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Abstract 

Cryogenic cavitation experiences phase change in an environment where the 

vapor pressure is temperature dependent. The cavitation dynamics have critical 

implications on the performance and safety of liquid rocket engines, but there is no 

established method to estimate the actual loads due to cavitation on the inducer 

blades. To help develop such a computational capability, we conduct a systematic 

investigation of a transport-based, homogeneous cryogenic cavitation model for 

code validation and model improvement exercises. We assess the role of model 

parameters in the cavitation model and uncertainties in material properties via 

global sensitivity analysis coupled with multiple surrogate models including 

polynomial response surface, radial basis neural network, Kriging and a weighted 

average composite model. The results indicate that while the predictions are more 

sensitive to changes in cavitation model parameters than uncertainties in material 

properties, the impact of uncertainty in temperature dependent vapor pressure on 

the performance is significant. We calibrate the cryogenic cavitation model 

parameters using a multiple surrogates-based optimization strategy. The optimal 

parameters increase the importance of condensation terms and show improved 

prediction performance on a number of benchmark problems.  

Nomenclature 
b   Estimated coefficient vector associated with polynomial basis functions 

dest
C ,

prod
C   Empirical parameters used in cavitation model 

Cp   Pressure coefficient 

Cpm   Specific heat of mixture  

1 2
,C Cε ε    k ε− turbulence model coefficients 

D   Characteristic length scale 

E(f(x))  Expected value of f(x) with respect to x 

f(x)   Function of variable vector x 

fv   Mass fraction of vapor 

h   Specific enthalpy 

k   Turbulent kinetic energy  

L   Latent heat of vaporization 

m
−
ɺ , m

+
ɺ   Cavitation source terms 

min (a, b)  Minimum of a and b 

max (a, b)  Maximum of a and b 

NRBF  Number of radial basis functions 
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Ns   Number of sampled points 

Nsm   Number of surrogate models 

N
β
   Number of basis functions in polynomial response surface approximation 

Nvar   Number of variables 

p    Pressure 

Pdiff   L2 norm of difference between experimental and predicted pressure 

Pt   Production term in turbulence model 

vp    Vapor pressure 

2

adj
R    Adjusted coefficient of determination 

S   Sensitivity index 

Si   Sensitivity index of main effects (xi) 

Siz   Total sensitivity index of variable xi 

t   Time 

t∞    Reference time scale 

T   Temperature  

Tdiff    L2 norm of difference between experimental and predicted temperature 

u   Velocity 

U∞    Reference velocity scale 

V   Total variance of a function f(x) 

Vi   Partial variance of f(x) with respect to xi (main effects) 

Vi,Z   Partial variance of f(x) with respect to interactions of xi (interaction effects) 
total
iV   Total variance of f(x) with respect to xi 

wi   Weight associated with i
th
 surrogate model 

x   Space variable 

x   Vector of variables  

X   Design matrix 

y(x)   Actual response at point x 

ˆ( )xy   Predicted response at point x 

Z(x)   Systematic departure in Kriging 

α    Liquid volume fraction 

,α β   Parameters associated with weighted average surrogate 

β    True coefficient vector associated with polynomial basis functions 

ε    Turbulent dissipation term, noise in surrogate models 

θ    Vector of parameters associated with the Gaussian correlation function 

µ    Dynamic viscosity 

ρ    Density 

σ    Cavitation number, estimated standard deviation of noise 

, kεσ σ   k ε− turbulence model coefficients 

φ    Mixture property 

 

Acronyms 
CFD  Computational fluid dynamics 

CVS  Controlled variation scheme 

FCCD  Face-centered cubic composite design 

GMSE  Generalized mean square (cross-validation) error 

KRG  Kriging 

LH2  Liquid hydrogen 

LHS   Latin hypercube sampling 

LN2  Liquid nitrogen 
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LOX  Liquid oxygen 

POF  Pareto optimal front 

PRESS  Square root of predicted residual sum of squares 

PRS   Polynomial response surface approximation 

RBNN  Radial basis neural network 

WTA  Weighted average surrogate  

 

Subscript 
baseline  Baseline parameters 

c   Cavity 

l   Liquid 

m   Mixture 

KRG  Quantity associated with Kriging 

PRS   Quantity associated with polynomial response surface 

RBNN  Quantity associated with radial basis neural network 

rms   root mean square of the quantity 

t   Turbulent 

v   Vapor 

∞    Free stream quantities 

 

Superscripts 
*   Scale factors and normalized quantities 

 

I. Introduction 

Cavitation is one of the foremost problems observed in the turbomachinery such as inducers, pumps, 

turbines, marine propellers, nozzles, hydrofoils etc. due to wide ranging pressure variations in the flow. 

Cavitation occurs when the local pressure in the flow falls below the vapor pressure and consequently the 

fluid undergoes a phase change (Batchelor
1
, Brennen

2
). Cavitation induces noise, mechanical vibrations, 

material erosion, and can severely impact the performance as well as the structural integrity of fluid 

machinery. The study of cavitating flows is complicated by simultaneous presence of turbulence, multiple 

timescales, large density variations or phase change, interfacial dynamics etc. Due to its practical 

importance and rich physics, cavitating flow is a topic of significant interest and challenge to the 

computational community. 

The study of cavitating flows in cryogenic environment has practical importance for space applications 

because cryogens often serve as fuels for the space launch vehicles. For example, a combination of liquid 

oxygen (LOX) and liquid hydrogen (LH2) is used as rocket propellant mixture because the power/gallon 

ratio of LH2 is higher compared to other alternatives (NASA Online Facts
3
). A key design issue related to 

such liquid rocket fuel and oxidizer pumps is the minimum pressure that the design can tolerate for a given 

inlet temperature and rotating speed. To keep inlet pressure low (reduce tank weight) and pump rotational 

speeds high (reduce engine weight), cavitation is prone to appear in the inducer section. To date, there is no 

established method to estimate the actual loads due to cavitation on the inducer blades. Virtually every 

rocket engine system designed in the U.S. has experienced issues with cavitating elements in the pump. 

This includes recent programs like ATP turbopumps for the SSME, the Fastrac LOX pump, and the RS-68 

commercial engine. An integrated framework based on computational modeling and control strategies is 

desirable to treat this critical and difficult issue. It is clear that the design of efficient turbomachinery 

components requires understanding and accurate prediction of the cryogenic cavitating flows.  

Cavitating flow computations have been conducted using both density-based
4-7
 and pressure-based 

numerical approaches
8-11

, with the cavitation models developed based on: (i) Rayleigh-Plesset type of 

bubble formulation
12
 which separates the liquid and vapor region based on the force balance notion, and (ii) 

homogeneous fluid approach
9
 which treats the cavity as a region consisting of continuous mixture of liquid 

and vapor phases. In the homogeneous fluid model, the density field is commonly modeled via either a 

generalized equation of state
13,14

 or a transport equation of the liquid/vapor phase fraction
4,7,9,10,15

. Recent 

efforts made in computational and modeling aspects of cavitating flows are discussed by Wang et al.
16
, 

Senocak and Shyy
10,11,17

, Ahuja et al.
5
, Venkateswaran et al.

6
, Preston et al.

18
, and Utturkar et al.

19
.   
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To date, the majority of the cavitation modeling efforts have focused on the assumption that cavitation 

occurs with negligible energy interactions (isothermal condition). This assumption is reasonable for 

cavitation in non-cryogenic fluids but fails for thermo-sensible fluids like liquid hydrogen and liquid 

oxygen (cryogens) due to the differences in material properties (low liquid-vapor density ratio, low thermal 

conductivities, steep slope of pressure-temperature saturation curves etc.), and the coupling of thermal 

effects such as variation in vapor pressure/density with temperature etc. (Utturkar et al.
15, 19

, Utturkar
20
, 

Ahuja and Hosangadi
21
). Figure 1

22
 illustrates the behavior of the physical properties of a representative 

cryogen, liquid nitrogen, in the liquid-vapor saturation regime. The temperature range in the plots is chosen 

based on the general operating condition of the fluid, which is close to the critical point for liquid nitrogen 

(cryogens in general). We observe substantial variation in the material properties with changes in the 

temperatures.  

As discussed by Utturkar et al.
19
, dynamic similarity in case of isothermal cavitation is dictated by the 

cavitation number σ  (Equation (1) with constant vapor pressure pv). In the context of cryogenic cavitation, 

the actual cavitation number needs to be defined as follows
2
: 

2
0.5

( )v c

l

p p T

U
σ

ρ
∞

∞

−
=         (1) 

where p∞ is the reference pressure, U∞ is the reference velocity, lρ  is liquid density, and cT  is the 

temperature in the cavity. The local cavitation number can be related to the far-field cavitation number 

(based on the vapor pressure there) by the following first-order approximation
2
: 

21
( ) ( )

2

v
l c

dp
U T T

dT
ρ σ σ∞∞ ∞− = −        (2) 

Equation (2) clearly indicates that the cumulative effect of the aforesaid factors would tend to produce 

a noticeable rise in the local cavitation number and subsequently suppress the intensity of cavitation. 

