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Abstract

We study the relative dynamics and control of two
spacecraft orbiting in close proximity in an unsta-
ble halo orbit. The understanding of a pair of such
spacecraft is immediately extendable to the under-
standing of a constellation of such spacecraft. This
is an issue of current interest given plans for space-
based interferometric telescopes and the attractive-
ness of placing such systems in orbits about the L,
libration point. The paper focuses on the specifi-
cation of control laws to stabilize the relative mo-
tion, and analyzes the relative dynamics and fuel
consumption of the spacecraft. A brief discussion of
the relative orbit determination is also given.

Introduction

This paper studies the stabilization of translational
motion relative to an unstable periodic orbit in the
Hill problem (which can be considered as a subset
of the restricted 3-body problem). Results of this
study will be relevant to the dynamics and control
of a constellation of spacecraft in an unstable or-
bital environment such as found near the Earth-Sun
libration points. It will also shed light onto the prac-
tical control and computation of a single spacecraft
trajectory over long time spans.

We investigate the application of feedback con-
trol laws to stabilize the relative trajectory of the
spacecraft in the sense of Lyapunov. Thus, the rela-
tive trajectory may still contain oscillatory motions,
which in this context can be interpreted as stable
motions in the center manifold of the periodic orbit
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- modified as a function of the applied control law.
We show that an entire class of such control laws can
be defined and their stability analyzed as a time pe-
riodic linear system. The fuel expenditure for such
control laws is often quite small, but scales with the
mean distance between the two spacecraft.

A fundamental problem with using center mani-
folds of an unstable orbit for relative motion is the
difficulty of computing non-linear (or even linear)
orbits that remain in the center manifold. The cur-
rent state of the art (numerical and analytical) is
given in Barden and Howell (1998) and Gémez et al.
(1998). From these analyses we see that extremely
precise computation (numerical or analytical) is re-
quired to maintain an orbit in the center manifold
of an unstable halo orbit. Small deviations from the
center manifold quickly cause the trajectory to di-
verge along the unstable manifold of the halo orbit.

In this paper we propose an approach which ad-
dresses the problem from a different direction, cast-
ing the problem as a trajectory control problem from
the start. Using this methodology we change the fo-
cus of the computation from remaining in the center
manifold to continually thrusting to remove compo-
nents of motion in the hyperbolic manifolds. The
basic control law to effect this is derived and ap-
plied to orbits about the unstable halo orbit. We
conclude with some examples showing the control
law at work in non-linear situations, and comment
on the level of control acceleration needed and other
practical issues of implementation.

Model of Spacecraft Motion
For computing the non-linear motion of the space-
craft we use the Hill equations of motion, which are
a simplified form of the 3-body problem applicable
to the motion of a spacecraft near the Earth, ac-
counting for the perturbation of the sun (Marchal,




p. 64). The three dimensional motion is governed
by the equations:
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where w is the mean motion of the central, attracting
body about the perturbing body (assuming circular
motion), and p is the gravitational attraction of the
central body. In our situation we choose p to be that
of Earth and w to correspond to an orbital period
of one year. The z axis lies along the line from the
perturbing body to the central body and remains
fixed in this rotating frame, the y axis points along
the direction of travel of the central body about the
perturbing body, and the z axis is normal to the
ecliptic. These equations are non-integrable and ex-
hibit a range of complex solutions, analogous to the
restricted 3-body problem.

For our investigation we consider a periodic orbit
solution of these equations, a halo orbit to be more
specific, which is a fully 3-dimensional orbit centered
about the libration points. Figures 1 — 3 show this
particular halo orbit projected into the main coor-
dinate planes. The initial conditions of this peri-
odic orbit are chosen to be similar to the Genesis
halo orbit during its main mission phase (Howell et
al. 1997). The period of this orbit is 178.9 days.
The orbit is unstable, with a single hyperbolic sta-
ble and unstable manifold with characteristic expo-
nent ¢ = 4.757 x 10~7/s (a characteristic time of
24.3 days). The orbit also has two stable oscilla-
tion modes, one with period equal to the periodic
orbit (as all periodic orbits have) and the other with
period slightly greater than one orbital period.

We assume that the first spacecraft follows this pe-
riodic orbit. We do not discuss the navigation (i.e.,
orbit determination and trajectory control) of this
spacecraft, but assume that it is kept on track and
is always relatively close to the periodic orbit. Some
practical aspects of navigating such a spacecraft are
discussed in Scheeres et al. (1999).

