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Multi-objective optimization is performed of the NASA rotor67 transonic compressor blade. The objectives
are to maximize the stage pressure ratio, as well as to minimize the compressor weight. The backbones of the
optimization approach consist of a genetic algorithm, a gradient-based method, and a response surface model.
The genetic algorithm is used to facilitate the multi-objective optimization and to find the global optima of high-
dimensional problems. The gradient-based method accelerates the optimization convergence rate. The response
surface model, constructed to replace the computationally expensive analysis tool, reduces the computational
cost. Representative solutions are selected from the Pareto-optimal front to verify against the computational fluid
dynamics tool. Compared with the baseline design, some optimal solutions increase the stage pressure ratio by
1.8% and decrease the weight by 5.4%. A detailed study of flow structure near peak efficiency is presented by
means of pressure distribution and streamlines inside boundary layers. Results show that the optimized blade
favors a lighter weight by a thinner blade shape. The stage pressure rise is attributed to a reduced separation zone
and a weakened shock wave.

I. Introduction

N ASA is working at reducing carbon dioxides, nitrogen ox-
ides, and aerosols from the nation’s airspace, specifically those

gases generated by gas turbine engines used in commercial aircraft.
NASA’s goals are to reduce landing and takeoff nitrogen oxides by
70% of the 1996 international civil aviation organization standard
and to reduce carbon dioxide by 15% from current state-of-the-art
large engines, both by 2007. Light weight, compact, and efficient
fans are essential to achieve these goals.

Today, axial flow fans have been developed to a point where stage
efficiency has exceeded 90%. Further improvement is not readily
achievable. Therefore, the goal of the current research and devel-
opment is to reduce the engine size and weight without sacrificing
its efficiency.1 The compressor, which tends to have many stages
to achieve an optimum operating pressure ratio, is a fairly massive
part of the engine. Reduction in size can be achieved by reduced
diameter, reduced length, or both.

Unfortunately, these approaches either have limited gains or suf-
fer from mechanical and aeroelastic problems. This leaves increased
pressure ratio per stage as the most promising technique of achiev-
ing more compact compressors.1 If considerable improvement is
achieved on stage pressure ratio, we may be able to reduce the
number of stages required for an aircraft engine. This would conse-
quently reduce the number of parts in the manufacturing and main-
tenance inventory, as well as the size and weight in the surrounding
aircraft structure that support the engine, leading to even greater
weight savings.

Many researchers have used optimization techniques to improve
the engine compressor performance. Among them, to name a few,
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Oyama et al. minimized the entropy generation of the NASA rotor67
blade,2 later, Lian and Liou performed multi-objective optimiza-
tion to increase the stage pressure ratio and to decrease the entropy
generation of the same blade,3 Benini performed multi-objective
optimization to improve the total pressure ratio and adiabatic ef-
ficiency of the NASA rotor37 blade,4 and Mengistu and Ghaly
conducted multipoint optimization to improve compressor perfor-
mance over the full range of operating condition.5 All of these works
used evolutionary algorithms (EAs) as the optimizer. There are sev-
eral underlying reasons for the popularity of EAs. First, EAs are
easy to implement. Typically an EA code has about 1000 lines with
FORTRAN or C language. Second, EAs can be easily coupled with
other analysis tools because optimization with EAs does not re-
quire gradient information. Third, EAs have the capability to find
the global optima. Another thrust is that EAs are particularly suit-
able for multi-objective optimization problems, which are often en-
countered in real design problems and have raised growing interest
among researchers from different disciplines. However, EAs suffer
a slow convergence rate because they use probabilistic recombina-
tion operators to control the step size and searching direction. When
computationally expensive analysis tools are used, the required CPU
time impedes their practical applications even today.

To tackle this challenge, we hybridize a genetic algorithm (GA)
with a response surface model to provide an efficient and robust
approach aimed at solving computationally expensive design op-
timization problems.3 The rationale is to take the advantage of
GAs in multi-objective optimization and response surface models
in computational efficiency. In addition, we perform local search
after the GA optimization to speed up the optimization convergence
rate.