Representative values of the vapor pressure gradients (dpv/dT) in the operating temperature regime for 

liquid nitrogen and hydrogen are 20kPa/K and 7kPa/K, respectively. For general background of cryogenic 

cavitation, we refer the reader to Brennen
2
. 

Hord
23,24

 conducted by far the most comprehensive experiments on cryogenic cavitation with liquid 

nitrogen and hydrogen, under different sets of inlet velocity and temperature conditions, and by employing 

a variety of geometries (hydrofoil and ogives of varying diameters). Temperature and pressure data in the 

cavitating region, which have been commonly employed for numerical validation
25
, was acquired over the 

geometries at regular spatial intervals by thermocouples and pressure sensors.  

There have been limited computational studies for cryogenic cavitating flows. The key challenges for 

numerical computations are the presence of strong non-linearity in the energy equation and the temperature 

dependence of physical properties
22
 such as vapor pressure and density (as seen from Figure 1(B) and (C)). 

The main features of a few selected numerical studies are summarized in Table 1.  

A transport-based cavitation model, proposed by Merkle et al.
4
, has been adopted in multiple efforts 

for non-cryogenic conditions. The same basic framework can also be used to simulate cryogenic cavitating 

flows, subject to proper modification of the model parameters to better reflect the transport properties of 

cryogenic fluids and physical mechanisms of the flow environment. Utturkar et al.
15
 showed that the 

accuracy of predictions is affected by the model parameters and we need to re-calibrate the model 

parameters to simulate cavitating flows in cryogenic conditions. As discussed earlier, the temperature 

dependent material properties also play a significant role in the predictions. These material properties are 

typically obtained from the models developed using the experimental data, and, naturally, contain 

uncertainties.  

For computational verification and validation exercises, multiple aspects need to be addressed. One 

needs to ensure that the numerical representation of the analytical model reaches the correct solutions, at 

least asymptotically as the grids and time step sizes approach the limiting values; this is the so-called 

verification. One also needs to investigate whether and how a particular physical model can reproduce, or 

at least, satisfactorily approximate the observed phenomena and reproduce the experimental measurement; 

this is the so-called validation. The numerical approach employed in the present study has been previously 

tested, and documented, against a wide variety of problems
15,19,20

. Our focus here is to address the 

validation aspect, namely, to what extent a transport-based cavitation model can reproduce the physics, and 

how can we improve its performance.  
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Specifically, we aimed at studying the impact of (i) the cryogenic cavitation model parameters and (ii) 

cryogenic fluid properties on the predictions, utilizing a global sensitivity analysis
26
. To facilitate the 

formulation of a suitable mathematical framework to probe the global sensitivity of the above-mentioned 

cavitation model and cryogenic fluid uncertainties, we first construct suitable surrogate models (Queipo et 

al.
27
). Since the fidelity of surrogate models is critical in determining the success of the sensitivity analysis 

and code validation exercise, we adopt different surrogate models to help ascertain the performance 

measures.  

The practical utility of surrogate modeling for design, optimization and sensitivity analysis is well 

established
27,28

. There are many surrogate models (for example polynomial response surface, Kriging etc.) 

but the model that represents a particular function the best is not known a priori. Then, the predictions 

using different surrogate models have a certain amount of uncertainty. Goel et al.
29
 suggested that 

simultaneous use of multiple surrogate models may be beneficial to quantify and to reduce uncertainties in 

predictions. They proposed a weighted average surrogate model that was shown to represent a wide variety 

of test problems very well. In this study, we used four surrogate models, polynomial response surface 

approximation (PRS), Kriging (KRG), radial basis neural network (RBNN) and weighted average (WTA) 

surrogate model constructed using these three surrogates. These surrogate models are used to calibrate the 

model parameters of the present transport based cavitation model
4
 in cryogenic conditions.  

Specifically, the objectives of this paper are: 

i. To study the physical aspects of cavitation dynamics in cryogenic environment and perform 

code validation, 

ii. To conduct a global sensitivity analysis to assess the sensitivity of the response to temperature 

dependent material properties and model parameters, and 

iii. To calibrate the parameters of a transport-based cryogenic cavitation model for suitable flow 

conditions. 

The organization of this paper is as follows. The governing equations and the numerical approach 

followed in this paper are described in Section II. The validation of the cavitation model is carried out in 

Section III. We present results of global sensitivity analysis to measure the relative importance of different 

model parameters and uncertainties in material properties and calibration of model parameters in Section 

IV. We recapitulate the major findings of the paper in Section V. 

II. Governing Equations and Numerical Approach 

The set of governing equations for cryogenic cavitation under the homogeneous-fluid modeling 

strategy comprises the conservative form of the Favre-averaged Navier-Stokes equations, the enthalpy 

equation, the k ε−  two-equation turbulence closure, and a transport equation for the liquid volume 

fraction. The mass-continuity, momentum, enthalpy, and cavitation model equations are given below: 

( )
0

m jm

j

u

t x

ρρ ∂∂
+ =

∂ ∂
         (3)

( )( ) 2
[( )( )]

3

m i j jm i i k

t ij

j i j j i k

u u uu u up

t x x x x x x

ρρ
µ µ δ

∂ ∂∂ ∂ ∂∂ ∂
+ = − + + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂
   (4)

[ ( )] [ ( )] [( ) ]
Pr Pr

t

m v m j v

j j t j

m

m

h
h f L u h f L

t x x x

µ µ
ρ ρ

∂ ∂ ∂ ∂
+ + + = +

∂ ∂ ∂ ∂
    (5)

( )l jl

j

u
m m

t x

αα + −∂∂
+ = +

∂ ∂
ɺ ɺ         (6) 

where 
m

ρ is the density of the fluid-vapor mixture, 
j

u  denotes the components of velocity, p is 

pressure, ,
tmµ µ  are mixture laminar and turbulent viscosities, respectively, h is sensible enthalpy, fv is the 

vapor mass fraction, L is the latent heat of vaporization, Pr is the Prandtl number, lα  is the fraction of 

liquid in the mixture, and ,m m+ −ɺ ɺ are the source terms for the cavitation model. The subscript ‘t’ denotes 

turbulent properties, ‘l’ represents the liquid state, ‘v’ represents the vapor state, and ‘m’ denotes the 
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mixture properties. The mixture property mφ , sensible enthalpy, and the vapor mass fraction are 

respectively expressed as 

1( )m l l v lφ φα φ α= + −          (7) 

Pmh C T=           (8) 

1( )v l
v

m

f
ρ α

ρ
−

=          (9) 

In the energy equation (5), we neglect the effects of kinetic energy and viscous dissipation terms 

(
0.5

(Re )O
−

,
6

10Re ~ ( )O ) because the temperature field in cryogenic cavitation is mainly dictated by the 

phenomenon of evaporative cooling. 

A. Transport-Based Cavitation Model  

Physically, the cavitation process is governed by thermodynamics and kinetics of the phase change 

process. The liquid-vapor conversion associated with the cavitation process is modeled through m+ɺ  and 

m−ɺ  terms in Equation (6), which represent condensation and evaporation, respectively. The particular form 

of these phase transformation rates, which in case of cryogenic fluids also dictate the heat transfer process, 

forms the basis of the cavitation model. The liquid-vapor condensation rates for the present transport based 

cavitation model
4
 are: 

2 2

Max(0, )(1 )Min(0, )

(0.5 ) (0.5 )

prod v ldest l v l

v l l

C p pC p p
m m

U t U t

αρ α

ρ ρ ρ
− +

∞ ∞ ∞ ∞

− −−
= =ɺ ɺ    (10) 

where, Cdest and Cprod are the empirical model parameters controlling the evaporation and condensation 

rates, pv is the vapor pressure, ,
v l

ρ ρ  are the vapor and liquid densities, U∞ is the reference velocity scale, 

and t∞ is the reference time scale, defined as the ratio of the characteristic length scale D to the reference 

velocity scale U∞ ( /t D U∞ ∞= ). Merkle et al.
4
 validated this cavitation model with the experimental data 

for non-cryogenic fluids (e.g. water) and specified 1.0
dest

C =  and 80.0
prod

C =  as optimal model 

parameters (referred here as ‘original’ parameters). However, Utturkar
20
, and Hosangadi and Ahuja

21
 found 

that the previously calibrated values of the Merkle et al.
4
 cavitation model ( 1.0destC =  and 80.0prodC = ) 

are inadequate to provide a good match with the experimental data under the cryogenic condition. 

Consequently, Utturkar et al.
15
 suggested 0.68destC =  and 54.4prodC =  via numerical experimentation, 

as more appropriate model parameters for liquid nitrogen. However, they noted difficulties in the 

simultaneous prediction of the temperature and pressure profiles on the surface of the test geometry. In this 

study, we refer these model parameters ( 0.68destC =  and 54.4prodC = ) as ‘baseline’ parameters. 

