping procedure recursively reconstructs the
potential as the probing wave penetrates it. It is thus a differ-
ential procedure, in contrast to the integral equation proce-
dures described above. By taking full advantage of the inher-
ent structure of the inverse scattering problem, and of time
causality, a layer stripping algorithm requires significantly
less computation to reconstruct a scattering potential than
the above methods. This is important in a three-dimensional
inverse problem, since the number of points to be recon-
structed in a discretized potential increases as the cube of the
number of discrete points in a single dimension.

The essence of a layer stripping procedure is to differen-
tially reconstruct the Radon transform of V(x) from the
jump in the scattered field at the wave front, and then use
this reconstructed slice of ¥ (x) to propagate the wave front
and scattered field differentially further. The jump in the
scattered field at the new location of the wave front yields
another slice of ¥(x), which can be used to propagate the
wave front and scattered field still further. This differential,
layer-by-layer reconstruction contrasts with the batch oper-
ation of the integral equation approach.

There are several advantages to using a layer stripping
technique. Only one direction of probing is required, and
only backscattered data in the near field is used. This makes
the procedure more applicable to inverse seismic problems
than the integral equation procedures, which require far-
field data and, in Newton’s* procedure, transmission data.
The procedure is in principle exact, since all multiple refiec-
tion, refraction, and diffraction effects are accounted for.
Approximation is inherent only in the discretization neces-
sary to implement the algorithm numerically, and data at all
frequencies are used. However, the applicability of this ap-
proach to problems with bound states is not clear at present.

The layer stripping concept has been used to obtain fast
algorithm solutions for the one-dimensional Schrodinger
equation inverse scattering problem by Corones et al.,'®
Symes,?® Bruckstein et al.,>! and Yagle and Levy.?* This ap-
proach has also been applied to various one-dimensional in-
verse seismic problems by Bube and Burridge,** and Yagle
and Levy.?*?% Similar approaches have been used by other
authors. Results of computer runs of these one-dimensional
problem algorithms have been encouraging (see Bube and
Burridge®® and Yagle?’). The numerical performance of the
multidimensional problem algorithms proposed in Yagle
and Levy'’ and this paper are unknown at present, but are
subjects of current research.

The layer stripping procedure given in this section
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differs from that of Ref. 15 in the use of the Radon trans-
form. To use this transform, we operate in the time domain.
Recall from Sec. III that an inverse Fourier transform of the
Schrodinger equation results in the plasma wave equation

(A - -‘ﬁ — V(x)) u(x,t) =0 4.1)
at?
and the scattered field u, (x,t,e; ) is defined by
u(x,te;) =86(t—e; ~x) +u,(x,2,e;). 4.2)
Taking the Radon transform of (4.1) results in
[g — ;9722] U(r,t,e) = Z{V(x)u(x,0)}, (4.3)

where U(7,t,e) is the Radon transform of u(x,,e; ), and the
parametric dependence on the direction of probing e; is no
longer listed. Equation (4.3) may be written as the coupled
first-order system

a a

(—a; + 5;) Ulrte) = Q(rte), (4.42)
a J

(_' - —) Q(rte) = Z{V(x)u(x,t)}. (4.4b)
ar or

The crucial step is to recognize that the scattered field
u,(x,t,e;) is causal: until the probing impulsive plane wave
8(t — e, - x) reaches x, the scattered field at x is zero. This
can be written explicitly as

u(x,z,e;) =6(t—e; *x) +u (xte)l(t—e *x).

