
JOURNAL OF RESEARCH IN SCIENCE TEACHING VOL. 48, NO. 2, PP. 149–169 (2011)

Examining the Effect of Teachers’ Adaptations of a Middle School Science
Inquiry-Oriented Curriculum Unit on Student Learning

Jay Fogleman,1 Katherine L. McNeill,2 Joseph Krajcik3

1School of Education, University of Rhode Island, 711 Chafee Building,

Kingston, Rhode Island 02881
2Lynch School of Education, Boston College, Boston, Massachusetts
3School of Education, University of Michigan, Ann Arbor, Michigan

Received 30 January 2009; Accepted 21 October 2010

Abstract: Reform based curriculum offer a promising avenue to support greater student achievement in science. Yet

teachers frequently adapt innovative curriculumwhen theyuse them in their own classrooms. In this study,we examine how

19 teachers adapted an inquiry-oriented middle school science curriculum. Specifically, we investigate how teachers’

curricular adaptations (amount of time, level of completion, and activity structures), teacher self-efficacy (teacher comfort

and student understanding), and teacher experience enacting the unit influenced student learning. Data sources included

curriculum surveys, videotape observations of focal teachers, and pre- and post-tests from 1,234 students. Our analyses

using hierarchical linear modeling found that 38% of the variance in student gain scores occurred between teachers. Two

variables significantly predicted student learning: teacher experience and activity structure. Teachers who had previously

taught the inquiry-oriented curriculum had greater student gains. For activity structure, students who completed inves-

tigations themselves had greater learning gains compared to students in classroomswho observed their teacher completing

the investigations as demonstrations. These findings suggest that it can take time for teachers to effectively use innovative

science curriculum. Furthermore, this study provides evidence for the importance of having students actively engaging in

inquiry investigations to develop understandings of key science concepts. � 2010Wiley Periodicals, Inc. J Res Sci Teach

48: 149–169, 2011
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The science learning goals specified in national standards documents (American Association for the

Advancement of Science, 1993; National Research Council, 1996) have provided an opportunity for

researchers to focus their efforts to develop classroom resources that enhance student learning on key

learning goals. In addition to establishing a coherent framework for the science topics at the different grade

levels, these documents suggest that students should learn science by engaging in inquiry processes that allow

them an active role in their own learning and reflect how knowledge is constructed within the various

scientific communities.

Reviews of traditional textbooks have called into question the degree that these textbooks support

students developing deep understandings of the learning goals identified in the national standards (Kesidou&

Roseman, 2002). To provide more effective classroom materials, we have developed the Investigating and

Questioning Our World Through Science and Technology (IQWST) curriculum units (Krajcik, McNeill, &

Reiser, 2008). One of the first two units designed for IQWST is a middle school chemistry unit, ‘‘How Can

I Make New Stuff from Old Stuff?’’ or the Stuff unit.
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Early enactments of the Stuff unit in urban, suburban, and rural settings indicated that the curriculum

helped teachers address their target learning goals successfully and supported student learning (Krajcik et al.,

2008). During these enactments, we observed teachers choosing to enact the unit’s activities in different

ways. This process of teacher adaptation, or transformation, is a common occurrence when teachers use

innovative materials (Pinto, 2005), and an essential step if the materials are to be used long term in these

classrooms (Blumenfeld, Fishman, Krajcik,Marx,&Soloway, 2000; Brown&Edelson, 2001; Fullan, 1991).

Consequently, it is important to better understand how teachers’ curricular adaptations affect student

learning. In this study, we investigated how middle school teachers’ self-efficacy, their experience using

the curriculum materials, and curricular adaptations of an inquiry-oriented science curriculum impacted

student learning of key science learning goals.

Theoretical Framework

Designing Innovative Curriculum

Over the last decade, researchers haveworked to incorporatewhatwe currently knowabout teaching and

learning into curriculummaterials they believewill prove effective. Effective curriculummaterialsmustmeet

the follow criteria: (1) Their content primarily focuses on a coherent set of important, age-appropriate student

learning goals (Roseman, Linn, & Koppal, 2008); (2) their instructional design effectively supports the

attainment of the specified student learning goals; and (3) the teacher’s guides support teachers in helping

students attain these goals (Kesidou&Roseman, 2002). Thefirst requirement reflects the need to focus on key

learning goals that help students learn fundamental scientific concepts. The second requirement specifies that

the curriculummust provide support for instructional strategies that are consistent with what we know about

how people learn, such as helping students to make sense of new experiences in light of what they already

know, to share and refine their understandings, and to assume responsibility for their own learning (Bransford,

2000). The third requirement is that resources be provided for the teacher so that he or she can facilitate an

effective learning environment and develop knowledge of students’ commonly held ideas and expertise

in assessing students’ understanding and adapting instruction accordingly. Because of the deficiencies of

the texts used in most classrooms, there is a dire need for more supportive science curricula (Kesidou &

Roseman).

The Role of the Enacted Curriculum in Science Education Reform. Though curriculum materials

provide critical support for teachers implementing reforms in their classrooms, students’ experiences with

reform-based materials depend on how teachers choose to use these resources. A tension exists in how

researchers have conceptualized teachers’ use of innovative curriculum materials, ranging from acknowl-

edging teachers’ role in adapting curriculum materials to stressing the need for teachers to implement new

materials with fidelity to how they were designed (O’Donnell, 2008; Remillard, 2005).

In this study, we focus on understanding the teacher’s role in adapting curriculum materials to meet the

needs of her students and the conditions she perceives in her classroom. For Cohen and Ball (1999),

curriculum materials are one element of an instructional context that the teacher must mediate while

managing a learning environment. Remillard (2005) argues that while curriculum materials represent a

formal curriculum that expresses learning goals and activities sanctioned by school policies or textbooks,

teachers use available materials to design the enacted curriculum that is experienced by students. Teachers’

adaptations of available curriculum materials are a persistent element of the cultural systems that have been

used to explain the relative homogeneity ofAmerican classrooms (Squire,MaKinster, Barnett, Luehmann,&

Barab, 2003; Stigler & Hiebert, 2009).

National standards documents explicitly recognize the need for teachers to have the capacity to select

and adapt curriculum materials to tailor their instruction to meet their students’ needs (NRC, 1996). The

premise of providing curriculum materials that embody the teaching practices called for in the national

standards is grounded in the reality that many teachers can benefit from supports that help them enact

challenging new practices in their classrooms (Powell &Anderson, 2002; Schneider, Krajcik,&Blumenfeld,

2005). Teachers’ ability to adapt materials in ways that preserve their intent while at the same timemeet their
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students’ individual needs has been called pedagogical design capacity (Brown & Edelson, 2001) or

instructional capacity (Cohen & Ball).