B. Thermodynamic Effects 

The evaporation and condensation processes result in absorption and release of the latent heat of 

vaporization that regulates the thermal effects. Furthermore, there is a significant variation in the physical 

properties ( , , , , , ,  and )
l v v P

p C K Lρ ρ µ  with temperature
22
 in the operating range that manifests coupling 

between different governing equations and underscores the importance of thermal effects in cryogenic 

cavitation. As indicated by phase diagram in Figure 1(D), the physical properties (liquid and vapor 

densities) are much stronger functions of temperature than pressure, and one can fairly assume the 

respective phase values on the liquid-vapor saturation curve at a given temperature.  

To illustrate the impact of evaporation/condensation on the temperature in cavitation regime, we 

separate the latent heat terms in the energy equation (Equation (5)) onto the right-hand-side to obtain 

temperature-based form of the energy equation as follows. 
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( )[ ] ( )

energy source/sink term

[ ] [ ] [ ]
Pr Pr

                                                

t

m Pm m j Pm P

j j Lm t j

m
m

m v m j v

j

T
C T u C T C

t x x x

f L u f L
t x

µ µ
ρ ρ

ρ ρ

∂ ∂ ∂ ∂
+ = + −

∂ ∂ ∂ ∂

∂ ∂
+

∂ ∂

 
 
 

  
   

  ���������������

   (11) 

As can be seen from Equation (11), the ‘lumped’ latent heat terms manifest as a non-linear source term 

into the energy equation and physically represent the latent heat transfer rate. The spatial variation of 

thermodynamic properties and the evaporative cooling effect are intrinsically embedded into this transport-

based source term causing a coupling of all the governing equations.  

C. Speed of Sound (SoS) Model 

Numerical modeling of sound propagation is still an open question due to lack of dependable equation 

of state for liquid-vapor multiphase mixture. The speed of sound affects the numerical calculation via the 

pressure correction equation by conditionally endowing it with a convective-diffusive form in the mixture 

region. Past studies
10,11,30,31

 discuss in detail the modeling options, their impact and issues. The SoS model 

used here is outlined below. 

SoS (1 )lC Cρ α= = −                                                    (12) 

The density correction term in the continuity equation is thus coupled to the pressure correction term as 

shown below. 

' 'C pρρ =           (13) 

In the pure liquid region, we recover the diffusive form of the pressure equation. Senocak and Shyy
9,10

 

suggested an O(1) value for the constant C to expedite the convergence of the iterative computational 

algorithm. However, their recommendation is valid under normalized values for inlet velocity and liquid 

density. Since we employ dimensional form of equations for cryogenic fluids, we suggest an O(
21/U∞ ) 

value for C (Utturkar
20
), which is consistent with the above suggestion in terms of the Mach number 

regime. 

D. Turbulence Model 

The k ε−  two-equation turbulence model with wall functions is presented as follows
32
: 

( )( )
[( ) ]

m jm t

t m

j j k j

u kk k

t x x x

ρρ µ
ρ ε µ

σ

∂∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂
Ρ                   (14) 

1 2

2( )( )
P [( ) ]

j

m jm t
t m

j j

u
C C

t x k k x x
ε ε

ε

ρ ερ ε µε ε ε
ρ µ

σ

∂∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂
          (15) 

The turbulence production ( P
t
) and the Reynolds stress tensor are defined as: 

P ;

2
( )

3

i

t ij ij m i j

j

m ij ji

m i j t

j i

u
u u

x

k uu
u u

x x

τ τ ρ

ρ δ
ρ µ

∂
′ ′= = −

∂

∂∂
′ ′ = − +

∂ ∂

                      (16) 

The parameters for this model, namely, 1 1.44Cε = , 2 1.92Cε = , 1.3εσ = , 1.0kσ =  are adopted 

from the equilibrium shear flow calibration
33
. The turbulent viscosity is defined as: 
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2

, 0.09
m

t

C k
C

µ
µ

ρ
µ

ε
= =                                          (17) 

Of course, the turbulence closure and the eddy viscosity levels can affect the outcome of the simulated 

cavitation dynamics especially in case of unsteady simulations. For detailed investigations in this regard, 

for cavitating flow computations, we refer to recent works by Wu et al.
34
 and Utturkar et al.

19
. 

E. Numerical Approach 

The governing equations are numerically solved using a CFD code STREAM
35
 based on a pressure-

based algorithm and the finite-volume approach. We use multi-block, structured, curvilinear grids to solve 

the problems in this paper. The viscous terms are discretized by second-order accurate central differencing 

while the convective terms are approximated by the second-order accurate controlled variations scheme 

(CVS)
36
. The use of CVS scheme prevents oscillations under sharp gradients caused by the evaporation 

source term in the cavitation model, while retaining second order of formal accuracy. The pressure-velocity 

coupling is implemented through the extension of the SIMPLEC
37
 type of algorithm cast in a combined 

Cartesian-contravariant formulation
35
 for the dependent and flux variables respectively, followed by 

adequate relaxation for each governing equation, to obtain steady-state results. The temperature dependent 

material properties are updated from the NIST
22
 database at the end of each computational iteration. 

III. Basic Cryogenic Cavitation Model Performance  

In this section, we describe the test geometry and numerical setup used to validate the present transport 

based cryogenic cavitation model
4
. Specifically, we study the role of model parameters, boundary 

conditions and thermal effects.  

A. Test Geometry and Boundary Conditions 

We simulate flow over a 2-D hydrofoil in cryogenic environment which serves as a benchmark 

problem for validating the cryogenic cavitation models. Hord
23
 experimentally investigated the flow over 

this geometry inside suitably designed wind-tunnels. He reported average pressure and temperature data at 

five probe locations over the body surface for different cases that are referenced alpha-numerically. We 

employ Case ‘290C’ (
6

Re 9.1 10 , 1.7, 83.06T Kσ
∞ ∞

= × = = , liquid nitrogen fluid) that is centrally located 

in the temperature range, for model validation. 

A simplified computational domain and the boundary conditions for this problem are shown in Figure 

2. The computational grid consists of 320x70 non-uniformly distributed grid points such that the cavitation 

regime is adequately resolved and the deployment of wall functions near the no-slip boundary conditions is 

allowed (Utturkar et al.
15
). The inlet boundary conditions are implemented by stipulating the values of the 

velocity components, phase fraction, temperature, and turbulence quantities from the experimental data
23
. 

At the walls, pressure, phase fraction, and turbulence quantities are extrapolated, along with applying the 

no-slip (in the form of the wall function
37
) and adiabatic conditions on the velocity and temperature, 

respectively. Pressure and other variables are extrapolated at the outlet boundaries while enforcing global 

mass conservation by rectifying the outlet velocity components. In addition, we hold the pressure at the 

reference point (illustrated in the experimental report
23
) constant at the reference value specified by the 

experiments.  

The quality of the predictions is measured by comparing computed and experimentally known pressure 

and temperature values at each of the five probe locations on the surface of hydrofoils. Corresponding L2 

norms of the differences between computed and experimental values of pressure (Pdiff) and temperature 

(Tdiff) are used as metrics that are desired to be low to obtain good prediction quality.  

B. Pressure and Temperature Predictions 

Firstly, we discuss the results of predictions using present transport based cavitation model
4
 with the 

baseline parameters and highlight the influence of thermal effects. We compare the predicted temperature 

and pressure profiles on the surface of the hydrofoil with the experimental data in Figure 3. The difference 

of pressure on the surface of the hydrofoil and free stream vapor pressure ( ( )
v

p p T
∞

− ), and the difference 

of pressure on the surface of the hydrofoil and the actual vapor pressure (based on temperature, ( )
v

p p T− ) 

for baseline case are shown in Figure 3(A). The cavitation in cryogenic environment differs from non-
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cryogenic environment in two ways: (i) under-shoot at the leading edge of the hydrofoil indicates slower 

pressure recovery in cryogenic environment than that observed in the non-cryogenic environment, and (ii) 

the vapor pressure in the cavity in cryogenic environment is not constant (continuous increase) due to the 

variation in temperature. This increase in vapor pressure (as marked by 
v

p∆  in Figure 3(A)) is attributed to 

the variation in temperature (Figure 1). The change in vapor pressure affects the cavitation source terms 

and resultant liquid-vapor fraction which impacts the source terms in energy equation to enforce coupling 

of thermal effects in governing equations. To contrast the thermal effect on the cavitation dynamics, we 

also show a solution obtained by assigning a zero latent heat in Figure 3(A). With zero latent heat and with 

an adiabatic wall condition the fluid field exhibits a constant temperature throughout, resulting in a constant 

vapor pressure. This isothermal cavitation case yields a substantially larger cavity, which is quite different 

from the experimental measurement. Figure 3(A) highlights the importance of the thermal effect on 

cryogenic cavitation. It also depicts the range of variations in vapor pressure reflecting the temperature 

distributions inside the cavity. 

