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Dimensionless parameters in symmetric double lap joints: an
orthotropic solution for thermomechanical loading

Peter A. Gustafson∗, Arnaud Bizard†, and Anthony M. Waas‡
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Two thermomechanical analytical models are proposed for orthotropic double lap joints, and are compared
to a finite element model. The solutions, based on the principle of virtual work, differ in the complexity of the
assumed stress field. The first solution is similar to Volkersen, with the addition of thermal effects. The second
solution captures the peel stress as well as the traction free boundary condition at the adhesive edge. Relevant
non-dimensional parameters are presented for geometric, material, and load quantities. A dimensionless load
ratio is identified which dictates the shape of the stress distribution. This ratio can also be used to quickly
determine the dominant loading mechanism. Dimensionless stress plots are presented for representative lap
joints.

Nomenclature

l Lap length, m
tκ Material thicknesses of component κ, m
x Lap coordinate measured from the left edge, m
y Lap coordinate measured from the lower edge, m
σκ11(x) Longitudinal stress in component κ, Pa
σb22(x) Transverse stress in adhesive, Pa
τb12(x) Shear stress in the adhesive, Pa
Eκii Orthotropic engineering moduli of component κ, Pa
Ep[0l] Young’s moduli of the end posts, Pa
Gb12 Shear modulus of the adhesive, Pa
ακii Orthotropic thermal expansion coefficients of component κ, Co−1

νκij Poisson’s ratios of component κ
F Mechanical load carried by an end post, N
P Mechanical load applied to joint, per unit depth, N m−1

∆T Temperature change from reference temperature, Co

c0, d0 Coefficients of assumed stress distribution, N
c1, d1 Coefficients of assumed stress distribution, N m−1

ψP Mechanical load parameter, N m−4

φP Mechanical load parameter, N m−6

ψT Thermal load parameter, N m−4

φT Thermal load parameter, N m−6

ω System parameter, m−1

β System parameter, m−2

γ System parameter, m−4

x̄ Dimensionless coordinate x
l measured from the left edge of the adhesive

ω̄ Dimensionless system parameter
β̄,γ̄ Dimensionless system parameters
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λ̄1,λ̄2 Dimensionless system parameters
σ̄a11(x̄) Dimensionless longitudinal stress in the central adherend
σ̄c11(x̄) Dimensionless longitudinal stress in the outer adherend
τ̄b12(x̄) Dimensionless shear stress
ψ̄P ,φ̄P Dimensionless mechanical load parameters
ψ̄T ,φ̄T Dimensionless thermal load parameter
ā, b̄, Ā, B̄, C̄, D̄ Dimensionless integration constants
¯̄a, ¯̄b, ¯̄A, ¯̄B, ¯̄C, ¯̄D Dimensionless integration constants

Subscripts

[] the or operator, ie [12] is 1 or 2 (no sum)
κ κ = [abc] (no sum) representing central adherend (a), adhesive (b), and outer adherend (c) respectively
ii i = [123] (no sum)
ij i, j = [123] where i 6= j (no sum)

I. Introduction

THE use of composite materials continues to increase in the aerospace industry, which places an ever increasing im-
portance on the ability of designers to properly specify the performance of bonded structural joints. Due to specific

strength, specific stiffness, and load distribution advantages, recent high profile aircraft and spacecraft have featured
bonded joints. Epoxies and adhesives now becoming available have shown great promise to expand the temperature
range over which structural fiber reinforced polymer composites are used. These materials provide an opportunity to
replace specialized, non-structural thermal protection with integrated composite systems capable of carrying structural
load over a range of temperature extremes. Consequently, temperature resistant composite structures and bonded joints
will be used in increasing quantities. In addition to the harsh operating environments, the processing temperatures for
these specialized epoxies and adhesives are also quite high. As a result, the materials carry a significant risk of adverse
stress fields caused by differential thermal expansion, even at room temperature.

It has been claimed that approximately 70% of structural failures are initiated in joints,1 therefore great attention
must be paid to proper design of joints. Engineers have long recognized that adhesively bonded joints reduce the
stress concentrations associated with mechanical fasteners through a more even distribution of the transmitted load.
As the adhesives available for bonding have improved, the use of bonded joints has enhanced or replaced the use of
traditional mechanical fasteners in high performance aircraft. Confidence in such joints has grown with accumulated
usage, as reflected in the use of bonded joints in aircraft including the Joint Strike Fighter, the Long Range Strike
Aircraft, and Unmanned Aerial Vehicles.2 Additionally, the use of adhesively bonded composite joints has expanded
into the automotive industry. a

Despite increased usage, the design of joints is often carried out in an ad-hoc fashion, relying heavily on physical
testing and empirical models. If the role of temperature resistant composites is to expand, their use must be supported
by an improved understanding of bonded joints. Further research is needed to expand modeling capability for bonded
joints, as well as to determine the mechanical response of material systems. It is also important to transfer research
level models into the product development environment.

In the present work, a brief review of the available literature for double lap joints is presented. Two thermome-
chanical models are proposed for the symmetric double lap joint, a joint commonly used in the aerospace industry.
One model, referred to as the shear only model (SO), can be considered a thermomechanical extension to the work
of Volkersen.3 A second model accounts for the traction free adhesive edges, and allows for calculation of the peel
stresses. It will therefore be referred to as the shear-peel model (SP). Both models are then compared to a finite el-
ement (FE) model. The extension of the main findings of this work to a single lap joint is the subject of a separate
investigation.