Teachers’ decisions about how they will use curriculum materials can have both positive and negative

effects on how their students experience reforms as well as what their students learn. Squire et al. (2003)

found that teachers played a critical role in contextualizing an innovative science unit when students did not

find the unit’s central question relevant to their lives. Pinto (2005) found that teachers’ transformations of

reform-based innovations often demote the designers’ intentions. Songer and Gotwals (2005) found that

students’ ability to apply scientific concepts was enhanced in classes where teachers used more of their

reform-based curriculum materials. Schneider, Krajcik, and Blumenfeld (2005) found that with extensive

supports, teachers could use the materials to activate students’ understandings, conduct investigations, and

facilitate small group discussions.

We focus in this study on discerning the effects on student learning of teachers’ decisions about enacting

reform-rich curriculum materials. O’Donnell (2008) argues that in order to make valid judgments about the

effects of curricular innovations, researchers must be able to determine the fidelity of the teachers’ use of the

materials. Fidelity in this context has been defined as the extent towhich a delivery of an intervention adheres

to the protocol or program model originally developed (Mowbray, Holter, Teague, & Bybee, 2003).

Schneider and coworkers noted that given the complexity of what was expected from teachers during

the enactment of inquiry-rich curriculummaterials, it wasmore useful for them to focus on congruence of the

enactment with the designers’ intentions rather than the stricter standard of fidelity.

We acknowledge that the complexity of the classroom requires each teacher to adapt materials to their

setting, and are interested in discerning the effects of these decisions across several teachers. If curriculum

materials are to serve as tools that embody knowledge about science education reforms that have been

developed by researchers and designers to support teachers’ instruction (Putnam & Borko, 1997), then

enacting the materials serves a critical role in teachers deepening their understanding of reform-based

teaching (Kubitskey, 2006). One way researchers can support teachers during this process is to provide

evidence of the effects of their decisions on what their students learn (Fishman, Best, Marx, & Tal, 2001;

Pinto, 2005).

Factors Influencing How Teachers Utilize Classroom Innovation

Analysis of past reform efforts indicated that in order for innovations to be sustained, teachers had to

adapt them to meet local needs and conditions. In their review of past studies of teachers’ adaptations of

innovations, Pinto (2005) found that teachers’ adaptations to innovationswere influenced by their knowledge

and beliefs about the subject theywere teaching, their beliefs about their own identity and about teaching and

learning, and the degree that the innovation was supported within their local contexts.

Teachers’ beliefs about teaching and learning influence their use of new curriculum materials.

Implementing classroom innovations often requires a teacher to change his or her practice and take on

the unpleasant role of ‘‘novice’’ again (Fullan, 1991). A strong predictor of whether teachers can successfully

meet this challenge is their sense of self-efficacy. Tschannen-Moran, Hoy, and Hoy (1998) define a teacher’s

self-efficacy as his or her belief in their ability to act in ways that successfully accomplish specific teaching

goals. In their review of the use of the teacher efficacy construct, they found that it has been correlated with

teachers’ willingness to implement innovations. In other words, teachers who believe they are able to achieve

specific teaching goals are more willing to try new innovations in their classroom.

Another factor that influences how innovations are enacted in classrooms is teachers’ experience with

the innovation. In past studies, we have seen that teachers continue to strengthen their use of reform-based

curriculum materials through their second and third years using the units (Geier, 2005). Each time a teacher

uses a particular innovation, we would expect an increase in both their understanding about how to use the

innovation in his or her class, as well the effectiveness of their use of the innovative materials.

In addition, the local context can also have a significant impact on teachers’ use of the curriculum.

Our work with teachers occurs predominately in urban schools. Impoverished urban schools have been

characterized as relying on a ‘‘pedagogy of poverty’’ in which students predominately engage in low level

tasks (Haberman, 1991). Instructional innovations aimed at supporting complex scientific inquiry can be
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difficult to implement in such impoverished settings due to inadequate resources, insufficient time, large class

sizes, teachers’ low levels of science and computer knowledge, lack of training opportunities, high levels of

teacher and student mobility, limited instructional freedom, lack of administration support, and unreliable

internet connectivity (Songer, Lee,&Kam, 2002). Consequently, these contextual challenges can also impact

the adaptations that teachers make to the curriculum.

Teachers’ Curricular Adaptations

Although we see adaptation as essential for enacting units, some adaptations can diminish the intended

function of the curricular unit. Pinto (2005) identified common themes from concurrent implementation

studies of four classroom innovations. Each team of researchers saw their innovations being transformed by

teachers. Sometimes these adaptationswere benign and sometimes problematic. Teachers tended to adapt the

innovation so its use more closely resembled familiar classroom practices. In order to provide opportunities

for teachers to reflect on and refine their uses of innovations in subsequent professional development

workshops, it is important to be able to share with them how specific transformations affect student learning.

The transformations we are concerned with in this study include how much time teachers spend on the unit,

the level of completion of the unit’s activities, and whether the teachers had students actively experience the

unit’s investigations first hand or presented them as whole-class demonstrations.

When implementing a new curriculum or other classroom innovation, the teacher must decide how

much time can be spent on the new unit. There has been considerable research on how time is spent in

classrooms, and the effect of these practices on student learning. When using curriculum units designed to

facilitate deep conceptual understanding, students need sufficient instructional time, that is, time spent

actively engaged in learning activities, to integrate their understandings. Reducing the amount of instruc-

tional time originally called for by the unit can reduce students’ depth of understanding (Clark&Linn, 2003).

However, previous research on the effects of the amount of time that teachers allocate for particular classroom

activities on student learning has produced mixed results. Allocated time is not always spent on learning

activities. Consequently, some studies suggested that while allocatingmore time for particular activities may

have a small positive effect for low ability students, there is no overall effect on what students learn (Cotton,

1989). We are interested in whether the quantity of time teachers’ spent on the Stuff unit affected student

learning.

Teachers have to continually seek a balance between ‘‘covering’’ the topics they feel are important and

ensuring that students’ experiences are sufficient to develop deep understanding (Van den Akker, 1998).

Teachers sometimes scale back student investigations, or decide to omit particular activities or portions of

activities in the unit because of a lack of time, resources, because they are unsure of how to enact the activity,

or because they do not see an activity’s value. Adaptations such as this might limit students’ opportunities to

engage in inquiry practices, such as asking questions and talking with classmates to solve problems, or affect

the coherence of unit overall (Shwartz, Weizman, Fortus, Krajcik, & Reiser, 2008). Previous research has

shown that teachers who frequently use inquiry-oriented teaching practices have a positive impact on

students’science achievement (Kahle,Meece,&Scantlebury, 2000).Kahle and her coworkers found teachers

who had their students solve problemswith their peers, learn from their classmates, and repeat experiments to

check results sawgreater science achievement from their students. Consequently, we are interested in how the

level of completion of a unit by a teacher influences student learning. Though this measure aligns with

traditionalmeasures offidelity,we asked teachers how long they spent on each activity as an indication of how

they alotted time to topics across the unit in comparison to the times suggested by the curriculum materials.

In addition to considering how much of the curriculum they complete, it is also important to consider how

they use the curriculum materials.

