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We present results from direct numerical simulations of two types of phase-change processes: directional solidification
of a binary alloy, and film boiling. We use a 2D finite-difference/front-tracking method which allows the evolution of
the interface between the phases to be followed. The discontinuities in material properties between the phases, as well
as topological changes, are easily handled. In directional solidification, the fully coupled solute and energy equations
for a dilute binary alloy without fluid flow are solved. We demonstrate the evolution of a cellular interface with
rejection of solute ahead of the advancing interface and in the intercellular grooves. The numerical results for the
transition from a planar to a cellular interface are in excellent agreement with linear stability theory. The film boiling
problem couples the phase change with fluid flow. We study the growth and dynamics of a vapor layer adjacent to an
upward facing, flat, heated surface. Vaporization of the liquid at the liquid-vapor interface continually replenishes the
vapor lost due to bubble departure from the interface. (Author)
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Abstract

We present results from direct numerical sim-
ulations of two types of technologically impor-
tant phase change processes: directional solidifi-
cation of a binary alloy and film boiling. We use
a two-dimensional finite-difference/front-tracking
method which allows us to accurately follow the
evolution of the interface between the phases. The
method is general in the sense that discontinuities
in material properties between the phases as well
as topological changes are easily handled.

In the directional solidification problem the fully
coupled solute and energy equations for a dilute
binary alloy without fluid flow are solved. The
effects of latent heat, unequal material properties
between liquid and solid and unsteady effects are
completely taken into account. We demonstrate
the evolution of a cellular interface with rejection
of solute ahead of the advancing interface and in
the intercellular grooves. The numerical results
for the transition from a planar to a cellular inter-
face are in excellent agreement with linear stability
theory.

The film boiling problem couples the phase
change with fluid flow. This requires the solution
of the Navier-Stokes and energy equations with in-
terphase mass transfer. We study the growth and
dynamics of a vapor layer adjacent to an upward
facing, flat, heated surface. Vaporization of the
liquid at the liquid-vapor interface continually re-
plenishes the vapor lost due to bubble departure
from the interface.

1. Introduction

Phase change plays a central role in energy sys-
tems and materials processes. However it is usu-
ally the combination of phase change with fluid
flow and heat transfer that determines, for exam-
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pie, the efficacy of heat transfer equipment or the
microstructure of solidified alloys. The electri-
cal properties of semiconductors and the mechan-
ical properties of single crystal turbine blades are
closely coupled to fluid convection and processing
conditions during directional solidification. Re-
search on advanced materials and manufacturing
processes such as rapid solidification or spray cast-
ing for the production of net or near-net shaped
components depends on the ability to control and
understand fluid flow during solidification. The
power generation industry takes advantage of the
high heat transfer rates associated with phase
change in boiling to extract energy from solar, fos-
sil and nuclear fuels. Designers of energy gener-
ation systems for spacecraft must deal with the
added complication of handling low boiling point
cryogenic fluids in the absence of gravity.

Experimental investigations of phase change in
solidification and boiling are generally quite dif-
ficult due to the large range of important time
and length scales involved. In addition, the harsh
thermal and chemical environments in directional
solidification furnaces make it nearly impossible to
obtain measurements of crystal forming processes.
Numerical simulations hold the promise to com-
plement experimental investigations and provide
information that is hard to measure. Although
computations of industrial scale processes are cur-
rently out of reach, a fundamental understand-
ing of the complex physics at the small scale can
provide much needed insight to larger problems.
By understanding this small scale information we
hope to make progress toward the goal of provid-
ing quantitative predictions for linking operating
conditions to large scale aspects of heat exchanger
design and efficiency or to mechanical properties
of solidified materials, for example.

We have recently developed a numerical tech-
nique for fluid flow with phase change that has
allowed us to simulate problems with relatively
complex motion of the boundary separating two
(or more) fluids [1]. The method is based on a fi-



nite difference approximation of the Navier-Stokes
and energy equations and an explicit tracking of
the phase boundary. The numerical solution of the
full phase change problem with fluid flow is par-
ticularly difficult due to the coupling of the mass,
momentum and energy transport with the inter-
face dynamics and since interphase mass trans-
fer results in discontinuous velocities at the phase
boundaries. For problems without phase change
the front-tracking method has been successfully
used to investigate the collision of drops [2, 3],
thermal migration of drops [4] and the evolution
of several bubbles [5]. For problems without fluid
flow we have used the method to simulate the den-
dritic solidification of pure materials as well as bi-
nary alloys [6, 7]. In this paper we present results
for two types of technologically important phase
change processes. Section 2 deals with binary alloy
solidification and and section 3 with film boiling.