II. A brief summary of double lap joint analytical models

Many have offered analytical solutions to the bonded joint. First among them Volkersen,3 followed by the distin-
guished work by Goland and Reissner,4 both of which presented solutions to the single lap joint. In addition, their
have been many authors (an incomplete list includes: Her,1 Hart-Smith,5 Peppiatt,6 Renton and Vinson,7 Allman,8

aComposites News International, Ashland Pliogrip Adhesive Bonds Roofs To Two BMW Sports Sedans, Jan 20, 2006
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and Yang et al9) who have proposed models for single lap joints. (Additionally, summaries were provided by Ben-
son10 and Adams et al.11) Of greater interest to this work, several authors have addressed double lap joints including
Her,1 Hart-Smith,12 Gilibert and Rigolot,13 and Sen and Jones,14.15Though intended for single lap joints, the work of
Volkersen could used for double lap joints with only slight modification.

There are three important phenomenon present in bonded lap joints which are often overlooked or ignored in
the available analytical models. First, in an idealized lap joint, the edge of the adhesive is a traction free surface.
Though this is captured in some models, it is not captured in the frequently cited work of Goland and Reissner,4 nor
its descendents. For example, in the double lap solution of Chen and Nelson,16 the assumptions lead to a conclusion
that the shear stress is maximized at the edge of the adhesive, instead of being zero. Several authors have presented
double lap joint models which capture the traction free boundary condition, however the derived solutions are either
numerical as in the case of Sen and Jones1415, or the governing equation is a differential equation of very high order
as in the case of Whitney,17 where no intuition can be developed. It was noted by Benson10 that a minimum 4th order
differential equation is required to capture the traction free surfaces. The second solution of the present work has such
a differential equation.

A second shortcoming that exists in many of the analytical and FE solutions is that most do not account for
anisotropic material behavior. This is particularly a concern when they are used in reference to laminated composite
materials, since transverse strength is often significantly lower than in-plane strength for a given laminate.12 Further,
since high temperature curing cycles are frequently needed for temperature resistant materials, prudence dictates that
anisotropic material behavior should be included in thermomechanical analytical models.

A third common oversight is also at the edge of the adhesive, this time at the material interface. In this location,
there exists a geometric singularity which causes unbounded stress concentrations.18 Though non-linear material
response might ensure that the stress remains finite,2 the peak stresses at the corners are very dependent on the specific
geometry and material behavior. The possible effects are not considered here, since this aspect of the joint requires
different modeling strategies that employ ideas rooted in fracture mechanics.

Temperature effects have been neglected in most analytical double lap joint models. The authors are aware of
the work of Chen,16 Vinson,19 and Adams.20 The work of Vinson and Zumsteg19 is difficult to evaluate, in that it
requires the solution of 18 simultaneous boundary conditions and can only be reasonably solved numerically. Qual-
itative assessments cannot be made since no plots of the predicted stresses were provided. In the of Adams et al,20

a numerical solution is required making it less useful as a design tool. Hart-Smith also considered thermal loading,
though the solution did not capture the traction free boundary condition.12 Thermal loading cannot remain neglected
since future materials will face high temperature loading during manufacturing (high temperature curing cycles) and
in the operating environment (in hypersonic and re-entry vehicles).

III. Analytically derived stress field in a double lap joint including thermal expansion

A. A model which assumes the adhesive carries shear stress only

Figure 1: Schematic of the double lap joint with end posts

A schematic of a double lap joint is shown in Figure
(1). In this work, a symmetric geometry is assumed,
and two solutions will be proposed. The first solution
will assume that the stress field varies only along the di-
rection of loading. The adherends are assumed to carry
normal stress only, and the adhesive is assumed to carry
shear stress only. Due to symmetry, the bending mo-
ments present in the joint are assumed to be negligible.
Under these assumptions, the stress field is a function of
x only. Thermal expansion is assumed to be linear with
temperature. Plasticity, creep, and other non-linearities
of the constituents are ignored, though it is likely that
they could be significant.12

The central adherend is referred to as material a; an equilibrium element for the central adherend is pictured in
Figure (2.1). Figure (2.2) represents the outer adherend, referred to as material c. In these two areas, x-equilibrium
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2.1: Equilibrium element of central
adherend

2.2: Equilibrium element of outer ad-
herend

2.3: Equilibrium ele-
ment of adhesive

2.4: Equilibrium ele-
ment of the left end
post

requires the following:

∂σa11(x)

∂x
= − 2

ta
τb12(x),

∂σc11(x)

∂x
= − 1

tc
τb12(x),

(1)

where x is measured from the left edge of the adhesive. Solving Eqs. (1) for τb12(x) and equating leads to:

tc
∂σc11(x)

∂x
=
ta
2
∂σa11(x)

∂x
. (2)

The natural boundary conditions at the edge of adherend a are:

σa11(0) =0,

σa11(l) =
2P
ta
,

(3)

which are the longitudinal normal stresses in the central adherend at the edges of the joint. Combining the above
equations leads to the following relationship between stresses in the central and outer adherends:

σc11(x) =
ta
2tc

σa11(x) −
P

tc
. (4)

Since the shear stress is assumed to be constant through the thickness of the adhesive, the shear stress in the adhesive
is determined by Eqs. (1) and the solution to Eq. (4). Equations (1-4) can be solved using the principle of virtual
forces, leading to a differential equation in the following form:

∂2σa11(x)

∂x2
+ ω2σa11(x) + ψT + ψP = 0. (5)

Before stating the values of the system parameters ω2,ψT , and ψP , it is reasonable to non-dimensionalize the solution
to Eq. (5), therefore the following substitutions are made:

ψ̄T = ψT
l2

Ea11
,

ψ̄P = ψP
l2

Ea11
,

x̄ =
x

l
,

ω̄ = lω,

τ̄b12(x̄) =
τb12(lx̄)

Ea11
,

σ̄a11(x̄) =
σa11(lx̄)

Ea11
.