The tendency for teachers to transform innovative curriculum so that they resemble more traditional

classroom practices suggests that how teachers choose to enact the unit might affect what students learn. The

different ways that teachers manage classroom discourse have been called participation structures (Cazden,

1986) or activity structures (Fuson & Smith, 1998). These patterns of classroom discourse can vary in time

scale and purpose, ranging from simple routines such as ‘‘initiation-reply-evaluation’’ (I-R-E) (Mehan, 1978,

1979) exchanges where students answer questions and receive immediate feedback to a sequence of project
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milestones used to facilitate open-ended classroom inquiry (Polman, 2004). The tendency toward trans-

missive classroom routines despite accepted evidence for the need for students to take a more active role in

their learning is well known (Bean, 2001). In other words, whole class teacher-centered instruction often

dominates classroom practice. We are interested in the relationship between teacher adaptations of the

activity structures, such as completing the activities as teacher-centered demonstrations versus student-

centered investigations, on student learning.

When teachers try to implement innovations such as standards-based curriculum units, there are many

challenges. Teacher support structures are necessary for teachers as they implement reforms and refine their

understandings (Fullan, 1991). Our own efforts at supporting systemic reform acknowledge and support

teachers adapting innovative curriculum materials as they address the needs of their students, time con-

straints, and limitations in resources (Blumenfeld et al., 2000). One way that designers can support the

adaptation process is by providing teachers with feedback on the effect their adaptations have on student

learning and to provide opportunities in subsequent professional development efforts to reflect upon their

practice and discuss enactment issues with coworkers and designers (Pinto, 2005). To do this, we need ways

of determining how teachers’ curricular adaptations influence what their students learn. In this study, we ask

the following research questions:

1. How do teachers’ responses on a post-enactment survey align with their enactment of curriculum

materials?

2. How do teachers’ curricular adaptations (the amount of time on the unit, the level of completion of

the unit, and the activity structures), teacher self-efficacy, and teacher experience enacting the unit

influence student learning of target science learning goals?

Method

In order to address our research questions, we used data from the enactment of the Stuff unit during the

2003–2004 school year. In this section, we begin by describing the Stuff unit in more detail and the

professional development the teachers receivedwho enacted the curriculum. Thenwe discuss the participants

and data sources that we used to address our research questions. Finally, we describe our procedure for

analyzing the videotapes, test data, and teacher survey data.

Description of Stuff Unit

The IQWST curriculum units were designed to address the need for curriculum materials that support

learning goals expressed in the national standards documents and to support classroom inquiry (Krajcik

et al., 2008; McNeill et al., 2003). The units’ activities engage students in inquiry activities with relevant

phenomena and support teachers in facilitating discussions that allow students opportunities to understand

how their experiences relate to the units’ learning goals. Each unit also includes supports for inquiry practices

such as using evidence to construct scientific explanations and creating representations or models of

phenomena.

The Stuff unit introduces students to the concepts of characteristic properties, substances, chemical

reactions, the conservation ofmass, aswell as how the particulate nature ofmatter explains thesemacroscopic

phenomena (McNeill, Harris, Heitzman, Lizotte, & Sutherland, 2004). The unit consists of 16 lessons, some

of which contain several different activities. Each lesson includes activities designed to engage students,

including investigations, using models to explore concepts, and teacher-led class discussions. Some of the

activities are identified as ‘‘optional,’’ in order to provide teachers guidance in their adaptations of the

completion of the unit. We felt that if teachers did need to cut activities in the unit because of time limitations

that the optional activities could be removed and the students would still have opportunities to adequately

support their learning of each of the target learning goals. For example, Lesson 13, ‘‘Does mass change in a

chemical reaction?’’, includes three activities. Activity 13A is an optional activity that has students

investigate whether the mass changes when they create ‘‘gloop.’’ Activity 13.1 has students observing

the reaction of Alka Seltzer in water in open and closed systems. Activity 13.2 has student redesign the
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13.1 experiments so that mass will stay the same during the reaction. If all the ‘‘optional’’ activities are used,

the unit is designed to take 33–35 school days, but if only the ‘‘core’’ activities are used, the unit should take

only 26–28 school days.

The IQWST Approach to Professional Development

The IQWST approach to providing professional development has evolved over working with teachers

for an extended time period on a variety of curriculum units. At the heart of these experiences are

opportunities for discussion between teachers enacting the units and researchers. We call the conceptual

framework that guides these activities (Krajcik, Blumenfeld, Marx, & Soloway, 1994): Collaborative

construction of understanding; Enactment of new practices in classrooms; Reflection on practice;

and Adaptation of materials and practices. The professional development activities for the Stuff unit include

a 1-week summer institute and monthly Saturday workshops during teachers’ enactment of the unit.

Researchers used a design approach (Simon, 1996) to plan workshop activities based on feedback on

teachers’ enactments and student assessments (Fishman, Best, Foster, & Marx, 2000). Efforts to document

how these professional development strategies influence teachers’ enactments of the previous units and

subsequent student learning have been described elsewhere (Fishman, Marx, Best, Stephen, & Tal, 2003;

Kubitskey, 2006; Kubitskey, Fishman, & Marx, 2003; Margerum-Leys, Fishman, & Peek-Brown, 2004).

Participants

The 2003–2004 enactment of the Stuff unit included five school districts and 24 teachers from different

areas of the country. We only included those teachers in the study from whom we received data from the

required sources, student pre- and post-test data and the teacher curriculum survey. This limited our analysis

to 19 teachers (see Table 1). Four of the teachers who we were unable to obtain complete data sets were

located in other states. Because of the distance, we were unable to drive to the schools to obtain the requisite

data and the teachers nevermailed the data to us. The fifth teacher was located in the same state as the authors.

This teacher changed schools at the end of the school year and because of communication difficulties we

were unable to receive her curriculum survey.

Eight of the teachers were in public middle schools in a large urban area in theMidwest (Urban A). The

majority of students in this school district were African American and come from lower to lower-middle

income families. Three of the teachers taught in an independent school in a large college town in theMidwest

(Town B). The majority of these students were Caucasian and frommiddle to upper-middle income families.

Two of the teachers taught in a second large urban area in the Midwest (Urban C). The student population in

this school district was 49.8%African American, 38%Hispanic, 8.8% Caucasian, and 3.2%Asian. Three of

the teachers taught in a suburb of the second large urban area (Suburb D). The student population in this

school district was ethnically diverse (�42% Caucasian, 44% African American, 10% Hispanic, and 4%

Asian). Finally the last three teachers taught in a rural area in the south (Rural E). These schools had diverse

populations each with a majority of African American students.1

Measures

To answer our research questions, we needed to examine both teachers’ enactment as well as their

responses to our survey. To determine how teachers’ survey responses might relate to classroom practice, we

examined a selection of videotaped lessons from a subset of the respondents. To determine how teachers’

Table 1

Participants from the 2003 to 2004 school year

Site Urban A Town B Urban C Suburb D Rural E Total

Schools 7 1 2 2 3 15
Teachers 8 3 2 3 3 19
Classrooms 30 5 4 13 13 65
Students 983 79 105 280 269 1,716
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practices might influence student learning, we measured student learning using pre-/post-tests and related

these results to their teachers’ responses to a survey about their enactment. In this section, we describe our use

of video to characterize teachers’ use of curriculum materials, our conceptual model, and our measures of

each of the variables included in our model.