Relative Motion of the Spacecraft

In our ideal problem, we assume that the first
spacecraft is following a periodic halo orbit and the
second spacecraft is on a neighboring trajectory.
Since we desire the two spacecraft to maintain a close
relative distance to each other, we assume that the
second spacecraft is not on a neighboring periodic
orbit, as this would imply a different orbit period
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Figure 1: Halo orbit trajectory projected into the z-y
plane.

and hence a secular increase in their relative dis-
tance. Rather, the second spacecraft is assumed to
be in a non-periodic orbit in the vicinity of the first
spacecraft.

Linearized Dynamics

The first spacecraft has a trajectory defined as
R(;R,, V), R(t+T) = R(t), where T is the period
of motion. Naturally, the velocity of the spacecraft,
V(t; Ry, Vo), is also periodic with period T. The
second spacecraft has its own trajectory defined with
position and velocity r(t;r,,v,) and v(t;r,, v,). If
the distance between the two spacecraft is assumed
to be relatively small, then the trajectory of the
second spacecraft can be approximated using lin-
earized equations of motion. Define x = [r,v] and
X = [R,V]. Then the difference between these
states is 6x, which is assumed to be “small” rela-
tive to the state X. The dynamics of éx are derived
as:

x = x-X (4)

& = x-X (5)

= F(X+6x)-FX) (6)

= F(X)+§—§6x+...—F(X) )

~  A(t)dx (8)

Ay = = ©
At+T) = A@®) (10)

where F(X) is the dynamics function corresponding
to Equations 1 — 3. The solution for relative motion
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Halo orbit trajectory projected into the z-z

can then be expressed as:

ox = ®(t,1,)0%, (11)
(t,t,) = %;ox"l (12)
d(t,t,) = A@R)D(t,t,) (13)
B(tot,) = 1 (14)

where @ is the state transition matrix, computed
about the periodic orbit, and dx, is the initial offset
of the spacecraft from the periodic orbit.

Long-Term Relative Motion

For the case of long-term motion, i.e., spacecraft
motion on the order of the orbit period or longer, the
state transition matrix can be written as the product
of two matrices by application of Floquet’s theorem
(Cesari, pp. 55 — 59):

B(t,t,) = P(t—t,)elt )P

(15)

where P is a periodic matrix of period T and D is
a constant matrix which has, as its eigenvalues, the
characteristic exponents of the periodic orbit over
one orbital period. As noted earlier, our periodic
halo orbit has one pair of hyperbolic characteris-
tic exponents and two circulation frequencies, one
equal to the orbit period and one slightly longer.
Due to the presence of the unstable manifold, un-
controlled relative motion will rapidly move away
from the vicinity of the periodic orbit.

If we wish the spacecraft to maintain a long-term
trajectory in the neighborhood of the periodic orbit
we must place it in the center manifold of the peri-
odic orbit, defined as the space of orbits that do not
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Figure 3: Halo orbit trajectory projected into the y-z
plane.

lie along the hyperbolic manifolds of the periodic or-
bit. A spacecraft in such an orbit will naturally cir-
culate about the periodic orbit in a quasi-periodic or-
bit, its trajectory winding onto a torus that encloses
the periodic orbit in 3-dimensional space. Such a rel-
ative orbital configuration is attractive as, depend-
ing on the initial conditions given to the spacecraft,
an ensemble of spacecraft distributed along such ini-
tial conditions may serve a useful purpose as a con-
stellation of spacecraft (Barden and Howell 1998).
Unfortunately, the practical implementation of such
a family of orbits is extremely difficult, requiring pre-
cision placement and control of the spacecraft at all
points along the trajectory, as the center manifold is
itself an unstable object.

Short-Term Relative Motion

For practical considerations we may instead con-
cern ourselves with the relative dynamics of the
spacecraft over a time much less than the orbital
period. While, in principle, the description of rela-
tive motion given in Equation 15 holds true, it does
not give us a direct indication of relative motion over
shorter time periods.