(4.5)
Taking the Radon transform of (4.5) and considering only
e =e, gives
Ulnte=¢,)=6(t—7)+ U (r,t,e=¢;)1(t —7).
(4.6)

A mental picture of the Radon transform will make the
meaning of (4.6) clear: Since the Radon transform is being
taken over planes parallel to the probing impulsive plane
wave (e = e; ), it must be zero if ¢ is less than 7, since in this
case the plane lies entirely with the region that the probing
impulsive plane wave has not yet penetrated. From the form
of (4.4a) it may be seen that Q(7,t,e =e;) is also causal.
Specifically,

Q(rte=e) =0 (rte=¢)1(t—171). 4.7)

Inserting (4.5)-(4.7) into the coupled system (4.4) results

a a
(E_— + —5) U.(rte) =0, (rte), (4.8a)
(i - —‘Z) Q. (r,te) = Z{V(x)u,(x,t)}, (4.8b)
ar at
R{V(x)} = —2Q,(1,t =71,€), (4.8¢)

where equating the coefficients of §(¢ — ) in (4.4b) has
been used to obtain (4.8c), and e = e; throughout.
Equations (4.8) suggest a recursive procedure for recon-
structing V(x): Starting with known U, (7 = 0,t,e = ¢;) and
Q. (r=0,t, e =¢,;), propagate Egs. (4.8) recursively in in-
creasing 7, yielding Z{V(x)} recursively in 7. Once
A{V(x)} has been computed for all 7, and for a hemisphere
of angles of probing e;, then the inverse Radon transform
(2.2) can be used to compute V(x) [only a hemisphere of
incident directions is needed, since V (7, — e) = V( — r,e)].
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However, there is a complication: The right side of (4.8b)
seems to require that u, (x,#) and V(x) be computed recur-
sively as well. Since it is assumed in (4.8) thate = ¢,, there is
insufficient information to compute these quantities, since
the inverse Radon transform requires projection at all an-
gles, not just the angle of probing e;, and it also requires
knowledge for all positive 7.

The solution to this problem is to recognize that (4.8b)
requires not u, (x,z), but only Z#{V(x)u,(x,t)}. Writing
this out gives

1 g2
.@{V(x)us(x,t)} = — g; o ﬁ Uy (r,=e,*x,€;)
(92
X‘?_T% V(7'2=e2'x,e2)

X8(r —e; *x)dx d e, de,. (4.9)
Note that this quantity is only required for e = e; and for a
specific value of 7. The integrand is nonzero only for x such
thatr = ¢, * x, and U, (7,e) and V(r,e) are only required for
7, =¢,*x and 7, = e, * X. These three planes intersect in a
point unless at least two of them coincide; virtually all of the
contribution to the integral occurs when all three planes co-
incide (this point is made and discussed in Ref. 28). Fortu-
nately, those values of U, (7,e) that make this contribution
are precisely those available at each recursion: U, (7 = ¢; * X,
e =e;). Similar comments hold for V(x); however, since
V(x) is independent of the direction of probing e,, it can be
completely reconstructed using the inverse Radon trans-
form (2.2) once the algorithm is complete. The second par-
tial derivatives required in the inverse Radon transforms can
be implemented numerically.

The procedure is initialized as follows. Assume without
loss of generality that the support of ¥(x) is contained inside
a sphere of radius R, and that the backscattered field
ug (x,te;) is measured on the plane R = — e; * x. Thenitis
possible to compute U, (7 = — R,t,e;), and from this com-
pute Q. (7 = R,t,e;), and then propagate the algorithm in
increasing 7 from — R to R. Since the support of V(x) lies
inside a sphere of radius R, Z{V(x)} is zero for 7>R.

The layer stripping procedure can be summarized as
follows. (1) Initialize the procedure by computing

U(r= —Rte)=R{u,(r= —Rte=¢)}

(4.10)
from measurements of the backscattered field on the plane
— R = ¢, * x, which by hypothesis lies outside the support
of V(x). Compute Q. (r= —R,ze;)fromR, (7=
— R,t,e;) using (4.8a) above.

(2) Recursively compute U, (-} and @, (-) in 7 using
(4.8) above, for each e;, yielding Z{¥V(x)} on the plane
t=r1=ne¢, »x from (4.8c) at each recursion. This is used
along with U, (-) in (4.9) to compute the right-hand side of
(4.8b). The recursion in 7 runs from — R to R.

(3) After the recursion is complete, an inverse Radon
transform may be used to reconstruct ¥(x), since its support
lies inside a sphere of radius R.

