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Spatial autocorrelation analysis tests whether the observed value of a nominal, ordinal, or 
interval variable at one locality is independent of values of the variable at neighbouring 
localities. The computation of autocorrelation coefficients for nominal, ordinal, and for interval 
data is illustrated, together with appropriate significance tests. The method is extended to 
include the computation of correlogram for spatial autocorrelation These show the 
autocorrelation coefficient as a function of distance between pairs of localities being 
considered, and summarize the patterns of geographic variation exhibited by the response 
surface of any given variable. 

Autocorrelation analysis is applied to microgeographic variation of allozyme frequencies in 
the snail Helix aspersa Differences in variational patterns in two city block are interpreted. 

The inferences that can be drawn from correlograms are discussed and illustrated with the 
aid of some artificially generated patterns. Computational formulae, expected values and 
standard errors are furnished in two appendices. 
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INTRODUCTION 

In modern work in biological systematics and ecology one frequently 
encounters situations in which a variable is mapped onto a geographic space. As 
examples we may cite maps of the geographic variation of morphological 
characters or of gene frequencies, or distributional patterns of individual 
genotypes, or species abundances. In investigating these data it is important to 
discover whether the observed value of the variable at one locality is dependent 
on the values at neighbouring localities. If such dependence exists, the variable 
is said to exhibit spatial autocorrelation. In general, if high values of the variate 
at one locality are associated with high values at neighbouring localities, the 
spatial autocorrelation is positive; whereas when high and low values alternate, 
the spatial autocorrelation is negative. 

Although the concept of spatial autocorrelation is not new to evolutionary 
and ecological research, there have been only sporadic attempts at formal 
treatment (Matern, 1960; Whittle, 1954). In recent years analytical geographers 
have begun to attack this problem with vigour and rigour and a recent 
monograph (Cliff & Ord, 1973) has summed up papers in this field for the past 
two decades. Much of this work published in technical geographical journals is 
unfamiliar to  biologists. We have found it of considerable value and interest in 
our own research and hope to bring it to the attention of our colleagues by 
means of this article and its sequel (Sokal & Oden, 1978). 

We shall first review the relatively elementary statistics needed to  compute 
spatial autocorrelations for data coded in various ways and shall illustrate these 
computations with two small, completely worked out examples to enable 
readers to  familiarize themselves with the method. Next, we report the 
application of spatial autocorrelation analysis to a larger, actual problem in 
evolutionary biology, microgeographic variation in the snail, Helix aspersa. In 
conjunction with this example, we extend the method of autocorrelation to 
analysis of the variation surface by means of correlograms. Finally, we examine 
the inferences concerning spatial variation patterns to  be drawn from various 
configurations of spatial autocorrelations and correlograms, illustrating our 
findings with the Helix example. Formulas for computing autocorrelations and 
testing their significance are furnished in two appendices. 

STATISTICAL INTRODUCTION 

General considerations 
Most biosystematic applications of spatial autocorrelation analysis will be 

based on a sample of localities from an area-or, more formally, a sample of 
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points in the plane. These points may be regularly distributed as in a grid or 
lattice resulting from systematic sampling studies typical for ecology. Alterna- 
tively, the points may be irregularly distributed over the area as in locality 
samples typical for geographic variation studies. The nature of the distribution 
of the points over the area-regular, or following some theoretical distribu- 
tion-will not concern us directly. For purposes of spatial autocorrelation the 
distribution of points is considered as given. 

Onto this collection of points there are mapped one or more variables, with 
one value per variable for each point. The variables may be nominal 
(categorical, e.g., colour morphs, such as light or dark; genotypes, such as ++, 
+b, or bb; or different species, such as A, B, C . . .), ordinal (ranked, e.g., a set 
of n localities may be ranked in order of population density for some species 
occurring there), or interval (continuous, e.g., morphological measurements, 
gene frequencies). The single value of the variable at  each point may be based 
on a single observation (typical of nominal variables such as the genotype or 
species identification of an individual found at  a point in an area) or it may be 
a statistic based on a sample of individuals taken from the locality, such as a 
character mean or a gene frequency based on a locality sample. 

To obtain the spatial autocorrelation coefficient of a variable we shall 
correlate the values of that variable for pairs of points in the plane. However, 
not all pairs of points will be correlated, only those that are considered 
neighbours. The criteria for considering any pair of points neighbours (such 
points are also termed adjacent or connected) are left up to  the investigator. In 
a regular grid some simple forms of connection are: rook’s moves (orthogonal 
connections only; Fig. 1 A), bishop’s moves (diagonal connections only; 
Fig. lB) ,  and queen’s moves (both orthogonal and diagonal connections; 
Fig. 1C). For irregularly distributed points various other types of connections 
may be established. They are usually some function of geographical proximity, 
but may be modified by consideration of the biological model, such as 
direction of gene flow or ecological barriers. Tobler (1975) furnishes a list of 
various schemes for connecting points. The scheme employed for examples in 
this paper is Gabriel-connectedness, discussed further on. Another scheme is 
featured in one of the examples in the companion paper (Sokal & Oden, 1978). 

Once a scheme for connecting the points (localities) has been devised, the 
connections can be represented in two equivalent forms. One of these is a graph 
(in the graph-theoretical sense; see Busacker & Saaty, 1965), with the points 
constituting the vertices of the graph and the connections between points 

A C 

Figure 1. Simple connections in a regular grid. The 16 points or localities in this regular grid 
are connected by rook‘s moves in panel A, bishop’s moves in panel B, and queen’s moves in 
panel C. 
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comprising its edges. An example for a regular grid is shown in Fig. 2 and for 
irregularly-spaced points in Fig. 3. An equivalent representation is a square 
weight or adjacency matrix W of dimension n (for n localities). Tables 1 and 2 
show the adjacency matrices for the graphs in Figs 2 and 3,  respectively. In 
these examples a connection between two localities i and j is shown by setting 
elements %j and wji in the matrix equal to 1. For every pair of localities ij that 
is not connected wij = wji = 0. We need not always be restricted to binary 
weights when computing autocorrelations. Any pair of localities closer in some 
sense than some other pair can be given greater weight. Thus weights may range 
from zero to some arbitrarily large positive number, or, equivalently, the 
weights may be normalized to  range from zero (unconnected) to unity (closest 
neighbours). Also, we have so far implied symmetry in the adjacency matrix by 
setting wi' = wji ; in most work on autocorrelation the distance from i to j is the 
same as the distance from j to i. Nevertheless, instances will occur in which the 
distance (in some sense) from i to  j is not equal t o  that from j to i, as in 
upstream-downstream or uphill-downhill relations and in seed shadows. The 
formulas cited below handle symmetrical or asymmetrical matrices. Given a set 
of points or localities, a variable mapped onto these localities, and a graph or 
matrix representing the interconnections or weights, we can proceed to  the 
computation of the autocorrelation coefficient. 

In Appendix A we list computational formulas, expected values, and 
variances of various statistics of spatial autocorrelation. These formulas have 
been abstracted with some notational changes from a larger assemblage 
featured by Cliff & Ord (1973). They are divided into autocorrelation measures 
for nominal data and those for interval and ranked data. 