In this work we aim at performing multi-objective optimization
for the NASA rotor67 compressor blade. Our objectives are to maxi-
mize the stage pressure ratio and to minimize the compressor weight.
This paper is structured as follows: We first formulate our prob-
lem; then we briefly introduces our computational fluid dynamics
(CFD) tool; this is followed by introduction of the key elements
used in the optimization approach, including a response surface
model, a genetic algorithm, and a gradient-based method; last, we
present our optimization results. Detailed comparisons are made be-
tween the NASA rotor67 and one optimal design by means of blade
shape, pressure distribution, and flow patterns inside the boundary
layer.
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Fig. 1 Test rotor.

II. Problem Formulation
What we consider here is how to redesign the NASA rotor67

compressor blade.6 The rotor67 is a transonic axial-flow fan rotor
and is the first stage of a two-stage fan. The test rotor with 22
blades is shown in Fig. 1. The inlet and exit tip diameters are 51.4
and 48.5 cm, respectively. The inlet and exit hub/tip radius ratios
are 0.375 and 0.478, respectively. Based on average span/root axial
chord, the rotor has a low aspect ratio of 1.56. The solidity, defined
as the ratio of chord length to spacing between two adjacent blades,
varies from 3.11 at the hub to 1.29 at the tip. At the design point, it
has a stage pressure ratio of 1.63 at a mass flow rate of 33.25 kg/s.
The design rotational speed is 16,043 rpm, which generates a tip
speed of 429 m/s and a relative inlet tip Mach number of 1.38.
The Reynolds number based on the chord length at the hub and the
inlet velocity is 1.797 × 106. The blade is made of generic titanium
(Ti–6Al–4V), which has a density of 4510 kg/m3.

Our problem can be formulated as the following: Maximize
p02(x)/p01(x) and minimize W (x) subject to |ṁ − ṁbl|/ṁbl < 0.5%,
where xL ≤ x ≤ xU and where p02 is the outlet total pressure, p01 is
the inlet total pressure, and p02/p01 is the stage pressure ratio. We
use ṁ to represent the mass flow rate and use subscript bl to denote
the baseline design. The mass flow rate and the mass-averaged total
pressure are computed with the CFD tool; the blade weight W is
computed by integrating the blade volume. Vector x represents the
design variable, and xL and xU are the lower and upper bounds of
the design variables, respectively. The lower and upper bounds are
defined as 0.95 and 1.05 of the baseline value, respectively.

The aerodynamic objective is to maximize the stage pressure ra-
tio, whereas the structural objective is to minimize the blade weight.
The aerodynamic constraint is imposed to ensure the new design has
comparable mass flow rate as the baseline design. Note that the two
objectives are competing: Improving one objective will deteriorate
the other. Instead of having one single optimal solution, we expect
a set of compromised solutions among which a solution is better
than the others in terms of one objective but is worse in terms of
the other. These compromised solutions are usually called Pareto-
optimal solutions in the context of multi-objective optimization. The
curve formed by joining these solutions is known as a Pareto-optimal
front.

The designed blade geometry is defined by superimposing a per-
turbation blade on the baseline rotor67 blade. The perturbation blade
is obtained by linear interpolation of four airfoil profiles along the
span (hub, 31% span, 62% span, and tip). Each airfoil profile can
be defined by a mean camber line and thickness distributions and is
parameterized by a third-order B-spline curve. The camber is deter-
mined by three design variables (with the leading- and trailing-edge
points fixed) and the thickness distribution by five design variables.
As a result, eight design variables are required to represent such a

perturbation airfoil profile, resulting in 32 design variables in total.
By doing this, we can readily recover the baseline geometry by set-
ting all of the design variables to zero. To make the optimization
results comparable to those of the baseline configuration, we main-
tain the chord distribution along the span and fix the meridional
contours of the hub, casing, sweep, and lean.

III. CFD Code
A high-fidelity CFD tool, TRAF3D, is used to evaluate the ob-

jective functions and constraints.7,8 TRAF3D solves the follow-
ing three-dimensional, unsteady, Reynolds-averaged Navier–Stokes
equations for a rotating blade passage in conservative form in the
curvilinear coordinate:
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where u, v, w, p, T , e, and h are the density; velocity components
in the x , y, and z directions; pressure; temperature; specific total
energy; and specific total enthalpy, respectively. � is the angular
velocity of the rotating Cartesian system x , y, z. J is the Jacobian of
transformation. U , V , and W are the contravariant velocities. The
viscous terms are Fv , Gv , and Hv . The space discretization uses a
second-order cell-centered scheme with eigenvalue scaling to weigh
the artificial dissipation terms. The system of equations is advanced
in time using an explicit four-stage Runge–Kutta scheme. The two-
layer eddy-viscosity model of Baldwin and Lomax is used for the
turbulence closure.