(6)
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In Eq. (6), the non-dimensional axial stress σ̄a11(x̄) could easily be confused for the axial strain εa11, however this is
not the case since the stress field is not uniaxial. In analytical models offered previously, the average shear stress τave

b12

has been chosen as the normalizing factor. However, since a thermal load without an externally applied mechanical
load results in a zero average shear stress, the modulus of the central adherend Ea11 is used for the normalization.
Unfortunately, this choice looses the “stress concentration factor” associated with the average shear normalization,
however it is necessary to avoid a singular result for thermal loads. Upon substitution, Eq. (5) becomes:

∂2σ̄a11

∂x̄2
+ ω̄2σ̄a11 + ψ̄T + ψ̄P = 0, (7)

which is a non-dimensional form of the governing equation. The parameters ω̄2, ψ̄T and ψ̄P are given by:

ω̄2 =
2Gb12l2

tb

[
(νc13νc31 − 1)

Ec11tc
+

2(νa13νa31 − 1)
Ea11ta

]
,

ψ̄T =
[
4Gb12l2 (αc33νc31 − αa33νa31 + αc11 − αa11)

Ea11tatb

]
∆T ,

ψ̄P =−
[
4Gb12l2 (νc13νc31 − 1)

Ea11Ec11tatbtc

]
P.

(8)

It is worth noting that Eq. (8) contains non-dimensional parameters for both thermal and mechanical loading. The
thermal expansion of the adhesive is not a factor, since the adhesive is assumed to carry no longitudinal normal stress.
In deriving the non-dimensional parameters, it has been assumed that the 2D geometry deforms in plane strain, and
the material is orthotropic and aligned with the plane of deformation. A plane stress assumption could be substituted
by setting all Poisson terms to zero.

The solution to Eq. (5) takes the form:

σ̄a11(x̄) = ā sin(ω̄x̄) + b̄ cos(ω̄x̄)− ψ̄T + ψ̄P

ω̄2
, (9)

and possesses the following boundary conditions for longitudinal normal stress:

σ̄a11(0) = 0,

σ̄a11(1) =
2P

taEa11
.

(10)

Application of the boundary conditions leads to the following values for the constants ā, b̄:

ā =−
[

Ec11 tb tc
2Gb12 l2 sin ω̄ (νc13 νc31 − 1)

+
cos ω̄ − 1
ω̄2 sin ω̄

]
ψ̄P −

(cos ω̄ − 1)
ω̄2 sin ω̄

ψ̄∆T

b̄ =
ψ̄T + ψ̄P

ω̄2

(11)

and the solution is completed.
The SO solution presented in this section minimizes solution complexity. As a result, it lacks certain desirable

features. It does not offer a traction free adhesive edge, nor does it quantify the peel stress. Despite these shortcomings,
the model is useful. It provides an analytical solution which includes consideration of thermal expansion. Also,
important non-dimensional parameters have been identified in Eq. (8). These parameters dictate the joint stress
distribution, and can be used as a first order analysis tool in the design of bonded double lap joints. Further, the SO
solution provides the foundation for a formulation posed in the next section, the solution of which provides a zero
traction at the adhesive edge.

B. A model which assumes the adhesive carries shear and peel stress

The second solution presented in this work is the SP extension to the above analysis. In this case, the adhesive is no
longer confined to carry shear stress only. Instead, it is now assumed to carry shear and peel stresses, as shown in
Figure (2.3). The adherends are assumed to be stiff, and carry only normal stresses as before. For convenience, a
fictitious structural element referred to as an “end post” is located at the edge of the adhesive, and is assumed to be
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capable of transferring any shear stress at the edge towards the adherends. In making this assumption, the traction
boundary condition is satisfied a priori. This modeling approach has been used in the design of shear panels, as
described by Davies.21 The end post element, which is included in Figure (1), will be carried through the calculations
and then eliminated at the end to restore the correct geometry.

The stress fields in the adherends are as described in the SO solution, with the exception of the peel stress in the
adhesive layer. The x-equilibrium equations provided above still hold, however, y-equilibrium in the adhesive is now
non-trivial.

Force equilibrium in the y direction of the adhesive requires the following relation:

∂σb22(x)

∂y
= −

∂τb12(x)

∂x
, (12)

where σb22(y) is assumed to be a linear function of y:

σb22(y) = c0 + c1y. (13)

By assumption, σb22(tb) = 0, therefore:

σb22(y) = c0

(
1− y

tb

)
. (14)

Combining Eq. (12) and Eq. (14) leads to:

σb22(x,y) =
ta
2

(y − tb)
∂2σa11(x)

∂x2
. (15)

Force equilibrium in the y direction on the left end post requires the following relation:

∂F(y,x=0)

∂y
= −τb12(0), (16)

where the force carried by the end post is also assumed to be a linear function of y:

F(y,x=0) = d0 + d1y. (17)

Combining Eq. (17) with Eqs. (1) leads to:

F(y,x=0) =
ta
2
∂σa11(x=0)

∂x
y + d0. (18)

Using similar arguments for the right end post, and applying the equilibrium requirement that the total end post force
vanishes on each side, the end post governing equations are given by Eqs. (19).