Nominal data 
For nominal data one calculates join counts. A join is a synonym for an edge 

connecting two points or localities. These joins can be between points that are 
like or unlike with respect to the categorical variable. Thus if the example is 
one of a spatial distribution of colour morphs (B for black and W for white), 
there will be edges connecting like individuals (BB and WW joins), and edges 
connecting unlike morphs (BW joins). The BB join count is the total number of 
edges in the study connecting two individuals of morph B. Clearly, the sum of 
the joins counts for BB, WW and BW will equal the total number of edges in the 

Cliff & Ord (1973) furnish expectations and variances for join counts in the 
nominal case for two hypotheses-sampling with replacement and sampling 
without replacement. In the first case the model assumes that the value of the 
variables for each locality is the result of a random sampling from a larger 
population in which the probability that the variable will assume value r is Pr. 
That is, the sampling outcomes are independently realized for each locality. In 
sampling without replacement, the assumption is that the proportion of 
localities in the study of type r is pr, but the number of such localities is fixed 
so that the probability of any one locality being of type r is conditional on the 
number of localities of type r that have already been sampled. This is the 
appropriate assumption for most biological cases likely to be analyzed by this 
method and it is the only one considered here. In most situations we are 

graph. 
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unlikely to know the parent distribution of types from which the observed 
spatial distribution has been sampled. 

We shall now feature a sample computation for nominal data. 
Example 1. Computation of spatial autocorrelation for a variable in nominal 

scale, regularly-spaced localities, binary weights, sampling without replacement. 
The data are nine squares in a checkerboard pattern, as shown in Fig. 2. For 

this example the squares are connected by rook’s moves; that is, each square is 
connected to all squares directly above, below, or to  either side of it. The graph 
illustrating this relationship is shown in Fig. 2 and comprises 12  edges. The 
adjacency matrix describing this graph is presented in Table 1. Next to each 
row in the matrix is presented the type (colour) of the variable at  the 
corresponding data point. 

A B 

Figure 2. The checkerboard of Example 1 connected by rook’s moves. The regular 3 x 3 
checkerboard pattern consists of five black and four white squares, numbered as shown in panel 
A. The squares, represented as vertices in a graph, are connected by rook’s moves in panel B. 

Table 1. Adiacency matrix for Example 1 

Locality Locality number 
number Type 1 2 3 4 5 6 7 8 9 

B x 1 0 1 0 0 0 0 0  
W l x l o l o o o o  
B 0 1 x 0 0 1 0 0 0  
W 1 0 0 x 1 0 1 0 0  
B 0 1 0 1 x 1 0 1 0  
W 0 0 1 0 1 x 0 0 1  
B 0 0 0 1 0 0 x 1 0  
W 0 0 0 0 1 0 1 x 1  
B 0 0 0 0 0 1 0 1 x  

The total number of BB, BW, and WW joins may in this case be read directly 
from the checkerboard, but in more complex situations or if describing the 
data to a computer, these quantities may be calculated from the formula given 
in Appendix A. The number of BB joins equals iCWij (BB) i j*  The variable 

(BB)ij equals 1 whenever localities i and j are both B, and zero otherwise. Thus 
for localities 1 and 2, (BB)12 = 0, but for localities 1 and 3,  (BB)13 = 1. 
However, it can be seen that in this example all instances where (BB& = 1 are 
paired with values of wij = 0 from the adjacency matrix. Thus the summation 

il 
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equals zero; there are no BB joins in these data. The values for part of the 
example are shown in the table below. 

1 
1 
1 
1 
1 
1 
1 
1 
2 
2 

9 
9 

2 
3 
4 
5 
6 
7 
8 
9 
1 
3 

7 
8 

1 
0 
1 
0 
0 
0 
0 
0 
1 
1 

0 
1 

0 
1 
0 
1 
0 
1 
0 
1 
0 
0 

1 

1 
0 
1 
0 
1 
0 
1 
0 
1 
1 

0 

The number of BW joins equals fxwij(BW)ijwhere the variable (BW)ij equals 

1 when locality i is B and j is W or when i is W and j is B. The variable is zero 
otherwise. Thus (BW)ij = 1 for localities 1 and 2, but (BW).. = 0 for localities 1 
and 3. Values for part of the example are shown in the table above. Summing 
w-(BW)g over all locality pairs ij (i # j )  we obtain 24. Therefore, the number 
of BW joins is 12. Proceeding similarly we can obtain the number of WW joins, 
which is zero. 

The formula for the expected value p’, in Appendix A requires the quantity 
W, the sum of the matrix weights, which in this example with binary 
symmetrical weights equals the number of ones in the matrix, i.e., 24, or twice 
the number of edges connecting the graph. The total numbers of the different 
types of squares on the board is 

Therefore, the expected number of BB joins is 

ij  

nB = 5 nw = 4  ntotal = 9- 

= 33. 
WnB(2) 24(5)(4) 
2n(2’ = 2(9)(8) 

Similarly, the expected number of WW joins = 2. The expected number of BW 
joins equals 

For the computation of the variances two further quantities are needed to  
evaluate the formula for p2 given in Appendix A. The first is 
S ,  = f x(wij  + wji)2. In this case with binary symmetric weights every edge 

between a pair of localities contributes (1 + 1)2 = 4 to the sum and S1 is simply 
4 x (number of edges in the graph) = 48. Quantity s2 = C (wi. + wSi)2, where 

w. and wai are the sums of the ith row and ith column of the weight matrix 

11 

n 

i =  1 
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respectively. Since the weights used here are symmetric, S2 is four times the 
sum of the squared marginal totals of either the rows or the 
columns = 4(22+ 3 2 +  22+ 3 2 +  42+ 3 2 +  22+ 3 2 +  22)  = 272. For BBjoins 

Similarly, p2 for WW is 0.8909. The variance for BW is a different equation 
given in Appendix A, but involving the same terms, and yields 1.5430. To 
calculate the standard normal deviate, use the quantities given above in the 
equation: 

S.N.D. = (observed - p l  ) /p24.  

For this example, the S.N.D. ’s are: 
BB = -3.4156 

WW = -2.2450 
B W =  3.4564 

The results are highly significant. The total number of BB and WW joins is far 
below expected, and if we interpret excess in the total number of like joins as a 
synonym for positive spatial autocorrelation, this example is significantly 
negatively autocorrelated, as we would have anticipated for a checkerboard. 
This is also borne out by the higher than expected BW joins. Note that these 
significance tests are probably not correct because asymptotic normality 
cannot be assumed for only nine localities. This small example has been shown 
only to facilitate learning the computational algorithm. 

If we had connected the localities by bishop’s moves instead of by rook’s 
moves, we would have obtained strong positive autocorrelation because all 
localities would have had like-coloured ones as their neighbours. By the queen’s 
moves criterion, autocorrelation should approach 0 in a large checkerboard 
because each locality will have an equal number of neighbours of both colours. 
Since graphs based on different criteria imply different hypotheses, the results 
of autocorrelation analyses of the same data set necessarily will differ with the 
connection criterion employed. 

The significance tests in this instance should probably be carried out by a 
randomization test by computer since n < 10. However, for illustrative 
purposes we proceed to  carry out the test using the correction for small sample 
sizes given in Appendix B. All symbols for moments given below relate to 
either BB or BW, depending on the join count being computed. 

For the BB joins we first evaluate degrees of freedom 
v =  2 ( / ~ ) 1 ) ~ / p ~  = 2(3$)2/(0.9759) M 23. 

Since the x2 distribution is used as an approximation only, these degrees of 
freedom have no intrinsic meaning but might be best referred to  as 
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“pseudo-degrees of freedom”. For a two-tailed test at the 5% significance level, 
01 in each tail equals 0.025. Since the join count for BB < we are interested 
in the lower tail and require x$.9,5[z3~ = 11.688. Then the 5% critical count for 
BB joins is 

BBo.05 = ~.(2X$.9,5[23j /2/.~)1 = (0.9759)11.688/2(33) = 1.71. 