Some comments are in order here. First, note that the
recursive, layer-by-layer (in 7) reconstruction of V(x)
sharply contrasts with the batch reconstructions of the inte-
gral equation procedures. Newton’s* procedure first recon-
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structs the scattered field for a/l angles of probing all at once
[note the couplingin ¢; in (3.7) ]. Computationally, this is a
tremendous undertaking. The layer stripping procedure de-
couples the computations for different angles of probing, so
that they can be run concurrently on an array processor, and
results from different angles are combined only in (2.2).

Second, note that the simpler form of the layer stripping
algorithm is a result of the exploitation of causality and the
structure of the inverse scattering problem. By examining
the jump in the scattered field at the wave front, which is
measured by the first nonzero value of the causal quantity
Q. (), we avoid problems with multiple scattering events,
which aids in recovering values of V(x). This structure is
manifested by the Hankel structure of the kernel of the Mar-
chenko integral equation (3.7); but this structure can be
exploited more directly by appealing to the physical nature
of the problem. The concept of exploiting the jump in the
scattered field at the wave front in order to determine the
potential has been noted in Morawetz,?® and is the basis of
the miracle equation of Newton® [ Eq. (3.10) above] and the
Sfundamental identity of Rose et al.® This is discussed in more
detail below.

Finally, note that the layer stripping algorithm uses only
near-field, backscattered data, unlike the integral equation
procedures. This makes it more suitable for solving inverse
seismic problems, since for these problems data are mea-
sured in the near field and transmission data are not avail-
able. In Yagle and Levy,'* a layer stripping algorithm is ap-
plied to an inverse seismic problem formulated in Coen et
al.' The issue of overdetermination arising in Newton’s pro-
cedure also does not arise in the present procedure since only
backscattered data are used.

V. INTEGRAL EQUATION METHODS AND THE RADON
TRANSFORM

In this section it is shown that the same basic equations
that led to the layer stripping procedure in Sec. IV also lead
to the integral equation procedures of Moses and Newton
described in Sec. II1. This shows that the layer stripping and
integral equation approaches are related to each other. Simi-
lar connections between layer stripping and integral equa-
tion approaches were demonstrated for the one-dimensional
inverse problem in Bruckstein ez al.?! It is also demonstrated
in this section that basic Born approximation results may be
derived easily from all three methods by employing a single
scattering approximation. The results of this section are not
intended to be rigorous derivations; they are heuristic deri-
vations that illustrate why the equations have the forms they
have. They are intended to aid in understanding and inter-
preting the various inverse problem solution procedures.

A. The integral equation procedure of Moses
In Moses,”> T(k',k) is defined as [Eq. (5.12) in Ref. 5]

Tk k) = Je‘“‘"‘V(x)u(x,k)dx, (5.1)

where k = ke;, so that u(x,k) =u(x,k,e;). Therefore,
T(K’,k) can be interpreted as a generalized scattering ampli-
tude [Eq. (5.1) reduces to the definition (3.4) of scattering
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amplitude if |k| = |k’|]. In addition, if we write k = |k|e;
=ke; and k' = |k'|e, = k ‘e, and extend k and k' to nega-
tive values by  writing k= (—k)(—e;) and
k'=(—k’)(—e,), then we may regard T(k’,k) as the
double Fourier transform of Z{V(x)u(x,t,e;)}:

Tk k) = FF{Z{V(x)u(x,te;)}}

JJ‘J. Vix)u(x,te)0(r —e, *x)

xe~ ke =T dx dt dr. (5.2)

Using this observation, taking the double Fourier transform
of the Radon transform (4.3) of the plasma wave equation
(4.1) gives

(kz_k,z)u(k”k) = T(klyk), (5'3)
which leads to
u, (k'k) =7/(k2—k’2)T(k',k), (5.4)

where y(-) is defined by (3.15). In Moses® (5.4) was derived
directly from the definition (3.4) of the scattering ampli-
tude, but this lends no insight into why (5.3) has the form it
does, whereas the present derivation shows that (5.3) is a
direct consequence of the application of the Radon trans-
form to the plasma wave equation. Multiplying the trivial
definition (4.2) of the scattered field u, (-) by V(x) and tak-
ing the double Fourier transform from ¢ to &k and x to
k' = k'e, (recall e, = x/|x|) results in

Tk k) =V(k' k) + J V(k . k")u, (k" k)dk"

= V(k'k) + J V(k' k")

Xy(k*—k"HT(k"k)dk", (5.5)
where V' (k' k) is defined by
Vk' k) = f V(x)e'k—Kx gx, (5.6)

and (5.4) has been used. Note that (5.5) is the same as
(3.11), the first of the coupled integral equations of Moses’s
procedure.

