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FIG. 1. Three Types of Fallure Modes Observed in Cementitious Materials

Marshall and Cox 1988). These composites are referred to as strain-hard-
ening engineered cementitious composites (ECC). The ductile failure mode
gives ECC materials a large strain capacity when compared with the matrix
alone (e.g., 0.5% for steel-fiber composites and 5.4% for polyethylene-fiber
composites).

The flexural strength of cement-based materials is known to depend on
their tensile failure mode. Hillerborg et al. (1976) and Zhu (1990) showed
that the flexural strength of concrete depends on a parameter called the
brittieness ratio, which is a function of material properties and specimen
geometry. In particular, they showed that the flexural strength of concrete
depends on the material fracture resistance that can be described by a stress
crack-opening law called the tension-softening relation (o-8). Maalej and
Li (1994) studied the flexural strength of quasi-brittle fiber cementitious
composites. They showed that the ratio of flexural strength to tensile strength
varies as a function of the brittleness ratio B, defined in their study as
T,dIE.w,, where T, and E, are the postcracking strength and the elastic
modulus of the composite, w, is the crack opening at which the bridging
stress vanishes, and d is the depth of the specimen. The ratio of flexural
strength to tensile strength decreases with increasing brittleness ratio. In
the limiting case when B is infinite, corresponding to linear elastic brittle
behavior of the material, the flexural strength is equal to the tensile strength
as predicted by the linear elastic brittle theory. In the other limiting case,
B — 0, the ratio of flexural strength to tensile strength is equal to 3, as
predicted by elastic—perfectly plastic theory.

In an unnotched beam specimen made of a regular (quasi-brittle) fiber-
reinforced concrete (FRC), first cracking is accompanied by the develop-
ment of a localized fracture process zone. In this process zone, the bridging
fibers can partially transfer the stress across the crack; however, the mag-
nitude of the transferred stress decreases as the crack enlarges. Therefore,
no additional cracks will form beyond this first crack. During this process,
energy due to fiber frictional pull-out is being consumed. Because of this
energy absorption, the flexural strength of regular FRC is higher than its
tensile strength (Maalej and Li 1994; Ward and Li 1990). In contrast, in an
unnotched beam specimen made of an ECC material, first cracking is ac-
companied by a strain concentration at the mouth of the crack. Because of
the stress transfer capability of the reinforcing fibers in a strain-hardening
material, stress redistribution will occur so that localized fracture will be
delayed. Consequently, an expanded zone of matrix cracking (parallel to
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the first crack near the tensile face of the beam) must develop prior to
localized fracture. Such an extensive volumetric cracking process must in-
volve considerable energy absorption that is expected to give rise to a high
ratio of flexural strength (the modulus of rupture [MOR]) to tensile (first-
cracking) strength. An experimental program consisting of third-point bend-
ing tests performed on strain-hardening ECC as well as quasi-brittle FRC
is designed to confirm this point. A theoretical model for predicting the
flexural strength in strain-hardening ECC is also presented. The model
results are compared to the experimental data obtained from the third-point
bending tests of the ECC material.

FLEXURAL BEHAVIOR OF STRAIN HARDENING ECC

Regular FRC materials have an advantage under flexural loading due to
their quasi-brittle behavior. This can be seen in their flexural strength, which
is greater than their uniaxial tensile strengths. However, ECC materials
have an additional advantage under flexural loading due to their strain-
hardening behavior after first cracking. Because of the strain-hardening
behavior of ECC materials, an expanded zone of multiple cracks develops
in the flexural beam leading to a high flexural-strength—to—tensile-strength
ratio. As will be shown later, this ratio is greater than 3, which is the upper
limit of the flexural-strength—to—tensile-strength ratio for quasi-brittle ma-
terials. The following experimental program was designed to confirm this
phenomenon with laboratory experiments.

Experimental Program

The materials used in this study were fiber-reinforced cement paste and
fiber-reinforced mortar. The dimensions and mechanical properties of the
fibers used for reinforcement are given in Table 1. The constituent materials
of the matrices and their mix proportions are given in Table 2. Type 1
portland cement, silica fume, and superplasticizer were used to form the
cement paste with a water-to-cement ratio of 0.30. The mortar had the same
constituents as the cement paste, in addition to the silica sand (maximum
grain size of 0.6 mm). Steel fibers were used to reinforce the mortar matrix

TABLE 1. Dimensions and Mechanical Properties of Fibers

Fiber Fiber Elastic Fiber Fiber
diameter length modulus strength density
Fiber (um) (mm) (GPa) (MPa) (g/cm?)
U] 2 (3 4 5 (6)
Steel 150 6 200 2500 7.8
Polyethylene 38 12.7 120 2700 0.98

TABLE 2. Matrix Mix Proportions (by Weight)