Standard boundary conditions for subsonic flows are imple-
mented. At the inlet, the flow angles, total pressure, and total tem-
perature are specified at the inlet, whereas the magnitude of the
velocity is taken from the interior. At the subsonic-axial outlet, the
average value of the static pressure at the hub is prescribed, whereas
circumference pressure gradient is extrapolated to maintain a speci-
fied average static pressure. The density and velocity components are
extrapolated from interior. The radial pressure equilibrium assump-
tion is applied in the calculations. On the solid wall, the temperature
is set constant as the total temperature at the inlet and the pressure
is extrapolated from the interior. The no-slip boundary conditions
and the temperature condition are used together to compute the den-
sity and total energy. Periodic boundary conditions are applied from
blade to blade passage.

The tip clearance region is handled by the periodic condition
across the blade without any modeling of the region. When the tip
clearance region is included in the computation, it is generally done
with an additional patch of grid. This will present a difficulty in the
design procedure because the shape is changing with design and grid
generation will have to be done in an automatic fashion, which is
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Fig. 2 Structured grid with 6.0 ×× 105 nodes per passage.

difficult when there are multiple meshes involved. In addition, for the
rotor67, it is found that the tip clearance effect becomes important
only when the stall condition is approached.8 Because the present
design is focused on the near-maximum efficiency condition, the tip
clearance effort is not significant. Therefore, it is considered to be a
good representation of the flow without gridding up the tip region.

For a single passage, the chordwise, tangential, and spanwise
grid point numbers are 201, 53, and 57, respectively. In total, the
structured grid has 6.0 × 105 nodes per single passage as shown in
Fig. 2.

The code has been applied in the study of both cascade flows7

and rotor flows.8 Its predictive capability is validated against the
experimental data and other codes. In the study of rotor67 blade,
the computed performance map and radial distributions of the static
pressure, total pressure, and total temperature match the experi-
mental data6 and the calculation of Chima.9 Figure 3a shows the
computational result of the relative Mach number contours at the
90% span from the hub. The shock position and strength match well
with the experimental result in Fig. 3b.

IV. Optimization Approach
The adopted optimization method aims at providing an effi-

cient and robust way to solve computationally expensive and multi-
objective optimization problems. The backbones of this method in-
clude a response surface model, a GA, and a gradient-based method.
To make it standalone, we briefly introduce each key element.

Response surface models are built to approximate computation-
ally expensive functions. They are usually orders of magnitude
cheaper than the original problems but still provide good approx-
imation. The response surface model is normally chosen to be a
low-order polynomial. The second-order polynomial is widely used
due to its flexibility and ease of use. A second-order response surface
model with d design variables can be written as follows:

y = β0 +
d∑

i = 1

βi xi +
d∑

i = 1

βi i x
2
i +

d∑

j = 2

j − 1∑

i = 1

βi j xi x j + ε (3)

where y can be the objective or constraint functions, xi is the design
variable, β is the unknown coefficient, and ε is the total error, which
is the difference between the observed value y and the approximated
value with the polynomial.

Constructing the response surface is to find the unknown coef-
ficients, and it has the following steps. First, we sample a number
of distinct design points {xik}p

k = 1, where P is the number of design

a) Numerical result

b) Experimental result

Fig. 3 Comparison of Mach number contours at 90% span from hub.

points and usually larger than the number of coefficients. Second,
we evaluate these design points using the CFD tool to obtained the
observed values {yk}p

k = 1. Third, we substitute the design points and
the observed values into Eq. (3) and obtain the following linear
system of equations:

yk = β0k +
d∑

i = 1

βik xik +
d∑

i = 1

βi ik x2
ik +

d∑

j = 2

j − 1∑

i = 1

βi jk xik x jk + εk

k = 1, . . . , p (4)

The second-order response surface model of Eq. (3) contains
(d + 1)(d + 2)/2 coefficients, and we need to sample at least that
many distinct design points to determine the unknown coefficients.
When the number of equations is larger than the number of unknown
coefficients, we have an overdetermined problem. At last, we use
the method of least squares to determine the unknown coefficients.
In the current context we use the least squares to minimize the sum
of the squares error, εk .