Description of Video. To understand how teachers’ survey responses corresponded to their actual

classroom practice, we compared teacher responses with our own observations for a subset of lessons and

teachers where video recordings were available. Due to the limited number of videotaped lessons available,

our selection of teachers was neither representative of the larger group nor a random sample of the larger

group. The four teachers we videotaped taught in three different schools in the UrbanA school district. These

four teachers were selected to be observed, because of their proximity to the researchers and their willingness

to be videotaped. We reviewed their enactments of five Stuff activities to determine the duration, activity

structure, and level of completion, and compared our observations with the teachers’ survey responses.

Table 2 summarizes the number of hours of videotape reviewed for the four teachers.

Our Conceptual Model. To investigate the influence of teachers’ adaptations on students’ learning

during the Stuff unit, we compared measures of student learning with factors that may influence teachers’

adaptations of the materials and the adaptation practices themselves. A conceptual model of our study

including all of themeasures that we investigated is shown in Figure 1.We describe each of thesemeasures in

more detail below.

Description of Pre-/Post-Test. To measure student learning for all teachers, the same test was admin-

istered to students before and after the Stuff unit. The test consisted of 15 multiple-choice items and 4 open-

ended items for a total of 30 points. See Figure S1 for example test items. The test itemswere alignedwith the

unit’s learning goals and learning tasks (Krajcik et al., 2008).All open-ended itemswere scored using specific

rubrics created to address the particular inquiry practice and content area (see McNeill & Krajcik, 2007 for a

description of rubrics and coding). One rater scored the students’ open-ended responses. We then randomly

sampled 20% of the tests, which were scored by a second independent rater. Our estimates of inter-rater

Table 2

Hours of video examined for each activity

Activity Description
Teacher D
(hours)

Teacher B
(hours)

Teacher H
(hours)

Teacher E
(hours)

Lesson 8 Does acid rain make new substances?
8.1 After reading about the discoloration of the

Statue of Liberty, students see a demonstration
of burning magnesium and use the properties
of the reactants and products to explain
whether a chemical reaction has occurred

1 2 2 2

8.2 Students study amodel of the Statue of Liberty by
investigating the effect of vinegar vapor on
pennies

2 1 3 1

Lesson 10 Do I always make new substances?
10.1 After hypothesizing whether or not the bubbles

always indicate that a chemical reaction is
occurring, students investigate whether boiling
and condensing water is a chemical reaction

2 2 1 1

10.2 Students investigate whether creating a mixture
such as ‘‘Kool-Aid’’ involves a chemical
reaction

2 1 0 0

Lesson 12 How can I make soap from fat?
12.1 Students return to materials they described in

the first learning set to create soap from fat.
After they create their cake of soap, they read
about the history of soap making to discuss the
following day

3 2 2 1
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reliability were calculated by percent agreements. Our inter-rater agreement was above 96% for each of the

four open-ended test items.

Only students who completed both the pre-test and post-test were included in our analysis, because we

were interested in how students’ science achievement changed over time. Due to the high absenteeism in

the urban schools, only 1,234 students completed both the pre- and post-test. In order to examinewhether the

students who only completed the pretest or only completed the post-test were different than the students who

completed both the pre- and post-test, we conducted a missing data analysis. We compared the students’

pretest scores for those students who also completed the post-test to those students who did not complete the

post-test for each of the 19 teachers. Sixteen of the 19 teachers did not have a significant difference for the two

groups. For the three teachers that did have a significant difference (Teachers B, O, and P), their students who

were notmissing the post-test had significantly higher pretest scores than those studentswhoweremissing the

post-test. We also compared the students’ post-test scores for those students who completed the pretest to

those students who did not complete the pretest for each of the 19 teachers. Fifteen of the 19 teachers did not

have a significant difference for the two groups. For the four teachers who did have a significant difference

(Teachers N, R, P, andQ), the students whowere notmissing the pretest had higher post-test scores than those

studentswhoweremissing the pretest. This suggests that the studentswhowere in school for both the pre- and

the post-test were higher science achievers than those students who were absent on one of the test

administration days for some of the teachers. Yet for the majority of the teachers those students who were

absent one test day were not significantly different. Nonetheless, one limitation of this study is that we were

unable to collect pre- and post-test data from all of the students.

In order to assess student learning over the unit, we used students’ gain scores. We calculated the gain

scores by subtracting the pretest score from the post-test score. We used this measure as the outcome for our

model. On the test, students also indicated their gender, which we also included in the model. Unfortunately,

our agreement with the schools did not allow us to collect other demography data from the students so were

not able to include race or other measures in our study.

Description of Survey. To gauge how teachers assessed and adapted the Stuff unit, each teacher was

asked to complete a survey after they finished their enactment. The survey consisted of 16 pages, one for each

of the unit’s lessons, which could include more than one activity (for a sample survey page, see Figure S2).

Sincewewere interested in the teachers’ appraisals of their efficacy using the unit, theywere asked to indicate

their comfort-level with each activity and their students’ understanding of each activity. To get feedback on

Figure 1. Conceptual model.
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their adaptation strategies, teachers were asked to indicatewhether each activity was done by students or as a

teacher demonstration, its level of completion, and how many days were spent on each lesson. We asked

teachers about how they enacted each activity to determine whether students were provided with oppor-

tunities to engage in inquiry and experience phenomena as suggested by the Stuffmaterials. We asked about

teachers’ level of completion and the length of time they spent on each lesson to gauge how they allotted

time across the unit. To determine each teacher’s experience with the unit, we used our records of previous

enactments.

To analyze the survey responses, we first converted each teacher’s checkmarks on the survey form to

numerical codes and transferred them to a cumulative table. Table 3 summarizes how numbers were assigned

to the teachers’ responses.

After tabulating teachers’ responses, we reduced each teacher’s responses to a single number for each of

the six variables listed above. For the teachers’ self-efficacy, we calculated two variables. We averaged their

responses for their own comfort level and their responses for students’ understanding for each activity across

the entire unit. Each teacher’s experience with the unit was coded as either the first or second use of the

materials. For teacher adaptations, we calculated three variables: activity structure, level of completion and

days spent on curriculum.We view level of completion as a measure of fidelity, because wewere specifically

interested in alignment with the intended curriculum. We view activity structure and days spent on the

curriculum as other adaptations. These twomeasures do not specifically measure fidelity, becausewe did not

compare the teachers’ reports to the recommendations in the curriculum. Rather, we were interested in more

generally how teachers’ decisions around time and activity structure (regardless of the intent of the

curriculum) impacted student learning. First, in order to summarize the activity structures teachers used

during the unit, we averaged their scores across all of the activities in the unit. For their level of activity

completion, we totaled their scores across the unit and divided this total by the number of ‘‘core’’ or not

optional activities so that teachers who enacted the core activities along with one or more optional activities

would have a score greater than one. The total number of days each teacher allocated to the unit was found by

adding the days he or she indicated were spent on each lesson.