We can represent the state transition matrix of the
periodic orbit over one period as the product of map-
pings over much shorter time intervals within the
period of motion:

i T
B(to+Tt) = [[@ (to + =
i=1

Sirto+ %;,—(i - 1)) (16)

Where the mapping over a time interval At is repre-
sented as ®(t,+At, t;) and conforms to the equation:

d(t; +0t,t;) = Alt: +6)P(t; +6t,t;) (17)



0<dt<At<T (18)

For At small enough we can expand A(t) in a Taylor
Series expansion, yielding:

A(t; +6t) = A(t) + A )6t + ... (19)

For our problem, we find that the force partial ma-
trix A(t) does not vary strongly over time, mean-
ing that the time interval At can be chosen small
enough to ensure that ||A(t;)l] > ||A’(t;)At}]. With
this restriction, we find that the state transition ma-
trix differential equation can be approximated over
short time intervals as:

St +6t,t:) = A®)D(t: +t,t) +... (20)

giving a time invariant system at leading order.
Thus, the solution can be expressed as:

B(t; +6t,t;) ~ A4 (21)
~ T+ ARG+ ... (22)

where, since the time interval is chosen to be small,
we neglect higher orders of the exponential expan-
sion.

The relative motion of the spacecraft can then be
characterized over a short period of time by the
eigenvalues and eigenvectors of the exponential map,
defined from the equation:

du = Au (23)
or equivalently:
(AI-®)u = 0 (24)

where ) is the eigenvalue and u is the eigenvector.
Using Equation 22 this can be reduced to:
A-1
{-(————)I - A(ti)} u = 0 (25)
&t
For a time invariant system the eigenvalue of the
state transition matrix, A, in Equation 24 is equal
to e7(¥_ where v is the characteristic exponent of
the system. Thus, the eigenvalue of Equation 25 can
be approximated as:
A-1

A2 TE (26)

’y ~
From this sequence of approximations we see that
the relative motion of the S/C over a short time
span centered at time ¢; can be understood by ana-
lyzing the eigenvalues and eigenvectors of the matrix
A(t;). Such an analysis resembles the analysis of an
equilibrium point carried out at each time t;.
Given the base periodic orbit, the characteristic
exponents and frequencies of A(t;) can be computed
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at each point in time, and are shown in Figure 4.
We see that for our base periodic orbit the structure
is consistent, having a pair of hyperbolic roots and
two pair of oscillatory roots at each moment in time.
The generalization of this result to the family of halo
orbits has not been performed as of yet. In Figure 5
we show the characteristic exponents of the numer-
ically computed maps ®(t; + At, ;) for decreasing
values of At. Comparison of the characteristic ex-
ponents with the exponents derived at each instant
of time clearly shows that the actual characteristic
exponents converge to the “instantaneous” charac-
teristic exponents as At shrinks.
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Figure 4: Instantaneous characteristic exponents and
frequencies of the of the periodic orbit over one period
of motion.
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Figure 5: Characteristic exponents of the unstable hy-
perbolic mode of the periodic orbit computed for the
state transition maps ®(t, + iAt, 1, + (2 — 1)At), At =
T/N, T equal to the orbit period. The exponents are
computed for increasing values of N. It is clear that
as N becomes large (and At small) that the exponents
converge to the instantaneous values of the map.

In deriving our control law we will use these “short-
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term” dynamics to guide our thinking. It is a fairly
natural approach, since a precursor for a spacecraft
to diverge from the periodic orbit over a longer time
span will be for it to diverge from the periodic orbit
over a shorter time span. Thus, we can think of
relative motion along the unstable manifolds to be a
precursor to motion along the unstable manifold of
the full orbit, as defined by Floquet theory. Note,
that the full orbit may still be unstable, even if the
instantaneous map is stable at each time step. We
will see examples of this later.

Stabilizing the Relative Motion
A control law is formulated which can stabilize the
relative motion of the spacecraft. We first derive the
control by focusing on stabilizing the “short-term”
dynamics, as described previously. We then show
that this “local stabilization” can also stabilize the
long-term relative motion of the spacecraft.