Super-
Matrix Cement Sand Silica fume | plasticizer Water=
{1) (2) (3) 4 (5) (6)
Mortar 1.00 0.75 0.10 0.02 0.30
Cement paste 1.00 0 0.10 0.01 0.30
*Water-to-cement ratio.
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FIG. 3. Geometry of Bending Specimens

with a fiber-volume fraction of 1%, and polyethylene fibers were used to
reinforce the cement paste matrix with a fiber-volume fraction of 2%. Ex-
amination of the strain-hardening conditions as outlined by Li and Leung
(1992) indicated that the polyethylene-fiber composite and the steel-fiber
composite can exhibit strain-hardening behavior if the fiber-volume fraction
is greater than 0.7% and 8.5%, respectively. This means that the polyeth-
ylene-fiber composite is expected to exhibit strain-hardening behavior, and
the steel-fiber composite is expected to exhibit quasi-brittle behavior. Fig.
2, which shows a comparison between the uniaxial tensile stress-strain curves
of the two materials, indicates that this is indeed the case. The curve cor-
responding to the polyethylene-fiber composite shows a clear strain-hard-
ening behavior with a tensile strain at peak stress approximately equal to
5.4% (about 500 times the strain capacity of the unreinforced matrix) (Li
1993). For this composite, real-time observation showed that multiple crack-
ing occurred with many subparallel cracks across the specimen during strain
hardening. Beyond peak stress, localized crack extension occurred, accom-
panied by fiber bridging. The second curve, corresponding to the steel-fiber
composite, shows the behavior of a quasi-brittle material. After first crack-
ing, the specimen failed by a decaying bridging stress (Li et al. 1994).
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The flexural beam specimens were cast using Plexiglas molds. After cast-
ing, they were allowed to harden at room temperature for 1 day prior to
demolding, then cured in water for 4 weeks before testing. A thin white
coating of lime was applied on the specimens prior to testing to monitor
the development of cracks better. The age at testing of all specimens was
29-30 days. The geometry and loading configuration of the flexural beam
specimens are shown in Fig. 3. This experimental setup is recommended in
ASTM C78-75, the standard test method of flexural strength of concrete
(using a simple beam with third-point loading) (“‘Standard” 1983). One size
of the beam is used in this experimental program. The total length, height,
and width of the beam are 355.6 mm, 101.6 mm, and 76.2 mm, respectively.
The midspan length, 101.6 mm, is one-third of the span length, 304.8 mm.

The flexural tests were conducted in a hydraulic servo-controlled testing
machine. The specimens were loaded to complete failure with a constant
cross head speed. The load, head displacement of the machine, and de-
flection of the beams at the middle point were recorded in each test (see
Fig. 3).

Results

For the steel-fiber composite, the first crack started inside the midspan
at the tensile face of the flexural beams, and propagated toward the com-
pressive face. The first crack developed as a single large crack in the midspan
during the test. For the polyethylene-fiber composite, the first crack started
inside the midspan at the tensile face, and multiple cracks developed from
the first-cracking point and spread to the outside of the midspan. The mul-
tiple cracks in the outside of the midspan were inclined cracks similar to
shear cracks in steel reinforced-concrete (RC) beams. As the MOR is ap-
proached, one of the cracks inside the midspan started to open up after a
large damage zone had been developed. The through-thickness damage zone
can reach an areal dimension of 200 cm?. Fig. 4 shows a typical cracking
pattern that develops in the beam middle span around the peak load.

Therefore, while the beams with the steel-fiber reinforcement failed by
developing a localized single crack, the beams with the polyethylene-fiber
reinforcement failed by developing distributed multiple cracks. This behav-
ior is somewhat analogous to the multiple cracking commonly observed in
a steel RC beam. However, the present polyethylene ECC beam does not
employ steel rebar. Stress transfer is fully carried by the randomly distributed
fibers.

The flexural stress-deflection curves for three specimens of each material
are shown in Fig. 5. For the steel-fiber composite, the flexural stress in-
creases rapidly to the peak value, then starts to decay. The average beam
deflection at peak stress is about 0.4 mm. For the polyethylene-fiber com-
posite, however, the flexural stress increases at a slower rate. This increase
is accompanied by the development of multiple fine cracks. The average
beam deflection at peak stress is about 7.4 mm. The flexural strength (MOR)
for three specimens of each material is shown in Table 3. The ultimate
flexural stress is considered as the flexural strength of each material. The
ratios of flexural strength to first-cracking strength in uniaxial tension are
also shown in Table 3. As indicated, the ratio of flexural strength to first-
cracking strength is equal to 2.1 for the steel-fiber composite. This ratio is
indeed between 1 and 3 as expected for a quasi-brittle material. However,
the ratio in the strain-hardening polyethylene fiber composite is 5.0. This
large increase in the ratio of flexural strength to first-cracking strength must
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FIG. 4. Cracking Pattern in Beam Middle Span around Peak Load
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FIG. 5. Comparison between Flexural Stress-Deflection Curves of Quasi-brittle
Material and that of Strain-Hardening Material

be related to the strain-hardening behavior of the polyethylene-fiber com-
posite material.

