
A review of statistical methods in the analysis of 
data arising from observer reliability studies (Part 11) * 

by J. RICHARD LANDIS** and GARY G. KOCH* ** 

4 Methods proposed for nominal and ordinal data 

Many research designs in studies of observer reliability give rise to categorical data 
via nomial scales(e.g., states of mental health such as normal, neurosis, and depression) 
or ordinal scales (e.g., stages of disease such as mild, moderate, and severe). In these 
situations, each of the d observers classifies each subject once into exactly one of a 
fixed set of L categories. As such, these designs are directly analogous to those giving 
rise to the standard ANOVA models in (2.1), (2.5), and (2.10) when the measurement 
scale is assumed to be quantitative. However, standard ANOVA procedures are 
rarely appropriate for the analysis of nominal and ordinal scaled data. As a result, 
these data are usually cross-classified into an Ld contingency table, and can then be 
analyzed by techniques developed for multidimensional contingency tables. 

4.1 

When each of d = 2 observers separately classifies n subjects on an L-point scale, 
the resulting data can be summarized in the L x L table of observed proportions 
shown in Table 6. In  this case, ptr .  is the proportion of subjects classified into category 
k by observer 1 and into category k’ by observer 2. Moreover, the diagonal elements 
{ p k k }  for k =  1,2, ..., L represent the proportions of the subjects classified into each 
of the respective agreement category combinations. 

Various indices which characterize the association between the row and column 
classifications have been proposed for L x L contingency tables. For example KENDALL 
and STUART [57] discussed a coefficient of contingency due to Pearson denoted by 

Measures of association between two observers 

p = { d - } +  
n + x  

where x2  is the Pearson chi-square statistic for independence. This P coefficient ranges 
from 0 (for complete independence) to an upper limit of ( (L- l ) /L)*  (for perfect 
agreement) between the two observers. As such, the upper limit of this coefficient 
depends on the number of categories in the measurement scale. 

In order to avoid this undesirable scale-dependency property of P in (4.1), 
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Table 6. Observed proportions resulting from two observers classifying n subjects 
on an L-point scale 

1 
observer 1 2 

L 

PI1 P I 2  . . . P I L  P 1 .  
P 2 1  P 2 2  * .  . P 2 L  P 2 .  

PL1  PL2 . * .  PLL P L .  

TSCHUPROW proposed an alternative function of x 2  for the L x L table, which is 
given in KENDALL and STUART [57] as 

T ranges from 0 (for complete independence) to + 1 (for perfect agreement) between 
the two observers. In this regard, T is a natural extension of 9 in (3.2), since T = 
when L = 2. 

4.2 Measures of agreement between two observers 

As discussed in Section 3.2, agreement is a special case of association which reflects 
the extent to which observers classify a given subject identically into the same category. 
For this purpose, the most elementary index of agreement is based on the proportion 
of the subjects classified into the same category by the two observers, and can be 
estimated by 

which is a direct extension of the index of crude agreement in (3.3). Under the 
baseline constraints of complete independence between ratings by the two observers, 
the expected agreement proportion corresponding to (4.3) is estimated by 

Moreover, COHEN [2 11 proposed a standardized coefficient of agreement for nominal 
scales in terms of (4.3) and (4.4) which can be estimated by 
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As defined here, R has the same properties as the general index M(I)  of (3.8), and 
simplifies to the expression in (3.10) when L = 2. 

In a later paper, COHEN [22] introduced a modified form of kappa which allows 
for scaled disagreement or partial credit. Since certain patterns of disagreement 
between the observers may by more important than others, he proposed using a set 
of weights { W k k ’ }  for k ,  k’ = 1, 2, . .., L, which reflect the contribution of each cell in 
Table 6 to the measure of agreement. For example, in evaluating the reliability of a 
decision tree technique used to classify psychiatric patients into one of four groups, 
FELDMAN et al. [28] suggested weights which reflected the relative merits of each of 
the disagreements in diagnosis. In particular, they used weights which implied that it 
was less desirable to misclassify schizophrenia as excited or affective disorder than 
as a character disorder. Accordingly, in order to measure agreement with respect to 
a specified set of weights ( w k k ’ } ,  COHEN [22] defined a weighted kappa measure 
which is estimated by 

where 

(4.6) 

