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Energy transfer from large to small eddies at three stations in turbulence behind a square mesh is
determined by measuring the rates of change and viscous dissipation of the spectrum and the results
are compared with a theoretical prediction. Large eddies for which viscous dissipation is negligible
satisfy a similarity relation which agrees with the fact that the total energy decays as some negative
power of time. Small eddies which are in approximate statistical equilibrium satisfy local similarity
according to Kolmogoroff. Various terms in the vorticity equation are also determined and the
quantities representative of small scale motion are universal constants when expressed in terms of

Kolmogoroff parameters.

INTRODUCTION

ET us consider a large volume of an incompres-

sible fluid which is homogeneously stirred and
then left to decay. Define an energy spectrum E
such that E dk is the average amount of kinetic
energy per unit mass of fluid with wavenumber
between k (= 2x/wavelength) and k + dk. The
total energy '

3+ ) = TEG, pdk, Q)

where an overbar denotes an average. The spectrum
will show a maximum at a wavenumber which is
approximately inversely proportional to the length
characterizing the stirrer. The equation governing E
is obtained by suitably averaging the equation of
motion’

(8/00)Ek, t) = Tk, t) — 2vK°E(k, 1). 2
rate of  rate of viscous
transfer dissipation

We have one equation and two unknowns. This
indetermination is due to the averaging process. It
is necessary to postulate a relation between the rate
of transfer 7' and the spectrum E before we can
solve for E(k, t) in terms of E(k, 0).

The validity of the postulate may be checked
by comparing the measured with the predicted spec-
trum. However, the measurement of energy transfer
is a more direct check on the validity of the theory
and brings out the essential features of the problem.
In many statistical problems it is not possible to
directly check the hypothesis used to complement
the averaged equations, only its consequences are
subject to experimental observation. For instance,

1 W. Heisenberg, Z. Phys. 124, 628 (1948).

in the kinetic theory of dense gas it is necessary to
assume a relation between the probability of col-
lision involving (n -+ 1) particles with that in-
volving n particles. It is rather difficult to check
this assumption, only the consequences are subject
to examination. In this respect we are somewhat
fortunate. The energy transfer has been determined
by measuring the rate of change of ¥ and adding
to it the rate of viscous loss. The results are discussed
in view of the current ideas on turbulence.

EXPERIMENTAL ARRANGEMENT AND TECHNIQUES

All measurements were made in 2 X 2-ft low
turbulence wind tunnel behind one inch square mesh
biplane grid made of %-in. round wooden dowels
at a mean speed U, = 51.5 ft/sec. The grid Reynolds
number U,M/v was 2.64 X 10* where M is the
grid mesh length. Without the grid WUE=2X10""
and v*/U? = 9 X 107° which are much smaller
than those produced by the grid to be of any conse-
quence. Measurements of fluctuating velocities were
made with a compensated constant current platinum
hot-wire annemometer which responds faithfully
from 2 to 2 X 10* cps. The wire had a diameter
of 107 in. and length of 16 X 1072 in. A straight
wire was used to measure % and an x wire to meas-
ure v.

Measurements of (x + /2 v) were made by
placing a single wire in the (z, ¥) plane inclined to the
mean flow which is in z direction. It is sensitive to
both u and ». Although various relations for the
hot-wire sensitivity to 4 and » have been suggested
they are notoriously inadequate for making precise
measurements. The response of the wire to u was
determined by sinusoidally oscillating the wire in the
z direction at 3 c¢ps and at various amplitudes. The
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response to v was determined by sinusoidally rotating
the wire about the z axis. The angle of rotation for
small values is equal to v/U. The inclination of the
wire to the mean motion is adjusted such that its
sensitivity to v is /2 times its sensitivity to » and
the output of the wire is therefore proportional to
w4+ V2.

This calibration procedure has another advantage.
Normally we calibrate the hot wire at constant
resistance and use it at constant current under the
assumption that the wire resistance is proportional
to its temperature. This assumption can introduce
considerable error if the wire temperature is high.

DECAY OF TOTAL ENERGY

The inverse of the measurements of /U, /U3,
and (u® -+ 20°)/3U} as a function of distance behind
the grid or /M, where M is the grid mesh, length,
are shown in Fig. 1. The ratio 4°/»* is also shown
there and has a nearly constant value of 1.45 in-
dicating that grid generated turbulence is not
strictly isotropic and there is no strong tendency
for it to become so further downstream. The quantity

W +2v/dx(u +2v>

as a function of z is shown in Fig. 2 and varies
approximately linear with z and has a slope of 1/1.2.
1t follows that

WAt W~ @ — )

~ @t =t)" t=2/U,, 6y
where z, is a constant.
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F1g. 1. Decay of turbulence behind the grid and the ratio u?/v*
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The function [U?/(u? + 26%)] [(dU¢*/dt)/(u? + 202)]
a8 determined from the decay of turbulence.