2. Directional Solidification of a Binary Alloy

Directional solidification is one of several com-
mercially important methods for solidifying met-
als. The basic idea in this process is to translate
the part to be solidified from the hot to the cold
end of a furnace. The translation velocity, V0, and
the temperature gradient in the furnace, G, along
with the initial alloy composition, C0, are the con-
trollable process variables which determine the mi-
crostructure and the physical properties of the fi-
nal solidified part. The liquid-solid interface dur-
ing solidification is generally not planar but forms
a cellular or dendritic structure depending on the
processing conditions. Understanding and linking
the behavior and geometry of the interface to the
processing conditions is then of crucial importance
to metallurgists. Until recently this understanding
was mostly empirical. The modern science of met-
allurgy was pioneered by Chalmers and co-workers
(see Rutter and Chalmers [8] and Tiller et al [9])
in the 1950's when they introduced the "consti-
tutional supercooling" criterion for the onset of
instability in a planar interface. This criterion is a
simple and useful quantitative tool for producing a
desired metallurgical microstructure. Mullins and
Sekerka [10] refined this criterion by performing
a linear stability analysis of the interface under
more general conditions. For low solidification ve-
locities, 14, the~ Munins-Sekerka instability crite-
rion becomes equivalent to that of constitutional
supercooling.

More recently, numerical work on the directional
solidification problem has attempted to overcome
the many simplifying assumptions of the previous

analyses to provide more detailed quantitative pre-
dictions. Brown and co-workers [11]-[18] have de-
veloped and used boundary conforming finite ele-
ment methods to study the growth and stability
of solidification cells in detail. Wheeler et al [19],
Boettinger et al [20] and Warren and Boettinger
[21] have developed phase-field models for isother-
mal solidification of a binary alloy. A comprehen-
sive review of methods for alloy solidification and
morphological stability theory in general is pro-
vided by Coriell and McFadden, [22].

We use a new front-tracking method to solve the
directional solidification problem. The fully cou-
pled solute and energy equations for a dilute bi-
nary alloy are solved and the effects of latent heat,
unequal material properties between liquid and
solid and unsteady effects are completely taken
into account.

Formulation
For the problem of solidification of a dilute bi-

nary alloy, we write the governing solute and en-
ergy equations for both the liquid and solid phases
simultaneously. In writing this single field repre-
sentation we carefully account for the effect of the
interface between the phases and the jump in ma-
terial properties from one phase to another. The
densities of the liquid and solid phases are assumed
to be equal and constant. Volume contraction and
expansion, as well as fluid convection effects are
thereby neglected. These effects are addressed in
section 3 for the film boiling problem. The thermal
conductivity, volumetric specific heat and chemi-
cal diffusivity of each phase are constant but not
necessarily equal.

The energy equation is
d_
dt (1)

where c is the volumetric specific heat, K is the
thermal conductivity and

Q- I q6(x-Kf)dA .
JA

(2)

6(x — x / ) is a three-dimensional delta function
that is non-zero only at the interface where x =
•x.j. q is the energy source due to liberation or ab-
sorption of the volumetric latent heat, L, at the
interface

3 = LV«n. (3)

V = (d-x.f/dt) is the interface velocity and n is the
normal to the interface. In this equation L takes
into account unequal specific heats:



L0 is the customary latent heat measured at the
reference equilibrium melting temperature of the
pure material, Tm. The subscript 1 will refer to
the solid phase and 2 to the liquid phase.

The solute equation is usually written for both
phases separately as

and = V-D2VC2 (5)

where C is the solute concentration. The solute
balance at the interface then requires that

(D2VC2 - -n = C2(k ~ l)V«n . (6)

where k = Ci(x/(f))/C2(x/(f)) is the partition
coefficient and is assumed to be constant.