(4.7) 

In most cases, 0 < W k k ,  6 1 for all k ,  k ’ ,  so that p i  is a weighted observed proportion 
of agreement, and p:  is the corresponding weighted proportion of agreement expected 
under the constraints of total independence. Furthermore, by choosing the weights 
in (4.8), 

(4.8) 

I?, in (4.6) simplifies to R in (4.5). 
EVERITT [26] derived the means and variances of both kappa and weighted kappa; 

but as indicated by FLEISS et al. [33], the standard errors given by COHEN [21, 221 
and EVERITT [26] were derived under the assumptions of independence and fixed 
marginals, rather than under the single constraint of a fixed number of subjects, n. 
Accordingly, FLEISS et al. [33] calculated the unconditional large sample variance 
of weighted kappa as 

2 
n 

var(R,) = { i i P k k ’ [ W k k ’ ( l - P : ) - ( W k .  + W . k ’ ) ( l - P : ) l  
n ( i -p:)4 k = l k ’ = l  

1 -<pip: - 2P: + Pi)’ 

where 
L L 

(4.9) 

(4.10) 
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This expression in (4.9) reduces to the appropriate estimated variance of kappa in 
(4.5) by substituting the weights given in (4.8). 

Agreement statistics such as weighted kappa in (4.6) can also be generated for 
ordinal scale data by assigning appropriate weights to each of the off-diagonal cells 
to reflect the degree of disagreement. One such selection of weights recommended 
by CICCHETTI [ 17, 181 is given by 

(4.11) 

Using the weights in (4.1 l), the Cicchetti test statistic for the significance of observer 
agreement is 

where 

(4.12) 

(4.13) 

Moreover, weights such as those in (4.1 1) can be used to generate the corresponding 
weighted kappa statistics in (4.6). 

In situations where the L categories are not only ordinally scaled, but can be 
assumed to be equally spaced along some underlying continuum, discrete numerical 
integers such as 1,2, . . ., L can be assigned to the respective classes. In this context, 
by choosing the weights to be 

w,. = 1 -(k-k’)2,  (4.14) 

COHEN [22] has shown that under observed marginal symmetry, weighted kappa in 
(4.6) is precisely equal to the product-moment correlation coefficient calculated on 
the integer-valued categories. Furthermore, FLEW and COHEN [36] have shown that 
if the random effects model of (2.5) is assumed to hold for the data scored as 1,2, . . ., L 
by each of the two observers, the estimate of the intraclass correlation coefficient Q~ 
in (2.9) is “asymptotically equal to” R ,  in (4.6) using the weights in (4.14). 

Various other procedures involving the main diagonal of a square contingency 
table have been developed. For example, GOODMAN and KRUSKAL [45] proposed a 
measure of agreement of the type M(Z) in (3.8) based upon optimal prediction 
which can be estimated by 

(4.15) 
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where pM . and p. are the two marginal proportions corresponding to a hypothe- 
sized modal class. As defined here, I, ranges from - 1 (when all the diagonal elements 
are zero and pM. + P . ~  = 1) to + 1 (when both observers are in complete agreement). 
In CHEN et al. [16], MANTEL and CRITTENDEN proposed a chi-square statistic with 
1 d.f. as a test of agreement on the main diagonal cells. In another study reported by 
SPIERS and QUADE [87], the expected value for the (k, k')-th cell was considered to 
be a weighted average of the expected value under independence and the expected 
value with the diagonals inflated to the greatest possible extent. Using the method of 
minimum x2 ,  estimates of these weights were derived, and then a test of independence 
was performed. LIGHT [66] has also recommended a chi-square statistic that is 
sensitive to the pattern of agreement on the main diagonal of the L x L table for two 
observers. Using the expected values based on independence and combining all the 
off-diagonal cells, his statistic x i  is given by 

which is asymptotically chi-square with L degrees of freedom under the hypothesis 
of independence. Here it can be noted that R of (4.5) may be essentially zero, while x: 
may be large and significantly different from zero. However, if xi is near zero, le will 
be necessarily near zero. As such, xi reflects deviations from the expected pattern 
on the diagonal, while R reflects the overall level of agreement. 