When deterministic analysis models such as the CFD tools are
used, a good experimental design tends to fill the design space rather
than to concentrate on the boundary. In our work, we apply the im-
proved hypercube sampling algorithm10 to sample the design points.
This method tends to spread out the sampling points as evenly as
possible by determining an optimal even spacing. Lian and Liou
found that a 20–80% overdetermined design for the second-order
response surface model gave reasonably good results.3

We employ GAs as our optimizer. GAs are motivated by the
principles of natural genetics and natural selection.11 Evolutionary
theory tells us that in nature those species who better adopt the en-
vironment survive and mate to produce offsprings. The offsprings
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inherit good genes from their parents and potentially have better
adaptivity than their parents. Occasionally, the offsprings may al-
ter themselves by gene mutation. In parallel to the natural selection,
GAs have three fundamental operators: reproduction, crossover, and
mutation. Simply put, the reproduction operator chooses good so-
lutions and eliminates bad solutions; the crossover operator recom-
bines good solutions and hopefully creates better new solutions;
the mutation operator changes the solutions locally for potentially
better solutions.

GAs are simple and straightforward. It is suitable for multi-
objective optimization problems. In dealing with multi-objective
optimization problems, gradient-based methods usually transform
a multi-objective problem into a single-objective problem by intro-
ducing weight functions, which usually favor a particular Pareto-
optimal solution. On the other hand, GA’s population approach can
be exploited to emphasize equally all Pareto-optimal solutions in a
population and to preserve a diverse set of multiple Pareto-optimal
solutions. As a consequence, GAs can find as many Pareto-optimal
solutions as possible in one run. This eliminates the need to convert a
multi-objective optimization problem into multiple single-objective
optimization problems by introducing new parameters that favor
certain Pareto-optimal solutions.

Because GAs use probabilistic combination operators literally to
control the step size and searching direction, their convergence rate
is usually slow when optimal solutions are approached. Many re-
searchers have hybridized GAs with local search methods, typically
gradient-based methods, to speed up the convergence rate.12−15 Even
though their implementations are different, the underlying idea is
to switch to local search whenever the GA convergence rate slows
down. We employ commercially available software Design Opti-
mization Tools (DOT)16 as our local search tool. DOT solves both
unconstraint and constraint problems using gradient-based meth-
ods. In solving our constraint problem, we choose the sequential
quadratic programming method from DOT. Gradient information is
obtained by finite difference. In using DOT, we keep the blade weight
as the objective and convert the pressure ratio as one constraint. The
new problem, therefore, is a bounded optimization problem with
two constraints.

There is no strict rule on when the GA optimization should termi-
nate and the gradient-based optimization should begin. In practice,
it is proper to switch to the gradient-based optimization when the
GA optimization convergence rate slows down. Usually solutions
from GA optimization are taken as the starting points for the lo-
cal search. This approach takes the advantages of both GAs and
gradient-based methods and can improve the search efficiency and
ensure the global search ability simultaneously.

In conclusion, the optimization approach has the following steps:
1) Sample distinct design points using the improved hypercube

sampling.
2) Evaluate the design points using the CFD code.
3) Construct the response surface models.
4) Apply the GA on the response surface models and to search

for the Pareto-optimal solutions.
5) Switch to local search once the GA optimization convergence

rate slows down.
6) Choose representative solutions and verify them against the

CFD code.

V. Numerical Results
There are 32 design variables in our problem and 561 unknown co-

efficients in Eq. (3). We sample 1024 design points, which represent
an 80% overdetermined design. These design points are evaluated
using the TRAF3D code to give the mass flow rate and pressure
ratio. The blade weight is computed by integrating the blade vol-
ume. Three response surface models are thereafter constructed: two
for the objective functions and one for the constraint. The accuracy
of these models is evaluated by statistical measures, including the
coefficient of determination, R2, the adjusted coefficient of determi-
nation, R2

adj, and the percentage of root mean square error (%RMSE),
which is the ratio of root mean square error to the mean of response.
The coefficient of determination, R2, measures the proportion of the