We would like to recast Eqs.(5) and (6) in the
form of a single equation for both phases. If we
define new variables for the solute concentration
and diffusivity (see acknowledgments)

C h\ - / (Ci/k,kDi), in the solid, , ,
- (C2,£>2), intheliquid (l)

then the single field representation is

5C
fit + S . (8)

S is the source term which accounts for rejection
or absorption of the solute at the interface

= I
JA

and s is the source of solute

s = C/(I - k)V»n

(9)

(10)

where Cf = C(x/(f)) is the value of the trans-
formed concentration at the interface. Note that
the transformed concentration is continuous at the
interface. Since the interface is tracked we can
regain the original concentration and diffusivity
fields from the known position of the interface by,
for example,

(11)

7(x) is a material indicator function similar to the
phase-field variable in phase-iield -models ,-ihat-has
the value 1 in phase 1 and 0 in phase 2. Unlike
in phase-field methods we determine I(x) from the
known position of the tracked interface rather than
using it to determine the position of the interface.
This function also allows us to evaluate the values

of the thermal conductivity and specific heat at
every location by

and similarly for the specific heat.
In addition to the governing equations, an in-

terface condition on the temperature must be sat-
isfied at the phase boundary [23]

TJ-f Tlm -

(13)

where Tj = T(xy(f)) is the interface temperature,
<r(n) and f(n) are the anisotropic surface tension
and kinetic mobility respectively. K is twice the
mean curvature which is positive when the center
of curvature lies in the solid phase and m is the
slope of the liquidus line and is assumed to be a
constant.

The numerical construction of the indicator
function from the tracked interface and other de-
tails of the numerical method are described in
detail in [1] for the solidification of pure materi-
als. The binary alloy problem requires only minor,
straightforward modifications to that method.
Here, we only briefly outline the procedure. Equa-
tions (1) and (8), are discretized using a conser-
vative, second order, centered difference scheme
for the spatial variables. We use an explicit, first
order, forward Euler time integration method for
short time calculations and a second order time in-
tegration method for calculations that require ac-
curacy over a longer time. The interface is repre-
sented by separate, non-stationary computational
points connected to form a one-dimensional front
which lies within the two-dimensional stationary
mesh. The front is used to advect the discontinu-
ous material property fields and to calculate inter-
face curvature and normal velocity. Information
is passed between the moving interface and the
stationary grid using Peskin's immersed boundary
technique [24].

Results
The simulations of directional solidification of a

binary alloy are performed in a two-dimensional
rectangular domain which is periodic in the x-

-direction, -T-he_upper-por±ian-o£the domain is ini-
tially liquid and is separated from the solid in the
lower portion by the interface. The initial solid-
liquid interface is nearly planar with a small am-
plitude cosine perturbation. The specified temper-
ature gradient at the top boundary in the liquid is



Figure 1: Growth of the Mullins-Sekerka instabil-
ity in directional solidification of a binary alloy.
Results from two different resolutions are super-
imposed. The coarse resolution performs almost
identically to the finer resolution. The average in-
terface velocity of our calculation and the growth
rate of the interface perturbation amplitude match
the linear theory for early times.

GI and at the bottom boundary in the solid is G,.
The initial temperature fields are linear in each
phase

T(x,y) = G,(y-yf)+Tf in the solid,

T (x, y) = GI (y — J//) + Tf in the liquid

where the initial interface temperature, Tf, is
found from Eq.(13). The initial concentration field
is C0 in the solid and

1-* exp -

in the liquid. This is simply the liquid phase so-
lute concentration profile of a steadily advancing
planar interface. The concentration gradients at
the top and bottom boundary are specified to be
zero.

The problem is governed by the following inde-
pendent parameters:

Ci C2

a v T k AT0 G, G, .
Scaling length by ld = D2/V0, time by r -
D^/Vg, concentration by C0 and temperature by
AT0 the resulting 10 dimensionless parameters are

Figure 2: For a more unstable case the interface
deforms quickly, bifurcates and begins to grow in a
cellular pattern. The lighter shades of gray repre-
sent higher solute concentration and the white line
is the interface. The rejection of solute ahead of
the advancing interface and into the intercellular
grooves is clearly visible.

the 3 ratios of material properties between liquid
and solid, the Lewis Number, Le = D-^c^pi/K^,
the Stefan Number, St = c-zt\T0/L0, the nondi-
mensional temperature gradients at the top and
bottom boundaries, G* = G(/d/AT0 and G* =
Gj/d/AT,,, the partition coefficient, k, the Mullins-
Sekerka stability parameter, A = k(rTm/l<iL0A.T0,
and the nondimensional kinetic mobility, B =
V0/i/AT0. From the phase diagram geometry for
dilute solutions and constant m and k, we know
that AT0 = mC0(k - l)/k.