4.3 

Overall measures of inter-observer agreement have also been developed for the 
situation where each of d > 2 observers individually classify n subjects on an L-point 
scale. Moreover, most of these developments have been in terms of pairwise agree- 
ment considerations. For example, CARTWRIGHT [ 151 proposed an agreement coeffi- 
cient which can be estimated by 

Measures of agreement among many observers 

a = A n i = l  i {mi/(;)}, (4.17) 

where mi is the number of pairs of raters in agreement on the classification of the 
i-th subject. In this context, B ranges from 0 (no agreement) to + 1 (perfect agreement) 

among the observers, since the {mi }  range between 0 and for each subject. Thus, 

for dichotomous data, ff can be regarded as a complementary analogue to B in 
(3.19). Also, for nominal or ordinal scaled data, bl is identical to p o  in (4.3) when 
d = 2. In this respect, ff in (4.17) is essentially an uncorrected index of agreement, 
since the expected agreement calculated under such baseline constraints as total 
independence is not considered. 

For this purpose, FLEISS [34] developed an extension of kappa in (4.5) for more 

(3 
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than two raters which does account for expected agreement under the baseline 
constraints of pairwise independence and marginal homogeneity. Specifically, he 
proposed an estimate of the overall observed proportion of agreement as 

1 "  
i = l  k = l  

(4.18) 

where l ( i k  is the number of assignments of the i-th subject to the k-th category by the 
d observers. In this regard, Po is identically equal to B in (4.17). Furthermore, his 
estimate of expected agreement can be written as 

where 
1 n  

(4.19) 

(4.20) 

is the overall proportion of assignments to the k-th category. Then in terms of (4.18) 
and (4.19) his extension of kappa to the case involving d > 2 observers can be 
estimated by 

(4.21) 

Moreover, in certain situations it may be useful to partition an overall measure of 
agreement into component parts which reflect agreement for each of the L categories. 
For this purpose, FLEW [34] showed that k ( d )  in (4.21) can be expressed alternatively 
as 

where 

k ( d )  ( k ) - Q k - q k  - - for k =  1,2, ..., L 
1-q, 

(4.22) 

(4.23) 

are separate estimates of inter-observer agreement for each of the L categories. In 
this regard, $k  in (4.23) is given by 

(4.24) 

which is an estimate of the conditional probability of agreement between two 
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randomly selected observers on the assignment of a particular subject into the k-th 
category, given that the first observer classified the subject into the k-th category. 
As such, f?(d) in (4.22) is shown to be a weighted average of the conditional agreement 
statistics in (4.23). 

Similarly, LIGHT [66] has developed analogous statistics to (4.21) and (4.23) from 
a somewhat different point of view. In particular, these K-type statistics involve pair- 
wise agreement considerations based on fixed marginal distributions. 

5 Measures of agreement with a standard 

All the measures of reliability and the tests for marginal homogeneity discussed in the 
previous sections reflect the extent to which the observers agree among themselves 
on the classification of the same set of subjects. In this regard, since none of these 
measures of agreement involve comparisons with a “standard” or “correct” classifi- 
cation for each subject, they simply provide estimates for a type of internal consistency 
among the observers. Moreover, the absence of a known “true value” is precisely 
the motivation for using multiple observers in the measurement process. 

Alternatively, in some situations, one of the observers may be the standard whose 
classification of the subjects is considered to be “correct”. For example, in physical 
health exams the classifications by an expert diagnostician may be used as a standard 
for determining the validity of the diagnoses by a group of interns or medical students. 
Similarly, new clinical diagnostic procedures may be tested by comparing their results 
with those of a standard laboratory test as discussed in BENNETT [9]. Finally, “true 
values” may be created by using a separate panel of experts to provide a standard 
classification for each subject. Then the performance of other observers can be 
evaluated by comparing their classifications with the expert panel decisions. 