Local Stabilization

Neglecting the larger issue of long-term stability
for now, we focus on stabilizing the relative motion
between the two spacecraft over short time spans.
There are many different approaches that can be
taken here, depending on what form we wish the
resulting motion to take. For the constellation ap-
plications we are considering it would be most ben-
eficial if the relative control between the spacecraft
would allow for stable oscillations, such as are found
in the center manifold of an orbit. If the control law
can give such solutions, then we have considerable
freedom to choose and change the relative motion
of the spacecraft throughout the orbit. Specifically,
if the control law reduces the relative motion to os-
cillatory motion, then a variety of motions can be
implemented by proper choice of the intial condi-
tions. Additionally, the application of one or two
impulsive maneuvers can excite a different aspect of
the relative motion and change the dynamics of the
constellation. Technically, we wish to choose a con-
trol law which will establish Lyapunov stability of
the relative motion.

We propose a specific control law which can pro-
vide Lyapunov stability of our local, short time mo-
tion for a sufficiently large gain constant. To im-
plement this control at a given time t; we evaluate
the local eigenstructure of the matrix A(¢;) and find
the characteristic exponents of the hyperbolic mo-
tion, +o(t;), and find the eigenvectors that define
the stable and unstable manifolds of this motion,
u (t;), where the + denotes the unstable manifold
and the — denotes the stable manifold. To stabilize
the motion we then assume that the relative position
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vector of the spacecraft is projected into the stable
and unstable manifolds, and that this projection is
multiplied by a gain constant and an acceleration
of this magnitude is applied along the stable and
unstable manifolds, respectively. Thus, the control
acceleration which we apply is:

T, = —0°Glusul +u_ul]ér (27)

where o2G is the gain constant and ér is the mea-
sured relative position vector between the two space-
craft (i.e., the offset between the periodic orbit and
the 2nd spacecraft). We note that the eigenvalues
+o(t;) and eigenvectors wuy (t;) are well-defined pe-
riodic functions of time, with period equal to the
base periodic orbit.

Given this specific control law we can reformulate
the relative dynamics of our system, taking advan-
tage of the Lagrangian structure of the equations of
motion. Denote the linearized equations of motion
for relative motion as:

&t - 2wJér' — V. br = 0 (28)
010

J=]-100 (29)
0 0 0

where w is the rotation rate of the coordinate frame
and V,,.(¢;) is the second partial of the force ma-
trix evaluated along the periodic orbit, making it
a time-varying, periodic matrix as well. Then, the
eigenvalues and eigenvectors that we use in our con-
trol scheme are computed from:

[0’ IF20] -V, Juy = 0 (30)

Implementing the control acceleration of Equation
27 into Equation 28 has the effect of modifying our
potential force contributions to the linear system:

ot — 2w Jor'
—{Vir = ?G [uyul +u_ul]}ér = 0 (31)

This control law maintains the Hamiltonian nature
of the problem, and provides local stability if the
gain constant G is chosen sufficiently large. In the
Appendix we show that this control law can always
stabilize a time-invariant, hyperbolic unstable 2 de-
gree of freedom Hamiltonian system, and give a
heuristic justification for scaling our gain constant
by the characteristic exponent squared.

The control law just consists of a “reshaping” of
the local force structure by proper application of
thrusting. We shall see that since the magnitude
of these forces is rather small in the vicinity of the
libration points the amount of acceleration needed
to implement this control is also relatively small and



could be provided by a low-thrust propulsion system
in many cases.

Long-Term Stability

Equation 31 generalizes to the relative motion of
our spacecraft over longer time spans as well, as the
spectrum of the dynamics, Equation 30, is well de-
fined at each moment and as the stability type of the
local motion does not change over the entire orbit.
Thus, the eigenvalues £o and eigenvectors uy are
all well defined functions of time.

Computation of Stability Stabilization of the rela-
tive motion over short time spans is nice, but does
not necessarily guarantee that the motion of the
spacecraft will be stable over longer time spans.
Technical conditions for which such a time periodic
system may be stable are discussed in greater detail
in Cesari (1963). However, these mathematical con-
ditions, even if definite, will in general not be easily
applied to the current system where we have fully
general motion in three dimensions defined numer-
ically and a linear map that changes significantly
with time. The stability of the system can be evalu-
ated, however, by application of Floquet theory and
numerical integration.

Again, since the eigenvalues and eigenvectors used
in the feedback control are functions only of the pe-
riodic orbit, they are in turn periodic, making the
linear dynamical system defined in Equation 31 time
periodic. Also, since the control forces are only a
function of position, and are in principle derivable
from a potential function, we see that the control
law does not change the conservative structure of
the dynamics. Thus, the characteristic exponents of
the linear map over one period will follow the general
rules for conservative, Hamiltonian systems.