F(y,x=0) =
ta
2
∂σa11(x=0)

∂x

(
y − tb

2

)
F(y,x=l) = − ta

2
∂σa11(x=l)

∂x

(
y − tb

2

) (19)

With the equilibrium requirements now complete, application of the principal of virtual forces leads to a differential
equation of the following form:

∂4σa11(x)

∂x4
+ β

∂2σa11(x)

∂x2
+ γσa11(x) + φT + φP = 0. (20)
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Without explicit statement of the parameters, non-dimensionalizing substitutions can be made:

x̄ =
x

l
,

β̄ = l2β,

γ̄ = l4γ,

σ̄a11(x̄) =
σa11(lx̄)

Ea11
,

τ̄b12(x̄) =
τb12(lx̄)

Ea11
,

φ̄T = φT
l4

Ea11
,

φ̄P = φP
l4

Ea11
.

(21)

The solution of Eqs. (1,15,19) as well as the non-dimensionalizing substitutions given in Eqs. (21) lead to the
following differential equation for the normalized stress in the central adherend:

∂4σ̄a11

∂x̄4
+ β̄

∂2σ̄a11

∂x̄2
+ γ̄σ̄a11 + φ̄T + φ̄P = 0, (22)

where the dimensionless system parameters are given by:

β̄ =
3Eb22 l

2

2Gb12 t2b (νb23 νb32 − 1)
,

γ̄ =
3Eb22 l

4 (Ea11 ta νc13 νc31 + 2Ec11 tc νa13 νa31 − 2Ec11 tc − Ea11 ta)
Ea11Ec11 ta t3b tc (νb23 νb32 − 1)

,

φ̄T =
[
6Eb22l

4 (αc33νc31 − αa33νa31 + αc11 − αa11)
Ea11tat3b (νb23νb32 − 1)

]
∆T,

φ̄P =−
[

6Eb22l
4 (νc13νc31 − 1)

Ea11Ec11tat3btc (νb23νb32 − 1)

]
P.

(23)

The solution takes the following form:

σ̄a11(x̄) = Āeλ̄1x̄ + B̄e−λ̄1x̄ + C̄eλ̄2x̄ + D̄e−λ̄2x̄ − φ̄T

γ
− φ̄P

γ
. (24)

The bi-quadratic Eq. (24) has two dimensionless system parameters λ̄1 and λ̄2 given by Eq. (25) and presented in
terms of the orthotropic material properties in Appendix (A).

λ̄2
[12] =

−β̄ ±
√
β̄2 − 4γ̄

2
. (25)

The integration constants Ā, B̄, C̄, and D̄ from Eq. (24) are determined by application of the boundary conditions,
presented in full form in Appendix (A) as Eqs. (38) and in reduced form in Eqs. (26). These boundary conditions
represent axial normal stress and shear stress at the ends of the central adherend. The reduced form is achieved by
allowing the end posts to approach zero thickness (taking the limit as tp → 0). This procedure has the direct effect of
forcing the shear stress at the post locations to zero, which results in a traction free surface at the adhesive edge.

D̄ + C̄ + B̄ + Ā− φ̄T + φ̄P

γ̄
= 0

eλ̄4D̄ + eλ̄2C̄ + eλ̄2B̄ + eλ̄1Ā− φ̄T + φ̄P

γ̄
− 2P
Ea11ta

= 0

λ̄4D̄ + λ̄2C̄ + λ̄2B̄ + λ̄1Ā = 0

λ̄4e
λ̄4D̄ + λ̄2e

λ̄2C̄ + λ̄2e
λ̄2B̄ + λ̄1e

λ̄1Ā = 0

(26)
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The solution of Eqs. (26) for Ā, B̄, C̄, and D̄ requires lengthy combinations of the system parameters. They are pre-
sented in a compact form in Eqs. (27), where certain repeating values have been represented as a series of multipliers
µ. The values of these µ parameters are presented in Appendix (B). With the presentation of Eqs. (27), the SP solution
is now completed.

Ā =
µAT

φ̄∆T + (µAT
+ µ2 µ3 µAP

) φ̄P

µ1

B̄ =
µBT

φ̄∆T + (µBT
+ µ2 µ3 µBP

) φ̄P

µ1

C̄ =
µCT

φ̄∆T + (µCT
+ µ2 µ3 µCP

) φ̄P

µ1

D̄ =
µDT

φ̄∆T + (µDT
+ µ2 µ3 µDP

) φ̄P

µ1

(27)

The SP solution presented above overcomes some of the effects previously ignored by other analytical solutions
in the literature. Most significantly, it is a quantitative thermomechanical solution which also ensures that the shear
stress at the traction free edge is zero. It does so with the minimal required complexity of a fourth order governing
differential equation.

The analysis is an elastic solution, and as a result neglects the effect of adherent and adherend plasticity, if any,
on the joint. However, this effect was addressed analytically in Hart-Smith.12 Despite its potential importance, the
inclusion of plasticity effects are best treated through a numerical solution.

C. A dimensionless ratio of thermal and mechanical loading factors

Using the non-dimensional loading parameters defined in Eqs. (8) and (23), a dimensionless load ratio (φ̄aR) and total
load (φ̄total) can be defined.

φ̄aR =
φ̄T

φ̄P
= −Ec11 tc (αc33 νc31 − αa33 νa31 + αc11 − αa11) ∆T

(νc13 νc31 − 1) P
φ̄total =φ̄P + φ̄T

(28)

The ratio φ̄aR is a measure of the relative importance of allowable thermal and mechanical loads. The importance of
the load ratio φ̄[ab]R must no be underestimated. When |φ̄[ab]R| � 1, mechanical stress dominates the stress field in the
adherend. Conversely, when |φ̄[ab]R| � 1, the thermally induced stress field is dominant. Finally, when |φ̄[ab]R| ≈ 1,
thermal and mechanical loads are both significant to the total stress field. Using φ̄aR as a guide, it is easy to see how
common joints such as Aluminum to carbon fiber reinforced polymer matrix composites can be dominated by thermal
loading when a large ∆T is present. It is significant that the dimensionless load ratio is the same whether the SO or
the SP is used to derive it, as it is therefore independent of the adhesive stress field assumption.