Fia. 2.

SPECTRUM OF TURBULENCE

The three-dimensional spectrum E which appears
in Eq. (2) cannot be measured directly. However,
it is possible to measure a one-dimensional spectrum
E,. In the case of isotropic turbulence, the two are
related by the equation

Ek, ) = —3k(0/0k)E (K, 1). 4

The one-dimensional spectrum of u* and »° are dif-
ferent but those of »* and w* are identical when
u, v, and w are given as functions of z. The function
E, is the spectrum’ of w2 + 2%, i.e
TR W ACF ®)
o

It gives the sum of the diagonal elements of the
spectral tensor and has the advantage that F can be
determined from E, by a single diﬂerentlation If
we had measured the spectrum of either u® or u°
then it would have been necessary to differentiate
the measured spectrum twice in order to get E.
Furthermore, by measuring the spectrum of the
total energy w* + 2°, we minimize the effect of
anisotropy of grid generated turbulence when E
is determined from E, since Eq. (4) is valid for
isotropie turbulence only.

In actual practice a straight hot-wire is placed
at a fixed distance behind the grid. The inclination
of the wire to mean motion is adjusted such that
its output is proportional to (u + /2 v). If we
assume that turbulence is essentially convected
downstream (¢ = z/U,) then u(f) + V2 o) =
u(@/Us) + V2 v(x/U,), ie., the measurement of
velocity fluctuations at one point gives the spatial
velocity fluctuations as a function of z. The output
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F16. 3. The spectra E,; at the three stations behind the grid.

of the hot wire is passed through a selective filter
of narrow pass band with variable center frequency
of 0 to 16 ke/sec. The mean-square output of the
selective filter was measured with a thermocouple
and an integrator. The result gives E, as a function
of frequency or wavenumber k(=2xU,/frequency).
The measured spectra at /M = 48, 72, and 110
are shown in Fig. 3.

The spectrum E was determined by measuring
the slopes of the above curves as functions of k,
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F1a. 4. Logarithmic slope of E.
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This method of determining E from E, is more
accurate than the direct differentiation since E,
varies by a factor of 10°. The function « can be
determined quite accurately and is a smoothly
varying function of k£ as shown in Fig. 4. The com-
puted I’s are shown in Fig. 5 and show a maxima
at k ~ 1/M. The value of E for k > 600 is too small
to show in the figure and may be determined by
using Eq. (7) and the data in Figs. 3 and 4. Due to
finite length of the hot wire, E, was corrected ac-
cording to the method given in reference 2. How-
ever, this correction was never more than 8%, of
the measured E,.

RATE OF CHANGE OF SPECTRUM

The rate of change of E is determined from that
of E; by using the relation

a_ ko @)
a 28k(6t ) ®)

The spectrum E, was measured as a function of z
for a fixed & and the slope

Bk, t) ="z " U.E ot &)

was measured. The process was repeated to get 8
as a function of k. The measured 8 for z/M = 48,
72, and 110 are shown in Fig. 6 and show that the
rate of change of F, increases with k. The slopes

vk, ) =0lnBE,/olnk (10)

2 M. 8. Uberoi and L. 8. G. Kovasznay, Princeton Uni-
versity, Project Squid, Rept. No. 30, (1952).
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Fia. 6. Relative decay (1/U.E;)Xd/dt) Ei of the spectral
components.

were measured for z/M = 48, 72, and 110 as func-
tions of ¥ and are shown in Fig. 7.
It follows from Eqgs. (4) and (10) that

0B /ot = —3Uwy(k, )8k, DE,. (D

The function 0E/d¢ thus determined for the three
stations is shown in Fig. 8 and show that its value
is insignificant for large k. The self-consistency of
measurement requires that

fum%t@-dk= —%-"f:'yﬁEldk

or

LGE+ ) = ~U, fo Y8Ey dk.  (12)
The measured values for the two sides of this equa-
tion are shown in Fig. 2 showing agreement within
a few percent.

ENERGY TRANSFER

The viscous dissipation of energy per unit wave-
number

—Wk’E = —Kok, (13)
can be determined from the available data and the
results are shown in Fig. 9. The energy transfer is

given by the relation
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Tk, t) = (8/00Ek, t) + 2K EE, 1), 149
Since the total transfer is zero
O o = -—2vf B dk
o 91 0
or
yﬁ o o & 2
vBE, dk = 2 Ei? dk. (15)
2 o 0

The measured values for the two sides of the equa-
tion are shown in Fig. 2. The right hand side is
smaller than the left hand by 139%, 49, and 139,
at /M = 48, 72, and 110, respectively. This may
be due to anisotropy of the grid generated turbulence
since Eq. (14) is valid for isotropic turbulence only.
At each station 8 was multiplied by a constant
factor so that Eq. (15) is satisfied. The plots of
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F1a. 12. Comparison of measured transfer with Heisenberg’s
prediction for z/M = 72.
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Fic. 9. Viscous dissipation of the
spectra.
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dE/dt in Fig. 8 are based on 8 thus adjusted. The
energy transfer determined from Eq. (14) using
measured rates of change of spectrum and viscous
decay are shown in Fig. 10.