The other equations of Moses’s procedure may be de-
rived using the generalized Radon transform (2.6) and a
Fourier transform .# that takes time ¢ into k", where
k" = k "eand k " is extended to negative values as before. We
may write

V(ix)e ™ **
=(F )" (FI){V(x)e” **}

=(F )" {T&'k")}

=f J TR k") u*(x,k")k "> d%edk"
sz Jo

= f T(k' k" )u*(x,k")d k" (5.7)
and a Fourier transform taking x into k results in
V(k' k) = f Tk k" )u*(kk")dk". (5.8)
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Taking a double Fourier transform of (4.2), inserting into
(5.8), and setting k' = — k results in

Wk)=V(—-kk)=T(-kk)

+ J.T( — kK" )y (k" — k) T*kk")dk".
(5.9)

Using (3.14), T( — k,k) can be obtained from the back-
scattering amplitude 4 (k, — e,e) for k0. For k<0, replace
k with — k in (5.9). This equation, combined with (5.9),
gives (3.12), the second of Moses’s equations. The last of the
coupled integral equations (3.13) follows immediately from
the definition of W(k) in (5.9).

Thus it may be seen that the coupled integral equations
(3.11)~(3.13) of Moses® may be interpreted as merely var-
ious Fourier and Radon transforms of elementary equations
like (4.1) and (4.2). Note that at no point in the above deri-
vations was time causality used. Indeed, this solution proce-
dure does not exploit the structure of the inverse scattering
problem at all. This is why the layer stripping algorithm,
which does exploit this structure, is simpler.

B. The integral equation procedure of Newton

The generalized Radon transform may also be used to
derive Newton’s Marchenko integral equation (3.7). Let
u*(x,t,e;) be a solution of the Schrédinger equation (3.1)
with an outgoing radiation condition, and let u ™ (x,t,e;) bea
solution with an incoming radiation condition. By reversing
time we have that

u (xte)=ut(x,—t —e). (5.10)
Consider

G{ut(xte,) —u(x,te,)}

= Ju“(y,r,es)(u‘f(y,t,ei) —u(yte))dy. (511)

We show first that this quantity can only depend on the
time difference ¢ — 7. To do this, we apply a double Fourier
transform taking ¢ into k and 7 into k' to the right side of
(5.11). The result is shown to be the product of some func-
tion and §(k + k). Since

FHUF oSk +kN =ft—7),  (512)

this will demonstrate that the right side of (5.11) depends
only on the difference t — 7.

Proceeding as discussed above, the double Fourier
transform of (5.11) is

FAF(G{ut —u}}}

= f u= (k') ut(y.ke) —u"(yke))dy.
(5.13)

We know that 4™ (y,k.e;) and u~(y,k,e;) are related by
some scattering operator S by*

ut(yke)=u (yke;)Ss, (5.14)
where the application of the operator S has the form*

ut(y.ke)= f u~ (y,k,e)S(k.ee,)d%. (5.15)
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Note that only the existence of the operator S is being used
here; nothing need be known about it except that its inverse
operator S ~! also exists.Using (5.14) in (5.13) along with
the double Fourier transform of (5.10) results in

FAF(G{u* —u"}}}
= fu“(y,k ", —e )ut (vke )T —S " ")dy

=5(ke, +k'e,)(I—S"), (5.16)

where I is the identity operator and the last equality follows
from the completeness property of the solutions
u* (y,k.e;).%° Equation (5.16) has the form of the left side
of (5.12); hence (5.11) depends only on ¢ — 7. In point of
fact we have*

S —1I=(k/2m)A, (5.17)

where 4 is the scattering amplitude operator defined similar-
lyto (5.15), and Sis Hermitian. Although these facts are not
used here, they explain the use of ™ — %~ and the presence
of R(t,e,,e;) below.