The stress field that leads to the dimensionless number given in Eqs. (28) is based on the stress in the central
adherend σ̄a11(x̄). Using Eq. (4) and similarly collecting terms into dimensionless loads, a conjugate dimensionless
load ratio can be written for the stress field in the outer adherend σ̄c11(x̄);

φ̄cR =
Ea11 ta (αc33 νc31 − αa33 νa31 + αc11 − αa11) ∆T

2 (νa13 νa31 − 1) P
. (29)

Examining Eqs. (28) and (29), it is apparent that the dimensionless load ratio in one adherend depends largely on the
stiffness of the other adherend.

With the dimensionless load ratio in mind, a load-based normalization can be defined by rewriting the axial stress
as:

¯̄σa11 =
σ̄a11

φ̄total
, (30)

or, more intuitively:

σ̄a11(x̄) = ¯̄σa11( ¯̄φP ,x̄) · φ̄total. (31)
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This second normalization can be propagated throughout the solution so that the SO and SP solutions are written as:

¯̄σa11(x̄) = ¯̄a sin(ω̄x̄) + ¯̄b cos(ω̄x̄)− 1
ω̄2
,

¯̄σa11(x̄) = ¯̄Aeλ̄1x̄ + ¯̄Be−λ̄1x̄ + ¯̄Ceλ̄2x̄ + ¯̄De−λ̄2x̄ − 1
γ
.

(32)

Doing so requires that the boundary conditions be rewritten as:

¯̄σa11(0) = 0,

¯̄σa11(1)− 2P
taEa11φ̄total

= 0,
(33)

for the SO solution, and for the SP solution as:

¯̄D + ¯̄C + ¯̄B + ¯̄A− 1
γ̄

= 0,

eλ̄4 ¯̄D + eλ̄2 ¯̄C + eλ̄2 ¯̄B + eλ̄1 ¯̄A− 1
γ̄
− 2P
Ea11taφ̄total

= 0,

λ̄4
¯̄D + λ̄2

¯̄C + λ̄2
¯̄B + λ̄1

¯̄A = 0,

λ̄4e
λ̄4 ¯̄D + λ̄2e

λ̄2 ¯̄C + λ̄2e
λ̄2 ¯̄B + λ̄1e

λ̄1 ¯̄A = 0.

(34)

Using the load ratio φ̄aR, we can split the integration constants into linear equations of the mechanical fraction of
the load. Defining the mechanical load fraction as:

¯̄φP =
φ̄P

φ̄total
=

(
1 + φ̄aR

)−1
, (35)

the constants ¯̄a and ¯̄b from Eqs. (9) for a load normalized solution can be written as:

¯̄a =− Ec11 tb tc
2Gb12 l2 sin ω̄ (νc13 νc31 − 1)

¯̄φP −
cos ω̄ − 1
ω̄2 sin ω̄

,

¯̄b =
1
ω̄2
.

(36)

Similarly, the ¯̄A, ¯̄B, ¯̄C, and ¯̄D integration constants can be written as:

¯̄A =
µ3µAP

µ1µ2

¯̄φP +
µAT

µ1
,

¯̄B =
µ3µBP

µ1µ2

¯̄φP +
µBT

µ1
,

¯̄C =
µ3µCP

µ1µ2

¯̄φP +
µCT

µ1
,

¯̄D =
µ3µDP

µ1µ2

¯̄φP +
µDT

µ1
,

(37)

where the µ parameters are given in Appendix (B). In this form, it becomes apparent that the integration constants ¯̄a,
¯̄b, ¯̄A, ¯̄B, ¯̄C, ¯̄D (and by extension ā, b̄, Ā, B̄, C̄, D̄) govern the stress distribution via the thermal and mechanical load
ratio, φ̄aR, enhancing its relevance to the study of thermomechanical loading of lap joints.

The forms presented in Eqs. (36) and (37) will allow for an iterative version of the SO or SP solution to be applied
using numerical methods, when the mechanical load is dependent on the thermal load. For example, this would allow
for solution of displacement constrained thermal mechanical problems.

IV. A finite element model for the symmetric double lap joint

To establish confidence in the SO and SP models proposed in Section (III), it is appropriate to compare the solution
with a FE model. Therefore, a 2D FE model has been generated for the ASTM International double lap joint.22 An
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Figure 2: The FE mesh

overview of the mesh is shown in Figure (2), and the assumed geometries are given in Table (1(a)). The solver used is
CalculiX,23 and the mesh consists entirely of quadratic plain strain elements (CPE8). Half of the joint is modeled due
to symmetry. The stress concentrations at the material interfaces are generally resolved in the vicinity of the corner
with a very fine mesh, though the geometric singularity is not (and cannot) be resolved with the FE technique used
here. Loading is specified as listed in Table (1(b)), where the mechanical load is applied far away from the lap joint
and the thermal load is applied to all nodes. Displacement symmetry constraints are enforced along the mid-plane of
the central adherend. Non-linear geometric stiffness is assumed.

Table 1: Geometric and loading assumptions for model comparison

(a) ASTM double lap joint geometric features (mm).

Component Thickness Length
Outer Adherend 1.6 76.2

Adhesive 0.2 or 1.0 12.7
Central Adherend 3.2 76.2

(b) Assumed loading.