THEORETICAL MODELING OF FLEXURAL STRENGTH OF STRAIN
HARDENING ECC

Consider a rectangular beam with a width b and depth d, loaded in
bending. The beam is made of an ECC material that, when loaded in uniaxial
tension, exhibits a strain hardening behavior characterized by the stress-
strain curve shown in Fig. 6. In uniaxial compression, the behavior of the
ECC material is characterized by the stress-strain curve shown in Fig. 7. To
simplify the analysis, we assume that the stress-strain behavior of the ECC
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TABLE 3. Comparison of MOR and First Crack Strength

Material Specimen number MOR (MPa) MOR-to-g,, ratio®

(1) @ @) 4
1% Steel FRC 1 8.07 2.01
1% Steel FRC 2 7.72 1.92
1% Steel FRC 3 9.81 2.44
1% Steel FRC Average 8.53 2.12
2% Polyethylene 1 10.97 4.40
ECC 2 12.57 5.03
ECC 3 13.94 5.58
ECC Average 12.49 5.00

aThe tensile first-cracking strength o, is 4.02 MPa for the 1% steel FRC (Li et al.
1994), and 2.50 MPa for the 2% polyethylene ECC (Maalej 1994). These were obtained
from direct uniaxial tensile tests.
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FIG. 6. Stress-Strain Behavior of ECC in Uniaxial Tension
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FIG. 7. Stress-Strain Behavior of ECC in Uniaxial Compression
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material in uniaxial tension and compression can be described by bilinear
stress-strain curves as shown in solid line in Figs. 6 and 7, respectively. Fig.
8 shows the portion of the beam subjected to the highest bending moment
M. The strain in the beam is assumed to vary linearly along its depth. In
this case, the stress distribution along the beam depth is given by:

a(x) = oy(x) = o, + M.ﬁ..mhw [e(x) — &) for0=x=a (la)
o(x) = oy(x) = T C& fora<=x=c (16)
Oop
o(x) = o3(x) = -2 P e(x) forc=x=<e (1¢c)
o(x) = o,(x) = IW o, 11+ mmoﬂv foresx=<d (1d)

b

where o,. = tensile first-cracking strength; €, = tensile first-cracking strain;
o, = ultimate tensile strength; €, = ultimate tensile strain; o, = com-
pressive strength; e, = compressive strain at peak stress; €, = tensile strain
at the extreme tension fiber; e(x) = strain at point x = (x/a)(e,. — €,) +
g for0 = x = c and (x/a)(e, — &) — g, for c = x = d; x = distance from
the extreme tension fiber to an arbitrary point along the depth of the beam;

= depth of inelastic microcracking zone; ¢ = distance from the extreme
tension fiber to the neutral axis = ag,/(e, — ¢,); and e = distance from
the extreme tension fiber to the point where the material changes stiffness
in compression = aAm% — 3¢)/(3e, — 3e,).

The stress and strain distribution for the beam section and the distances
x, a, ¢, and e are indicated in Fig. 8. We can now write the equilibrium
equations for the beam section—namely, the sum of normal forces is equal
to zero and the moment of the normal forces is equal to the external bending
moment M.

[t ax + [ bosw ax + [ boswy dx + [ bom ax =0 a)

a c e d
.—o bo,(x)x dx + ~_\a boy(x)x dx + h bos(x)x dx + ._H. bo,(x)xdx = M
(2b)
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The equilibrium equations are solved such that the external bending moment
M and the tensile strain at the extreme tension fiber ¢, can be expressed as
functions of the known material parameters and specimen geometric di-
mensions, and the size of the microcracking zone a. Eqs. (2a) and (2b) can
be analytically solved for M and &, such that:

a = EAQ.R; mRu Q.Ev m:: Q.n.\v maﬂ: \.u Nuv n&v AMQV

mN = muﬁqwﬁv mﬁu Q.:t m:ﬁ Q.Qu' mm\u \v A“w@v

where r = a/d. The actual expressions for M and &, are given in Appen-
dix L.