The algorithm which we apply is given, in brief,
as follows. The periodic orbit and its accompanying
state transition matrix, modified by introduction of
the stabilization control, is numerically integrated
over one period of motion. At each time step the
spectrum of the open loop system is computed and
fed into Equation 31. The gain constant G is a free
parameter that is specified at the start of the in-
tegration. The modified, time-varying matrix A(t)
used in the state transition matrix computation is
specified as:

] 0 | 1
Alt) = (32)
Vir — %G [u+u£ + u-uf] 2wJ

The resulting state transition matrix is denoted as
®(t, + t,1,), and the monodromy matrix evaluated
over one period of motion is then ®(¢, +7,t,). The
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minimum computation then consists of the integra-
tion of the periodic orbit (6 equations) plus the in-
tegration of the modified state transition matrix (36
equations). The integration was performed using a
variable step size RK78 algorithm, with error con-
trol applied to the entire set of 42 equations. As
the gain is increased, it is the numerical integration
of & that controls the step size choice, and hence it
is most convenient to carry along the computation
of the periodic orbit, as it and the spectrum of its
local motion will then be evaluated at the appropri-
ate time for inclusion in the ¢ computation. This is
found to be simpler than pre-computing and storing
the periodic orbit and its local stability characteri-
zation.

The stability of the closed loop system can then be
evaluated by computing the eigenvalues, u, of this
map:

pl =&t +T,t)|lv = 0 (33)
[ )

As detailed in Marchal (pp 171-173) the eigenvalues
of this map must occur in complex conjugate pairs
and in inverse pairs, meaning that for every complex
eigenvalue y, its conjugate 2 must also be an eigen-
value, and that for every eigenvalue with magnitude
different than 1, [u] # 1, there must also be an eigen-
value of magnitude 1/|u|. Stability of this system oc-
curs when all the eigenvalues have unit magnitude,
l.e., reside on the unit circle in the complex plane
and have the form p = e*¥%. Conversely, an unstable
map will either have a pair of multipliers along the
real axis, of the form +(p, 1/p), or will have a four-
some of complex multipliers that lie off of the unit
circle and have the form pe*®®, (1/p)e**®. Either
of these modes will lead to exponentially unstable
relative motion between the spacecraft.

For the case of a completely stable map, there are
three pairs of eigenvalues, each pair characterized by
the angle 6;,7 = 1,2, 3. This angle denotes the total
winding angle of the mode about the periodic orbit,
modulus 27. Taken together, they define a quasi-
periodic orbit with three seperate “average” periods
over one periodic orbit. For the general character-
ization of these oscillation modes we can consider
the angles to be functions of time along the orbit,
#;(t), with their final values computed from the mon-
odromy map being 8; = mod(#;(T),2n). Unfortu-
nately, there is no direct way to extract ;(t) from
the numerically computed monodromy map. This
is an item of interest, however, as the frequency of
these stable motions will change with the gain con-
stant G, and can be much larger than the periodic
orbit frequency, meaning that a spacecraft having
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motion along this mode can encircle the periodic or-
bit several times over one period of the base orbit.
Thus, defining and computing these mean frequen-
cles is of practical interest for the relative motion.
Ideally, we compute them as:

6:(T) _
Wy = ——T—— (34)
= 21N, +6; (35)

We find that the number N; can be estimated from
the time history of the spectrum of the state transi-
tion matrix & by counting the zero crossings of the
stable modes, however this approach is not always
well-defined as the intermediate spectrum of the ma-
trix is not always stable. A different approach to this
computation, that works when the numbers N; be-
come relatively large, is to estimate the angle 6;(t)
by performing the quadrature:

t
Gi(t) = / :(t)de (36)
0
where the frequency @;(t) is defined as an instanta-
neous characteristic frequency of the linear matrix
A(t), which has been stabilized by our application
of local control. We find that reasonable estimates
of the mean frequency of the stable modes of the
relative motion can be found from this quadrature.
Improvements to this approach will be investigated
in the future.

Stability as a function of Gain As formulated,
there is only one parameter for the controller, the
gain constant G. We see that, as this constant
is increased, the nature of the linear dynamics
changes. For values of G when the monodromy
matrix is stable, the space of all relative motions
can be found by computing the characteristic
frequencies and eigenvectors of the matrix. Motion
under this map will in general lie on quasi-periodic
tori surrounding the periodic orbit — somewhat
similar to motion in the center manifold but with
additional frequencies to choose from and elimina-
tion of instability concerns. To give insight into
these possible modes of motion we evaluate the
characteristics of the monodromy matrix as G is
increased.