The temperature on the surface of hydrofoil in cavitating conditions is shown in Figure 3(B). The 

significant drop in temperature near the leading edge of the cavity is explained as follows. The phase 

change, as modeled, is dictated by the vapor pressure. When the local pressure in the flow falls below the 

vapor pressure, evaporation begins instantaneously as indicated by the transport model. This results in 

absorption of the latent heat of vaporization to facilitate the phase change. However, unlike boiling heat 

transfer, where heat is continuously supplied through an external heat source, the heat transfer in cavitating 

flow largely stems from the convective and conductive heat transfer, and the latent heat release/absorption 

within the fluid, with external heat source playing minor roles. Consequently, a decrease in fluid 

temperature is observed in the cavity region. As we approach the cavity closure region, the condensation of 

fluid releases latent heat increasing the fluid temperature locally. Furthermore, since the condensation 

process is dictated by the vapor pressure (with the local temperature effect exerted indirectly via the change 

in vapor pressure in response to the temperature field), the rate of latent heat release can be fast in 

comparison to the rate of convective and conductive heat transfer and consequently in simulations, we 

observe an “overshoot” in temperature profile. The experiments also show an increase in temperature of the 

fluid in the closure region but probably due to the lack of sufficient number of probes on the surface, the 

existence of the overshoot could not be ascertained. 

Overall, the pressure predictions on the hydrofoil surface follow the same trends as observed in 

experiments. However, we note differences in predictions with experimental data near the closure region of 

the cavity. 

C. Role of Cavitation Model Parameters 

Next, we compare the performance of present transport based cavitation model
4
 with the original and 

the baseline parameters to illustrate the impact of model parameters on the predictions. The pressure and 

temperature profiles on the surface of the hydrofoil along with the experimental data are shown in Figure 4. 

The predicted pressure profiles using the baseline parameters are in much better agreement with the 

experimental data compared to those obtained with the original parameters while the temperature profile 

using the two sets of parameters are comparable. The numerical quantification of the L2 norm of the 

differences in pressure (Pdiff) and temperature predictions (Tdiff) given in Table 2, clearly shows significant 

improvements in the prediction and highlights the role of model parameters on the predictions. The present 

cavitation model, using the baseline parameters (Utturkar et al.
15
), predicts a smaller cavity compared to 

that obtained with the original parameters (Merkle et al.
4
). The predictions have significant variations with 

the model parameters. While the baseline model parameters improve predictions significantly compared to 

the original model parameters, we note significant differences in the temperature and pressure predictions, 

particularly in the cavity closure region.  

D. Impact of Boundary Conditions 

To investigate the discrepancy between experimental and predicted surface pressure and temperature 

profiles, we evaluate the impact of different thermal boundary conditions on the predictions. While all the 

walls on the wind tunnel are modeled as adiabatic, the hydrofoil surface is modeled as either adiabatic 

(Neumann boundary) or constant temperature (Dirichlet boundary) wall. The temperature profile required 

for implementing Dirichlet boundary condition is obtained by inter-/extra-polating the experimental 

temperature at five probe locations on the surface of hydrofoil.  
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The pressure and temperature profiles on the surface of hydrofoil from the simulations with different 

thermal boundary conditions are compared with the experimental data (Hord
23
) in Figure 5. The 

introduction of heat transfer through the hydrofoil surface by Dirichlet boundary condition has little 

influence on the pressure distribution. With the given Reynolds number, the heat transfer at the hydrofoil 

surface is relatively small compared to the impact of latent heat, and subsequently only minor variations in 

the vapor pressures are observed. In the cavity closure region, the latent heat released during condensation 

cannot be redistributed via convection and conduction fast enough, resulting in an overshoot in temperature 

there. The temperature profile on the first computation point above the hydrofoil surface, shown in Figure 

5(C), also indicates that the effect of heat transfer due to Dirichlet boundary condition is largely restricted 

to the boundary and has minimal influence on the flow inside the cavity.  

Overall, it can be said that the effect of thermal boundary condition on the hydrofoil surface has little 

impact on the performance of the present cryogenic cavitation model.  

IV. Surrogates-based Global Sensitivity Assessment and Calibration 

Since minor changes in flow environment can lead to substantial changes in the predictions in 

cryogenic environment (Utturkar et al.
15
), it is imperative to appraise the role of model parameters and 

uncertainties in material properties on the predictions. In this section, we characterize the parameters which 

significantly affect predictions using surrogate-based global sensitivity analysis (GSA) and then calibrate 

the cryogenic cavitation model parameters. Goel et al.
29
 have shown that multiple surrogate models are 

beneficial to avoid large errors due to uncertainty in surrogates and to ascertain uncertainty in predictions in 

design space. So we use polynomial response surface approximation, Kriging, radial basis neural network, 

and a weighted average surrogate model for approximation of response. 

A. Global Sensitivity Analysis 

We employ variance-based, non-parametric GSA method, proposed by Sobol
26
 (refer to Appendix 1), 

to evaluate the sensitivity of predictions with respect to model parameters and material properties. In this 

method, the response function is decomposed into additive functions of variables and interactions among 

variables. This allows the total variance (V) in the response function to be expressed as a combination of 

the main effect of each variable (Vi) and its interactions with other variables (Vij). The sensitivity of the 

response function with respect to any variable is measured by computing its sensitivity indices. The 

sensitivity indices of main effect (Si) and total effect (
total

iS ) of a variable are given as follows: 

( )
, totali i iZ

i i

V V V
S S

V V
+= =       (18) 

We can study the influence of uncertainty in different material properties and,  , , ,v l p LK Cρ ρ , and 

model parameters ,  and,prod destC C t∞ . However, to keep Re (Reynolds number based on upstream flow) 

and σ∞ (cavitation number based on upstream flow) constant for the given case and account for most 

influential material properties, we choose ,  ,  ,  and dest vC t Lρ∞  as variables. The predictions of the 

cryogenic cavitation models are represented by root mean square (RMS) values of the hydrofoil surface 

temperature (
RMS

T ) and pressure coefficient (
pRMS

C ), where Cp is defined as,  

2
( ) /(0.5 )

p l
C p p Uρ∞ ∞= −         (19)  

The model parameters,  and destC t∞ , are perturbed on either side of their baseline values 

( 0.68destC = ;
3

1.82 10t
−

∞ = × ) by 15% and the material properties  and v Lρ  are perturbed within 10% 

of the value they assume from the NIST database
22
. The ranges of the variables are given in the Table 3. 

To curb the computational cost of performing GSA, we develop surrogate models of the objectives. 49 

data points using face-centered cubic composite design (FCCD, 25 points) and orthogonal arrays (OA, 24 

points) are sampled to construct surrogate models and four points are used to validate the surrogate models. 

We evaluate 
RMS

T  and 
RMSpC  for each data point using CFD simulations and construct polynomial response 

surface (PRS) and Kriging models (refer to Appendix 2) of both responses in normalized variable space. 
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All variables are normalized such that ‘0’ corresponds to the minimum value and ‘1’ corresponds to the 

maximum value of the variable. Normalized variable are denoted by a superscript ‘*”. We use 2
nd
 order 

polynomials for PRS and a linear polynomial trend model with Gaussian correlation function for Kriging 

approximation. Relevant details of the two surrogate models are summarized in Table 4 and predictions on 

the four test points are given in Table 5. Low errors in approximations on training and test points indicate 

that both PRS and Kriging approximate the objectives very well.  

The Kriging parameters associated with Gaussian correlation function for the two responses are given 

in Table 6 and the linear trend models are given as follows: 

* ** ** *
0.108 0.577 0.450 0.039 0.618

pRMS dest v
C C L tρ ∞= + − − −     (20)

* ** ** *
0.036 0.593 0.307 0.110 0.616

RMS dest v
T C L tρ ∞= − − + − +     (21) 

The PRS approximations of the responses are given by Equations (22) and (23). 