The simulation in figure (1) was run with the
following parameters

^ = 1000, £*=!, £ * = ! , k = OA
DI AI ci

Le = 0.001, 5< = 0.01, A - 0.004 B - 0.002

G* = 0.1 G* = 0.2 .

The computational domain is A x 2A where A is the
wavelength of the fastest growing unstable mode
of the Mullins-Sekerka instability. For this case
A = 1.1768. (Two periods are plotted in this fig-
ure for clearer illustration.) As the liquid solidifies
the interface exhibits the growth of the Mullins-
Sekerka instability. As a test of grid refinement,



results from two different resolutions are super-
imposed. The coarse resolution performs almost
identically to the finer resolution. Mullins and
Sekerka neglected solid diffusion, interface kinetics
and unsteady effects and assumed that the inter-
face moves with a constant mean velocity. We
make none of these assumptions in our numeri-
cal model. However for comparison, we choose
parameters to approximately match the assump-
tions made in the linear theory. We would expect
the best agreement early in the calculation before
nonlinear effects come into play. The average in-
terface velocity of our calculation and the growth
rate of the interface perturbation amplitude match
the linear theory for early times. As the interface
deforms more greatly, these values drop below the
theory.

Figure (2) shows a more unstable case. The in-
terface deforms quickly, bifurcates and begins to
grow in a pronounced cellular pattern. The lighter
shades of gray represent higher solute concentra-
tion and the white line is the interface. The rejec-
tion of solute ahead of the advancing interface and
into the intercellular grooves is clearly visible. For
this case we have increased the Stefan number to
0.05 and introduced a four-fold anisotropy in the
surface tension.

3. Film Boiling

In film boiling from an upward facing, flat
surface a layer of vapor completely blankets the
heated surface. The vapor is constantly depleted
by break off and rise of vapor bubbles and is re-
plenished by vaporization of liquid at the liquid-
vapor interface. The vapor layer acts as an insu-
lator thereby lowering the heat transfer rate and
increasing the heater surface temperature. In pro-
cesses where the heat flux is the controllable vari-
able such as in nuclear reactor operation or in elec-
trically heated applications, exceeding the criti-
cal nucleate boiling heat flux can be dangerous.
The process immediately jumps to the film boil-
ing regime where heater damage can occur due to
the high surface temperatures.

Efforts to understand the processes involved in
boiling have focused mainly on simple numerical
and analytical models of vapor bubble dynamics
[25]-[32]. Due to the complexity of the full liquid-
vapor phase change problem, an assumed interface
shape along with various assumptions concerning
surface tension, fluid viscosity and vapor phase ve-
locity and temperature are usually incorporated.
The numerical solution of the full phase change
problem with fluid flow is particularly difficult due

to the coupling of the mass, momentum and en-
ergy transport with the interface dynamics and
since interphase mass transfer results in discon-
tinuous velocities at the phase boundaries. Welch
[33] has made significant progress in using a two-
dimensional, moving mesh, finite volume method
to solve the mass, momentum and energy equa-
tions for liquid-vapor flows with phase change.
However, his method is restricted to flows with
only small distortion of the liquid-vapor interface.

In a previous paper, we developed a general
two-dimensional front-tracking method for liquid-
vapor flows with phase change that can handle
large interface deformations and topology changes
[1]. We use the method here to present calcula-
tions of film boiling, with the break off and rise of
bubbles from an unstable liquid-vapor interface.

Formulation
We now broaden the scope of the phase change

problem to include the solution of the Navier-
Stokes and energy equations. As before we write
the governing equations for both phases simulta-
neously. However we must now also take into ac-
count mass transfer across the interface and force
as well as energy sources at the interface. Note
that in two-phase flow, additional terms appear in
these equations due to the phase change and the
fact that the interface is no longer a material in-
terface. The fluid velocity at the interface and the
interface velocity are unequal. This single field, lo-
cal instant formulation incorporates the interface
jump conditions into the governing equations as
sources which act only at the interface. Kataoka
[34] shows that this single field representation is
equivalent to the local instant formulations of Ishii
[35] and Delhaye [36]. They formulate the phase
change problem in terms of local instant variables
for each phase with appropriate jump conditions
at the moving phase interface. These local instant
formulations form the basis for formulations using
various types of averaging.

