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The dynamics of a panel forced by transverse loads and undergoing limit cycle os-
cillations and chaos is investigated. The nonlinear von Karman plate theory is used to
obtain a model for healthy and damaged panels. Damage is modeled by a loss of stiffness
in a portion of the plate. The presence of low levels of damage is identified by using
an external nonlinear excitation and analyzing the attractor of the resulting dynamics in
state space. Most of the current studies of such problems are based on linear theories and
linear structures. In contrast, the results presented are obtained by using and enhanc-
ing nonlinear and chaotic dynamics, and have the advantage of an increased accuracy in
detecting damage and monitoring structural health.

Nomenclature v Poisson’s ratio

b panel width p panel material density
Ce external damping (dimensional) T time (nondimensional)
Ck external damping (nondimensional) Ozz stress in the plate (zz component)
C; internal damping (dimensional) € strain in the plate (z2 component)
Cr internal damping (nondimensional) ¢ panel material damping constant
D coefficient characterizing the bending

stiffness of the panel (healthy) Introduction

coefficient characterizing the bending The identification of stiffness loss in a plate is needed

stiffness of the panel (damaged)

in several applications of structural health monitoring.
Young’s modulus

In such applications, the use of non-destructive evalua-
transversal force (nondimensional) tion is exploited for detecting structural changes which
panel thickness indicate damage.!>2 In general, the ability to quantify
panel length and measure structural integrity is an important ad-
axial in-plane tension load vantage as it increases safety while reducing operation
distributed transversal force (dimef}Sional) costs and lengthening the lifetime of aging assets.

axial 1'n—p1a.ne pre—lo'a('i (nondungnspnal) Identifying loss of stiffness is one of the most com-
coefﬁ(:ler‘lt characterizing stretching induced ;) means to detect damage. In turn, detecting the
bX bending ] loss of stiffness is accomplished by monitoring a fea-
s.t1ffness. redu.ctlon factor ture of the system. Vibration responses (frequency
t1n'1e (@mensmnal) . . response functions, mode shapes and natural frequen-
axial dlsplacemer}t (dlmen.s1ona1') cies), electromagnetic properties, ultrasound, are ex-
transversal V('a10c1ty (nond1mens.10na1)' amples of such features. The most common monitoring
transversal d}splacement (npnd1rgens10na1) techniques are focused on detecting the presence of
tra‘unsversal‘dmplacemer.lt (du.nensmnal) damage without any concern for its precise location,
aX}al coord%nate (nf)ndm{ensmnal) level or extent. In such approaches, the feature for a
axial coordinate (.dlmensmna,'l) . healthy and a damaged system are compared, and the
transversal coord%nate (nf)ndm%ensmnal) identified differences usually are not quantified, but
tran§versal coorc%mate (d1mens10na,l? ) they are used as a red/green indicator. More advanced
r}onhnear fac.tor in the feedback .exc_ltatlon techniques use location-dependent features and focus
linear factor in the feedback excitation on the identification of the location and/or the ex-
tent of damage. Such techniques require distributed
sensors, more comprehensive information about the
system, and a quantifiable feature whose measure may
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Fig. 1 Thermo-shielding panel subjected to inter-
nal thermal loads and interacting with an external
(supersonic) flow (¢.e. an aeroelastic system)

be correlated with the extent and location of damage.
Nevertheless, such techniques are the most advanta-
geous because they allow for the estimation of the
remaining life of the system, and are the basis for
the elimination of time-scheduled inspections, and a
transition from time-based to condition-based mainte-
nance.

Monitoring structural integrity is particularly im-
portant in aerospace applications®® where detecting
the onset and propagation/evolution of damage dur-
ing normal operation of the monitored system is highly
desired (e.g. monitoring air-frames, unmanned air ve-
hicles, the joint strike fighter, buildings and bridges).
Among the most important technical difficulties faced
by current methods are detecting incipient damage (of
small level) and taking adequate measurements dur-
ing normal operating conditions. These issues have
limited the available techniques to mostly offline de-
tection of large damage.