THEORETICAL PREDICTIONS ABOUT ENERGY
TRANSFER

Various investigators have proposed hypotheses
relating 7' with ¥, none of which is accurate. Here
we compare the experimental results with Heisen-
berg’s theory which states that

T = 256{—Ek"’ fk w[E%;—t)]* dz — (%)i f "y dy}
(16)

where X is a universal constant. The measured E
was used to calculate T according to the above
equation and the results are compared with the
measurements in Figs. 11, 12, and 13. The universal
constant X can take a wide range of values depend-
ing on the region of & over which the prediction is
made to fit the observations. This is a major draw-
back of the theory.

T ot Hy=ti0

/ Heisenberg Transfer Function for K =0.2
-020H

F1a. 13. Comparison of measured transfer with Heisenberg’s
prediction for z/M = 110.



ENERGY TRANSFER IN

M "9',2/};:—”\ "
S O /E ok
8- AX [Ea N
- f’/’//
/I/I// #
ty
61— —f
1y
My = 48 -
P;’;;' Lk’eak —
4 . W
ald " / [Reax _
h
LIL 10 —
!
2k -
i i
R 1S Y Y T S
200 400 600 800 1000 1200 1400
kt

F1c. 14. Energy containing and energy dissipating eddies.

SIMILARITY OF LARGE EDDIES

The ratios

k* @ © ©
/ Edk/f Edk and fElczdk/f Bk dk
0 ’ 0 k* 0

as functions of k* are given in Fig. 14 and show
that it is possible to approximately divide the entire
motion into energy containing eddies with wave-
numbers from 0 to k* and dissipating eddies with
wavenumbers from k* to . The ratio of the rates
of change to the viscous dissipation of spectrum is
given in Fig. 15 and show that small eddies are
approximately in statistical equilibrium and for
large eddies

OE(k, v/at = Tk, t). (17)

This relation was first postulated by Kirmén and
Howarth® for high Reynolds number. The present
interpretation is that it is valid for energy con-
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Fic. 15. The ratio —(8E/at)/2v k*E.

3 T. K4rm4n and L. Howarth, Proc. Roy. Soc. (London)
Al164, 192 (1938).
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taining eddies for practically all Reynolds numbers.
The energy containing eddies show a similarity
such that

Ey(k, ) = @ + 20°))L)F,(kL), (18)
E (k, ) = 3 + 2)LQF (kL), (19)
Tk, )= @+ 25 TE&L), (20)

where L(¢) is a length characteristic of these eddies
and F,, F, and T are functions of one variable kL.
Figures 16, 17, and 18 confirm this similarity for &
in the range of energy containing eddies. Equation
(17), which is valid for this range of k, becomes

d (v + 27 W+ 2, .,
F(kL)dt< 5 )L+( 5 )(FkL)

d (& + 2?) _ ({ﬁ + 217)%
.dt( L) = (2 ren. e
In order that this be a total differential equation,
we must have that

B9
2 dt
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and
—5 3\ -3
w + 2 ) dris o o3
(527 4 e 4 2
are constants, or
@ + 20 ~ (t — t)™". (22)
and
L~ (t— t) ¥ (23)

The measurements of energy decay in Fig. 2 show
that approximately » = 1.2 and therefore

L~ (t— t)™" (24)

Neglecting #, which is small, the variation of L
with ¢ or (= U,t) is shown in Fig. 19.

We have found that the value of n varies some-
what with the type of grid. This work will be re-
ported elsewhere.

UNIVERSAL EQUILIBRIUM OF SMALL EDDIES

Figures 14 and 15 show that small eddies re-
sponsible for viscous dissipation are in approximate
statistical equilibrium and according to Kolmo-
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Fi1g. 18. Similarity of 7 for large eddies.
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goroff’s* first similarity hypothesis Ik*E /vy is a uni-
versal function of Ik, where
¥\
1= (%)

___d___E 2 ® 2
and & = —% (u +2v)_2f0 EX? dk.

Vg = ("8)}:

The measured spectra at the three stations are
plotted in Fig. 20 in terms of the above parameters
and show agreement with the theory. Other in-
vestigators have measured one-dimensional spec-
trum of %’ and plotted it for small eddies in terms
of the above parameters. We could compute the
spectrum of 4° from the measured F and compare
our results with these earlier investigations. This is
not justified in view of variations by a factor of
two among the results of these investigators which
are collected in reference 5. Furthermore, the energy
spectrum is best discussed in terms of the three
dimensional spectrum E.
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Fra. 20. Universal similarity of small eddies.