Since our observed join count for B B  is 0, this is significantly below 
expectations. 

Although our pseudo-degrees of freedom are not large (v = 23), we evaluate 
below the formula based on the normal approximation to  the x2 distribution 
to illustrate its use. 

(0.0759) [ -1.96 + (4(3f)’- o.9759 0.9759)iI 
- 

BB@05 - 4(3f) 

= 1.63. 

These corrected critical values compare with the critical value that could have 
been obtained without the small sample correction, i.e. 

BBa = t,[Ca] P i +  ccl 9 

B B ~ ~ ~  = -1.96(0.9759$ + 33 = 1.40. 

Note that the uncorrected critical value is more conservative than the corrected 
one. For like joins at small sample sizes, the uncorrected critical point is too far 
from expectation in the lower tail, and too close to it in the upper tail of the 
distribution of outcomes. 

For the BW joins the test is in the upper tail since the observed number of 
joins, 12, is greater than P‘, = 63. The formula fiven in Appendix B for the 
upper tail gives K = 1 -a= 1 -Jm = 0.5. Therefore 

1 
BWa = tar[=] cci + cc; - K a  9 

BW@05= 1.96(1.5430)4+ 63-0.5 = 8.60. 

Clearly, the observed number of unlike joins, 12, is significantly greater than 
the expected value. The critical value obtained without this correction is 

BWa = t,[W] P i +  P; 9 

BWeo5 = 1.96(1.5430)++ 63 = 9.10. 

In this instance the correction is more conservative. 
Computations for cases of nominal data with more than two types can be 

carried out similarly. However, there is an additional quantity to  be 
computed-the total number of joins between localities of different types. I t  is 
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the sum of the number of rs joins where r varies from 1 to k - 1,  and s varies 
from r + 1 to k. 

Interval data 

The autocorrelation coefficients for interval (and ordinal) data are Moran’s 
statistic I and Geary’s coefficient c. Although in the computations that we 
carried out we routinely computed c as well as I under normal as well as 
randomization assumptions, we have limited our account in this paper as well 
as the companion paper (Sokal & Oden, 1978) to I, Moran’s coefficient tested 
for significance under the randomization assumption. While empirically results 
computed by both coefficients are similar, they are not identical. Both are 
analogous to correlation coefficients in that the numerator is an estimator of 
the covariance and the denominator an estimator of the variance of the 
observations. However, the numerator of I (see Appendix A) is a product- 
moment term analogous to the conventional correlation coefficient, while that 
of c (see Cliff & Ord, 1973: 12) is a squared term as in a distance coefficient 
(Geary’s coefficient is thus structurally related to the well known Durbin- 
Watson statistic; see Kendall, 1973). Thus I will be strongly affected by 
marked, joint departures of two neighbouring values from their mean, while c 
will depend on the absolute differences between neighbouring variates. Moran’s 
coefficient I varies from -1 to +1, the expected value approaching zero for 
large sample size in the absence of autocorrelation (as in the conventional 
product-moment correlation coefficient). Geary’s c ranges from 0 (maximal 
positive autocorrelation) to a positive value for high negative autocorrelation. 
Its expectation in the absence of autocorrelation is 1. 

The standard errors of either statistic can be calculated under two 
assumptions. The n values (for n localities) can be considered a sample from an 
infinite, normally distributed population for that variable. Alternatively, no 
assumption need be made about the distribution, in which case the autocorrela- 
tion is tested against the values the autocorrelation coefficient could take given 
all possible permutations of the observed variates over the localities. This latter 
randomization assumption is more reasonable for most systematic applications 
and it is the only one featured in this exposition. In our experience standard 
errors do not differ greatly for these two assumptions. 

Next we turn to a sample computation for spatial autocorrelation in interval 
data. 

Example 2. Computation of spatial autocorrelation for a variable in interval 
scale, irregularly-spaced localities, binary weights. 

A continuous variable, forewing length of the aphid Pemphigus populitrans- 
versus for the year 1961, was mapped onto eight localities in Douglas and 
Leavenworth Counties, Kansas (Sokal, Heryford & Kishpaugh, 1971). The 
localities are indicated in Fig. 3. 

Note that there is no necessary association between interval measure and 
irregular spacing. Nominal data can be irregularly spaced and interval data can 
be spaced regularly, and examples showing these combinations are featured in 
the companion paper (Sokal & Oden, 1978). 

To compute spatial autocorrelation we need to indicate connections among 
the localities. For this example, and for several others to be featured below, we 
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LEAVENWORTH CO. 

Figure 3. Map to illustrate geographical connections among the eight localities of 
Example 2. The map gives locations for eight collection sites in Kansas. The collection sites are 
identified by code numbers; means (in mm) for the variable forewing length are shown next to 
the locality code numbers. The localities are connected by a Gabriel network. 

Table 2. Locality means and adjacency matrix for Example 2 

Mean forewing 

Xi Zi 

Adjacency matrix 
Localiv number Localitynumber: 1 2 3 4 5 6 7 8 

1 2.07 0.0025 x 1 0 0 0 1 0 0  
2 2.02 -0.0475 1 x 1 0 0 0 0 0  
3 2.20 0.1325 0 1 x 0 0 0 0 0  
4 2.07 0.0025 0 0 0 x 1 0 1 0  
5 1.97 -0.0975 0 0 0 1 x 0 0 0  
6 2.20 -0.1325 1 0 0 0 0 x 1 0  
7 2.04 -0.0275 0 0 0 1 0 1 x 1  
8 1.97 -0.0975 0 0 0 0 0 0 1 x  

have chosen to employ a Gabriel-connected graph (Gabriel & Sokal, 1969) to 
indicate the pattern of geographical interactions. In such a graph any two 
localities, A and B are considered contiguous (connected) if no other locality 
lies on or within the circle whose diameter is the line AB. Thus A and B are 
connected when dZAB < dZAC + dZBC , where dZAB is the squared geographic 
distance between localities A and B, and C is any third locality. The rationale 
for using this criterion in geographic variation analysis is discussed by Gabriel & 
Sokal (1969). The resulting graph, often called a Gabriel-connected graph or 
Gabriel network, is planar. The Gabriel network for the localities of the aphid 
study is indicated in Fig. 3. The Gabriel criterion is just one of various possible 
criteria for connecting geographical localities. 
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The means and the adjacency matrix for the Gabriel-graph of Fig. 3 ,  are 
given in Table 2. Since no further weighting was applied to the edges, the 
adjacency matrix is a binary weight matrix. The Moran coefficient I is given in 
Appendix A as 

n 

To compute this expression we break it down into parts. For the numerator we 
need all products of pairs of localities. Thus 

Localities Weight 
i i Wij 

W"Z'Z' 
11 I J z izj 

1 
1 
1 
1 
1 
1 
1 
2 
2 

8 
8 

2 
3 
4 
5 
6 
7 
8 
1 
3 

6 
7 

1 
0 
0 
0 
1 
0 
0 
1 
1 

0 
1 

(0.0025 ) ( -O .  047 5 ) 
(0.0025) (0.1325) 
(0.0025) (0.0025) 
(0.002 5)(- 0.0975 ) 
(0.0025) (0.1325) 
(0.0025)(-0.0275) 
(0.0025)(-0.097 5)  

(-0.0475) (0.0025) 
(-0.0475) (0.1 325) 

(-0.0975) (0.1325) 
(-0.0975)(-0.0275) 

zwijzizj = 
'I 

-0.0001 1875 
0 
0 
0 

0 
0 

-0.0001 1875 
-0.00629 3 75 

0.0003 3125 

0 
0.00268125 

-0.0147 125 

Since most weights are zero very few multiplications are actually carried out. 
The weighted sum of the products c w i j z i z j  = -0.0147125. 