Most current techniques for damage detection are
vibration-based, i.e. they are focused on determin-
ing changes in the frequencies and modes of vibra-
tion."3:6-8 Other similar techniques use wavelet anal-
yses,? 12 Ritz vectors,? '3 stochastic approaches,'4 15
subspace updating,'%2® or evolutionary algorithms.?*
All these methods have been developed for monitoring
linear structures. Much fewer methods are currently
available for detecting damage in nonlinear struc-
tures. Most of the nonlinear methods are based on
system identification,?>=3! while a few use neural net-
works,?2734 or Lyapunov exponents.?*3® These non-
linear methods have important limitations, e.g. some
have difficulty tackling high-dimensional systems, oth-
ers do not predict the damage location or level, or do
not detect simultaneous damages. However, our re-
sults show that the use of nonlinearities holds a great
potential. We have observed that the changes in the
shape of attractors of the dynamics are large for non-
linear systems and may be used for damage detection.

Fig. 2 Two-dimensional panel subject to trans-
verse loading

For example, results have been obtained for a pinned-
pinned panel with structural nonlinearity depicted in
Fig. 1 and Fig. 2. These results are shown in Fig. 3 and
Fig. 4 to demonstrate that the nonlinear dynamics of
the panel excited harmonically changes dramatically
when the panel stiffness changes. A mere 4% change
leads to qualitative (large) changes in the attractor
shape as shown in Fig. 3. Moreover, the attractors
change with both the location and extent of damage.
Loss of stiffness in a portion of the plate is simulated.
A small loss of stiffness (10%) along a small extent (5%
of panel length) can clearly be distinguished in Fig. 4
from larger damage levels (50% loss) and larger dam-
age extents (20% length). In contrast, linear methods
cannot detect the damage and also model incorrectly
the panel (e.g. they predict inaccurate vibrations or
conclude that the plate breaks, as shown for example
in Fig. 4 where differences between the limit cycle os-
cillations of the nonlinear healthy panel and the linear
vibrations are observed).

The main reasons for the increased need for non-
linear vibration-based damage detection are: (4) non-
linearities are a pervasive presence in many systems
affected by damage, (i) linear techniques are not
accurate when applied to nonlinear systems because
often the presence or level of damage cannot be dis-
tinguished (by linear methods) from the nonlinear
healthy system dynamics, (#4) current damage de-
tection approaches do not take advantage of nonlin-
ear dynamics, but minimize its influence, although
nonlinear-based methods can provide greater sensitiv-
ity and performance.

Nonlinear phenomena are important not only in
large but also in small amplitude vibrations when the
strength of nonlinearity is high. An example of such
a nonlinearity often found is a crack in a plate or a
loose joint which may lead to changes in linear charac-
teristics such as mode shapes,?® stiffness and damping,
and can also induce nonlinear dynamics by introducing
Coulomb friction and allowing the opening and closing
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Fig. 3 Nonlinear systems are sensitive to para-
metric variations, and small parameter variations
lead to dramatic changes in attractor shapes

of a gap (piece-wise linear dynamics with possible im-
pacts?®2). Also, linear methods have difficulties be-
cause they are independent of the amplitude of vibra-
tion, and thus, the stiffening or softening of a healthy
system due to nonlinearities may be erroneously as-
sumed to be caused by damage. Furthermore, the
co-existence of multiple attractors (for the same un-
damaged structure under the same excitation and) for
the dynamics of a point on a panel with structural
nonlinearity excited by unsteady flow,** may be erro-
neously interpreted by linear methods as being due to
damage. Additionally, nonlinear systems are more sen-
sitive to parametric changes than linear systems (espe-
cially in the neighborhood of bifurcations*4~46). Also,
nonlinear and chaotic vibrations have been observed
in industries such as aerospace, nuclear, telecommu-
nications and sensors (wings,*”®! panels forced by
flow-induced loads,*352758 rotors,?? pipes,®062? heat
exchangers,%0:63-65 micro-systems®® %7 such as micro-
plates), and aerospace technology (thermo-shielding
panels??).