Next, we evaluate (5.11) using this time invariance
property. Without loss of generality, we may let 7 and 7 ap-
proach infinity. Then the field in the vicinity of the scatterer
will have decayed to zero, and virtually all of the contribu-
tion to the integral (5.11) will be in the far field. The incom-
ing wave u~ (y,7,e,) is simply the probing plane wave
8(7 — e, +y), and the outgoing wave is given by (3.6). In-
serting these into (5.11), defining e, = y/|y|, and noting
thatdy = |y|> d |y| d%e, gives

g{u+(x)t1ei) - u——(x:tsei )}

R(t—ly|.e,.e)
= 5 p— . 3T 2 2
f (T—e,y) BT ly|*dlyld’e,

=l oG -ee)

XR{(t— IYI, y’ei)d W‘ dzey

- J; R(t—71—|y|e,.e)d |yl

The final equality in (5.18) is a result of letting 7,|y|— co:
the scattered field is significant only in the vicinity of the
wave front 7 = |y| (the speed of propagation is unity) so
that the only contribution to the integral occurs for
7/]y| = 1. Note that the upper limit at the end of (5.18)
results from the causality of R(-).

Taking an inverse generalized Radon transform of both
sides results in

ut(x,te) —u (x,1e;)

T
87/ Js2J - o T 9

t —

% R(t—7—|y|e,e)d|y| d,

(8]

LT e
872 S22 : at

XR(t—1.e,e)drd?%,, (5.19)

which is (4.16) in Ref. 9. Using (3.8) and (5.10) in (5.19),
and noting that u™ (x,,e, ) is zero for £<e; * x yields the Mar-

(5.18)
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chenko integral equation (3.7). Thus this integral equation
is essentially an inverse generalized Radon transform. This
interpretation of the Marchenko integral equation differs
greatly from the functional analysis derivation in Newton*
and Rose et al.,” and the representation theorem derivation
in Rose et al.>°

To recover the potential from the scattered field, we
simply insert (4.5), which expresses the causality of the scat-
tered field, into the plasma wave equation (4.1). Equating
the coefficient of §(¢ — e, * X) to zero gives the miracle equa-
tion (3.10), since (d/t)u,(x,t,e;) does not jump at the
wave front. In Rose et al.? (3.10) is called the fundamental
identity, and it is pointed out that this equation and the mira-
cle equation are identical. An inverse Radon transform of
(4.8¢c), from the layer stripping algorithm, also gives this
equation. In all three cases, this equation is used to recover
the potential from the jump in the scattered field at the wave
front. However, the methods used to recover the scattered
field itself differ widely.

Solving the Marchenko integral equation (3.7) is very
difficult, due to the coupling between the u, (x,t,e;) in e,—
it is necessary to solve for all of the scattered fields,
due to probings in all directions, in one huge batch
operation. The reason for this can be found by noting from
(5.2) that knowledge of the complete Radon transform of
V(x)u(x,te;) is equivalent to knowledge of the generalized
scattering amplitude 7'(k,k’). However, this quantity is
known only for |k| = |k'|, so that the scattering amplitude
for one direction of probing e; is not sufficient to reconstruct
the scattered field for that e;. It is necessary to utilize the
scattering amplitude for all e; to reconstruct the scattered
field for any e;.

C. The Born approximation

The (first) Born approximation is a single scattering ap-
proximation that greatly simplifies the solution to the in-
verse scattering problem. It consists of approximating the
total wave field u(x,?) inside the support of V(x) by the
probing impulse §(# —e; -x) alone—the scattered field
u, (x,t) is neglected. This amounts to neglecting all multiple
scattering events, an assumption that is reasonable for weak
potentials or large values of k. Applying this approximation
to the definition (3.4) of scattering amplitude and taking an
inverse Fourier transform from k to ¢ yields

f V(x)8(t — (e, —e;) - x)dx

=R{V(X) e c,_ep = — R2(Le,.8)), (5.20)
where R® (+) is the impulse response in the Born approxima-
tion. Thus the potential ¥(x) can be recovered by an inverse
Radon transform of the impulse response.