For G < 1.17 the control law has insufficient au-
thority to stabilize the local motion at every time
along the periodic motion, meaning that there are
time intervals where the spectrum of A(t) is not com-
pletely stable. We note that the monodromy matrix
is also found to be unstable for this situation. Only
for values of G greater than 1.17 is the instantaneous
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motion stable over the entire periodic orbit. How-
ever, we note that stability of the local motion does
not guarantee the stability of the monodromy ma-
trix. And, in fact, we find that the monodromy map
does not become stable until the gain G reaches a
value of 2.19.

In general, we find that the map is stable for
gains greater than this value. There are exceptions
corresponding to resonances between the oscillation
modes and with the periodic orbit period. However,
in analogy to the Mathieu equation, as the gain be-
comes larger the size of these instability intervals
become small. The most significant intervals of in-
stability occur for relatively low values of gain. The
first two appear in the interval 347 < G < 5.21,
which corresponds to single and double resonances
with the orbital period, resulting in one pair of mul-
tipliers of the form py, 1/p;, and another of the form
—po and —1/ps. The next interval of instability is
5.92 < G < 6.10, where two of the modes have a
resonance, one having twice the period of the other,
and resulting in a complex set of four multipliers.

We note that the magnitude of the multipliers in
these intervals are “small”, the maximum multiplier
in the above intervals being less than 1.1 over one
orbit period (corresponding to a characteristic time
greater than 5 years). This is especially small as
compared to the original instability of the periodic
orbit which has a characteristic time of 23 days. In
many cases these instabilities would not appreciably
hamper the use of this relative control. Such inter-
vals of instability are expected, and in general cor-
respond to the eigenvalues of the monodromy map
intersecting on the unit circle (see Marchal for a de-
tailed discussion of possible stability transitions). As
noted in Marchal, the presence of oscillatory, linear
stability does not imply non-linear stability of the
relative orbits. However, we are assured that any
non-linear instabilities will not grow exponentially,
but will only grow, at most, as a polynomial in time.
For practical considerations, this implies that such
instabilities should be controllable by standard nav-
igation practices over time.

As the gain of the control loop increases, we find
that the mean oscillation frequencies of the system
defined earlier, @;, change as well. For our system,
one of these mean frequencies remains relatively con-
stant and is consistently less than the periodic orbit
frequency (2x/T). This oscillation mode is associ-
ated most strongly with “out-of-plane” motion along
the z axis of the system, and related to the initial
stable oscillation mode of the uncontrolled relative
motion. While the control loop does influence this
stable oscillation mode, it never causes it to stray
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far from its original value.

Conversely, the mean frequency of the other two
oscillation modes increase, in general, as the square
root of the gain G. One of these modes origi-
nates from the original open loop oscillation of pe-
riod T, while the other is created when the closed
loop control removes the hyperbolic manifolds. By
specifying the control gain G the “natural dynam-
ics” of the relative motion can be modified, causing
the relative motion between the spacecraft to fol-
low different paths. By characterizing the oscilla-
tion planes of these motions over time it is possi-
ble to distribute a constellation of spacecraft so that
they, as a group, are oriented toward a specific direc-
tion. For large values of G these mean frequencies
are approximately equal to /G and ov/G/2, where
o ~ 4.7 x 1077 /s is the characteristic exponent of
the open-loop unstable periodic orbit. In terms of
oscillation period, these are approximately 154/v/G
days and 309/v/G days.

Stabilizing non-linear motion The linear stability
of the control law for our halo orbit having been es-
tablished numerically, it is of interest to verify that it
can actually stabilize a non-linear trajectory about
a periodic orbit. To verify this, we apply the control
acceleration given in Equation 27 to the full equa-
tions of motion of a spacecraft moving according to
Equations 1 — 3. The initial conditions of this mo-
tion are denoted as an offset from the initial condi-
tions of the periodic orbit at the initial time, and
the relative position between the trajectory and the
periodic orbit, needed for the control, is computed
as the vector difference between the two solutions at
each moment in time. This formulation is entirely
consistent, as the computed difference is equivalent
to the measured difference between the two space-
craft, and the local stability computations are based
on the periodic orbit, which can in principle be com-
puted on-board the controlled spacecraft.