The momentum equation is written for the en-
tire flow field and the forces due to surface tension
are inserted at the interface as body forces which
act only at the interface. In conservative form this
equation is

— (pu) + V* (puu)

i + P . (14)

The notation follows customary convention: u is
the fluid velocity field, P is the pressure, p is the



density and n is the viscosity. F is a source term
which accounts for forces acting on the interface

F= / f < 5 ( x - X / ) < U .
JA

(15)

f is the surface tension normal to the interface,

f = CTKU (16)

The conservation of mass equation for a fluid
with a volume expansion at the interface due to
phase change is

= M

where
M = / m6(x-xf)dA

JA

(17)

(18)

and m accounts for mass transfer across the inter-
face due to the phase change

m = (pi -/?2)V'n . (19)

Note that this formulation of Eq.(17) is equivalent
to the customary statement of the conservation of
mass principle. The subscript 1 will refer to the
vapor phase and 2 to the liquid phase.

The energy equation is

where
Q =

(20)

(21)

q is the energy source due to liberation or absorp-
tion of latent heat, L, at the interface

q = (22)

ui is the vapor phase fluid velocity at the inter-
face. In this equation L takes into account unequal
specific heats:

L0 is the customary latent heat measured at the
reference equilibrium vaporization temperature,

The interface temperature condition that must
be satisfied on the phase boundary [23] is

= 0 , (24)

where P^ and Pv are the ambient pressure and
the pressure at the interface in the vapor respec-
tively. To complete the formulation we specify the
material property fields using the material indica-
tor function, /(x), as discussed in the previous
section.

It is important to note that integration of
Eqs.(14), (17) and (20) across the interface di-
rectly yields the correct jump conditions in the
local instant formulation for two-phase systems
given by Delhaye [36] and Ishii [35] with the as-
sumptions that the interface is thin and massless
and that the bulk fluids are incompressible. How-
ever, we allow for volume expansion at the in-
terface in the conservation of mass, Eq.(17), but
neglect the volume expansion term in the consti-
tutive shear relation in the momentum, Eq.(14).
In the energy equation, viscous dissipation and
kinetic energy contributions from the product of
the fluid velocity at the interface and the inter-
face velocity are neglected. Contributions to the
energy equation from interface stretching are usu-
ally small compared with the latent heat and are
neglected. Thermocapillary effects are also ne-
glected.

The details of the finite difference/front-
tracking method used to solve the above system of
equations will not be discussed here but are pro-
vided in [1].

Results
In these simulations we follow the evolution of

an unstable vapor layer below a liquid layer which
is below another vapor layer. The computations
are performed in a 10x30 box with a grid reso-
lution of 50x150. The domain is periodic in the
^-direction. To allow for vaporization we let fluid
exit at the top boundary where we specify the am-
bient pressure to be zero. The temperature field
is initially zero everywhere with a heat flux, qw,
applied to the rigid bottom wall.

The physics of the phase change problem is gov-
erned by

Pi, Pi, Pi, 1*2, ci, c2, K I , I<2, L0, a, Tv, g, qw .

If we scale temperature by p\L0lpic-i and
choose appropriate length and time scales Id =
(f^/gp2)1 and r •=. (p/pg2) respectively,
the 9 resulting dimensionless parameters are the
Prandtl number, Pr = 02^2/^2j the Bond Num-
ber, Bo = (gn^/ptr3) , the nondimensional wall
heat flux, q* = qwpiCild/K^p\L0, the Nusselt
number, Nu = qwld/Ki(Tw -Tv), and a capil-
lary parameter, d0 — p2C2<rTv/p2L2ld- Note that



Figure 3: Film boiling simulation at three different times. The solid white lines are the liquid-vapor
interfaces, the arrows represent velocity vectors and are plotted only at every fourth grid point. The
temperatures are shown as shades of gray where the hottest regions are near the bottom wall and the
coolest regions are in the liquid which remains nearly isothermal. A Rayleigh-Taylor instability forms
with subsequent pinch off and rise of a vapor bubble. The bubble carries heated vapor up into the
ambient liquid. The calculation is in a 10x30 box with grid resolution 50x150. pi/p\ — 10, ^2/^1 =
10, KI/KI - 10, c2/C! = 1, Pr = 1, qw = 0.5, B0 -I, d0 = 0.002