The measurement of observer reliability within the context of a known standard 
involves issues which are quite different from those discussed previously. In particular, 
the major emphasis is given to comparisons between the observers and the standard, 
rather than to measures of agreement among the observers themselves. When the 
data are assumed to be quantitative, appropriate models can be readily obtained as 
special cases of the ANOVA models given previously. For example, by subtracting 
the “true values” from the observed values, the sources of variation for the resulting 
differences can be modeled by one of the ANOVA models given in Section 2. How- 
ever, for the case where the data are categorial (e.g., either dichotomous, nominal, 
or ordinal), such questions involving a standard have been evaluated by contingency 
table methods which have been developed from a somewhat different point of view 
from those discussed in Sections 3 and 4. 

In particular, much work has been done for the dichotomous case involving a 
standard as reviewed recently by FEINSTEIN [27]. For this purpose, a variety of 
reliability and validity measures have been proposed in terms of the proportions 
from an appropriate 2 x 2 table. In this context, the n subjects are labeled as positive 
(+) or negative (-1 by each of the measurement procedures, and then the resulting 
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Table 7. Classification by standard and test procedure on dichotomous scale 

+ .n11 n12 

n2 1 n22 

standard 
- 

test 
I +  - 1 total 

n1. 

n2. 

data are cross-classified as shown in Table 7. YERUSHALMY [91] introduced the term 
sensitivity to denote the proportion of “true positives”, t, and the term specificity to 
denote the proportion of “true negatives**, q, associated with the test procedure. 
Using the notation in Table 7, the estimates of these quantities are given by 

In both cases, these estimates range from 0 (for no agreement) to + 1 (for perfect 
agreement) with the standard. Moreover, these statistics provide a separate estimate 
of agreement with the standard for the “positives” and for the “negatives”. However, 
as indicated by FLEISS [37] and FEINSTEIN [27], if the test procedure is to be used for 
predictive purposes, such as a screening device, alternative reliability measures which 
indicate the positive accuracy, e+, and the negative accuracy, e-, are required. In 
this regard, 

p + = %  
n.  1 

reflects the “true positive rate” of the test, and 

n22 

n.2 
p -  I- (5.3) 

reflects the “true negative rate” of the test. In addition, these authors discussed the 
effect of the prevalence rate of the condition under investigation on the accuracy 
rates in (5.2) and (5.3). Otherwise, an overall estimate of validity for the test can be 
obtained from 

which is directly analogous to the crude index of agreement in (3.3). Finally, BENNETT 
[9] showed how his results obtained in BENNEI-T [a, 71 could be used to compare the 
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sensitivity, specificity, and predictive value of several diagnostic procedures used on 
the same set of n subjects. These involve considerations directly analogous to the 
multiple observer case in Section 3.5. 

More generally, when the classification scale is nominal or ordinal with L > 2 
categories, the notions of sensitivity, specificity, and predictive value become much 
more complex to formulate, as discussed in FE~NSTEIN [27]. However, each observer 
or test procedure can be compared with the standard in terms of a measure of validity 
directly analogous to (4.3) as an extension of (5.4). In addition to this, LIGHT [66] 
proposed a test of the joint agreement of the d observers with a standard in terms of 
an overall sum of the individual crude indices of agreement between each observer 
and the standard. 

6 Some concluding remarks 

Because the observer has been shown to be an important source of measurement 
error in data acquisition, reliability studies are conducted in experimental or survey 
situations to assess the extent of the observer variability. In all of these cases, the 
most common research design for a univariate response can be regarded as involving 
samples from s sub-populations of subjects on whom the response variable is measured 
separately by d observers. In this regard, observer reliability experiments or surveys 
involve research designs which produce repeated measurement data. 

The questions of substantive interest in these repeated measurement situations are 
as follows: 

1. Are there any differences among the sub-populations with respect to the distribu- 
tion of the responses to the d observers? 

2. Are there any differences among the distributions of responses to the d observers 
within each of the respective sub-populations? 