Table 1 Statistical measures of quadratic response surface
approximations

Error statistics p02/p01 W ṁ

R2 0.9949 0.9999 0.9979
R2

adj 0.9888 0.9999 0.9954
%RMSE 0.3000e−3 0.1175e−3 0.1270e−3

Fig. 4 Convergence history of GA.

variation around the mean accounted by the model. It has a range
between 0 and 1. A value of 1 means a perfect fit with zero errors.
The adjusted coefficient of determination is more comparable over
models with different numbers of parameters by using the degrees
of freedom in its computation. Unlike R2, which always decreases
if extra terms are added to the model, R2

adj decreases when redun-
dant terms are added. Table 1 shows the test result. The value of
R2

adj for the stage pressure rise has a value of R2
adj larger than 0.98,

indicating that the response surface model has a good representa-
tion of the variability observed from the design points; likewise,
the values of R2

adj for the weight function and constraint function
also suggest that the quadratic response approximations have good
predictive capabilities.

The population size of the GA is set as 320. Figure 4 shows the
convergence history. The optimization result clearly improves as
more generations are continued. The convergence rate is fast at the
early stage and becomes slow later on. Numerical test shows that an
increase in the generation size can improve the convergence further.
However, an increase in the generation size is not always a panacea
because it will not only increase the computational cost but also
raise another question on when to terminate the GA optimization.

A frequently used remedy is to hybridize a GA with a gradient-
based method. We switch to a gradient-based method after the GA
optimization. The gradient-based method is the sequential quadratic
programming method from commercial software DOT. The start-
ing points of the gradient-based optimization are the Pareto-optimal
solutions from the GA optimization at the 6000th generation. The
gradient-based method does improve the solution, and the improved
Pareto-optimal front is shown in Fig. 5. In terms of computational
cost, the gradient-based optimization evaluates each response sur-
face for approximately 16,000 times, which is equivalent to the
number of functions evaluated by GA in 50 generations. Figure 5
shows that the improved Pareto-optimal front is better than that
from GA optimization using 20,000 generations, even though the
improvement may be minor.

The improved Pareto-optimal front has 473 Pareto-optimal so-
lutions. It is time consuming to evaluate all of them. Here we use
the K-means cluster algorithm17 to choose 16 representative solu-
tions to verify with the CFD code. The validated results together
with the baseline design are shown in Fig. 6. Compared with the
baseline design, all of the solutions increase the stage pressure ratio
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Table 2 Rotor67 design performance

Mass flow, Isentropic Pressure Weight
Design kg/s efficiency ratio ratio

Minimal volume 33.682 0.9166 1.669 0.9464
Maximal pressure ratio 33.355 0.9153 1.697 0.9552
Rotor67 33.446 0.9123 1.666 1.000

Fig. 5 Updated Pareto-optimal front using local search.

Fig. 6 Pareto-front optimal solutions for rotor67.

and reduce the weight. Some Pareto-optimal solutions increase the
pressure ratio by as much as 1.8% and reduce the weight by 5.4%.

Among the 16 verified solutions, we choose two designs repre-
senting the design with minimal weight and maximal pressure ratio,
respectively. We compare their aerodynamic performance with the
baseline design. In Table 2 we list their performance characteristics,
including the mass flow rate and the isentropic efficiency. The min-
imal weight design has a larger mass flow rate and higher isentropic
efficiency than the baseline, whereas the high pressure ratio design
has a slightly smaller mass flow rate but higher isentropic efficiency
than the baseline.

All of the new designs in Fig. 6 have a larger pressure ratio and
lighter weight than the rotor67. The design with the maximal pres-
sure ratio will be more meaningful in explaining the efforts of shape
change on pressure distribution and flow pattern. Therefore, in this
paper, we compare the pressure distribution and flow pattern be-
tween the baseline and the maximal pressure ratio design. Three
spanwise blade profiles are shown in Figs. 7–9, representing the
span of 10, 50, and 90%, respectively. The static pressure coeffi-
cient profiles are also shown. At the 10% span, the high-pressure

a) Airfoil shape

b) Pressure distribution

Fig. 7 Comparison between maximal pressure ratio design and
baseline at 10% span from hub.

ratio design has a larger camber but less thickness than the rotor67
design. The thinner airfoil contributes to the lighter weight of the
new design. The difference in the pressure distribution is rather
small. The same conclusion can be made at the 50% span. At the
90% span, the high-pressure ratio design has a slightly smaller cam-
ber and thinner airfoil than the rotor67. Nevertheless, the pressure
difference is rather large, indicating that transonic flow is sensitive
to the shape change. One noticeable change is the shock position.
The new design has a more forward shock wave than the baseline.