¢ A. N. Kolmogoroff, Compt. Rend. Acad. Sci. URSS 31,

538 (1941).
§ H. L. Grant, R. W. Stewart, and A. Moillet, J. Fluid
Mech. 12, 241 (1962).
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Before Kolmogoroff presented his theory the
kinetic energy 2(u® 4+ 2°) and the length

\ - [ S’ + 20°) :I* _ [g f:;Edk]%
—3(d/dty(u® + %) [s Ek* dk1’
were taken as characteristic parameters for small
scale motion so that 2\M*E/(u® + 2°) is a function
of M. Figure 21 shows that measurements approxi-
mately confirm this similarity. The reason being
that for grid turbulence,

W+ 2°) ~ (t — &)™ ~ " neglecting small #,;

therefore
A~ th
v ~ £
and
I~ gy,
For n = 1.2 the dependence of the two sets of

parameters on ¢ is approximately similar and is
exactly so for n = 1. Some investigators’ find from
decay of turbulence that n = 1; however, they did
not report that »® = w? < u* which is always found
to be the case.” Since the requirements of Kolmo-
goroft’s theory of local isotropy are satisfied, we ex-
pect that the turbulence behind the grid should
be, but is not strictly locally isotropic. Assuming
local isotropy

and the measurements show that this ratio is at
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Fic. 21. Similarity of small scale eddies with A and (2 + 22)
as parameter.

¢ G. K. Batchelor and A. A. Townsend, Proc. Roy. Soc.
(London) A193, 539 (1948). '

7 8. Corrsin, California Institute of Technology, thesis
(1942). M. 8. Uberoi, J. Aero. Sci. 23, 754 (1956).
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least 409, below the above value. Kistler® finds
the same results for much higher grid Reynolds
numbers. It appears that Kolmogorofi’s theory
gives the right parameters for similarity even though
the above relation for local isotropy is not satisfied
by 40%. We have further investigated the anisotropy
of grid turbulence and the possibility of making it
isotropic. These results will be reported elsewhere.

An examination of energy transfer in Fig. 10
shows that Kolmogoroff’s second similarity hy-
pothesis (E ~ k™*?) is of course not satisfied in the
present case and it is doubtful that appreciable
inertial subrange exists for grid turbulence at ten
times the Reynolds number of the present ex-
periments.

In the inertial subrange both the rate of change
of spectrum 4E/d¢t and the rate of viscous decay
—2vk*E should be negligible and the general nature
of the various functions under these circumstances
is shown in Fig. 22.

DECAY OF VORTICITY
From the Eq. (2), we have

fk“”"dk:f k"’Tdk—2vf KE dk
0 at 0 0

(25)

which is the equation for mean square vorticity o,
since
& =2 [ ¥E k. 26)
0
Thus

do’ " e
—dT———zj;k’_ldk @

Rate of production Rate of viscous dissipation
of vorticity of vorticity

—4uf:k*Edk

8 A, Kistler (private communication).
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00

K4rmén and Howarth® show that

W =15 (g—’l;)z | (28)
and
d%ai = —35 (gix‘) — 70 (g:—c%)z, 29)
or
w8 /on- /(]
~ (%) /[(—%7]% "

which is another form of the Eq. (27). Since Kolmo-
goroff’s first similarity principle applies here in the
Eq. (30) the term on the left is negligible compared
with the other two terms which are universal con-
stants approximately equal and of opposite sign.
These quantities can be determined from E and T
and the results are shown in Figs. 23 and 24. The
minor differences between the present results and
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F1G. 24. The quantities

(&) /[T () /[T

those given in reference 9 may be due to the slight
anisotropy of the grid generated turbulence. We
have measured those quantities for » + 4/2 » and
have used the condition of the isotropy of turb-
ulence to express them in terms of w. Further, the
small eddies are in approximate (within 209, see
Figs. 14 and 15) statistical equilibrium and these
constants are not strictly universal but will vary a
little with grid Reynolds number. The quantity

G /1G]

ox/ / ox

was also computed from Heisenberg’s expression for
energy transfer and is shown in Fig. 24.

ACKNOWLEDGMENTS

This work was supported by the Fluid Dynamies
Division of the Office of Naval Research under
Contract Nonr 1224(02).

The assistance of Stanley Wallis is gratefully
acknowledged.

? G. K. Batchelor and A. A. Townsend, Proc. Roy. Soc.
(London) A190, 534 (1947); bid. 199, 238 (1949).