Figure 4: Film boiling simulation for three different times with the density of the liquid 100 times that of
the vapor. The amount of vapor in the growing bubble near the bottom wall increases due to vaporization
of liquid at the lower interface. Since the low density vapor takes up more volume, the fluid above it is
pushed upwards and the upper interface moves passively upward with the fluid. The parameters are the
same as in figure (3) except p ^ / p i = 100, ^2/^1 = 40, K2/Ki - 20, qw - 10, B0 = 0.05 .
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Figure 5: Comparison of heat transfer results from
two-dimensional numerical simulations against a
correlation by Klimenko [37]. For each of the
three numerical runs at three different Rayleigh
numbers the average Nusselt number along the
heated bottom wall is plotted at different times.
Two-dimensional simulations are in good agree-
ment but consistently lower than 3-D experiments.
Higher 3-D values are expected since heat flow is
not confined to a plane and on average the height
of the vapor layer above the heated wall would be
lower and thus the heat transfer would be higher
in 3-D than in 2-D.

the Nusselt number is not set beforehand but is
determined by the calculation of the wall temper-
ature, Tw. In addition to these we must specify
the 4 ratios of the material properties between the
liquid and the vapor.

The simulation in figure (3) was run with the
following parameters:

£ = 10, ^ = 10, £ = 10, ^ = 1,Pi Hi KI ci
Pr =1, qw= 0.5, B0 = 1, d0 = 0.002

and is shown for three different times. The in-
terfaces are plotted as the solid white lines while
the arrows represent velocity vectors and are plot-
ted only at every fourth grid point. The tem-
peratures are shown as shades of gray where the
hottest regions are near the bottom wall and the
coolest regions are in the liquid which remains
nearly isothermal. In the first frame of the fig-
ure the liquid vapor interface begins to exhibit
a Rayleigh-Taylor instability with the formation
of counterrotating vortices. Cold liquid is forced

down toward the bottom wall and hot vapor is
pushed up into the forming bubble. The interface
then pinches together and in the last frame the
separated bubble rises toward the upper interface
carrying with it some of the hot vapor from the
heated wall.

Vaporization of the liquid at the liquid- vapor in-
terface continually replenishes the vapor lost due
to bubble departure. This is seen more easily in
the simulation shown in figure (4) where the den-
sity ratio and the wall heat flux are higher. The
parameters are the same as in the previous figure
except

— = 100,Pi = 40, = 20,

qw = 10, Bo = 0.05 .

The amount of vapor in the growing bubble near
the bottom wall is continually increasing due to
vaporization of liquid at the lower interface. Since
the low density vapor takes up more volume, the
fluid above it is pushed upwards. Note that there
is no vaporization at the upper interface. This
interface simply moves passively upward with the
fluid on either side of it. The fact that the upper
interface does move upward is a good indicator
that mass transfer is taking place across the lower
interface.

In figure (5) we compare heat transfer results
from our two-dimensional simulations against a
correlation by Klimenko [37] on a plot of the Nus-
selt vs. Rayleigh numbers. Klimenko found that
his correlation holds within 25% for many different
fluids. The open circles represent the numerical
results for three different runs at three different
Rayleigh numbers. For each of the three runs the
average Nusselt number along the heated bottom
wall is plotted at different times. Thus we see a
range of values for one run which represents the in-
creasing and decreasing heat transfer from the wall
as the height of the vapor layer adjacent to the wall
decreases or increases with time. The experimen-
tal results would naturally give values averaged
over the heated area as well as averaged in time.
Our 2-dimensional numerical results are consis-
tently lower than the values from 3-dimensional
experiments. However we would expect our two-
dimensional results to exhibit lower heat transfer
for several reasons. In three dimensions the heat
flow is not confined to a plane. There are also
more bubbles rising from many various points on
a heated surface. On average the height of the
vapor layer above the heated wall would be lower



and thus the heat transfer would be higher in 3-D
than in 2-D.

4. Conclusions

We have shown results from two-dimensional
direct numerical simulations of directional so-
lidification of a binary alloy and film boil-
ing from a heated surface. Although these
problems represent vastly different physics, they
are both amenable to solution using a finite
difference/front-tracking method. For the alloy so-
lidification problem we demonstrate the growth of
an unstable liquid-solid interface with solute rejec-
tion in the intercellular grooves. The results match
the linear theory of Mullins and Sekerka for small
interface deformations. For larger growth rates,
the interface bifurcates and grows into deep cells
with solute rich cellular grooves. In the film boil-
ing problem we demonstrate the break off and rise
of a bubble from an unstable liquid-vapor inter-
face. The heat transfer results are in good agree-
ment with experimental results within the limita-
tions of the two-dimensional calculations.
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