Modeling

A thermo-shielding panel mounted on a rigid sub-
structure and subjected to unsteady aerodynamic
forces is depicted in Fig. 1. A simplified model for
the panel is shown in Fig. 2. The deformation of the
panel occurs primarily in the transverse direction (Z
axis) and that deformation is considered of the order of
magnitude of the panel thickness. Although this de-
formation is small, structural nonlinearity is present
(and it is strong) due to the coupling between stretch-
ing and bending of the panel. Energy dissipation of
the aeroelastic system is also considered in the model
by accounting for internal and external damping. Fi-
nally, the damaged regions of the panel are modeled

as exhibiting a local reduction in the bending stiffness
of the panel.

Structural Model

The panel shown in Fig. 2 is modeled as a one dimen-
sional, homogeneous, isotropic, and elastic thin plate
with pinned-pinned end points. The thickness h is
considered much smaller than the length I. Also, the
width b is considered much larger than the length [.
These assumptions hold for many cases of practical
interest (such as a thermo-shielding panel). Neverthe-
less, the proposed approach for the accurate identifi-
cation of loss of stiffness may be applied equally well
to other cases, where these assumptions do not hold.
For a linear elastic isotropic material, the stress-strain
relation may be simplified (based on the assumption
above) and expressed as

E
Ogzx = l_—’ﬂezwa (1)
where E is Young’s modulus and v is Poisson’s ratio.
To model the structural nonlinearity caused by the
in-plane stretching of the panel due to bending, the
von Karman’s strain-displacement relation is used as
follows

W
ax?’

U 1 (6W>2 @

“r = 5x T2 \ax
where U is the displacement of the panel along the X-
axis, and W is the displacement of the panel along the

Z-axis. Thus, the moment acting on the cross section
of the panel (of unit width) may be expressed as

h/2 2
M = /h/2 Opz ZdZ = —DgTVZ (clockwise), (3)

where D is a coefficient characterizing the bending
stiffness of the panel, D = Eh®/12(1 — v?).

Damping in this system has two sources: (a) exter-
nal aerodynamic damping, which is due to the interac-
tion between the panel and the flow, and (b) internal
damping, which is due to the viscosity of material of
the panel. The aerodynamic damping causes energy
loss as a non-conservative force F, proportional to ve-
locity of the panel. For certain flow velocities the
aerodynamic damping may be negative, which leads
to flutter. A more elaborate aerodynamic model has
been used to account for the interaction between the
panel and the flow.43%® For simplicity, in the present
analysis we consider that the flow is stationary, and the
aerodynamic damping is simply proportional to the lo-
cal velocity of the panel. Thus, the external damping
is approximated as linear viscous damping of the form

F, = Ce 66—1/;/;
where C, is an external damping parameter. The ma-
terial damping is considered to be a viscous damping
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Fig. 4 The attractors of nonlinear systems are
sensitive to damage presence, extent, and location,
while linear models fail to model the dynamics

stress proportional to the strain rate, as follows

Oe
d _ TT
TTr — C at )

g

where ( is a material damping constant. Similar to
Eq. 3, the moment M? corresponding to the damping
stress and acting clockwise may be expressed as
h/2 W
d _ d — ,

M® = /_h/2 05, 2dZ = _016X28t’ (4)
where C; is defined as the internal damping parameter,
and may be expressed as C; = Ch_3 /12. Combining
Eq. 3 and Eq. 4, the total moment M acting clockwise
on the cross section of the unit width panel is obtained
as
o*w W (5)
0X? 0X20t’

Fig. 5 shows the equilibrium of forces acting on an
infinitesimal element of the panel (of unit width). This
equilibrium of forces may be expressed as > Fz = 0,
and may be used to obtain

dTr . .

— == — ph P(X,t).

e =—CW —ph W+ P(X,1). (6)
Also, the equilibrium of moments (3} My = 0) may
be used to obtain

M=M+M*=-D

-G

dw _dit

dX dX
Differentiating Eq. 7 with respect to X and substitut-
ing it and Eq. 5 into Eq. 6, the governing equation for
the panel dynamics may be expressed as

+T =0. (7)

DW"" 4 phW + C;W"" +

e B (8)
C.W — NW" — P(X,t) =0

Fig. 5 Forces acting on an infinitesimal element
of the panel including distributed transverse, axial,
and bending forces

where W' and W represent the spatial and time deriva-
tives of W, while p is the mass density, and P(X,t) is
the transverse distributed loading. N is the in-plane
tension load, which is assumed to be uniform along the
entire length of the panel. N may be expressed as

N =Eh

!
w+%A%WWO%L ©

where the first term (1)) is the initial axial strain, and
the second term is the stretching due to bending. Sub-
stituting Eq. 9 into Eq. 8, one obtains

DW'™ + phW +C;W" + C,W — EhnoW" (10)

l
_ ’Z—;’ /0 W’2(§)d§] W' — P(X,1) = 0.