The quantity W, the sum of the matrix weights, in this example with binary 
symmetrical weights, equals the number of ones in the adjacency matrix, i.e., 
14, or twice the number of edges connecting the graph. 

ij 

The sum of squares of the deviates 
zf = 0.057150. 

i= 1 

Therefore I = 8( -0.01 47 125)/14( 0.0571 5 0) = -0.147 1 1. 
1 The expected value of I ,  pi = - - = -0.14286. 

(8-  1) 
For the computation of the variance, three further terms are needed to evaluate 
the formula for p2 given in Appendix A. The first of these is 
S1 = ic(wij + Wji)?. In this case with binary symmetric weights every edge 

between a pair of localities i and j contributes (1 + 1)2 = 4 to the sum and S1 is 
simply 4 x (number of edges in the graph) = 28. The second term is 

s2 = C (wi .  + ~ . i ) ~ ,  where w i .  and w.i are the sums of the ith row and ith 

column of the weight matrix, respectively. For this expression the marginal 
totals of the weight matrix should be computed. In this simple example row 
and column sums are the same because the matrix is symmetric 

11 

n 

i= 1 
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[thus S2 = C ( 2 ~ i . ) ~  = 4CWim2 1 and the wi.'s can be evaluated in one's head. 

Thus 
ij 1 

S2 = 4(22 + 22 + l2 + 22 + l2 + 22 + 32 + 12) = 4 x 28 = 112. 

The third term is 
n 2 

b2 = n x  z4/ C z2 = 8(0.0008028441)/(0.05715)2 = 1.966476303. 
i=n, ( i = l  ) 

Therefore 

P2 = 
n [ ( n 2 -  3n + 3)S, - nS2+ 3W2] - b2[(n2-  n)S1- 2nS2+ 6W2] 

(n - 1)" wl 
1 

(n - 
- 

8[(82- 24 + 3)28 - 8(112) + 3( 14)2 ] 
- -( 1.966476)[(82 - 8)28 - 2(8)( 112) + 6(14)2 3 - 

(8 - 1)(8 - 2)(8 - 3)(14)2 
1 

(8-1)' 
-~ 

5295.914559 1 - o.108258. -_ -  - - 
41 160 49 

The standard error pi  = 0.3 2903. 

Obviously, the difference from expectation is not significant (I - p 1 ) / p i  
= [-0.14711 - (-0.14286)] /0.32903 = 0.01292. Note that asymptotic 
normality could not be assumed for only eight localities. This small example 
has been shown only to facilitate learning the computational algorithm. 

In this example the proper significance test would also be by means of a 
randomization test because n< 10. However, for illustrative purposes we 
proceed to carry out the test using the correction for small sample sizes given in 
Appendix B. 

Compute A ,  the number of edges in the connecting graph. As we saw earlier 
this is f W in this example with binary weights. Therefore A = 7. We compute 

R = 2(@-1)/@ = 2(1.82843)/(2.82843) = 1.2929, 
Q = 2(Jn -1)(2& -1)h = 2(1.82843)(4.65685)/8.0 = 2.1287, 

Aln = 0.875. 
Since it is not true that R < A / n  < Q, we set k, = 1. This is equivalent to 
computing the critical value la! withput the correction. 

la = tap ]  pi  - k, (n - l)-l, 
Io.05 =-1.96(0.32903) -1(8-1)-' = -0.7877. 

Since the observed Z is only -0.1471, it clearly is not significant. 
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Connections and weights 
I t  should be obvious from our analysis of the checkerboard in Example 1 

that the manner in which we connect the localities will importantly affect the 
nature of the autocorrelation obtained. To the skilled investigator this will 
prove an asset rather than a liability; various types of connectivity may be 
defined to test for various types of structure. Let us take a hypothetical 
example, a mapping of the population change over a given time period in an 
insect pest population in a field. If the hypothesis is that the insects have 
moved from the centre of the field to the periphery, then decrease in 
population size at the centre should match increase in population size at the 
periphery. By connecting only those field plots in the centre of the field (as 
defined by the investigator) with those peripheral plots to which insects might 
have plausibly migrated, but not connecting central localities to  other central 
localities or peripheral localities to other peripheral ones, an adjacency matrix 
is created on which the population change can be examined for autocorrela- 
tion. If the insects at the centre have indeed migrated to the periphery over the 
period of the study, negative autocorrelation of current population levels 
would result on the network defined above. 

As mentioned earlier, weights need not be binary (1 for connections, 0 for 
lack of connection), but can be expressed as a function of the distance between 
localities or some other measure of ease of movement from one locality to the 
other. The formulas in Appendix A are given in terms of this general case where 
the elements wij are the weights of the weight matrix W. 

Another way to use weights to test for structure in a spatial data set might 
be to weight all connections between points by the cosines of the angles the 
connections make with an hypothesized test direction. By computing auto- 
correlations for different test directions, one might discover underlying 
directional mechanisms in the data. This approach is analogous to the 
investigation of rook’s moves, bishop’s moves and queen’s moves in the regular 
grid. 

The instances of autocorrelation discussed so far have been restricted to pairs 
of points adjacent in the connection network, but we are not limited to such 
pairs. Autocorrelations can be computed for pairs of localities an arbitrary 
number of edge lengths or geographic distance units apart. One could then 
show how autocorrelation would change as a function of distance between 
points, A graph showing such a relationship is a correlogram. The construction 
of correlograms is discussed further in the next section. 

AN EXAMPLE: HELIX ASPERSA 

This example illustrates what may be the most frequent application of these 
techniques-interval data for irregularly-spaced points in an area. The variables 
studied here are gene frequencies rather than morphometric variables. When 
only two alleles are found at any one locus, obviously only one gene frequency 
need be analyzed. In the case of multiple alleles, one less than the number of 
alleles is studied. In the data presented below we consistently omitted the most 
infrequent allele. The data set is from a study describing microgeographic 
variation in allozyme frequencies in the European brown snail, Helix aspersa 
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Block A 

I 

Figure 4. Location and size of colonies of Helix aspersa on adjacent city blocks in Bryan, 
Texas. These maps have been modified from Selander & Kaufman (1975)' Twenty colonies are 
shown in Block A, 23 in Block B. Colonies are designated by numbers 1-21 in Block A, 23-45 in 
Block B. There is no colony numbered 11. The circle size is proportional to colony size. Lines 
connecting the colonies are a Gabriel-connected graph. In BlockA an edge was added 
connecting localities 5 and 8 because of continuity of habitat along the building 

Selander & Kaufman (1975) report exhaustive collections of these snails from 
shrubbery in two adjacent city blocks in Bryan, Texas. The blocks were 
approximately 80 x 100 m and contained 20 and 23 snail colonies, respec- 
tively. The allozyme variation was analyzed for five polymorphic enzymes and 
allozyme frequencies computed for each population. 

The colonies are mapped in Fig. 4 and were joined to form a Gabriel- 
connected graph, as shown in the figure. Actually the graph is not truly 
Gabriel-connected since the edge between colonies 5 and 8 has been added, 
although it violates the Gabriel conditions. This was done because continuity of 
habitat along the building suggested the possibility of gene flow. This reiterates 
the point that the methods described here are not predicated on a specific type 
of graph. Maps showing the geographic variation of the allozyme frequencies 
are featured in Selander & Kaufman (1975) and are not reproduced here. 