* ** * * **

* * **2 ** * **2 *2

1.675 0.077 0.061 0.082 0.007

           0.012 0.011 0.009 0.004 0.013

pRMS dest v dest v

dest v v

C C t C

C t t L t

ρ ρ

ρ ρ

∞

∞ ∞ ∞

= + − − −

− + + − +
   (22) 

**

**

* ** *2 *2

* ** *2 ** ** ** * ** *

82.537 0.243 0.107 0.048 0.220 0.024

           0.016 0.015 0.013 0.018 0.019

RMS dest v dest

dest v dest v v

T C L t C

C C L t L tL

ρ

ρ ρ ρ

∞

∞ ∞

= − + − + +

− − + + +
  (23) 

While relatively low importance of latent heat (L) can be deduced upfront by inspecting the 

coefficients in the PRS and the Kriging parameters, a formal global sensitivity analysis is conducted to 

quantify the contribution of each design variable on the variability of our responses (
RMSpC and 

RMS
T ). The 

sensitivity indices of main and interaction effects of different variables on 
RMSpC and 

RMS
T  are shown in 

Figure 6 and Figure 7, respectively. It can be seen from the pie-charts that the impact of model parameters 

on the variability of 
RMSp

C and 
RMS
T  is equally important and more than the variability due to material 

properties. While the effect of latent heat (L) on the variability of the RMS surface pressure coefficient and 

temperature within the selected uncertainty range is negligible, though the overall importance of latent heat 

in the coupling of thermal effects was illustrated in Figure 3. The effect of variability in vapor density 
v

ρ  is 

significant, which means that the performance of cryogenic cavitation model is susceptible to the 

inaccuracies in the prediction of the temperature dependent vapor density 
v

ρ  and we should pay more 

attention to develop accurate models of 
v

ρ . The interaction of different variables did not influence the 

variability in the predictions. The results from both surrogate models are in good agreement which 

improves our confidence in results. For this case, the results clearly are not dependent on the particular 

form of surrogate models. 

The results of sensitivity estimates indicate that the variables, unlike L, which appear either in m−ɺ  or 

m+ɺ  may tend to register greater influence on the computed results. Thus, intuitively, reference velocity 

U∞  and liquid density
l

ρ , which are omitted from the present GSA, are expected to induce large 

variability in the computation, as compared to other omitted properties such as thermal conductivity K  and 

specific heat 
p

C . Furthermore, as depicted by Figure 6 and Figure 7, the impact of different parameters is 

expected to be same on pressure and temperature due to the tight coupling between various flow variables. 

B. Calibration of Cryogenic Cavitation Model  

Next, we calibrate the present cryogenic cavitation model for cryogenic environments using the 

benchmark hydrofoil case ‘290C’. We assume the temperature dependent material properties obtained from 

the NIST database
22
 to be accurate and treat model parameters and  destC t∞  as parameters to be tuned. The 

performance of the cavitation model is determined by computing the L2 norm of the difference in the 

experimental data and predicted data at five probe points for pressure (Pdiff) and temperature (Tdiff). The 

objective of the calibration is to minimize the deviation from the experimental data Pdiff  and Tdiff. As shown 
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in Figure 8, the parameters which yield good pressure predictions (low Pdiff) yield large errors in 

temperature predictions (high Tdiff) and vice-versa (low Tdiff but high Pdiff). So this problem of calibrating 

parameters is cast as a multi-objective optimization to simultaneously minimize Pdiff and Tdiff.  

(i) Construction of Multiple Surrogate Models  

We construct multiple surrogates using 55 data points selected via FCCD (9 points) and Latin 

hypercube sampling (46 points) in the design space (refer to Table 3 for range of variables). For each data 

point, we evaluate objectives Pdiff and Tdiff using CFD simulations and the range of objectives is given in 

Table 7. We construct PRS, Kriging (KRG), RBNN, and WTA surrogate models (refer to Appendix 2 for a 

brief description of different surrogate models). Here, we use quintic polynomials for PRS, a linear trend 

model and Gaussian correlation function for Kriging. RBNN input parameter ‘goal’ is taken as 2e-2 and 3e-

5, and ‘spread’ is taken as 0.55 and 0.45 for Pdiff and Tdiff, respectively. The weights associated with 

different surrogates in WTA model are given in Table 8. Different measures of the quality of surrogate 

models are summarized in Table 9. We observe that all surrogate models represent the two objective 

functions adequately. Relatively, Kriging is the best surrogate model as this has the lowest PRESS and 

RBNN (Appendix 3) is the worst of all the surrogates. The weights of different surrogates in WTA model 

also reflect the same. The WTA model obtained by averaging different surrogate models performs 

comparably with the best surrogate. 

We show the contours of Pdiff and Tdiff in entire design space using different surrogate models in Figure 

9 and Figure 10, respectively. All surrogate models have largely similar performance in entire design space 

though there are subtle differences in some regions. We see that the region that corresponds to low Pdiff 

corresponds to high Tdiff and vice-versa. This clearly establishes the need of performing a multi-objective 

optimization to simultaneously minimize both Pdiff and Tdiff. 

(ii) Preliminary Calibration and Design Space Refinement 

We simultaneously minimize Pdiff and Tdiff to calibrate the present cavitation model. This problem is 

reduced to a single objective optimization problem by combining the two difference metrics using different 

weights (weighted sum strategy
38
) or by treating one difference metric as objective function and the second 

difference metric as constraint function (ε-constraint strategy
39
). We obtain many candidate Pareto optimal 

solutions by varying the weights for weighted sum strategy and constraint values for ε-constraint strategy. 

After removing dominated and duplicate solutions from the set of candidate solutions, the function space 

and variable space illustration of Pareto optimal front (POF) obtained through different surrogate models is 

shown in Figure 11. We observe that different POF obtained by using multiple surrogate models are close 

to one another in the function space but have significant disparity in the variable space. Nevertheless, all 

surrogate models predict that a small increase in Tdiff will lead to significant reduction in the Pdiff (Figure 

11(A)). Based on the information from multiple surrogate models, we identify the encircled region in POF 

as the region of interest (compromise zone) where we expect the predictions to have low Pdiff and low Tdiff. 

The variable space representation of the compromise zone (POF data on boundary for PRS, and interior 

points for KRG and RBNN) is shown in Figure 11(B). The ranges of the variables in the compromise zone 

are given in Table 10. 

Once we have identified the region of interest, we can improve the accuracy of surrogate models by 

sampling additional points in the region and reconstructing surrogate models only in the region of interest 

(Mack et al.
40
). To facilitate the same, we sample 22 additional points at the Pareto optimal solutions 

obtained from different surrogate models in compromise zone. The location of sampled points is shown in 

Figure 12. The ranges of the objectives Pdiff and Tdiff based on 30 points (8 pre-existing points and 22 

additional sampled points) are given in Table 11.  

We construct surrogate models using 30 points in the region of interest. As before we use a linear trend 

model and Gaussian correlation function for Kriging but we employ quartic polynomials for PRS and 

RBNN input parameter ‘spread’ is fixed at 0.5 and ‘goal’ is taken as 3e-2 and 6.35e-4 for Pdiff and Tdiff, 

respectively. The weights associated with different surrogates in WTA model are given in Table 12. 

Different measures of the quality of surrogate models, summarized in Table 13, suggest that all surrogate 

models approximated the actual response accurately.  

Had we followed the conventional approach of selecting the best surrogate model for one data set and 

using the same surrogate model for all other sets, we would have used Kriging as the best surrogate model. 

However, as can be seen from the results, the Kriging model is no the best surrogate model for refined 
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design space. Also we would not have sampled the points near the boundary for refined design space. 

These results demonstrate the advantages reaped from the simultaneous use of multiple surrogates. 

(iii) Final Calibration of Cryogenic Cavitation Model 

The Pareto optimal solutions in the refined design space obtained via weighted sum strategy and ε-

constraint strategy are shown in Figure 13 along with the POF obtained in entire design space. The range of 

the POF is truncated to highlight the region of interest. While the predictions of Kriging and RBNN 

surrogates fitted in complete design space tend to under predict the objectives, PRS over predict the 

responses (compare solid lines to the diamonds). Agreement between POF from different surrogates fitted 

to data from the compromise zone is better (dotted lines). WTA model predicts the POF quite accurately 

for both datasets.  

We select two trade-off designs on the POF obtained from the data in the new compromise zone for 

validation. The designs are selected such that high reduction in Pdiff can be realized without incurring 

significant deterioration of Tdiff. The variables, predicted and actual Pdiff and Tdiff values for different 

surrogate models at trade-off designs are given in Table 14. The errors in predictions of Pdiff and Tdiff are 

reasonably small, though we observed large variability in Kriging predictions. The improvements in the 

predictions of cavitation model through this surrogate modeling calibration are quantified in Table 15. We 

obtain a 65% reduction in Pdiff by allowing 3.5% increase in Tdiff. The improvements after second 

refinement of variable space are small and hence no further refinement in design space is sought. The 

surface pressure and temperature profiles obtained using the calibrated values are compared to the results 

obtained with the baseline and original parameters of present transport based cavitation model
4
 in Figure 

14. The improvements in the surface pressure predictions are obvious whereas the deterioration in the 

temperature predictions is small.  

From cavitation dynamics point of view, the main issue with the predictions using baseline parameters 

was the poor prediction of the cavity closure region. The optimal model parameters reduce the evaporation 

source term and increase the condensation source term. This change brings favorable changes in the cavity 

closure region by increasing the condensation rate and hence faster recovery of the pressure as was 

observed in experiments. 