Analytic Method

We analyzed both the videos teachers’ enactments to determine how the their practice related to their

reports of their practice on our survey as well as how their survey results related to their students’

achievement. Each of these steps is described below.

Enactment Analysis. To answer how teachers’ survey responses represented how they enacted the Stuff

materials, a small sample of videotaped lessons were reviewed. Teachers’ survey responses for activity

structure and level of completion were compared with their videotaped enactments for the four teachers

where videotape data were available.

HLM Analysis. Determining the impact of teacher adaptations on student learning is a complex issue.

Because each teacher’s efforts affect each of his or her students, learning by individual students in the

same class is not independent. On the other hand, considering the classmean as the outcomevariable loses the

Table 3

Numerical assignments for teachers’ survey responses

Categories Variables Numerical assignment

Self-efficacy Teacher comfort level 1, low; 2, medium; 3, high
Self-efficacy Student understanding 1, low; 2, medium; 3, high
Experience Experience 0, first use of unit; 1, second use of unit
Teacher adaptation Activity structure 1, teacher demo; 2, student investigation; 3, both
Teacher adaptation Level completion 0, not used; 0.5, partially completed; 1, completed
Teacher adaptation Days spent on lesson Total number of days spent teaching the unit
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individual variability of student learning. Neither approach would allow us to disentangle individual and

group effects on student learning. In our analysis of the survey and test data, we needed to consider this

grouping or nesting of students and any differential effects across teachers. Multi-level modeling recognizes

the dependence and grouping of data leading to more correct estimation of effects and variance. We used

Hierarchical Linear Modeling (HLM) in a two-level format to investigate the effect of factors that affect

teachers’ adaptations and teachers’ adaptation strategies on student learning (Raudenbush & Bryk, 2001).

Our use of HLM consisted of three steps. First, we created a fully unconditional model (FUM), then we

created a level 1 or within-teacher model to examine the effect of student level variables, and finally we

created a level 2 or between-teacher model to examine the effect of teacher level variables.

Fully Unconditional Model. HLM analysis begins with a fully unconditional model, which consists

only of the outcome variable and no independent variables. The fully unconditional model provides the

results of partitioning the outcome variance into within-group (s2) and between-group (t00) components,

testing whether the between group component is significantly different from zero. In our model we used

student gain scores, to determine whether there were differences in student learning across the 19 teachers.

From these measures we computed the intraclass correlation coefficient (ICC), r, which is the proportion of

variation in the student gain scores that is due to differences between teachers.

Within-Teacher Model. Next, we investigated the student-level measures that could account for the

variationwithin teachers.We entered gender as a fixed effect. Thismeant that the effect of gender did not vary

depending on what teacher a student had. The following is the equation for our level-1 model:

Gain Scoreij ¼ b0j þ b1jðGenderij�Gender. . .Þ þ rij

In this equation, b0j represents the intercept or the gain score when all other variables equal zero, b1j
represents the effect of gender on student gain scores and, and rij represents the error term. After running the

within-teachermodel,we determined howmuchof the total unexplained individual-level variance for student

gain scores was explained by the addition of our level-1 variable.

Between-Teacher Model. Lastly, we ran a between-teacher model. This allowed us to model student

learning with our teacher-level measures to explain the between-teacher variation in our outcome variable.

More specifically, we determined if student learning was impacted by teacher self-efficacy, experience, and

curricular adaptations. We tested the six teacher level variables that we described above: teacher comfort

level, teacher evaluation of student understanding, teacher experience enacting the unit, the number of days

allocated to the unit, the level of completion of the unit’s activities, and the teachers’ activity structure

(i.e., whole-class demonstration vs. student investigation). We removed any variables that were not signifi-

cant. We report the final model below in the results section. As with the within-teacher model, we can

determine howmuch of the total unexplained individual-level and teacher-level variance of our outcome has

been explained by the addition of our level-2 variables.

Results

In this section, we begin by presenting the descriptive statistics for the results of the teacher survey and

the results from the students’ pre- and post-test to provide an overview of the data. Thenwe present the results

from comparing the teacher survey datawith the video analysis. Finally, we present the results from theHLM

model.

Descriptive Statistics

Before creating our HLM model, we first examined whether there were differences in student learning

and teacher adaptations across the 19 teachers. Table 4 displays the descriptive statistics for all of thevariables

included in our study.

Fifty percent of the students in the sample are male and 50% are female. On average, students gained

7.49 points from the pre- to post-test though the gain scores ranged from �13.36 to 22.80.
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For the teacher variables, we see a range of scores for both the teacher adaptation variables and the

efficacy variables. Teachers’ average comfort levelwas a 2.55, which is betweenmedium and high. Teachers’

perception of student understandingwas 2.39,which is also betweenmediumand high. Twenty-seven percent

of the teachers previously enacted the unit. On average, teachers spent 31.17 days on the unit. For teachers’

activity structure the average score was 1.93. Remember a score of 1 means that a teacher completed all

activities as a demonstration, a score of 2 means that students completed all activities, and a score of 3means

that all activities were both demonstrated by the teacher and completed by the students. This suggests that for

most lessons teachers had students complete the activities, but some were on average only completed as

demonstrations. The average level of completionwas 0.94 suggesting that typically teacherswere completing

a little less than the recommended core activities within the unit. Remember that we coded teachers’

completion as 0 for not using the activity, 0.5 for partially completing the activity, and 1 for fully completion

of the activity.

Student Assessment Data

Sincewe are interested inwhether there is differential learning by teacher,we examined the effect size of

student learning by teacher.2 Figure 2 shows the effect sizes for the 19 teachers.

Across the 19 teachers, there is a wide range of effect sizes from 0.47 to 5.27. We tested whether there

was a significant teacher effect by performing an ANCOVA on students’ post-test scores with the pretest

scores as the covariate. There was a significant teacher effect with the learning gains of some teachers being

greater than other teachers, F(18, 1215) ¼ 9.062, p < 0.001. There was also a significant interaction

between the teacher and students’ pretest scores, F(18, 1215) ¼ 2.868, p < 0.001, suggesting that the

effect of a students’ pretest on their post-test varied by teacher.

This analysis suggests that something is occurring in each of these classrooms that is influencing student

learning. These differences could be caused by a variety of factors such as the school culture, parental

influence, or different resources. We also believe that the differences in teachers’ enactments are influencing

student learning based on prior research on teacher practices (Kahle et al., 2000). Our hypothesis is that some

of this difference in student learning is the result of teacher adaptations, experience using the materials, and

efficacy.