Figure 5 displays plots of Moran's I as a function of interpoint distance. 
These plots are called correlograms (Kendall, 1973; Box & Jenkins, 1971). 
Since correlograms furnish information on the behaviour of the autocorrelation 
coefficients as interpoint distance increases, they are used in time series 
analysis, where interpoint distance indicates time intervals, to furnish sugges- 
tions as to the nature of the process generating the series. Thus if a variable Xt at 
time t is a function only of its value Xt- 1 at time t - 1 plus a random 
contribution, its correlogram will be different from that of a variable that is a 
function of its previous value at still earlier time periods. Similar inferences 
may be made in spatial autocorrelations where the dependence of a variable is 
in two dimensions. 

We have constructed correlograms by two different definitions of distance. 
In one of these (correlograms not shown) the distance between two points is 
the least number of edges sufficient to connect the points. Thus, in Fig. 4, 
colonies 5 and 19 were considered neighbours in distance class 2, and in no 
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Figure 5. Distancecorrected correlograms for geographic variation patterns of allozyme 
frequencies of the snail Helix asperso in two blocks in Bryan, Texas. A, Block A; B, Block B. 
Abscissa: shows distance in metres. Here, unlike Fig, 7, distances indicated are upper limits of 
the distance class rather than class marks. Ordinate: Moran’s autocorrelation coefficient I. 
Significant autocorrelation coefficients (P < 0.05) are indicated by open circles. Based on data 
from Selander & Kaufman (1975). 
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other distance class, even though longer paths between 5 and 19 exist, as for 
example 5-9-2-13-19. The smallest number of edges sufficient to connect the 
most distant pair of points is called the diameter or solution time of the graph 
which in the case of Block A is 7. Thus a correlogram can be constructed for 
which the autocorrelation coefficient is calculated for each distance class i, 
i = 1, . . ., 7 by considering as neighbours only those point pairs whose 
interpoint distance is i. In other words, a new weight matrix was constructed 
for each class i in which weights of 1 were assigned to point pairs which were 
neighbours at distance i whereas weights of 0 were assigned to point pairs 
which were not. If any point was not i edges distant from at least one other 
point, it was excluded from the weight matrix for that distance class. By 
contrast, the correlograms shown in Fig. 5 are what we have termed 
“distance-corrected”. In such correlograms basically the same criteria are 
followed for determining which localities are neighbours, except that the actual 
lengths along graph edges are considered. Distance classes with intervals are 
erected, and, as before, for each distance class only those point pairs are 
considered neighbours whose interpoint distances (shortest connecting paths as 
measured along the graph edges) fall within the distance class. The shortest 
path distances computed for all pairs of colonies in each block of the Helix 
study were grouped into distance classes with an interval of 20 m. The class 
marks indicated in the figure are upper bounds (i.e., all distances up to 20 m, or 
those between 20 and 40 m), rather than the more conventional midpoints. 

Distancecorrected correlograms are appropriate in those biological situations 
where it is desirable to retain the Gabriel criterion (see Gabriel & Sokal, 1969) 
and yet avoid the space distortion inherent in correlograms of the first type 
discussed above. A final point is that the two methods may yield different 
shortest distance paths. Thus in Fig. 4 the distance between localities 5 and 1 3  
along the three edges 5-9, 9-2, and 2-13 is shorter by the distance-corrected 
method than along the two edges 5-8 and 8-1 3. I t  has been our experience with 
several data sets that correlograms based on binary connection matrices and 
those that are distancecorrected while differing in detail, show generally 
comparable profiles. This is not true when the geographical lengths of the edges 
are very variable. 

The distance-corrected correlograms in Fig. 5 show marked differences 
between the two blocks and among some of the allozyme frequencies. Several 
loci in Block B show a consistent pattern of significant positive autocorrela- 
tions up to 20 m, and of significant negative autocorrelation in the 60 and 
8 0 m  classes. Not too much reliance should be placed on the last distance 
class(es) since the autocorrelation coefficient for these classes is generally based 
on very few point pairs. Altogether, out of 50 autocorrelation coefficients 28 
are significant. By contrast in Block A only 6 out of 42 autocorrelation 
coefficients are significant. While autocorrelations in Block B tended to  
decrease with increasing distance for most loci, such a trend could not clearly 
be established for Block A. We may conclude that, on the whole, neighbouring 
populations in Block B are more similar to each other, and distant populations 
more different, than such populations are in Block A. Some allozyme 
frequencies in each block show no significant autocorrelation whatsoever. 

Although both blocks were shown to be significantly heterogeneous for most 
loci by Selander & Kaufman (1975), the two blocks differ considerably in 
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patterns when tested by the method of Royaltey, Astrachan & Sokal (1975). 
Of seven patterns in Block A only one was significant, while seven out of ten of 
the allozyme patterns in Block B were found significant by the same test 
(Selander & Kaufman, 1975). 

In Block A the heterogeneous means show little significant spatial structure, 
and what little there is, is not similar for various allozyme frequencies. 
Because there is not much pattern a stochastic interpretation is favoured, 
probably several immigration events leading to founder effects. A seIectionist 
interpretation-i.e., different sites differ in various selective agents that affect 
the various allozyme frequencies-is improbable in view of the parallel variation 
for these same frequencies in Block B. That block looks very different. All 
significantly heterogeneous allozyme frequencies in this block have similar and 
significant patterns as shown by the Royaltey, Astrachan and Sokal test and by 
the correlograms (compare Fig. 5A and B). One might therefore suppose a 
common selective agent on a gradient. In view of the diversity of loci studied, 
this seems unlikely, and it would be more probable to assume a migratory event 
followed by diffusion which would give rise to a situation mimicking an 
adaptive cline. This would also explain the discrepancy between the correlo- 
gram patterns for Block A and Block B, since if these loci are subject to strict 
genetic selective control, one would have to postulate important differences in 
the microclimatic and microenvironmental substructuring of Blocks A and B 
for which Selander & Kaufman offer no basis. An alternative explanation for 
the differences between the blocks might be that there were substantial 
differences in time since colonization. If Block A had been colonized early, but 
Block B more recently, the pattern in A could be interpreted as selection due 
to diverse microhabitats, whereas that for B could be diffusion between two 
diverse immigrant stocks, before selection had patterned the samples to the 
microhabitats in B. However, we have no evidence for such a sequence of 
events in these adjacent city blocks. 

STRUCTURAL IMPLICATIONS 

Autocorrelation and surface structure 

The meaning of strong positive or negative autocorrelation at the lowest 
distance class is fairly straightforward. Positive autocorrelation indicates that 
values at adjacent localities are similar, while negative spatial autocorrelation 
signifies marked differences between adjacent pairs. While the determination of 
these phenomena and of their origin is of obvious interest to biologists, 
systematists are concerned with the larger pattern of variation exhibited by the 
variable over the entire surface studied. Autocorrelations at the lowest distance 
class do not necessarily furnish the basis for inferences about the entire 
structure. An example will make this clear. In a regular gradient such as a cline 
(see Fig. 6A) there will be strong positive autocorrelation at  short distances, 
since near neighbours resemble each other. But we could also expect high 
positive spatial autocorrelation for the shortest distance class if the study area 
is divided into two large contiguous patches each comprising numerous 
localities, with homogeneous high values assigned to the localities in patch 1, 
while homogeneous low values are assigned to those of patch 2 (Fig. 6B). In 
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Figure 6. Schematic diagram to represent the effect of shapes and homogeneity of patches. 
k A cline. B. Two homogeneous patches with a relatively short boundary between them. C. 
Two homogeneous interdigitating patches. For the consequences of these shapes in terms of 
correlogcams, see text. 

such a case the number of short-distance joins or edges within one patch will 
considerably exceed the number of such joins between patches, the latter 
number being limited to the number of ways a locality in patch 1 can be 
connected to a locality in patch 2 using only distances in the lowest distance 
class. Only when the boundary between the patches is lengthened, as in a 
sinuous or interdigitating boundary (see Fig. 6C), will the number of 
interpatch joins with their negative contribution to the numerator of the 
autocorrelation coefficient be sufficiently large to cancel the positive contribu- 
tion of the within-patch joins. The cline and the two homogeneous patches are 
generally acknowledged as radically different patterns that need to be 
distinguished. Therefore, we need a means of providing an overall summary of 
the entire distribution of the variable over the space studied. In this paper we 
have employed correlograms for such summaries. While correlograms do not 
exhaust the possibilities for useful summarization, they seem to be a fruitful 
initial approach. 