C. Validation of the Calibrated Cavitation Model 

The calibrated model parameters of the present cryogenic cavitation model are validated by simulating 

additional benchmark cases for liquid nitrogen and liquid hydrogen. The cases considered in the present 

paper are enlisted in Table 16. For both liquid nitrogen and hydrogen, the optimal parameters were taken as 

0.85 |
dest dest baseline

C C= ×  and 0.89 |
baseline

t t∞ ∞= × , where baseline model parameters are the same as 

suggested by Utturkar et al.
15
. The optimal model parameters for different fluids are given in Table 17. The 

surface pressure and temperature profiles for different cases along with the experimental data for liquid N2 

cases and liquid H2 case are shown in Figure 15 and Figure 16, respectively. We also show the predictions 

using the baseline (Utturkar et al.
15
) and original model parameters (Merkle et al.

4
). The model with re-

calibrated model parameters captures the experimental data significantly better than the model with 

baseline or original parameters. For liquid hydrogen, though the surface pressure predictions improved 

significantly compared to the baseline parameters, there is scope for further improvement by seeking 

optimal set of parameters.  

Nevertheless, the results confirm the improvements in the predictions by using optimized model 

parameters. 

V. Conclusions 

In this paper, we presented results of code validation and model improvement of a transport-based 

cryogenic cavitation model using benchmark experimental data for 2-D hydrofoils provided by Hord
23
. We 

used surrogate-based global sensitivity analysis to study the role of model parameters and uncertainties in 

temperature dependent material properties. The model parameters originally used in present transport based 

cavitation model
4
 were calibrated for cryogenic environment using multiple surrogates, optimization and 

design space refinement techniques. The main conclusions of the paper are as follows. 

i. Performance of the present approach was more affected by cavitation model parameters than 

uncertainty in material properties. However, the high sensitivity index associated with temperature 

dependent vapor density indicated that the latter might have significant impact on predictions too. 
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ii. Simultaneous use of multiple surrogate models evidently helped in increasing confidence in the 

results of global sensitivity analysis. We also observed that design space refinement based on 

multiple surrogate models helped bound the optimal model parameters. Furthermore, predictions 

using weighted average surrogate models were more accurate than individual surrogate models. 

iii. The impact of thermal boundary conditions on the prediction of flow was apparently not 

significant. However, the thermal effect caused by the phase change clearly affects the cavitation 

dynamics including the vapor pressure and, consequently, the cavity size. 

iv. Optimal model parameters for present transport based cavitation model
4
 were 

0.85 |
dest dest baseline

C C= ×  and 0.89 |
baseline

t t∞ ∞= × . Correspondingly, for liquid nitrogen, optimal 

values were 0.578
dest

C =  and 
3

2.36 10t
−

∞ = ×  and for liquid hydrogen, values were 

0.697
dest

C =  and 
4

9.68 10t
−

∞ = × . The choice of these parameters increased the importance of 

condensation source term which improved predictions in cavity closure region. 

In view of the persistent discrepancies between measurements and computations, further modeling 

development at a conceptual level should be pursued to improve the physical representation of the present 

cavitation model, and more experimental investigation is needed to better quantify the measurement 

uncertainty and offer insight into flow structures. 
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Table 1 Summary of relevant numerical experimentation on cryogenic cavitation 

Reference Main Features 

Reboud et al.
41
 

Delannoy and Reboud
42
 

a) Potential flow equations with semi-empirical formulation 

b) Simplistic interfacial heat transfer equation (suitable only 

for sheet cavitation) 

c) Energy equation not solved 

Deshpande et al.
43
 a) Explicit interface tracking 

b) Simplistic model for vapor flow inside cavity   (suitable 

only for sheet cavitation) 

c) Energy equation solved only in the liquid region 

Tokumasu et al.
44,45

 a) Explicit interface tracking 

b) Improved model for vapor flow inside the cavity (suitable 

only for sheet cavitation) 

c) Energy equation solved only in the liquid region 

Hosangadi and Ahuja
25
  

Hosangadi et al.
46
 

a) Solved energy equation in the entire domain with dynamic 

update of material properties 

b) Inconsistency noted with experimental results 

c) Details on numerical issues and the choice of cavitation 

model parameters not explicitly provided 

Utturkar et al.
15
  a) Solved energy equation in the entire domain with dynamic 

update of material properties 

b) Test results for different fluids and reference conditions 

were consistent with the experimental results 

 

Table 2 L2 norm of pressure and temperature difference 

Case Cdest Cprod Pdiff Tdiff 

Original 1.0 80.0 11.26 0.353 

Baseline 0.68 54.4 3.212 0.447 

 

Table 3 Ranges of variables for global sensitivity analyses. Cdest is the model parameter associated 

with the evaporation source term, t
∞

is the reference time scale used in cavitation, 
*

v
ρρρρ  and L* are the 

multiplication factors of vapor density and latent heat obtained from NIST database
22

, respectively 

Variable Minimum Baseline Maximum 

Cdest 0.578 0.68 0.782 

t
∞
 

32.23 10−×  32.65 10−×  33.06 10−×  

*

v
ρρρρ  0.90 1.0 1.10 

L* 0.90 1.0 1.10 
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Table 4 Summary of surrogate approximations of RMS surface pressure coefficient (
pRMS

C ) and 

temperature (
RMS

T ). PRS: polynomial response surface, KRG: Kriging 

 pRMSC  
RMST  

# of Training Points 49 49 

Minimum of data 1.567 82.284 

Mean of data 1.648 82.569 

Maximum of data 1.743 82.862 

# of coefficients (PRS) 10 11 

R
2
adj (PRS) 0.993 0.992 

PRESS (PRS) 0.004 0.018 

Maximum error (PRS) 0.009 0.029 

RMS error (PRS) 0.004 0.013 

Process variance (KRG) 3.67e-5 6.14e-4 

PRESS (KRG) 0.0048 0.0154 

 

Table 5 Predictions at four test points using polynomial response surface (PRS) and Kriging (KRG) 

Cdest t
∞

 *

v
ρρρρ  L

*
 

pRMSC  RMST  pRMSC  

(PRS) 

RMST  

(PRS) 

pRMSC  

(KRG) 

RMST  

(KRG) 

0.578 2.23e-3 1.0 1.0 1.645 82.565 1.646 82.570 1.644 82.569 

0.782 2.23e-3 1.0 1.0 1.720 82.336 1.720 82.335 1.719 82.343 

0.578 3.06e-3 1.0 1.0 1.582 82.807 1.582 82.808 1.582 82.808 

0.782 3.06e-3 1.0 1.0 1.642 82.575 1.643 82.574 1.642 82.578 

 

Table 6 Correlation parameters (θ ) associated with the Kriging approximation of the two response 

functions 
pRMS

C  and 
RMS

T  

θ  
pRMSC  RMST  

Cdest 0.662 0.496 

t
∞
 0.590 0.582 

*

v
ρρρρ  0.131 0.079 

L* 0.013 0.017 

 

Table 7 Minimum and maximum of Pdiff and Tdiff based on 55 sample points  

 Minimum Mean Maximum 

Pdiff 1.655 4.271 9.106 

Tdiff 0.341 0.453 0.709 

 

Table 8 Weights associated with different surrogate models (55 points). PRS: polynomial response 

surface approximation, KRG: Kriging, and RBNN: radial basis neural network 

 wPRS wKRG wRBNN 

Pdiff 0.32 0.59 0.094 

Tdiff 0.24 0.64 0.12 
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Table 9 Quality of different surrogate models (55 points). PRS: polynomial response surface 

approximation, KRG: Kriging, and RBNN: radial basis neural network 

Surrogate Measure Pdiff Tdiff  

2

adjR  0.993 0.976 

PRESS 0.704 0.0387 PRS 

Max Error 0.424 0.0257 

Process variance 0.427 0.00088 
KRG 

PRESS 0.353 0.0128 

PRESS 2.51 0.079 
RBNN 

Max Error 0.021 0.00198 

PRESS 0.666 0.0135 
WTA 

Max Error 0.133 0.0063 

 

Table 10 Ranges of variables in compromise region 

Variable Minimum Maximum 

Cdest 0.578 0.660 

t
∞
 

32.23 10−×  32.65 10−×  

 

Table 11 Range of Pdiff and Tdiff based on 30 sample points in compromise zone 

 Minimum Mean Maximum 

Pdiff 1.655 3.167 7.226 

Tdiff 0.356 0.460 0.559 

 

Table 12 Weights associated with different surrogate models (compromise zone). PRS: polynomial 

response surface approximation, KRG: Kriging, and RBNN: radial basis neural network 

 wPRS wKRG wRBNN 

Pdiff 0.374 0.224 0.402 

Tdiff 0.311 0.577 0.112 

 

Table 13 Quality of different surrogate models in compromise zone (30 points) 

Surrogate Measure Pdiff Tdiff 

2

adjR  0.998 0.999 

PRESS 0.136 0.0033 PRS 

Max Error 0.119 0.0025 

Process variance 1.523 0.00064 
KRG 

PRESS 0.232 0.0017 

PRESS 0.126 0.0098 
RBNN 

Max Error 0.073 0.0078 

PRESS 0.152 0.0025 
WTA 

Max Error 0.062 0.0013 
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Table 14 Predicted and actual Pdiff and Tdiff at two POF data points 