Load Type Value
P (N·mm−1) 10

∆T (oC) 10

Aluminum (Al) is used as the central adherend in all models; the outer adherends are Al, Titanium (Ti), and
AS4/3501-6 (AS4).24 For simplicity, the adhesive properties are assumed to be isotropic, and are estimated base on
Cytec FM300 adhesive. The assumed material properties are summarized in Table (2). Reported stresses from the FE
model are taken from the mid plane of the adhesive for shear stress. Peel stress is reported at the central adherend
material interface in the FE and SP models.

Table 2: Assumed material properties in FE, SO, and SP solutions (moduli in GPa, expansion coeffs. in µε·oC−1)

Material E11 E22 E33 G12 G13 G23 ν12 ν13 ν23 α11 α22 α33

Aluminum 70 70 70 26.3 26.3 26.3 0.33 0.33 0.33 23 23 23
Titanium 110 110 110 41.4 41.4 41.4 0.33 0.33 0.33 9 9 9

AS4/3501-6 (0o) 148 10.6 10.6 5.61 5.61 3.17 0.30 0.30 0.59 -0.8 29 29
AS4/3501-6 (90o) 10.6 148 10.6 5.61 3.17 5.61 0.30 0.59 0.30 29 -0.8 29

FM300 1.98 1.98 1.98 0.71 0.71 0.71 0.40 0.40 0.40 20 20 20

V. Comparison of FE and analytical model results for ASTM lap specimens

Figures (3-7) show the stress response predicted by the SO, SP, and FE models due thermal and mechanical loads
applied to several joints. Examining the Al-Al joint shown in Figures (3.1,3.4), it is found that all three models result
in approximately zero stress due to thermal loading. This intuitive result confirms the assumption that the differential
expansion between the adhesive and adherends is negligible to the total stress field.

Model predictions for an Al-Al joint with applied mechanical load are shown in Figures (3.2,3.5). The first of these
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3.1: τ̄b12 due to φ̄T 3.2: τ̄b12 due to φ̄P 3.3: τ̄b12 due to φ̄P + φ̄T

3.4: σ̄a11 due to φ̄T 3.5: σ̄a11 due to φ̄P 3.6: σ̄a11 due to φ̄P + φ̄T

Figure 3: FE, SP, and SO models of Al-Al double lap joint with 0.2 mm FM300 adhesive. φ̄aR = 0

two figures shows the normalized shear stress τ̄b12 in the joint. The agreement between the FE, SO, and SP models
is generally good, though the SO and SP models over predict the shear stress near the edges, in comparison to the FE
solution. Total shear (the area under the x̄-τ̄b12 curves) is preserved, because the SO and SP solutions under predict
the stress in the middle of the joint relative to the FE model. The traction free boundary condition is captured by the
FE and SP solutions only, as expected.

The plots in Figures (3.5) show the peel stress due to mechanical load, as predicted by FE and SP solutions. It is
apparent that differences exist in predicted peel stress, particularly in the areas at a modest distance inside the edges
of the joint. However, at or near the edges of the joint, the agreement is excellent. This strong correlation between
the two solutions at the edge locations is important, since peel stress is often a cause of failure in lap joints. Similarly,
Figures (3.3,3.6) show the predicted stress state due to a mixed loading condition, where both thermal and mechanical
loads are applied. In the case of the Al-Al joint, it is clear that mechanical loading dominates the stress state. This
result is fully expected, since the loading ratio, φ̄aR, is zero.

The FE, SO, and SP model predictions for Al-Ti lap joints are shown in Figures (4-5). There are several important
conclusions that can be drawn by examining these models. First, Figures (4.1) and (5.1) show agreement in trend
between the FE model and the SO and SP models when thermal loading is applied. The predicted shear stress is zero
in the middle of the joint, which is required when there is no mechanical load. Also, the SO and SP solutions for
mechanical load in Figures (4.2,4.4) and Figures (5.2,5.4) have similar agreement to the Al-Al joint.

Mixed loading for Al-Ti joints is shown in Figures (4.3,4.6) and (5.3,5.6). These figures show that the SO and SP
solutions compare well with the FE solution over the majority of the joint when the loading is thermal and mechanical.
However, mixed loading results must be interpreted carefully, since the two loading types can produce shears of
opposite sign in the same location. When this is the case, the relative magnitudes of the shear and thermal loads play
a critical role, particularly at the ends of the joint. At the left edge of the lap zone in Figures (5.1-5.3), it shown
that the thermally induced shear stress predicted by the SO and SP models is stronger than the mechanically induced
shear stress. The total shear stress due to mixed loading is a combination of the two sources. Since the peel stress in
the SP model is calculated using the derivative of the total shear stress, this leads to a significant difference in peel
stress predictions between FE and SP models at this location. However, since the shear stresses from the thermal and
mechanical loads act to against each other, it is unlikely that this is a critical location. Therefore, solution accuracy is
much more important at the right edge, where the predicted shear and peel stresses are in good agreement with the FE
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model.
As in the Al-Al comparison, both SO and SP models tend to over predict the shear stress in the Al-TI joint, and

the SP solution reasonably predicts the peel stress near the edges of the joint. Finally, comparing Figures (4.1-4.6)
and (5.1-5.6), it is shown that both the SO and SP models correctly predict the stress field trend as the thickness of the
adhesive is increased.