To push the control law to a somewhat extreme
condition, we gave the spacecraft an initial position
offset from the periodic orbit of 1 x 10° km with
gains of 10 and 100. The resulting trajectories are
shown in Figures 6 — 11. Each of these trajectories is
integrated over 400 days, which is more than two pe-
riods of the periodic orbit. We note that our control
law is able to maintain the stable relative motion
over this time frame. It is significant to note that
the computation of the periodic orbit itself over this
length of time is non-trivial, due to the strength of
its instability.

We also note that the control law is being applied
in a region where non-linearities dominate the sys-
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Figure 6: Controlled and halo orbit trajectory projected
into the z-y plane. Control gain of 10 is applied, with
an initial position offset of 1 x 10° km.

tem. In Figure 12 we show a plot of the motion rel-
ative to the periodic orbit for a case with an initial
position offset of 5 x 10% km and control gain of 10,
projected into the y and z coordinate planes. Also
shown is the linear solution to Equation 31, started
with the same value of offset but obviously follow-
ing a different trajectory as compared to motion in
the “real” system. This gives an indication that our
control law remains robust when the relative motion
is no longer well defined with the linear equations of
motion.

Control Implementation
Having shown that our control law stabilizes rela-
tive motion and is robust when applied to fully non-
linear motion, it is necessary to compute the thrust
needed to properly apply the control. In our com-
putations we keep track of the total “AV” expended
by performing the quadrature:

t
AVE) = / \Tojdt (37)
0
The actual time history of the instantaneous thrust
and accumulated AV changes as the gain and initial
conditions are varied. An estimate of the necessary
thrust level at any instant can be given by the rela-
tion:

T. ~ 20°GR (38)

where R is the amplitude of the relative motion of
the spacecraft in the z-y plane, 0 ~ 4.7 x 1077 /s
is the characteristic exponent of our periodic orbit,
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Figure 7: Controlled and halo orbit trajectory projected
into the z-z plane. Control gain of 10 is applied, with
an initial position offset of 1 x 10° km.

and G is the control gain. Thus we see that the
thrust will scale as 0.44GR nm/s%.

To apply a gain of 100 (oscillation periods of 15 and
31 days) with a relative constellation size of 1000
km requires a thrust of 44 micrometers/s?. For a
100 kg spacecraft, this translates into a thrust of
4.4 milli-Newtons. For a low-thrust ion engine with
a characteristic velocity of 30 km/s over a 2 year
mission, the resulting mass fuel fraction used is on
the order of 5%.

To successfully apply the control law we must mea-
sure the relative position along the directions of sta-
ble and unstable motion. Radial distance and radial
rate can be measured with a ranger and Doppler
extractor (we assume near-continuous communica-
tion between the spacecraft in support of their sci-
entific mission). If multiple receivers are placed on
the spacecraft, the relative orientation of the space-
craft can be determined and, by processing the in-
ertially measured attitude, the relative position of
the spacecraft can be determined at each moment.
In Scheeres et al. (1999) it was found that the orbit
uncertainty of a single spacecraft in an unstable halo
orbit tended to be minimized along the local stable
and unstable manifolds of the trajectory. A similar
result for the relative orbit determination between
two spacecraft would support the potential feasibil-
ity of our proposed approach to trajectory control.
Studies of this effect will be made in the future.

Conclusions
In this paper we address issues concerned with the
control of formation flying spacecraft in unstable or-
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Figure 8: Controlled and halo orbit trajectory projected
into the y-z plane. Control gain of 10 is applied, with an
initial position offset of 1 x 10° km.

bital environments. As a nominal case we consider
formation flying spacecraft in an unstable halo orbit
about the Earth-Sun libration point. The relative
dynamics of these spacecraft are considered along
with the practical computation of relative orbits and
the measurement and dynamics of relative orbit un-
certainty between the spacecraft. We find a family of
simple control laws that stabilize the relative motion
and appear to be very robust. The cost and feasibil-
ity of implementing these control laws are addressed
and found to be reasonable.
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Appendix
We first consider stabilization of a simple, 1DOF,
hyperbolic unstable motion. The generic form for
this case is:

F—o?r = 0 (39)

where ¢ is the characteristic exponent of the unsta-
ble system. In this case an intuitively obvious stabi-
lization is to apply a position feedback acceleration
of the form — KT, yielding the modified system:

F—(*—K)yr = 0 (40)
Now, an obvious condition for stability is K > o2,

or rewriting K = 02G, the stability condition be-
comes G > 1. This simple result motivates us to
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Figure 9: Controlled and halo orbit trajectory projected
into the z-y plane. Control gain of 100 is applied, with
an initial position offset of 1 x 10° km.

scale our feedback gain by the square of the local
characteristic exponent.