The boundary conditions corresponding to the pinned-
pinned panel are

W(X =0,t)=0,
W(X =1,t) =0,

M(X =0,t) =0,

M(X =1,t) =0. (D

Next, Eq. 10 is nondimensionalized by introducing
the nondimensional variables z, w, and 7 defined as

z=X/l,w=W/h,and 7 = t/\/phl*/D. One obtains

w" + W+ Cr" + Cpi — Ryw"

L (12)
- S [/ w'2(§)d§] w' — F(z,7) =0,
0
where w' = Qw/0x, and ¥ = Ow/d7. The nondimen-
sional coefficients in Eq. 12 may be summarized as
follows: internal damping C1 = C;/+/phl*D, external
damping Cg = C.l?/\/phD, in-plane pre-load R, =
Ehnol? /D, coefficient characterizing the stretching in-
duced by bending S = Eh®/(2D) = 6(1 — v?), and
external excitation force F(z,7) = 1*/(hD)P(z,7).
The nondimensional boundary conditions may be ex-
pressed as

w(z =0,7) =0,w"(z =0,7) + Crv"(z = 0,7) = 0,
w(z =1,7) =0,w"(x = 1,7) + Crv"(z = 1,7) = 0.
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Fig. 6 Attractors sampled in time for a healthy panel and three damaged panels with low or high levels

of damage and various extents of damage (v = W)

Damage Model

In many damage scenarios, yielding occurs in a small
region of the panel, or a crack is initiated and propa-
gates in the material. Such types of damage lead to a
reduction of the local bending stiffness coefficient D.
The bending stiffness and Young’s modulus for a dam-
aged panel are denoted by D and E. Similar to Eq. 10,
the governing equation for the damaged region of the
panel may be expressed as

w4 phW + ;W + C,W — EhnoW"
Eh
21

. (13)
/ w2 (§)d§] W" — P(X,t) =0.
0

The same nondimensional variables z, w, and 7 defined
for the undamaged panel are used to nondimensional-
ize Eq. 13. One obtains

Sp-w™ 4 4+ Cri™ + Cpb — Sy - Ryw”” ”

- 58 [/01 w'2(€)d£] w" = F(z,7) =0,

where S, is referred to as a stiffness reduction factor,
S, = D/D, and characterizes the damage level in the
panel. No damage is present when S, equals unity,
and small values of S, indicate large damage.

Nonlinear Feedback Excitation

Most current techniques for damage detection are
based on observing the dynamics under ambient loads,
or harmonic excitation. The main advantage of using
a simple harmonic external excitation is that the ex-
citation is easy to generate and measure. However,

such an excitation is not best suited for interrogat-
ing a nonlinear system for the purpose of identifying
small changes in its parameters. Furthermore, current
vibration-based methods are designed for linear sys-
tems and minimize as much as possible the influence of
nonlinearities in the dynamics during measurements.
The method proposed herein is to exploit and enhance
(where necessary) nonlinearities. The main advantage
of using such an approach is a much enhanced sensi-
tivity. To enhance nonlinearity, we propose an active
approach where the system is actively interrogated by
applying a nonlinear feedback excitation. As opposed
to the usual external excitation, the nonlinear feedback
excitation requires the active/online measurement of
the the dynamics and a feedback loop. The specific
form of the nonlinear feedback is dependent on each
particular application. The excitation may include
quadratic, cubic or other nonlinearities.