4.1: τ̄b12 due to φ̄T 4.2: τ̄b12 due to φ̄P 4.3: τ̄b12 due to φ̄P + φ̄T

4.4: σ̄a11 due to φ̄T 4.5: σ̄a11 due to φ̄P 4.6: σ̄a11 due to φ̄P + φ̄T

Figure 4: FE, SP, and SO models of Al-Ti double lap joint with 0.2 mm FM300 adhesive. φ̄aR = −3.68

The stress predictions for the Al-AS4 joints are shown in Figures (6-7), where uniaxial fiber alignment for the
orthotropic AS4 is aligned with the x axis in Figures (6), and with the z axis in (7). Though the latter is an unlikely
joint arrangement, it is a useful exercise to examine the orthotropic nature of the SO and SP solutions. It is immediately
apparent in (6.1,6.4) and (7.1,7.4) that differences in the orthotropic expansion coefficients have a significant effect.
The sign of the stress changes upon a 90o orientation change, and the magnitude of the stress is significantly lower
as the fibers are aligned perpendicular to the cross section of the joint. This result makes sense, since the material is
much more compliant when loaded in the 90o orientation.

Upon examining all predicted stress results in Figures (3-7), the effect of the thermomechanical load ratio φ̄aR

is apparent. The Al-Al joint, at |φ̄aR| = 0, is dominated by mechanical load. Both Al-Ti joints, at |φ̄aR| = 3.68,
have significant contributions from both thermal and mechanical load. Comparing Al-AS4 (0o) and (90o) joints at
|φ̄aR| = 7.33 and |φ̄aR| = 0.40 respectively in Figures (6) and (7), it is noted that the stress field in Al-AS4 (0o) lap
joints is mostly due to thermal loading, whereas the stress field in Al-AS4 (90o) joint derives mostly from mechanical
load. Therefore, the use of φ̄aR appears to be justified as a quick assessment of the relative importance of thermal and
mechanical loads.

VI. Concluding remarks

Two analytical models for the stress distribution in a symmetric double lap joint have been presented. The SO
model assumes only shear stress exists in the adhesive, and produces a similar result to the work of Volkersen with the
addition of thermal expansion. While not capturing peel stress or a traction free edge, it is a tractable solution with
instructive non-dimensional parameters, and is therefore a useful tool for basic thermomechanical design of joints.
The SP model, which is similar but more complex than the SO solution, does account for shear and peel stress. The
4th order governing differential equation allows for proper representation of the traction free adhesive edge. Like the
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5.1: τ̄b12 due to φ̄T 5.2: τ̄b12 due to φ̄P 5.3: τ̄b12 due to φ̄P + φ̄T

5.4: σ̄a11 due to φ̄T 5.5: σ̄a11 due to φ̄P 5.6: σ̄a11 due to φ̄P + φ̄T

Figure 5: FE, SP, and SO models of Al-Ti double lap joint with 1.0 mm FM300 adhesive. φ̄aR = −3.68

6.1: τ̄b12 due to φ̄T 6.2: τ̄b12 due to φ̄P 6.3: τ̄b12 due to φ̄P + φ̄T

6.4: σ̄a11 due to φ̄T 6.5: σ̄a11 due to φ̄P 6.6: σ̄a11 due to φ̄P + φ̄T

Figure 6: FE, SP, and SO models of Al-AS4 (0o) double lap joint with 0.2 mm FM300 adhesive. φ̄aR = −7.33
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7.1: τ̄b12 due to φ̄T 7.2: τ̄b12 due to φ̄P 7.3: τ̄b12 due to φ̄P + φ̄T

7.4: σ̄a11 due to φ̄T 7.5: σ̄a11 due to φ̄P 7.6: σ̄a11 due to φ̄P + φ̄T

Figure 7: FE, SP, and SO models of Al-AS4 (90o) double lap joint with 0.2 mm FM300 adhesive. φ̄aR = 0.40

SO solution, the SP solution has instructive non-dimensional parameters which can be used as tools in joint design.
The SO and SP models both have good agreement in shear stress trend when compared with a FE model. The

two solutions typically over predict the peak shear stresses, relative to the FE prediction. Peel stress predictions of
the SP model are in good general agreement with the FE prediction, though caution must be used in interpreting the
peel stress in both models, particularly when shear stresses from thermal and mechanical loads act against each other.
Fortunately, this limitation arises in non-critical areas of the joint. For locations of peek peel stress in the joint, the FE
and SP peel stress predictions are in good agreement.

In all joint combinations, there is only a small difference between results for SO and SP models. This difference is
largest at the edges of the joint, where the SO solution does not capture the traction free condition. However, the SO
model captures the majority of the stress field, and can be used as an initial design tool in situations where peel stress
and the traction free boundary are not a concern. When peel stress becomes an important consideration, use of the SP
model is required. If highly detailed stress predictions are required, the FE method is recommended.

A critical dimensionless parameter, φ̄aR (and its conjugate parameter φ̄cR), has been identified which controls the
stress distribution within the joint. It was shown that this ratio can be used as measure of the relative importance of
mechanical and thermal loading in a joint of known (or expected) loading. This parameter can be identically derived
using either the SO or SP solutions, making it a robust tool for quick assessments in joint design. The φ̄aR ratio also
allows for isolation of the thermal and mechanical portions of the solution, which will facilitate an iterative solution
when the combined thermal and mechanical loads are interdependent.
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A. Boundary conditions for the SP solution

The pre-simplified version of the longitudinal normal stress boundary conditions for the left and right edges re-
spectively are:

D̄ + C̄ + B̄ + Ā− φ̄T

γ̄
− φ̄P

γ̄
= 0,

eλ̄4D̄ + eλ̄2C̄ + eλ̄2B̄ + eλ̄1Ā− φ̄T

γ̄
− φ̄P

γ̄
− 2P
Ea11ta

= 0.
(38)