Next cousider application of our local stabilization
control scheme to an unstable hyperbolic point in a
rotating 2DOF frame. The open loop dynamics are
specified by the linear equation:

oz’ 1 9 0 1 oz’
&y" “l -1 0 oy
Viz Vay oz
- = 0 41
[sz VyyH&v} @y
The characteristic equation for this system is:
Mt [40® ~ Ve =V [ X2+ ViV —VE, = 0 (42)

For a singly hyperbolic unstable system we can as-
sume, in general, that

VaaViy = V2, < 0 (43)

The hyperbolic characteristic exponents of the sys-
tem are computed from:

1
LR | A (44)

1
34 — Vew — Vi) ~ 4 (Vea Wiy — V)

which is guaranteed to be positive if the inequality in
Equation 43 holds. The corresponding eigenvectors
will be of the form:

1
w = ———{ ! ] (45)
JJ1+d LYE
0% — Vo
“ T Y Thee 46)
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Figure 10: Controlled and halo orbit trajectory pro-
jected into the z-z plane. Control gain of 100 is applied,
with an initial position offset of 1 x 10° km.

Voy F 2wo

—_— 7
P, (47)

The gain matrix that is added to the left hand side
of Equation 41 (corresponding to Equation 32) is:

Uy u_

1 + 1

T 7 T
14ul I4+u? 14+u? 1+u?
o?G (48)
2
U U Uy u_
1+u3 + 1+u? 1+u3_ + 1+u?

Reforming the characteristic equation for this case
yields:

Xt [40? = Uy = Vi | 4°

+VeoVyy = V2, = 0 (49)
where
Vie = Vix—02G ﬁlTZ + T}E (50)
-yy = Vyy— o’G :%:Z + '1—:‘_2_;7_: (51)
Vay = Viy—0®G ﬁ%ﬁ + T%—E (52)

To guarantee linear stability of this system requires
that three conditions be met:

[4w2 Vo - Vyy] > 0 (53)
VeaViy — V2, >0 (54)

Ve V] —a [TV - T2] > 0 (59)
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Figure 11: Controlled and halo orbit trajectory pro-
jected into the y-z plane. Control gain of 100 is applied,
with an initial position offset of 1 x 10° km.

We note that Condition 53 can be rewritten as:

4w? -V, — Vg + 202G > 0 (56)

which can be satisfied for large enough G. Next,
expanding Condition 54 results in the form:

o G? (up —u-)?

—o%G [(1 + u2_) {u?},Vxz + Vyy — 2u+VIy}

+ (1 + ui) {uZsz + Viyy — 2u_ny}]
F(1+ud) (1+dd) (VeaViy - Vi) > 0(57)

Y

Again, we see that G can be chosen large enough to
guarantee stability. Finally, we note that Condition
55 can be rewritten as

8? [20% — (Vaw + Vi )| +
(Ves -

which, on inspection, reduces to the sufficient con-
dition

17 )2-+4V2 > 0 (58)
vy TY

%22 =V =Vyy > 0 (59)
or equivalently
2w% = Vg = Vi +20°G > 0 (60)

for which G can always be chosen large enough to
stabilize. Should this condition be true, then Con-
dition 56 follows trivially. Thus we note that our
proposed control law can always stabilize the hyper-
bolic unstable equilibrium point for large enough G.
The attractiveness of this controller is that it has a
natural specification for our time-varying system at
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Figure 12: The non-linear and linear trajectory compu-
tations relative to the periodic orbit, projected into the
y-z plane. Control gain of 10 is applied, with an initial
position offset of 5 x 10® km.

each moment of time and depends only on the esti-
mate of relative position between the spacecraft and
an estimate of the position of the spacecraft on the
nominal periodic orbit.
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