Artificial patterns 
For further insights into the nature of the inferences that can be made from 

correlogram profiles we resorted to the five artificial patterns generated by 
Royaltey, Astrachan & Sokal (1975). These patterns had been mapped on a 
Gabriel network for 53 localities in eastern North America shown in Fig. 7. The 
patterns were generated by deliberately assigning the ranks from 1 through 53 
to the vertices of this graph in such a manner as to achieve the desired effect. 
The cline (shown in Royaltey et a l ,  1975: fig. 2) was produced by introducing 
a gradual transition from high values in the north to low values in the south. 
The depression features a central core of low ranks in southern Indiana (not 
Ohio, as incorrectly stated by Royaltey e t  al., 1975), gradually increasing 
toward the periphery of the area. In the double depression a low area in 
southern Indiana and Ohio is separated from another low area in southern 
Illinois and Missouri by three high ranked localities. The ranks increase in 
magnitude toward the periphery of the area. The intrusion is an area of high 
rank in the south-west with a sharp abutment bordering low rank localities, 
while in the crazy quilt pattern high ranks are surrounded by low ones, and vice 
versa, in such a way that a traveller traversing the edges from one portion of the 
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graph to the other would alternatingly encounter high and low ranks. None of 
the patterns described above is optimal. They were arrived at by pencil and 
paper, and in no case was more than half an hour spent on generating a pattern. 
More clear-cut patterns could have been produced by suitable computer 
algorithms. Yet the ones generated are probably as marked as any likely to be 
encountered in nature in most instances. Royaltey e t  al. (1975) developed a 
method for testing the significance of departures from randomness in 
geographic variation patterns, and were able to show that these artificial 
patterns differed highly significantly from random ones. 

So as to be able to relate findings on these patterns to the other work 
described in this paper, we preferred to carry out the autocorrelation not on 
ranks but on an interval variable. To do so we ranked the means of an interval 
variable studied for these 5 3  localities (stem mother head width from the 

Figure 7. A Gabrid-connected graph of 53 localities in the eastern United States. The 
numbers at the vertices of the graph are code numbers for the 53 localities. This graph was 
originally generated in connection with a study of the aphid Pemphfgus populirransversus, and 
for this reason the edge between localitis 45 and 52 was omitted since gene flow across the 
Appalachian mountain range is impossible for these organism. 
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revisited populations of the aphid Pemphigus populitransversus-Sokal & Riska, 
in prep.). The interval scale values (in mm) were then assigned to localities so 
that their ranks matched the ranks given those localities for the five artificial 
patterns. In this way a known variable was artificially reshuffled spatially to 
create a cline, a depression, a crazy quilt, and so on. The resulting correlograms 
of the patterns are shown in Fig. 8. The correlograms shown are distance- 
corrected, although during the generation of the artificial patterns the edges of 
the Gabriel network were considered to be of equal length, and geographic 
distance was thus not taken into consideration in forming the patterns. The 
correlograms based on equal edge lengths were also computed, yielding, not 
surprisingly, somewhat better definition. Nevertheless, the differences among 
these patterns are sufficiently marked for the distance-corrected correlograms 
to yield characteristic profiles. Again the upper bounds of distance classes are 
indicated in the figure. 

The correlogram for the cline shows an almost regular monotonic decline 
from significant positive autocorrelation at 200 to 800 km to significant 
negative autocorrelation from 1400 to 2800 km. The interpretation here is 
quite simple, because of the particular configuration of the study area (see 
Fig. 7). For distances of 700 km and more it is difficult to remain in a region 
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Figure 8. Correlograna based on the map and Gabriel network of Fig. 7 for five 
artificially-generated variables intended to simulate distinct patterns of geographic variation. 
(S,ee text for details on the patterns.) Abscissa: distance in kilometres. Ordinate: Moran's 
autocorrelation coefficient I. Significant autocorrelation coefficients (P < 0.05) are indicated 
by open circles. 
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where the variables are more or less uniform. Areas of equal value for the 
variable run roughly east to west, while the cline is north-south. Many of the 
longer distances are diagonal or north-south. In fact, the highest distances (over 
2000 km) are necessarily diagonal given the shape of this network. They are, 
therefore, inevitably negatively correlated. I t  is interesting to compare the 
correlogram for the cline based on equal edge lengths (not shown) with the 
results just discussed. In this correlogram negative autocorrelations at distance 
class 9 give way to nonsignificant autocorrelations near expectation for the 
highest distance classes. This is so because of the quite unequal length of the 
Gabriel edges in different parts of the graph. One can traverse the area from 
north-east to south-west using less edges than in an east-west transect straight 
across the northern boundary (see Fig. 7). Thus some like and unlike localities 
are the same number of edges apart and cancel each other at the higher 
distances. 

The depression, which is nothing but a circular cline, shows a correrogram 
quite similar to that of the regular cline, with the lowest negative autocorrela- 
tion at 1400 km, the approximate radius of the depression. Beyond 1600 km 
an appreciable number of the comparisons will be between localities on 
opposite sides of the periphery of the area, which in the depression pattern are 
quite similar to each other and cancel other comparisons between divergent 
locality pairs, one from the centre, the other from the extreme periphery. In 
the double depression the pattern is on the whole quite similar to that of the 
depression. The intrusion pattern shows positive autocorrelation at distances up 
to  400 km because of the homogeneity within the compact south-western 
region. There is a significant negative autocorrelation at 600 km. Travel over 
that distance will in most cases lead from one region to another one differing 
greatly in mean. 

The crazy quilt pattern surprisingly yields no significant autocorrelations at 
all. Although it starts out with a negative value of I ,  it does not show the 
expected alternation between high and low values as distance increases, because 
of weak correspondence between number of edges and geographic distance for 
different portions of the graph. Had the crazy quilt generating mechanism been 
distancedependent in the first place, i.e. had the means been unlike each other 
every 200 km, then a tendency for regular oscillations between positive and 
negative autocorrelations would have been evident in the correlogram. The 
correlogram based on equal edge lengths (not shown) yields a highly significant 
negative autocorrelation between localities one edge length apart, while 
yielding nonsignificant autocorrelations for all greater edge length. This latter 
phenomenon can be explained by the irregularity of the graph. At distances 
greater than one edge length the relation between two means cannot be 
predicted on the average. In fact, in an irregular grid such as that of Fig. 7, it is 
generally impossible to alternate high and low values perfectly. 