As opposed to the usual response to a harmonic
excitation, the dynamics of the monitored system is
chaotic during the interrogation phase. For linear or
nonlinear systems undergoing limit cycle oscillations,
the attractors are curves in the state space whose
shape may be used as an indicator of damage.’® How-
ever, the sensitivity of the shape of these curves is
limited®® because their shape is not very complex. In-
creasing the geometric complexity of the attractor of
the dynamics is shown here to be a venue to increase
sensitivity. Specifically, the nonlinear feedback excita-
tion may be used to induce chaotic dynamics, which
(usually) has attractors expanded spatially.8%-7! The
increased sensitivity to parametric variation is demon-
strated in Fig. 7 where bifurcation diagrams are shown
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Fig. 7 Bifurcation diagram for varying damage
level, extent and location, showing the dramatic
changes in the dynamic attractor for varying dam-
age characteristics

for varying damage level S,, varying damage extent
(i.e. the fraction of panel where loss of stiffness occurs
- denoted by E,), and varying damage location (along
the panel). A clear distinction in the dynamics may
be observed for various levels, extents and locations of
damage. The changes revealed in the bifurcation dia-
grams are also reflected in the shape of the attractor
of the dynamics.

The active interrogation of the system leads to
changes in its dynamics so that the attractor (in state
space or in embedded coordinates) is a complex ge-
ometric shape. This shape is used as a feature in
a damage detection approach, i.e. given a (mea-
sured) attractor, damage is detected by comparing
the shape of this attractor with its undamaged shape.
This shape is complex, and its characterization is de-
signed to provide the damage level as well as location.
This approach is very different from other attractor-
based methods such as chaotic excitation. Chaotic
excitation has been used for damage detection with
success,3” 727 but the attractor variance, and Lya-
punov exponents which were used as features could
not predict the damage location, and their sensitiv-
ity was moderate. The proposed approach is radically
different. For example, when a chaotic excitation is
applied to a linear system, superposition still holds
and each frequency component of the chaotic signal is
filtered through the transfer function of the structure
as any other type of external (non-feedback) excita-
tion would be. However, in the nonlinear feedback
approach, superposition does not hold. The excitation
and the system are merged in a new system whose dy-
namics is very sensitive to changes in its parameters.

No damage

o0 Low level and small extent

o - - o Low level and moderate extent
1.00 o——= Low level and large extent —

Density of points
o o
(¢} ~
o (9]

o
o
a

watx=1/4

Fig. 8 Histogram of the point distribution in an
attractor for the dynamics of a system with low
damage and various extents

In order to make the dynamics of the panel sensi-
tive to the level, the extent, and the location of the
damage in the panel, a harmonic excitation with a
nonlinear feedback force component is applied at the
middle point of the panel. Thus, the transverse dis-
tributed loading F'(z, ) in Eq. 12 can be expressed as
F(1)0(x—1/2), where F(7) is response function of the
input force, and ¢ is the Dirac delta function.

The structural nonlinear

S [fy v (©)de] v,
the complex dynamics of the panel. However, in cases
such as a panel constrained by pinned-roller boundary
conditions, the nonlinear effect is weak. When the
structural nonlinearity and the in-plane pre-load are
small, the panel dynamics subjected to a harmonic
excitation force leads to harmonic oscillation. To
enhance the sensitivity of these vibrations to para-
metric variations, a nonlinear feedback force is used
in combination with the harmonic force. As a result,
the input force may be expressed as

term in Eq. 12,

plays an important role in

F(r) = Fysinwr  + Aw(1/2)%w"”

+ yw"(1/2),

(1/2) (15)

where w(1/2) and w"(1/2) are the displacement and
the curvature at the middle point of the panel, and A
and ~y are control parameters. The form of the nonlin-
ear feedback force i 1s drawn from the form of two terms
in Eq. 12, S [fo df] w' and R,w", correspond-
ing to structural nonhnearlty and axial pre-load. They

are designed to increase the nonlinearity and enhance
the instability in the linear panel.
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Fig. 9 Histogram of the point distribution in an
attractor for the dynamics of a system with high
damage and various extents

Results

To investigate the changes in the shape of attractors
for various parametric values, we investigate first the
local distribution of points in an attractor.