3. Are there any differences among the sub-populations with respect to differences 
among the distributions of responses to the d observers? In other words, is there 
any observer x sub-population interaction? 

4. Are there any differences among the sub-populations with respect to the overall 
agreement of the d observers on individual subjects? 

5. Are there any differences in agreement among certain subsets of observers within 
each of the respective sub-populations? 

As stated in KOCH et al. [63], questions (I)+) are directly analogous to the hypo- 
theses of “no whole-plot effects”, “no split-plot effects”, and “no whole-plot by split- 
plot interaction” in standard split-plot experiments. In this context, question (1) 
addresses differences among the s sub-populations, question (2) involves the issue 
of inter-observer bias, and question (3) is concerned with the observer x sub-popula- 
tion interaction. In contrast to overall differences, questions ( 4 x 5 )  address the issue 
of agreement on a subject-to-subject basis. Here question (4) involves differences in 
measures of inter-observer agreement among the s sub-populations, and question ( 5 )  
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is concerned with differences in pairwise agreement or agreement among subsets of 
the d observers. 

When the data arising from observer reliability studies are quantitative measure- 
ments, tests for observer bias and measures of observer agreement are usually obtain- 
ed from ANOVA models as discussed in Section 2. These models permit estimation 
of intraclass correlation coefficients for measures of agreement, and significance 
testing of the observer effects for the hypothesis of “no inter-observer bias”. Even 
though assumptions of normality may not be warranted in certain cases, the ANOVA 
procedure discussed in ANDERSON and BANCROFT [I], SCHEFF~ [81], and SEARLE [84], 
and the SSP procedure in KOCH [59,60] still permit the estimation of the appropriate 
components of variance and the reliability coefficients used in assessing observer 
variability. 

As reviewed in Sections 3 and 4, a wide variety of estimation and testing procedures 
have been developed to assess observer variability when the data are categorical. In 
these situations the response variable is classified into L nominal (or possibly ordinal) 
multinomial classes. Thus, the conceptual formulation of questions (1)-(5) may be 
undertaken in terms of an underlying (s x r )  contingency table where r = Ld represents 
the number of possible multivariate response profiles. Within this context, the first- 
order marginal distributions of response for each of the d observers contain most of 
the relevant information for dealing with questions (1H3). Furthermore, functions 
of the diagonal cells of various subtables provide the information for estimating and 
testing the significance of the agreement measures on a subject-to-subject basis. 
These quantities which reflect the extent to which the observers agree among them- 
selves can be expressed as functions of the observed proportions obtained from the 
underlying contingency table. Accordingly, they can be analyzed within the scope of 
the general methodology for multivariate categorical data discussed in GRIZZLE et al. 
[47] (referred to as the GSK procedure). The GSK approach essentially involves a 
two-stage procedure: 

i. the construction of the appropriate functions of the observed proportions which 
are directed at the relationships under investigation by a sequence of matrix 
formulations ; 

ii. the construction of test statistics for hypotheses involving these functions and the 
estimation of corresponding model parameters via weighted least squares com- 
putational algorithms. 

For example, the GSK formulation for hypotheses of first-order marginal homo- 
geneity in KWH and REINFURT [61] and KOCH et al. [63] can be used for tests 
concerning inter-observer bias. Similarly, extensions of the GSK procedures discussed 
in FORTHOFER and KOCH [43] can be used to estimate and to model generalized 
kappa-type statistics for measures of inter-observer agreement. These topics and 
other applications of the GSK methodology to the multidimensional agreement 
problem are given in LANDIS [65]. 

Another approach to the analysis of multidimensional contingency tables is based 
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on maximum likelihood estimation within the framework of log-linear models as 
presented in BISHOP et al. [12]. Much of the research in this direction has been 
concerned with the analysis of multivariate relationships, and thus pertains to  
generalized measures of association. Otherwise, BISHOP et al. [ I21 have discussed 
agreement in two-way tables as a special case of association; and LIN [67] has applied 
maximum likelihood methods to more general multidimensional agreement problems. 
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