For obvious reasons, geographic variation patterns of actual data are less 
readily interpreted than the artificial patterns just discussed. We shall consider 
two examples from the snail Helix aspersa illustrated earlier. Distance-corrected 
correlograms for the allozyme frequencies of Lap1 allele 1 and Mdh-1 in 
Block B are shown in Fig. 5B. While Lap-1 allele 1 shows positive autocorrela- 
tion at 20 m and significant negative autocorrelation at 60, 80 and 100 m, no 
significant autocorrelation is exhibited by Mdh-1. How are these differences in 
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Figure9. Maps of two allozyme frequencies, Lap1 a l lde l ,  and Mdh-1, in BlockB. 
Statistically homogeneous (maximally acceptable) and geographically-connected localities 
defined by the method of Sokal & Riska (in prep.) are indicated by heavy lines surrounding 
the colonies. Single colonies not surrounded by heavy lines would reject as statistically 
heterogeneous if any neighbouring locality were added to them or would cause heterogeneity 
by being added to any existing cluster of localities. The maps are the same as shown in Fig. 4. 
Numbers next to clusters or single localities indicate mean or single allmyme frequencies, 
respectively. 

correlogram profiles reflected in terms of differences of the geographic 
variation patterns? The characters have been mapped in Fig. 9 by applying a 
technique developed by Sokal & Riska (in prep.). The variables mapped onto 
the localities are subjected to singlelinkage clustering (Sneath & Sokal, 197 3) 
based on distances between the variables (in this case the gene frequencies) 
with the restriction that members of a cluster must be geographically 
connected-in our case Gabriel-connected. As the clustering proceeds 
agglomeratively, the partition imposed on the set of localities is tested for 
statistical homogeneity within clusters and for heterogeneity among clusters by 
a simultaneous test procedure-in this case by the G-test for homogeneity of 
proportions (Gabriel & Sokal, 1969; Sokal & Rohlf, 1969). In the solution 
illustrated in Fig. 9 each subset of means is maximally acceptable-addition of 
the variable for any other contiguous locality would result in a significantly 
heterogeneous subset. The method thus results in a unique partition of the set 
of localities into geographically connected and statistically acceptable (homo- 
geneous) parts. 

For Lap-1 allele 1 the allozyme frequencies are grouped into three “patches” 
that indicate a high in the east and north and a decline to the south-west. The 
geographic variation pattern of Mdh-1 looks quite dissimilar-four patches with 
two or more colonies and four singleton colonies without any clear restriction 
for high or low frequencies to any one geographic area. Two pairs of clusters 
(25, 32, 37) with (26, 39, 40), and (27, 30) with (23, 33, 34, 35) do not differ 
appreciably in mean frequency of Mdh-1. They apparently became established 
separately through the clustering of pairs of colonies similar in gene frequency, 
but became too heterogeneous to permit their coalescing, since each is a 
maximally acceptable subset. Furthermore, there are a number of unclustered 
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single colonies which, were they to join neighbouring means or parts, would 
cause these to be heterogeneous. Thus, including the singletons, there are 
actually nine parts in the Mdh-1 map in Fig. 9. 

The reasons for the differences in correlograms are now apparent. Because of 
the singletons, the patches in Mdh-1 are somewhat smaller. Far fewer of the 
gene frequencies up to 20 m apart are within patches, hence similar, for Mdh-1 
than for Lap-1 allele 1. Also, because the heterogeneous singletons in Mdh-1 are 
interspersed among the patches, an appreciable proportion of colony pairs up 
to  20 m apart show marked differences in gene frequencies, neutralizing the 
contribution toward positive autocorrelation from pairs of colonies within 
homogeneous patches. However, for Lap-1 allele 1 far fewer neighbouring 
colonies (up to 20 m apart) are dissimilar. While the negative autocorrelation of 
Lap-1 allele 1 a t  distances of 60 through 100 m arises because pairs of colonies 
at these distances are predominantly members of patches differing considerably 
in mean gene frequency, this is not so for Mdh-1 which has patches with similar 
means. At any distance class in Mdh-1, apparently, the contribution to positive 
autocorrelation by pairs of like means is counteracted by unlike means in the 
same distance class. 

We have carefully examined maps partitioned in the manner of Sokal & 
Riska (in preparation) for all the Helix data reported by Selander & Kaufman 
(1975), for the artificial patterns, and for other studies, and we were able to 
explain the correspondence between the maps and their correlograms in the 
manner just indicated. The correlogram profiles will be affected by the nature 
and complexity of the response surface of the variable over the geographic 
plane. In the case of a sloping surface, the result depends on whether the high 
or low point is located at the margin of the area or somewhere within its 
confines. The former case leads to a monotonically declining correlogram, the 
latter case to some recursion at the higher distances with the details depending 
on the configuration of the surface. When there are areas of homogeneity 
(patches), the correlogram will reflect the distribution of patch sizes and the 
relative levels of the means pertaining to each patch. As we have seen, patches 
with considerable internal heterogeneity will not give clearly defined correlo- 
grams, whereas homogeneous patches will do so. The spatial arrangement of 
patches will also determine the correlogram. If high and low patches alternate, 
the results will be quite different from an arrangement in which the most 
divergent patches are farthest apart. Attention should be drawn to the 
swamping of relations in a large study. Clear cut differences, for example, 
between two divergent and adjacent homogeneous patches may be diluted by 
more ambiguous relations of other patches elsewhere on a map. 

Other approaches 
An alternative to thinking of character surfaces in terms of patches is the 

following: 
Imagine throwing a stick of a specific length over and over again at a certain 

study area, while noting the values of a variate at the points at which the ends 
of the stick land. Affirming spatial autocorrelation is tantamount to saying that 
the values at the ends of the stick are usually like each other, or  that they are 
usually different. Suppose a study area is composed of squares arranged in a 
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checkerboard fashion, with the colours of the squares alternating from black to 
white. Brief reflection will reveal that the stick length likely to yield the most 
negative autocorrelation is that which is roughly the length of one square, while 
a stick two squares long will yield positive autocorrelation, and so on. This 
shows that in this case the expected correlogram alternates from positive to 
negative, with wavelength equal to  average patch diameter. This approach is 
related to Pielou’s (1974) concept of “grain”. 

Another approach to investigating the complex nature of the surface is that 
of Royaltey et al. (1975), examining the distribution of edge lengths in the 
Gabriel graph. Although we are unable to  show it analytically we believe the 
two approaches to  be closely related. A rejection of the null hypothesis of 
random pattern by the method of Royaltey, Astrachan and Sokal is generally 
associated with significant autocorrelation at some distance class. Of 18 
patterns in the geographic variation study of Helix aspersa analysed by Selander 
& Kaufman (1975) and in this paper, only 4 lacked significant patterns by 
either criterion, 7 were significant by the Royaltey-Astrachan-Sokal test, as 
well as in their correlograms, 1 was significant by the former and not by the 
latter, while 6 were significant by autocorrelation only. Corresponding figures 
for a study of 36 morphometric variables in the aphid Pemphigus populitrans- 
versus (Sokal & Riska, unpubl.) are 3, 21, 1, and 11. Thus autocorrelation 
seems to be a finer tool for picking up patterns, whereas the Royaltey- 
Astrachan-Soh1 test seems to be a more conservative test for departure from 
randomness. 

More refined methods for summarizing the pattern of the geographic 
variation on a surface may be developed in time. The techniques of Matheron 
(1971) may well be one fruitful approach. In the meantime, correlograms do 
furnish an informative and heuristic summation of the pattern. As this paper 
went to press, we learned of an application of spatial autocorrelation analysis 
to marine ecological data by Jumars, Thistle & Jones (1977). 