Enactment Analysis

In order to evaluate the validity of the self-report survey data, teachers’ adaptations of lessons 8, 10, and

12 were reviewed from videotapes. The results, sorted by each teacher’s effect size, are summarized in

Table 5. For each activity, an objective measure of the degree that the activity was completed was computed

by dividing the number of activity elements observed (AEsOB) divided by the total number called for in the

Table 4

Descriptive statistics (n ¼ 1,234)

Mean % (standard deviation)

Student variables
Gendera 50.00
Test gain score 7.49 (5.23)

Teacher variables
Self-efficacy—teacher comfort level 2.55 (0.34)
Self-efficacy—student understanding 2.39 (0.44)
Experienceb 27.00
Teacher adaptation—days 31.17 (6.97)
Teacher adaptation—activity structure 1.93 (0.14)
Teacher adaptation—level completion 0.94 (0.16)

aPercentage of female compared to males.
bPercentage of teachers who have done the unit before compared to those who have not.
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Stuff teacher’s guide (AEsTG). The teachers’ activity structure for each activity (Demonstration, Student

Investigation, or Both) observed in the videotapes was also recorded, along with teachers’ survey responses

for how they adapted each activity.

To determine how teachers’ responses on the survey might represent their enactment of the Stuff

curriculummaterials, we compared the fraction of AEs observed to the level of completion indicated by each

teacher on the survey. To compare the activity structures observed and the activity structures indicated by

teachers on the survey, we averaged the values for each teacher across the reviewed activities. Table 5

illustrates that teachers reported their activity structure in different ways. For example, Teach B reported a

combination of 2s and 3s,while Teacher E reported a combination of 1s and 2s.We used these averages for the

observed enactment to characterize each teacher’s adaptation preferences, or teaching style across the lessons

we reviewed. Figure 3 compares four teachers’ activity structures observed invideotapes of selected activities

with their survey responses about how they enacted the same lessons.

These comparisons are arranged in order of effect sizes, with the leftmost teacher having a lowest effect

size (1.10), themiddle two teachers having similar effect sizes (1.77, 1.81), and the rightmost teacher having a

higher effect size (2.43). The graph shows that the survey responses belonging to the three teachers with the

highest effect sizes were very similar to the assessments of their enactments from the videotapes. These

teachers’ average activity structure scores were between 1.75 and 2.00, suggesting they generally provided

students opportunities to conduct the investigations called for in the unit. Though the fourth teacher’s survey

suggested that students also had these opportunities, examination of the videotaped activities indicated that

the teacher relied more on demonstration and direct instruction to address the unit’s topics. This suggests that

the majority of the teachers’ self report did align with their enactment, though for one teacher there was

clearly a difference.

Figure 4 compares the proportion of the activity elements observed in the video compared to the

proportion of the activity the teacher reported completing on the survey. As in the previous graph, the

comparisons are arranged from lowest to highest effect size. All four teachers overestimated their completion
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of the unit. Yet teachers who completed more of the unit did report completing more (Teachers D and E),

while those teachers completing less of the unit also reported completing less (Teacher B and H).

HLM Analysis

FullyUnconditionalModel. We began our HLM analysis by examining the fully unconditional model,

which partitions the total variance in students’ gain scores into its within- and between-teacher components.

Table 6 provides the results from the unconditional model.

Lambda is the pooled reliability estimate across all the teachers for estimating our outcome variable,

student gain scores. Since the reliability estimate is high, 0.967, we are comfortable using the adjusted

intraclass correlation (ICC). The adjusted ICC tells us that 38% of the variance in student gain scores lies

between teachers. There was a significant difference in student gains between teachers, x2 ¼ 693.85,

df ¼ 18, p < 0.001. This means that 38% of the variance in student learning can be attributed to the role

of the teacher. Because the results of the fully unconditionalmodelwere significant, this supports our decision

to use multilevel methods.

Table 5

Observed activity elements

Observed activity elements (AE) Teacher B Teacher H Teacher D Teacher E

Teacher effect sizes 1.10 1.77 1.81 2.43
Lesson 8: Does acid rain make new substances?
Activity 8.1: Students observe a demonstration of burning magnesium and use the properties of the reactants and
products to explain whether a chemical reaction has occurred
Level of completion from video (AEOB/AETG)

a 0.6 0.7 0.7 0.8
Level of completion from survey (1 ¼ fully completed,
0.5 ¼ partially used, 0 ¼ not used)

1 1 1 1

Activity structure from video (1 ¼ teacher demo,
2 ¼ student investigation, 3 ¼ both)

1 2 2 1

Activity structure from survey (1 ¼ teacher demo,
2 ¼ student investigation, 3 ¼ both)

3 3 2 2

Activity 8.2: Students study acid rain by investigating the effect of vinegar vapor on pennies
Level of completion from video (AEOB/AETG) 0.3 0.6 0.6 0.4
Level of completion from survey (1 ¼ fully completed,
0.5 ¼ partially used, 0 ¼ not used)

0.5 1 1 1

Activity structure from video (1 ¼ teacher demo,
2 ¼ student investigation, 3 ¼ both)

1 3 2 3

Activity structure from survey (1 ¼ teacher demo,
2 ¼ student investigation, 3 ¼ both)

2 3 2 2

Lesson 10: Do I always make new substances?
Activity 10.1: Students investigate whether boiling and condensing water is a chemical reaction
Level of completion from video (AEOB/AETG) 0.3 0.4 0.7 0.6
Level of completion from survey (1 ¼ fully completed,
0.5 ¼ partially used, 0 ¼ not used)

0.5 0.5 1 0.5

Activity structure from video (1 ¼ teacher demo,
2 ¼ student investigation, 3 ¼ both)

1 1 2 1

Activity structure from survey (1 ¼ teacher demo,
2 ¼ student investigation, 3 ¼ both)

3 1 2 1

Lesson 12: How can I make soap from fat?
Activity 12.1: Students return to materials they described in the first learning set to create soap from fat
Level of completion from video (AEOB/AETG) 0.8 0.6 0.8 0.6
Level of completion from survey (1 ¼ fully completed,
0.5 ¼ partially used, 0 ¼ not used)

1 1 1 1

Activity structure from video (1 ¼ teacher demo,
2 ¼ student investigation, 3 ¼ both)

3 2 3 2

Activity structure from survey (1 ¼ teacher demo,
2 ¼ student investigation, 3 ¼ both)

3 2 2 2

aAEsOB is the number of activity elements observed. AEsTG is the total number called for in the teacher guide.
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Within-Teacher Model. The within-teacher model explores whether student gender is associated with

student learning. We included gender as fixed effect, which means that the effect of gender did not vary

depending on the teacher. Table 7 provides the results from our within-teacher model.

A student’s gender does significantly influence their gain scores. On average, a female’s gain score

increases 0.104 standard deviations more than a male. Although adding gender does significantly influence

student learning, it explains a very small percentage of the individual-level variance in student learning, less

than 1%.3 Unfortunately, we do not have access to other student level variables to include in the model. The

intercept variance at the bottom of Table 7 suggests that there is still significant between-teacher variability.

This provides support that there are contextual factors or characteristics of the teachers that influence student

learning. In order to further unpack the role of teacher characteristics, we need to add level 2 predictors to our

HLM model.