When normalized by the total load φ̄total, the normal stress boundary conditions become:

D̄ + C̄ + B̄ + Ā− 1
γ̄

= 0,

eλ̄4D̄ + eλ̄2C̄ + eλ̄2B̄ + eλ̄1Ā− 1
γ̄
− 2P
Ea11taφ̄total

= 0.
(39)

The pre-simplified version of the shear stress at the edges can be represented in either case by:

3αb33Eb22 l
4 νb32 ∆T

Ea11 ta tb νb23 νb32 − Ea11 ta tb
+

3αb22Eb22 l
4 ∆T

Ea11 ta tb νb23 νb32 − Ea11 ta tb

+

(
Ep0 l2 λ̄2

4 tp νb23 νb32 − Ep0 l2 λ̄2
4 tp − Eb22 l

3 λ̄4

)
D̄

Ep0 tp νb23 νb32 − Ep0 tp

+

(
Ep0 l2 λ̄2

3 tp νb23 νb32 − Ep0 l2 λ̄2
3 tp − Eb22 l

3 λ̄3

)
C̄

Ep0 tp νb23 νb32 − Ep0 tp

+

(
Ep0 l2 λ̄2

2 tp νb23 νb32 − Ep0 l2 λ̄2
2 tp − Eb22 l

3 λ̄2

)
B̄

Ep0 tp νb23 νb32 − Ep0 tp

+

(
Ep0 l2 λ̄2

1 tp νb23 νb32 − Ep0 l2 λ̄2
1 tp − Eb22 l

3 λ̄1

)
Ā

Ep0 tp νb23 νb32 − Ep0 tp
= 0,

3αb33Eb22 l
4 νb32 ∆T

Ea11 ta tb νb23 νb32 − Ea11 ta tb
+

3αb22Eb22 l
4 ∆T

Ea11 ta tb νb23 νb32 − Ea11 ta tb

+

(
Epl l2 λ̄2

4 e
λ̄4 tp νb23 νb32 − Epl l2 λ̄2

4 e
λ̄4 tp − Eb22 l

3 λ̄4 e
λ̄4

)
D̄

Epl tp νb23 νb32 − Epl tp

+

(
Epl l2 λ̄2

3 e
λ̄3 tp νb23 νb32 − Epl l2 λ̄2

3 e
λ̄3 tp − Eb22 l

3 λ̄3 e
λ̄3

)
C̄

Epl tp νb23 νb32 − Epl tp

+

(
Epl l2 λ̄2

2 e
λ̄2 tp νb23 νb32 − Epl l2 λ̄2

2 e
λ̄2 tp − Eb22 l

3 λ̄2 e
λ̄2

)
B̄

Epl tp νb23 νb32 − Epl tp

+

(
Epl l2 λ̄2

1 e
λ̄1 tp νb23 νb32 − Epl l2 λ̄2

1 e
λ̄1 tp − Eb22 l

3 λ̄1 e
λ̄1

)
Ā

Epl tp νb23 νb32 − Epl tp
= 0.

(40)

B. Definition of the solution parameters

A. System parameters λ̄[12] in terms of the orthotropic material properties

λ̄2
[12] =

±
√

9E2
b22l4

4Gb212t4b(νb23νb32−1)2
− 12Eb22l4(Ea11taνc13νc31+2Ec11tcνa13νa31−2Ec11tc−Ea11ta)

Ea11Ec11tat3btc(νb23νb32−1)
− 3Eb22l2

2Gb12t2b(νb23νb32−1)

2
(41)
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B. µ parameters for the SP solution integration constants.

The µ values of Eqs. (27) and (37) are given by:

µAT
=
λ̄2

(
eλ̄2 − 1

)
γ̄

µBT
=
eλ̄1 λ̄2

(
eλ̄2 − 1

)
γ̄

µCT
=−

λ̄1

(
eλ̄1 − 1

)
γ̄

µDT
=−

λ̄1

(
eλ̄1 − 1

)
eλ̄2

γ̄

µAP
=−

(
λ̄2e

2λ̄2+λ̄1 − λ̄1e
2λ̄2+λ̄1 + 2λ̄1e

λ̄2 − eλ̄1 λ̄2 − λ̄1e
λ̄1

)
µBP

=eλ̄1

(
−2λ̄1e

λ̄2+λ̄1 + λ̄2e
2λ̄2 + λ̄1e

2λ̄2 − λ̄2 + λ̄1

)
µCP

=
λ̄1

(
λ̄2e

λ̄2+2λ̄1 − λ̄1e
λ̄2+2λ̄1 + λ̄2e

λ̄2 + λ̄1e
λ̄2 − 2eλ̄1 λ̄2

)
λ̄2

µDP
=−

λ̄1e
λ̄2

(
2λ̄2e

λ̄2+λ̄1 − e2λ̄1 λ̄2 − λ̄2 − λ̄1e
2λ̄1 + λ̄1

)
λ̄2

µ1 =λ̄2e
λ̄2+λ̄1 − λ̄1e

λ̄2+λ̄1 + λ̄2e
λ̄2 + λ̄1e

λ̄2 − eλ̄1 λ̄2 − λ̄2 − λ̄1e
λ̄1 + λ̄1

µ2 =λ̄2e
λ̄2+λ̄1 − λ̄1e

λ̄2+λ̄1 − λ̄2e
λ̄2 − λ̄1e

λ̄2 + eλ̄1 λ̄2 − λ̄2 + λ̄1e
λ̄1 + λ̄1

µ3 =
Ec11λ̄2t

3
btc (νb23νb32 − 1)

3Eb22l4 (νc13νc31 − 1)

(42)
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