Fig. 6 shows the attractors of the dynamics sampled
in time and obtained for a healthy panel and damaged
panels with low and high levels of damage and various
damage extents. The low level of damage is a 10%
loss of stiffness (i.e. S, = 0.9), while the high level of
damage is a 50% loss of stifness (i.e. S, = 0.5). Three
values are considered for the extent of the damage:
small extent (1.25% of panel length), moderate extent
(5% of panel length), and large extent (14% of panel
length). The first key result demonstrated in Fig. 6
is that the attractor of the dynamics changes signif-
icantly when the extent of damage changes. Fig. 6
shows also the attractors obtained for panels with a
high level of damage and various damage extents. The
attractor undergoes geometric changes when paramet-
ric variations occur, such as is the case of the presence
of damage. Also, Fig. 7 shows that the geometric
changes in the attractor shape occur for all parame-
ters of interest, i.e. the level, location, and extent of
damage.

Histograms may be used to characterize the shape
and distribution of points in an attractor. The his-
tograms shown in Fig. 8 demonstrate that changes in
attractors may be quantified for a (constant and low)
level of damage and a varying extent of damage. The
change in the attractor shape is dramatic when the
damage varies from small to large extent. The mod-
erate extent of damage affects the dynamics greatly,
and leads to a collapse of the attractor onto a limit
cycle, as shown in Fig. 6. More subtle changes occur
for the case of high damage. Similar to the case of low
damage, the attractor shape changes greatly when the

(a) No damage

0 20 40 60 80 100

(b) Low level

(c) High level

0 20 40 y 60 80 100

Local amplitude maximum at x = 1/4
o

Fig. 10 Bifurcation diagram for varying character-
istics of the nonlinear feedback excitation, which
shows the dramatic changes in the attractor shape
for three cases of damage

extent of damage is varied while the level of damage
is constant and high, as shown in Fig. 9. Moreover,
a comparison of the histograms shown in Fig. 8 and
Fig. 9 reveals that the changes in the histograms are
distinct for various damage levels when compared to
various damage extents. Thus, both the level and the
extent of damage may be detected.

Another approach to identify damage is to analyze
bifurcation diagrams for varying characteristics of the
nonlinear feedback excitation. Changing the charac-
teristics of the excitation is much more easily done
than changing system properties. Nevertheless, chang-
ing the excitation leads to a change in the dynamics of
the global system (structure plus controller) as if a sys-
tem parameter were changed because of the feedback
nature of the excitation. Also, bifurcation diagrams
reflect accurately qualitative and quantitative changes
which may occur in the dynamics of nonlinear sys-
tems. 447467680 Tn the context of damage detection,
we construct bifurcation diagrams by varying the con-
trol parameters A and <. Such diagrams are possible
to measure because they require only the modification
of the controller and not of the structure. To demon-
strate this approach we focus on the detection of the
onset limit cycle oscillations for varying parameters of
the nonlinear feedback excitation. The local ampli-
tude maxima at the quarter point location (z = 1/4)
for various values of v and for three damage cases
are shown in Fig. 10. The level of damage may be
identified by observing that the onset of limit cycle os-
cillations occurs at clearly distinct values of v (of 45,
50 and over 100).
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Conclusions

A novel approach to actively interrogate a linear or
nonlinear structure for the purpose of detecting para-
metric changes has been presented. The parametric
changes identified are indicative of the presence, loca-
tion and level of damage in the system. The main ad-
vantage of the proposed method is its high sensitivity
to parametric variations, which makes it particularly
well suited for detecting incipient damage.

Numerical examples have been presented for a panel
with pinned-pinned end points forced by transverse
loads and undergoing limit cycle oscillations and chaos.
The nonlinear von Karman plate theory has been used
to obtain a model for the panel, while damage has been
modeled by a loss of stiffness in a portion of the plate.
The sensitivity of this nonlinear system to parametric
changes (enhanced by nonlinear feedback excitation)
has been shown to be an effective tool in detecting
structural changes and identifying stiffness loss in a
thermo-shielding panel.

Most of the current studies of such problems are
based on linear theories and linear structures. In
contrast, the results presented are obtained using non-
linear and chaotic dynamics, and have the advantage
of an increased accuracy in detecting damage and mon-
itoring structural health. The sensitivity obtained by
enhancing nonlinear dynamics and exploiting the fea-
tures of chaotic dynamics is much higher than the
sensitivity of linear analyses.
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