Between-TeacherModel. Table 8 presents the results fromour completeHLMmodel includingLevel 1,

student level predictors, and Level 2, teacher level predictors. Although we tested numerous teacher level

characteristics in our model, we only kept in the model those measurements that were significant. The

relatively small number of teachers in the study limited our model. As a general rule, you need 10 cases at a

level (either level 1 or level 2) for each significant variable included in a model (Raudenbush & Bryk, 2001).

Sincewe only had 19 teachers in our study to include in the level 2 model, it was not surprising that we ended

Figure 4. Level of completion.

Figure 3. Activity structures.
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up with a model that included only two significant teacher practices. In our testing of the various models, we

found two models that each included two significant variables. One model included teacher experience and

level of completion and the secondmodel included teacher experience and activity structure. Since the second

model including teacher experience and activity structure had lower significant levels, we used it as our final

model.We hypothesize that if we had a larger sample of teachers, all three variables, teacher experience, level

of completion and activity structure, would significantly influence student learning. The following is our

Table 7

Within-teacher model of student gain scores (n ¼ 1,234 students, N ¼ 19 teachers)

Student gain scores

Random effects
Intercept (b0) �0.012�

Fixed effects
Gendera 0.104�

Variance components for random effects
Intercept variance (b0) 0.383���

�p < 0.1.
�p < 0.05.
���p < 0.001.
aFemales compared to males.

Table 8

Between-teacher model of student learning (n ¼ 1,234 students, N ¼ 19 teachers)

Student gain scores

Random effects
Intercept (b0)
Base �0.234
Activity structure 1.869�

Experience with unit 0.715��
Fixed effects
Gendera 0.105�

Variance components for random effects
Intercept variance (b0) 0.258���

�p < 0.1.
�p < 0.05.
��p < 0.01.
���p < 0.001.
aFemales compared to males.

Table 6

Unconditional model of student learning (n ¼ 1,234 students, N ¼ 19 teachers)

Student gain scores

Tau (t) 0.384
Sigma-squared (s2) 0.646
Lambda-reliability (l) 0.967
Intraclass correlation (ICC)a 0.373
Adjusted-ICCb 0.380

aICC ¼ t/(t þ s2).
bAdjusted ICC ¼ t/(t þ (ls2)).
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equation for the level-2 model for student gain scores:

b0j ¼ g00 þ g01ðActivity structureÞ þ g02ðTeacher ExperienceÞ þ m0j

In this equation, g00 represents the intercept, g01 represents the effect of activity structure, g02 represents

the effect of teacher experience, and m0j represents the error term. Teachers’ activity structures (i.e., whole-

class demonstration versus student investigation) and level of experience were used to model the intercept.

None of the other teacher-levelmeasures, days spent on the unit, student understanding, teacher comfort level

or level of completion, were significant. Consequently, we removed them from our final level-2 models.

The first set of results under intercept in Table 8 is for our model in terms of the intercept as the outcome.

These results tell us whether any of the teacher characteristics influence student learning. Teachers’ activity

structures (i.e., demovs. student investigation) have amarginally significant effect and a teacher’s experience

with the unit has a significant effect on student learning. Holding all other variables constant, as a teacher’s

activity structure increases by 1 point (i.e., goes from all lessons completed as demonstrations to all lessons

completed by students), students gain scores increase by 1.869 standard deviations.

This is a very large increase in students’ gain scores and suggests that having students actively complete

the activities is important for students understanding of the key learning goals. On average, a teacher with

experience teaching the unit has student gain scores of 0.715 standard deviations higher than a teacher who is

completing the unit for the first time. This suggests the importance of having experience with reform based

curriculum units. Consequently, the results of the HLMmodel suggest that (1) Teachers who had previously

taught the inquiry-oriented curriculum had greater student gains and (2) Students who completed investi-

gations themselves had greater learning gains compared to students in classroomswho observed their teacher

completing the investigations as demonstrations.

Neither the number of days spent on the unit, teacher comfort level, teachers’ report of their students

understanding, nor level of completion significantly influenced student learning. As we mentioned before,

since our data includes only 19 teachers wewould expect to only have at most two significant variables in our

model. Our model is not powerful enough to detect significant effects of more variables. Other variables,

particularly level of completion, which was significant by itself or in combination with teacher experience,

could be important predictors of student learning if we had a more powerful model. Our model does not

suggest that these other variables are not important; rather it provides support that both teacher experience and

activity structure are particularly important for student learning.

For average student learning between teachers, ourmodel explains 33%of thevariance between teachers.4

This suggests that 33%of impact of the role of the teacher can be attributed to activity structure and the role of

the teacher. By including only two variables in our model about teacher adaptations and experience, we

explained a considerable percentage of the between teacher variation. Furthermore, we obtained themeasure

of teacher adaptation through a simple teacher survey of how they enacted the curriculum. Yet the variance

component at the bottom of Table 8 shows that the between teacher variances is still significant. This means

that we have not explained away all of the between teacher variance for student learning.

Discussion

Despite the numerous limitations of existing science curriculum (Kesidou & Roseman, 2002), teachers

often rely heavily on them in their science instruction. Reform oriented science curricula provide a potential

avenue for changing classroom practice. Teachers often need to adapt these materials to meet their students’

needs as well as their own teaching style (Davis & Varma, 2008) and these adaptations can have either a

positive or negative effect on what students experience in the classroom. Consequently, in this research wewere

interested in how middle school science teachers’ adaptations of science curriculum impacted student learning.

Alignment of Teachers’ Survey Responses With Enactment

In addition tomodeling the effect of teachers’ adaptations onwhat students learned during the Stuff unit,

we were also interested in how teachers’ responses to a survey about their enactments compared to our

observations of videotapes of their lessons. We examined two teacher adaptations that were addressed in the

survey, activity structure and level of lesson completion, and found mixed results.
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In the past, teacher self-reports of curriculum enactment have been questioned (Snyder, Bolin, &

Zumwalt, 1992).Mayer (1999) conducted a studywithmath teachers inwhich he found that survey datawas a

reliable and valid method to measure whether or not teachers were engaging in reform based instructional

practices, but that the surveys were less effective in measuring either the quality of the instructional practice

or the amount of time teachers spent using one practice or another. Our results comparing the video

enactments to teacher surveys are similar to this previous work. We found that our survey had some validity

in measuring the type of activity structure that occurred in the classroom.Most of the teachers’ identification

aligned with our own interpretation of whether the activity was a teacher demonstration, student led activity

or both teacher and student directed. In terms of level of completion of the activities, teachers responded that

they completed more of the activities than our interpretation from analyzing the video indicated. Level of

completion is actually a more abstract construct than activity structure. The teachers may have felt that they

completed the entire activity if they had students conduct the investigation, whilewewere also looking for the

teacher to engage students in discussion before and after the investigation. This may be one reason why the

teachers were more likely to over estimate their completion. This suggests that surveys may be more

appropriate for asking teachers concrete questions about curriculum enactment, like activity structure

and number of days, while more abstract ideas, such as level of completion and quality of teacher

instructional practices, may be more difficult to validly measure through surveys. Consequently, the survey

item measuring level of completion may not have been as accurate a representation of what occurred in the

teachers’ classrooms. If this item had been more reliable, it could have influenced the results from the HLM

analysis.