Cdest t
∞

  Simulation PRS KRG RBNN WTA 

Pdiff 1.949 1.878 1.950 1.916 1.910 0.578 2.36e-3 

Tdiff 0.463 0.464 0.464 0.464 0.464 

Pdiff 2.027 2.057 1.822 2.108 2.025 0.612 2.49e-3 

Tdiff 0.462 0.462 0.463 0.462 0.463 

 

Table 15 Improvements in the predictions with data sampling process 

 Cdest t
∞

 Pdiff Tdiff 

Baseline 0.680 32.65 10−×  3.212 0.447 

Dataset 1 0.680 32.77 10−×  2.226 0.463 

Dataset 2 0.646 32.65 10−×  1.960 0.466 

Optimal 0.578 32.36 10−×  1.949 0.463 

 

Table 16 Flow cases chosen for the hydrofoil geometry 
Fluid Case 

name
23
 

Inlet temperature 

T∞   

Freestream 

Re∞  

Cavitation 

No. (σ∞ ) 

Cdest 

(baseline) 

Cprod 

(baseline) 

Liq. N2 296B 88.54 K 7
1.1 10×  1.61 0.68 54.4 

Liq. N2 283B 77.65 K 6
4.7 10×  1.73 0.68 54.4 

Liq. H2 249D 20.70 K 7
2.0 10×  1.57 0.82 54.4 

 

Table 17 Optimal model parameters of present transport based cavitation model
4
  

Fluid Cdest t
∞
 

Liquid N2 0.578 3
2.36 10

−×  

Liquid H2 0.697 4
9.68 10

−×  
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Figure 1 Variation of physical properties for liquid Nitrogen

22
 (A) vapor pressure v/s temperature 

along saturation line (B) liquid density v/s temperature along saturation line (C) vapor density v/s 

temperature along saturation line (D) Pressure-density chart –lines denote isotherms 

INLET
OUTLET

NO-SLIP

SYMMETRY

hydrofoil surface (NO-SLIP)
 

Figure 2 Illustration of the computational domain for the 2D hydrofoil
23 

∆pv∆pv

 
(A) Surface pressure     (B) Surface temperature 

Figure 3 Surface pressure and temperature profile on 2D hydrofoil (Case 290C, liquid N2) where the 

cavitation is controlled by (i) temperature-dependent vapor pressure (designated as L>0), and (ii) 

zero latent heat and hence isothermal flow field (designated as L=0). The range indicated by ∆pv 

shows the level of variations in vapor pressure, pv, caused by the temperature variations inside the 

cavity. (We use baseline parameters Cdest = 0.68, Cprod = 54.4) 

(A) 

(D) 

 

(

(C) 

(B) 
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(A) Surface pressure     (B) Surface temperature 

Figure 4 Effect of model parameters on surface pressure and temperature profile on 2D hydrofoil 

(Case 290C, liquid N2). Baseline parameters refer to Cdest = 0.68, Cpred = 54.4 (as suggested by Utturkar 

et al.
15

), and Original parameters refer to Cdest = 1.0 and Cprod = 80.0 (as specified by Merkle et al.
4
). 

  
(A) Surface pressure     (B) Surface temperature 

 
(C) Temperature on the first computational point 

Figure 5 Impact of different boundary conditions on surface pressure and temperature profile on 2D 

hydrofoil (Case 290C, liquid N2) and predictions on first computational point next to boundary.  
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(A) Main and interaction effects (polynomial response surface approximations) 

  
(B) Main and interaction effects (Kriging) 

Figure 6 Main effects and interaction effects of different variables on the sensitivity of RMS surface 

pressure coefficient predictions 

 

GSA (Main effects, TRMS)
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(A) Main and interaction effects (polynomial response surface approximations) 

  
(B) Main and interaction effects (Kriging) 

Figure 7 Main effects and interaction effects of different variables on the sensitivity of RMS surface 

temperature predictions 
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(A) Surface pressure      (B) Surface temperature 

Figure 8 Surface pressure and temperature predictions using the model parameters that minimized 

Pdiff, Tdiff and baseline (Cdest = 0.68, Cpred = 54.4) parameters. The number on each surface pressure or 

temperature profile represents Pdiff or Tdiff value associated with appropriate model parameters. 

 

 
(A) Polynomial response surface    (B) Kriging    

 
(C) Radial basis neural network   (D) Weighted average surrogate  

Figure 9 Contours of pressure difference in normalized design space predicted using (A) PRS, (B) 

Kriging, (C) RBNN, and (D) WTA surrogate models 
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(A) Polynomial response surface    (B) Kriging   

 
(C) Radial basis neural network   (D) Weighted average surrogate 

Figure 10 Contours of temperature difference in normalized design space predicted using (A) PRS, 

(B) Kriging, (C) RBNN, and (D) WTA surrogate models 

 

CompromiseCompromiseCompromise

 

CompromiseCompromise

 
(A) Pareto optimal front in function space  (B) Pareto optimal front in design space    

Figure 11 Pareto optimal front (POF) and corresponding optimal points in (A) function space (B) 

normalized variable space (shaded region shows the compromise region) PRS: polynomial response 

surface, KRG: Kriging, RBNN: radial basis neural network, WTA: weighted average surrogate. 
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Figure 12 Existing and new sampled points in variables space 

 
Figure 13 Pareto optimal front obtained using the surrogate models. Subscript 1 refers to data from 

complete design space (55 points) and Subscript 2 refers to the data in compromise zone. Range of 

POF is truncated to concentrate on the compromise solutions. PRS: polynomial response surface, 

KRG: Kriging, RBNN: radial basis neural network, WTA: weighted average surrogate. 

 

  
(A) Surface pressure     (B) Surface temperature 

Figure 14  Surface pressure and temperature predictions using the model parameters corresponding 

to original, baseline and optimized values. The number on each surface pressure or temperature 

profile represents Pdiff or Tdiff value associated with appropriate model parameters. 
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(A) Surface pressure (Case 283B)   (B) Surface temperature (Case 283B) 

  
(A) Surface pressure (Case 296B)   (B) Surface temperature (Case 296B) 

Figure 15  Surface pressure and temperature predictions using the original parameters (liquid N2, 

Cdest = 1.0, Cprod = 80.0, 
3

2.65 10t
−

∞
= × ), and optimized parameters (Cdest = 0.578, Cpred = 54.4, 

3
2.36 10t

−

∞
= × ). The number on each surface pressure or temperature profile represents Pdiff or Tdiff 

value associated with appropriate model parameters. 

  
(A) Surface pressure     (B) Surface temperature  

Figure 16  Surface pressure and temperature predictions (case 249D) using the original parameters 

(liquid H2, Cdest = 1.0, Cprod = 80.0, 
3

1.09 10t
−

∞
= × ), and optimized parameters (Cdest = 0.697, Cpred = 
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54.4, 
4

9.68 10t
−

∞
= × ). The number on each surface pressure or temperature profile represents Pdiff or 

Tdiff value associated with appropriate model parameters. 

 

Appendix 1: Global Sensitivity Analysis (Sobol
26

, 1993) 

Global sensitivity analysis was first presented by Sobol
26
 in 1993. This method is used to estimate the 

effect of different variable on the total variability of the function. Some of the advantages of conducting a 

global sensitivity analysis include (i) assessing importance of the variables (ii) fixing non-essential 

variables (which do not affect the variability of the function) thus reducing the problem dimensionality etc. 

The theoretical formulation of the global sensitivity analysis is given as follows: 

A surrogate model f(x) of a square integrable objective as a function of a vector of independent input 

variables, x in domain [0, 1], is assumed and modeled as uniformly distributed random variables. The 

surrogate model can be decomposed as the sum of functions of increasing dimensionality as 

( ) ( ) ( ) ( )0 12 1 2, , , ,x i i ij i j NN
i i j

f f f x f x x f x x x
<

= + + + +∑ ∑ …⋯ …    (24) 

where 
0

d
1

x 0
xff

=
= ∫ . If the following condition 

1

1

...

0

0
si i k

f dx =∫           (25) 

is imposed for k = i1, …, is, then the decomposition described in Equation (24) is unique. In context of 

global sensitivity analysis, the total variance denoted as V(f) can be shown to be equal to 

( )
1...