Figures 10–12 present the relative Mach number contours at three
spanwise positions, again, at the 10, 50, and 90% span, respectively.
At the 10% span, the two contours are similar, except the supersonic
bubble is weaker in the new design than in the baseline; the Mach
number is 1.21 and 1.3, respectively. At the 50% span, an oblique
shock stands ahead of the blade. The two shocks have comparable
strength. At the 90% span, the shock system has a lambda structure
with a bow shock. The relative Mach number of the maximal pres-
sure design is 1.48, which is weaker than 1.52 in the baseline. The
weaker shock is helpful to decrease the global losses.

We use the pressure distribution on the suction side to interpret
the flow pattern. Figure 13 shows a comparison of the difference
between the maximal pressure design and the rotor67 design. Both
designs have a strong passage shock in the upper part of the rotor.
In the central part of the blade span, the passage shock loses its
intensity and becomes weak. In comparison to Fig. 12, the maximal
pressure design has a more forward shock than the baseline. This
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a) Airfoil shape b) Pressure distribution

Fig. 8 Comparison between maximal pressure ratio design and baseline at 50% span from hub.

a) Airfoil shape b) Pressure distribution

Fig. 9 Comparison between maximal pressure ratio design and baseline at 90% span from hub.

a) Rotor67 b) High-pressure ratio design

Fig. 10 Relative Mach number contours at 10% span.
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a) Rotor67 b) High-pressure ratio design

Fig. 11 Relative Mach number contours at 50% span.

a) Rotor67 b) High-pressure ratio design

Fig. 12 Relative Mach number contours at 90% span.

observation is consistent with our finding from the pressure distribu-
tion in Fig. 9. After the shock, flow separates as a result of shock–
boundary-layer interaction. This separation is evident in Fig. 14.
Here, separation lines are characterized by flows going toward the
line, whereas reattachment lines look like flows are going away from
the line. Compared with the rotor67, after the shock the maximal
pressure design has a smaller separation zone, which is partially
responsible for its higher stage pressure ratio. The trailing-edge en-
largement shows the flow never reattaches after separation for the
baseline. These separation zones are also evident in the streamwise
velocity contours in Fig.15, where the separation zone is indicated
with a negative velocity. Also notice that in the leading edge close
to the hub the low momentum fluid separates and moves radially
outward before it turns in the streamwise direction. Also, close to
the hub, because of the adverse pressure gradient, flow liftoff occurs
and eventually flow separation happens near the trailing edge.

a) Rotor67 b) High-pressure ratio design

Fig. 13 Pressure contours on blade suction side.

a) Rotor67

b) High-pressure ratio design

Fig. 14 Streamlines close to blade suction side.



986 LIAN AND LIOU

a) Rotor67 b) High-pressure ratio design

Fig. 15 Streamwise velocity contours close to blade suction side.

a) Pressure ratio b) Adiabatic efficiency

Fig. 16 Compressor blade design speed operating characteristics.

Figure 16a shows the performance maps of both the baseline and
the maximal pressure ratio design. At the operating condition, the
new design has a higher total pressure ratio than the baseline. This
observation is also true at off-design conditions. Figure 16b shows
that the new design has a higher adiabatic efficiency than the baseline
at all of the operating conditions.

The turn-around time for this optimization is one week using
eight Intel Itantium 2 1.3-GHz processors. With the increase of
computational power, we expect the turn-around time can be reduced
to 24 h. Furthermore, to prove eventually that the current procedure
works and that CFD is accurate enough to distinguish performance
changes with these changes in geometry, we need to built and test
the optimized geometry.

VI. Summary
We performed multi-objective design optimization for the NASA

rotor67 blade using a hybrid method. The backbones of this method
include a GA and a quadratic response surface approximation.

We further implemented a gradient-based method after the GA to
accelerate the convergence rate. With this method, we achieved
an improvement of 1.8% in the pressure ratio and 5.4% de-
crease in weight for the rotor67 at a much reduced computational
cost.
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