Effect of Teachers’ Curricular Adaptations on Student Learning

Across all of the teachers, the use of the inquiry-oriented middle school science curriculum resulted in

considerable student learning, with effect sizes ranging from 0.47 to 5.27. Yet this incredible variation in

effect size suggests that it is not just the quality of the curriculum that is important, but also the way the

curriculum is used by teachers in the science classroom. Thirty-eight percent of the variation in students’ gain

scores occurred between teachers, suggesting the role of the teacher is incredibly important. Understanding

what factors impacted this difference can offer important insights for future curriculum development and

associated professional development.We examined two teacher characteristics and four ways that they could

adapt the materials during their enactment to look for their effect on student learning. We found that one

teacher characteristic, teachers’ experience with the materials, and one adaptation, teachers’ choice of

activity structure, were found to be significant.

In terms of activity structure,we found that studentswho completed the activities themselves had greater

student gains than students in classrooms where the teacher completed the activities as demonstrations. The

recent National Research Council publication Taking Science To School (Duschl, Schweingruber, & Shouse,

2007) argues for the importance of actively engaging students in science practice where ‘‘. . .students carry
out investigations and talk and write their observations of phenomena, their emerging understanding of

scientific ideas, and ways to test them’’ (p. 6). This image of science instruction aligns with the scientific

inquiry approach advocated by the National Science Education Standards (1996), which argues that

‘‘Students at all grade levels and in every domain of science should have the opportunity to use scientific

inquiry and develop the ability to think and act in ways associated with inquiry, including asking questions,

planning and conducting investigations, using appropriate tools and techniques to gather data, thinking

critically and logically about relationships between evidence and explanations, constructing and analyzing

alternative explanations, and communicating scientific arguments.’’ (p. 105). Although this importance of

actively engaging students in science is prevalent throughout the literature, there is little empirical support

that shows that having students complete investigations themselves results in greater student learning than

students observing their teachers conduct the same experiment. The results from this study suggest that

having the students conduct the activities and investigations themselves is a key factor in determining the

successful implementation of the inquiry-oriented curriculum. This is an important finding to let teachers

know how this adaptation (to change student-directed activities to become teacher-directed activities) can

have a negative impact on student learning.
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We also found that teacher experience with the curriculum materials significantly impacted student

learning. Teachers who had previously enacted the reform based curriculum had larger student test gains than

teachers who were using the curriculum for the first time. Our finding is consistent with previous work

documenting the importance of teacher experience in enacting reform-based curriculum (Geier, 2005). This

is important to keep in mind particularly because the implementation of science inquiry in classrooms can

present significant challenges for teachers such as having sufficient science background knowledge and

managing extended activities (Edelson, Gordin, & Pea, 1999). The first time teachers enact an inquiry-

oriented curriculum they may become frustrated using the materials. By letting teachers know that usually

teachers are more effective using the curriculum a second and third time, may encourage teachers to try using

the innovative curriculum for more than 1 year. This is also an important finding in terms of evaluating the

effectiveness of a new curriculum or other instructional tool. The first year teachers enact a reform the

students’ learning gains may under-represent the potential of the curriculum. Teachers may need to enact a

curriculum multiple times before they are able to effectively use it in their own classroom.

There are limitations to our study. First, we were unable to obtain complete data sets from all of the

teachers that participated and consequently this lowered our sample size by five teachers. Including these

other teachers may have impacted the results of our analysis. Furthermore, the relatively low number of

teachers in our study for HLM limited the power of our model. Wewould expect other measures to be strong

predictors of student learning, but their effects were not significant here. Specifically, we would expect that

the level of completion of the unit and measures of teacher efficacy to influence student learning. Our model

does not suggest that these measures are unimportant; rather it just suggests that teacher experience with the

curriculum materials and activity structure have a greater impact on student learning. In terms of level of

completion, as we mentioned earlier, there were limitations in our use of survey data to measure the level of

completion and observational data may have provided a more accurate measure of this construct. In terms of

self-efficacy, we define self-efficacy as a teacher’s belief in his or her ability to act in ways that successfully

accomplish specific teaching goals (Tschannen-Moran et al., 1998). The teachers in our study were all using

the inquiry curriculum for either the first or second time.Ourmeasure of self-efficacy, specifically asked them

about their comfort level around the curriculum. Consequently, it is not surprising that teachers’ experience

with the curriculum materials had a significant impact on student learning while teachers’ self-efficacy did

not. Since our study only looked at teachers during their first or second enactments of the materials, it may be

too soon for a reliable sense of efficacy to take shape. In order to more effectively examine the role of self-

efficacy, future studies should include teachers with a wider range of experiences with curriculum as well as

include a more diverse measure of self-efficacy beyond curriculum comfort level.

Furthermore, as we discussed previously there are limitations in using survey data to measure teacher

enactment. The survey did not provide a variety of details about the enactments such as a measure of the

quality of instructional practices being used in the classroom and teachers struggled with estimating their

level of completion of the curriculum. Observational or videotape analyses for all of the teachers in the study

would provide a more detailed measure of teachers’ enactments and instructional practices. Future research

needs to continue to explore what other characteristics in teachers’ enactment cause the significant variation

in student learning between teachers.

Yet the importance of both activity structure and teacher experience are essential fundamental findings

from this study that should be kept in mind during future curriculum development and professional

development support of teachers. Actively engaging students in science investigation is important for

students to successfully learn key science concepts. Furthermore, teachers need experience using reform

oriented curriculum in order to reap the benefits in terms of greater student learning.

Notes

1For this study wewere not able to directly collect ethnicity data from the students. Instead, we used the

information available online for the school or district in terms of self report of student ethnicity data.

Unfortunately, at the time (2003–2004) the datawere reported in different ways by the respective schools and

districts. We included the most specific data that we had available to us, which did not include the specific

percentages for Urban A, Town B, and Rural C.

166 FOGLEMAN ETAL.

Journal of Research in Science Teaching



2Effect Size: Calculated by dividing the difference between post-test and pre-test mean scores by the

pre-test standard deviation.
3From the Fully Unconditional Model, we found that the amount of variance at the individual level was

0.64575. After taking into account our predictor variables in our within-teacher model, the within teacher

variance is 0.64359. Therefore, the proportion of the individual-level variance that has been explained by our

individual-level predictors is (0.64575 � 0.64359)/0.64575, which equals 0.0033. This means that our

within teacher model explains 0.33% of the variance in student learning.
4To calculate the proportion of the between-level variance that we explained in our model we used

the following equation: (twithinmodel � tbetweenmodel)/twithinmodel. In this case (0.38257 � 0.25814)/

0.38257 ¼ 0.3252.
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