1 1 ,

...
v

v
v

i ij
i i j

N

N
N

V f V V V
= ≤ ≤

= + + +∑ ∑        (26) 

where ( ) ( )( )2

0
V f E f f= −  and each of the terms in Equation (26) represents the partial 

contribution or partial variance of the independent variables (Vi) or set of variables to the total variance and 

provides an indication of their relative importance. The partial variances can be calculated using the 

following expressions: 

( [ | ])

( [ | , ])

( [ | , , ])

i i

ij i j i j

i j j ij i jijk ik jk k

V V E f x

V V E f x x V V

V V E f x x x V V V V V V

=
= − −

= − − − − − −

    (27) 

and so on, where V and E denote variance and expected value respectively. Note that 

[ ]
1

0
| i i iE f x f dx= ∫  and 

1
2

0
( [ | ])i i iV E f x f dx= ∫ . Now, the sensitivity indices can be computed 

corresponding to the independent variables and set of variables. For example, the first and second order 

sensitivity indices can be computed as 

,
( ) ( )

iji

i ij

VV
S S

V f V f
= =         (28)  

Under the independent model inputs assumption, the sum of all the sensitivity indices is equal to one.  

The first order sensitivity index for a given variable represents the main effect of the variable but it 

does not take into account the effect of interaction of the variables. The total contribution of a variable on 

the total variance is given as the sum of all the interactions and the main effect of the variable. The total 

sensitivity index of a variable is then defined as:  
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...

( )

i ij ijk

j j i j j i k k itotal

i

V V V

S
V f

≠ ≠ ≠

+ + +

=
∑ ∑ ∑

      (29) 

Note that the above referenced expressions can be easily evaluated using surrogate models of the 

objective functions. Sobol
26
 (1993) has proposed a variance-based non-parametric approach to estimate the 

global sensitivity for any combination of design variables using Monte Carlo methods. To calculate the 

total sensitivity of any design variable xi, the design variable set is divided into two complementary subsets 

of xi and Z  ( ), 1, ;j vZ x j N j i= ∀ = ≠ .  The purpose of using these subsets is to isolate the influence of 

xi from the influence of the remaining design variables included in Z. The total sensitivity index for xi is 

then defined as 

( )
total

total i
i

V
S

V f
=          (30) 

where,  

,

total

Zi i iV V V= +          (31) 

iV  is the partial variance of the objective with respect to xi and ,ZiV  is the measure of the objective 

variance that is dependent on interactions between xi and Z. Similarly the partial variance for Z can be 

defined as Vz. Therefore the total objective variability can be written as 

,Z Zi iV V V V= + +          (32) 

While Sobol
26
 had used Monte Carlo simulations to conduct the global sensitivity analysis, the 

expressions given above can be easily computed analytically once the response surface model is available. 

Appendix 2: Surrogate Modeling 

Surrogate models are developed as a computationally inexpensive method to evaluate design 

objectives. There are many surrogate models, e.g. polynomial response surface approximations, Kriging, 

radial basis neural network, support vector regression etc. A detailed discussion of different aspects of 

surrogate modeling was reviewed by Queipo et al.
27
 and Li and Padula

28
. We give a brief description of 

different surrogate models here. 

Polynomial Response Surface Approximation
47
 

The observed response y(x) of a function at point x is represented as a linear combination of basis 

functions fi(x) (mostly monomials are selected as basis functions) and coefficients iβ . Error in 

approximation ε  is assumed to be uncorrelated and normally distributed with zero mean and 
2σ  variance. 

That is, 

2
( )( ) ( ) 0, ( )xx i i

i

y E Vf ε ε σβ ε = == +∑       (33) 

The polynomial response surface approximation of y(x) is, 

( )ˆ( ) xx
i i

i

y b f=∑          (34) 

where bi is the estimated value of the coefficient associated with the i
th
 basis function fi(x). The 

coefficient vector b is obtained by minimizing the error in approximation ( ˆ( ) ( ) ( )x x xe y y= − ) at Ns 

sampled design points in a least square sense as, 

1)(b y
T T
XX X−=          (35) 

where X is the matrix of basis functions and y is the vector of responses at Ns design points. The 

quality of approximation is measures by computing the coefficient of multiple determination 
2

adjR  defined 

as, 
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2

1

1
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i

R
N

y y

σ

=

= −
−

−∑
       (36) 

1

where

s
N

i

si

y
y

N
=

= ∑ and adjusted RMS error at sampling points is given as 

( )2

1

ˆ( ) ( )

( )

x xsN

i i

a

si

y y

N N
β

σ
=

−
=

−∑  . For a good fit, 
2

adj
R  should be close to 1. For more details on 

polynomial response surface approximation, refer to Myers and Montgomery
47
. 

Kriging
48
 

Kriging is named after the pioneering work of D.G. Krige (a South African mining engineer). Kriging 

estimates the value of an objective function y(x) at design point x as the sum of a linear polynomial trend 

model 
1

( )x
v

N

i i
i

fβ
=
∑  and a systematic departure Z(x) representing low (large scale) and high frequency 

(small scale) variations around the trend model.  

ˆ( ) ( ) ( ) ( )x x x x
i i

i

y y f Zβ= = +∑         (37) 

The systematic departure components are assumed to be correlated as a function of distance between 

the locations under consideration. Gaussian function is the most commonly used correlation function.  

( ) ( )2

1

exp( ), ( ), ( )x s θ
i i i

i

vN

C Z Z x sθ
=

= − −∏       (38) 

 

The parameters ,
i i

β θ  are obtained by minimizing the variance of the function.  

Radial Basis Neural Network
49
 

The objective function is approximated as a weighted combination of responses from radial basis 

functions (also known as neurons).  

1

( )ˆ( ) xx
RBF

i i

N

i

y w a
=

= ∑          (39) 

where ai(x) is the response of the i
th
 radial basis function at design point x and wi is the weight 

associated with ai(x). Mostly Gaussian function is used for radial basis function a(x) as 

( ) ( )
2

;s x
n

a radbas b radbas n e
−

= =−        (40) 

Parameter b in the above equation is inversely related to a user defined parameter “spread constant” 

that controls the response of the radial basis function. A higher spread constant would cause the response of 

neurons to be very smooth and very high spread constant would result into a highly non-linear response 

function. Typically, spread constant is selected between zero and one. The number of radial basis functions 

(neurons) and associated weights are determined by satisfying the user defined error “goal” on the mean 

square error in approximation. Usual value of goal is the square of 5% of the mean response.  

Weighted Average Surrogate Model
29
 

We develop a weighted average surrogate model as, 

( ) ( ) ( )ˆ ˆx x x
SM

N

i
wta i i
y w y= ∑         (41) 

where, ( )ˆ x
wta
y   is the predicted response by the weighted average of surrogate models, ( )ˆ x

i
y  is the 

predicted response by the i
th
 surrogate model and ( )x

i
w  is the weight associated with the i

th
 surrogate 
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model at design point x. Furthermore, the sum of the weights must be one 
1

1

N

i
i

SM

w
=

=
 
 
 
∑   so that if all the 

surrogates agree, ( )ˆ x
wta
y   will also be the same. Weights are determined as follows. 
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avg i
i

w
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w
w E E

w

E E N

β
α

β α
=

== +

= < <

∑

∑
       (42) 

where Ei is the global data-based error measure for i
th
 surrogate model. In this study, generalized mean 

square cross-validation error (GMSE) (leave-one-out cross validation or PRESS in polynomial response 

surface approximation terminology), defined in the Appendix 3, is used as global data-based error measure, 

by replacing 
i

E  by 
i

GMSE . We use 0.05and 1βα = −= . The above mentioned formulation of 

weighting schemes is used with polynomial response surface approximation (PRS), Kriging (KRG) and 

radial basis neural networks (RBNN) such that,  

. .
ˆ ˆ ˆ ˆ
wt avg prs prs krg krg rbnn rbnn
y w y w y w y= + +       (43)  

 

Appendix 3: Generalized Mean Square Cross-validation Error (GMSE or PRESS) 

In general, the data is divided into k subsets (k-fold cross-validation) of approximately equal size. A 

surrogate model is constructed k times, each time leaving out one of the subsets from training, and using 

the omitted subset to compute the error measure of interest. The generalization error estimate is computed 

using the k error measures obtained (e.g., average). If k equals the sample size, this approach is called 

leave-one-out cross-validation (also known as PRESS in the polynomial response surface approximation 

terminology). Equation (44) represents a leave-one-out calculation when the generalization error is 

described by the mean square error (GMSE). 

( ) 2

1

1
ˆ( )

k
i

i i

i

GMSE y y
k

−

=

= −∑         (44) 

where 
( )
ˆ

i

i
y

−
 represents the prediction at 

( )
x

i
 using the surrogate constructed using all sample points 

except (
( )

x
i
, yi ). Analytical expressions are available for that case for the GMSE without actually 

performing the repeated construction of the surrogates for both polynomial response surface approximation 

(Myers and Montgomery, 1995, Section 2.7) and Kriging (Martin and Simpson, 2005) however here we 

used brute-force. The advantage of cross-validation is that it provides nearly unbiased estimate of the 

generalization error and the corresponding variance is reduced (when compared to split-sample) 

considering that every point gets to be in a test set once, and in a training set k-1 times (regardless of how 

the data is divided). 

 