SUMMARY 

Spatial autocorrelation analysis is a technique that can be applied to 
nominal, ordinal, or interval variables mapped onto a geographic area. I t  tests 
whether the observed value of a variable at one locality is independent of values 
of the variable at neighbouring localities. The methods of spatial autocorrela- 
tion analysis recently summarized by Cliff & Ord (1973) are explained in some 
detail. The computation of two autocorrelation coefficients, join counts for 
nominal data, and Moran’s coefficient I for intervaI data, is illustrated, as is the 
computation of significance tests. The method is extended to include the 
computations of correlograms for spatial autocorrelation. These diagrams show 
the autocorrelation coefficient as a function of distance between pairs of 
localities being considered. They summarize the patterns of geographic 
variation as exhibited by the response surface of any given variable. 

The above methods of autocorrelation analysis are applied to a study of 
microgeographic variation of allozyme frequencies in the snail Helix aspersa. 
Differences in the distributions of the gene frequencies are found in two city 
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blocks where these snails were collected, and an attempt is made to  interpret 
the nature and origin of these differences. 

The inferences that can be drawn from autocorrelation profiles about the 
structure of response surfaces are discussed in some detail and illustrated by 
analyses of correlograms of artificially generated variation patterns. Size, 
homogeneity, and arrangement of patches are reflected in correlogram profiles. 
Computational formulae, expected values and standard errors are furnished in 
two appendices. 
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APPENDIX A 

Computational formulas, expected values and variances of autocorrelation 
statistics 

Nominal data (for k 2 2 classes or types) 

For localities of the same type: 
Join counts 

Number of rr joins = f c w i j ( r r ) i j  
4 

For localities of different types: 

Number of rs joins = f CWij(rS)ij 
'I 

Total number of joins between localities of different types: 
Sum of joins between all possible pairs rs where 

r =  1 . .  . k - l , a n d s = r + l , .  . . kfork types= 

k - 1  k 

3 C C Zwi j ( r s ) i j  
r = 1  s = r + l  ij 
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Expected values and variances: (under assumption of sampling without 
replacement) 

Joins between localities of the same type: 

Joins between localities of two different types: 

Total number of joins between localities of different types: 

k - 3  k - 2  k - 1  k 

0 c c c c nrnsntnu}. 
2w2(2n-3)]  

d2)d4) r = l  s = r + l  t = s + i  u = t + i  

Interval data (under the randomization assumption) 
The generalized Moran statistic is 

= -(n 
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Ranked data 

nrwij(Ri -R)(Rj - R )  
9 IR = n 

W 1 (Ri - R ) 2  
i =  1 

p; = - (n - 1 ) - 1 ,  

1 
”=  5W2(n-1)2(n + 1) [n(n-1)(5n + 6)S1-(5n + 7 ) ( n S 2 - 3 W 2 ) ] - ( n - 1 ) - 2 .  

Explanation of symbols: 
Nominal data: wij = weight given to join (edge) between localities i and j .  w9 

need not equal wji . 
I= summation over all i (1 . . . n) and j (1 . . . n), i # j. That is, summation 

of the full n x n matrix except for diagonal entries. 
(rr& will equal 1 when localities i and i are both type r, and will equal zero 
otherwise. 
(rs)i, will equal 1 when locality i is r and j is s, or when i is s and is r. I t  will 
equal zero otherwise. 
p’, = expected value (first moment) 
p2 = variance (second moment about the mean) 
W = z w i j ,  the sum of the matrix of weights (except for the diagonal entries, 

if any). 

ij 

i j  

s1= i E ( W i j  + Wj$ 
ij 
n 

S2 = c (wi. + ~ . i ) ~  where wi. and w.i are sums of the ith row and ith column 
i =  1 

of the weight matrix, respectively. 
n = number of localities in study. 

n(n - I ) ,  n(2) = 

d3) = n(n - l ) (n - 2), and so forth. 
n,, ny n,, nu = number of localities of types r, s. and t or u, there being k 
types in all. 

Interval data: As above and zi = Xi - x where Xi is the value of variable X for 
locality i and X is the mean of X for all localities. 

, a sample coefficient of kurtosis. 
i =  1 

Ranked data: 

Ri = rank of locality i for the variable under study. 
R = mean of the ranks = (n + 1)/2.  

Note: The formulas are extracted in slightly modified form from a more 
extensive list in Cliff & Ord (1973). 
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APPENDIX B 

Small-sample corrections 
The statistics discussed in Appendix A are asymptotically normal, but 

deviate from normality at small sample sizes. As a result of Monte Carlo 
simulations, Cliff & Ord ( 197 1 ,  197 3) suggest ad hoc small-sample corrections 
to be used when 10 < n < 50. Several general points are relevant to  these 
corrections : 

(1) They are not recommended when one locality figures in more than 

(2) For n < 8, Cliff & Ord recommend explicitly working out the 

( 3 )  The corrections are only valid in the tails of the distribution. That is, 

(4) The use of general rather than binary weights speeds the approach to 

about 30% of the joins. 

distributicjn of the statistic under random permutations. 

they are not appropriate for a > 0.10 in each tail. 

nor malit y. 

Nominal data 
Binary nominal data are viewed by Cliff & Ord as the “worst case” for small 

samples, since the distribution is necessarily concentrated at a few points, and 
is thus non-normal. These authors have not simulated cases with k >  3 types 
(colours), but the correction for like types presumably remains the same. 

In the formulas that follow symbols for moments (pi and p 2  ) will always 
relate to the specified combination of types; the symbols have therefore not 
been subscripted for these combinations. 

Localities of  the same type: (under assumption of sampling without 
replacement) 

This correction is appropriate when 0.2 <n,/n < 0.8 and works better when 
n,/n is above 0.5. Thus the common, rather than the rare types, should be 
tested. First compute degrees of freedom as 

The critical join count for rr joins is 

For the lower tail employ x:-qiul, for the upper tail x’(y, [ u ~ .  

When v is large (v > 100) the following expression employing the normal 
approximation to the x2 distribution is equivalent 

v = 2(p; ) 2 / p z .  

rr, = P2 X2[ul m.4 * 

Localities of different types: (this approximation is for the case of k = 2 types 
only) 

Testing the upper tail, set k, = 1 --. 
8’ 
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Testing the lower tail: 

in sampling with replacement, set k, = 2[ 1 -,/IDZl, 
in sampling without replacement, set k,  = 3 [ 1 -a] . 

Then compute the critical value for the number of rs joins 

rs, = t,i-lpi + 11'1 - k,. 

Interval data (for Moran's coefficient I )  

binary weight matrix this equals 4 W. 
Compute A ,  the number of edges in the connecting graph. In a symmetrical 

Compute R = 2(fi-l) /f i ,  

Q = 2(fi- l ) ( q -  l)/n. 

If R < A / n  < Q set k,  = ( l0a) t  for one-tailed testing, or k, = (5cw)f for 
two-tailed testing. 

Otherwise set k, = 1. 

Compute critical value of I as follows 

Note that when k,  = 1 the above equation evaluates the critical value 
assuming a normal distribution of the statistic. 

Notes: Except for symbols defined above, the symbols employed in this 
table are explained at the end of Appendix A. We have used ?,[,I above to 
indicate a normal deviate or Student's distribution for infinite degrees of 
freedom which amounts to the same thing. The formulas given here are those 
recommended by Cliff & Ord (1973) for the most common cases. Readers 
carrying out tests on small data sets and those obtaining results with borderline 
significance are urged to consult the original reference for various comments 
and suggestions for alternative tests. 