It is elucidating to note how the three exact methods
discussed in this paper all reduce to this result when a single
scattering approximation is imposed on each of them. This
illustrates where multiple scattering events are being ac-
counted for in each method, and thus further illuminates
their operation.
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D. Moses’s integral equation procedure

In Moses’s procedure the second term on the right side
of (3.12) accounts for multiple scattering events.To see this,
note that if this term is neglected (3.12) reduces to

W(k) = W(k,e;,) = JV(x)e—Zike,.x dx

= —b(ke)= —A5k,—e,e) (5.21)
and an inverse Fourier transform from k to ¢ (with k ex-
tended to negative values in the usual way) results in (5.20)
with e, = — e;. Note that this is sufficient information to
invert the Radon transform; backscattered data alone suf-
fices.

E. Newton'’s integral equation procedure
The Born approximation applied to Newton’s proce-
dure amounts to neglecting the first term in the Marchenko
integral equation (3.7). This leaves
1 d
— | —R®%(t—e, *xe,,e)d%,.
87 J dt (t=e Jd'e
(5.22)

Applying the miracle equation (3.10), which we write here
as

u(x,te)= —

V(x) = —2e *Vu,(x,t=¢; *x,€;)
+2-a—us(x,t=e,- *x,e;)
ot

(recall that the second term is zero) results in (5.23)

Vi 1 i
=53

XRE(t= (e, —e,)x,e,,e)le; — e, |’d e,
=R —RB(te,e, —e)} (5.24)

and a Radon transform of both sides results in (5.20).
F. Layer stripping procedure

In the layer stripping procedure the coupling in the sys-
tem of equations (4.8) accounts for multiple scattering
events. To see this, neglect this coupling, so that the algo-
rithm becomes simply (4.8c), backpropagated to the far
field as

RB{V(x)} = —2Q,(rt=r1,e)

= —20.(—Rt=2r+Re). (5.25)

Taking the Radon transform of (3.6) and utilizing the defin-
ition (4.8a) of Q. ( ) in terms of U, ( ) yields (5.20).
Vi. CONCLUSION

A layer stripping algorithm for solving Schridinger
equation inverse scattering problems has been proposed.
This algorithm is differential in nature, in contrast to the
other integral equation procedures discussed. By exploiting
the inherent structure of the inverse scattering problem
(time causality), this algorithm appears to require much less
computation time than the integral equation procedures,
which reconstruct the potential in one huge batch operation
without taking advantage of the structure of the problem. In
addition, this algorithm requires near-field, backscattered
data, making it more suitable for inverse seismic problems
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and other situations in which transmission data are not
available.

The proposed algorithm differs from that of Yagle and
Levy'® in its use of the Radon transform. While this makes
the reconstruction of ¥(x) more complicated, it also simpli-
fies the propagation of the scattered field, since the trans-
verse Laplacian required at each step of the algorithm in Ref.
15 is no longer required. Both algorithms are in principle
exact, with approximation inherent only in the discretiza-
tion needed to implement them. . '

A significant consequence of the use of the Radon trans-
form in this algorithm is that it made direct mathematical
comparison between the layer stripping and integral equa-
tion procedures possible, which was not the case in Ref. 15.
Indeed, the integral equation procedures of Newton and
Moses were derived heuristically using the Radon transform
and the generalized Radon transform. In addition, it was
shown how all three inversion procedures reduce to the Born
approximation when single scattering approximations are
made. This showed the important role these transforms play
in both exact and approximate procedures.

Considerable work remains to be done in making the
layer stripping procedure a practical method for solving in-
verse scattering problems. Their numerical performance on
synthetic data is a subject of current research. Other topics
on which research is needed include numerical performance
on noisy data, improved ways of implementing Eq. (4.9),
and investigation of the applicability of this procedure to
problems with bound states.
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