In this paper, we assume the beam fails when the applied moment is
equal to the ultimate moment capacity of the beam. Furthermore, we assume
that the beam fails by exhausting the strain capacity of the material either
at the tensile face (g, > e,,) or at the compressive face (e, > ¢,,). In this
case the ultimate moment capacity M, is given by:

N—Q: = SAQ.Q €105 Opys €4y O.mvv cpr Vus @ &v A#v
where r, = min(r,, r.) such that:
mkouﬁ €rc5 Trus Eris Teps> Ecps \uv = € AMQV
mnAQ..nu €ic> Or> Erus Q.n.hu mnﬁu \nv = mn\ Am@v
and
€ = mmAQ.RJ €rc> Trus Erus Q.nhv mnv. \v
1= 1

r maAQ.R.. €res Orus €y Ocps Egps \v - M €c A@v

The flexural stress corresponding to M is given by:
6M

O = 7T — QNAQ.Ru € Ors Erus Teps Ecps \v Aﬂv

bd?
and the modulus or rupture (MOR) corresponding to M, is given by:
Zow = Q\AQ.RJ €rcs Ous Epys Q.nhv mnwv ‘:v Amv

The deformation of the beam associated with an applied moment M can
be described by its curvature. Based on mmoBo:._nm_ considerations, the
beam curvature can be computed as the ratio of strain in the extreme tensile
fiber to the distance from the extreme tensile fiber to the neutral axis (see
Fig. 9):

1 €,

e, 9
= ©)
For a constant curvature, the maximum deflection for a beam having a span
L is given by:
FN
10
“= % (10)

The moment-curvature (or flexural stress-curvature) diagram of a beam
can be computed by using (32) and (9) [or (7) and (9)] and allowing r to
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FIG. 10. Predicted Stress-Curvature Diagram for 2% Polyethylene ECC

vary between 0 and r,. When r is small, the compressive stress distribution
within the beam is linear. The solution for M and e, for this case is given
in Appendix II. These equations should be used for all r values yielding €.
< &,/3 (see Fig. 7). When a selected r value yields €, > ¢,,/3, the equations
for M and ¢, given Appendix I should be used instead for this r value, and
other r values are less than or equal to r,. Fig. 10 shows the predicted
flexural stress-curvature diagram for a beam made of an ECC material. The
depth of the specimen and the tensile and compressive properties of the
ECC material used in the computation are also shown in Fig. 10. These
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properties have been experimentally measured (Mishra 1993) for a 2%
polyethylene ECC, which is the composite tested in flexure and discussed
earlier. Interpretation of the computations that led to Fig. 10 indicates that
first cracking occurs when the flexural stress in the beam is equal to 2.5
MPa. Then the microcracking zone (of size a) starts to move up from the
extreme. tensile fiber toward the extreme compressive fiber. At the same
time, the position of the neutral axis is moving away from the centroid of
the beam cross section toward the extreme compressive fiber. This is ac-
companied by a continuous decrease in the stiffness of the beam. Initially,
the compressive stress distribution within the beam is linear. After a certain
propagation of the microcracking zone, the compressive stress distribution
becomes bilinear. The maximum moment is reached when the tensile strain
in the extreme tensile fiber reaches the ultimate tensile strain of the ECC
material. At that moment, the size of the microcracking zone (a) is about
90% of the beam depth. As shown in Fig. 4, this result is consistent with
the experimentally observed microcracking zone size around the peak load.

In a third-point bending test of an ECC material, if we make the as-

15 T _ :

— Experiment
——Model
g
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2
&
&
g
g2 5
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01 L I L ' L

(] 2 4 6 8 10 12
Deflection (mm)

FIG. 11. Comparison between Predicted and Experimentally Measured Flexural
Stress-Deflection Curves for 2% Polyethylene ECC

ic
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<— 2% Polyethylene ECC

FIG. 12. Variation of MOR-to-o,. Ratio as Function of o, /o, Ratio
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sumption that the curvature is approximately constant along the length of
the beam and equal to the curvature in the middle span, we can predict the
load-deflection curve of the beam. Fig. 11 shows the predicted and measured
load deflection curves for the 2% polyethylene ECC. As indicated, there
is a reasonable agreement between the predicted and the measured curves.
This suggests that the theoretical model can be used to predict the load-
deflection behavior of ECC materials.

Fig. 12 shows the variation of the ratio of flexural strength to tensile first-
cracking strength (MOR-to-g,.) as a function of the ratio of ultimate tensile
strength to tensile first-cracking strength (o,,/0,.) for the 2% polyethylene
ECC (assuming that o,. and o, can be varied without changing the other
properties of the composite). As indicated, the MOR-to-o,, ratio increases
linearly as a function of the o,,/0, ratio. The MOR-to-o,, ratio varies be-
tween 2.7 and 8.3 as the g,,/0,. ratio varies betwen 1 and 4. In this case it
is evident that when we increase o, as g, is held constant, the result would
be an increase in the MOR-to-g,, ratio as well as in the MOR value. How-
ever, when o, is decreased as o, is held constant, the result would be an
increase in the MOR-to-g,, ratio but a decrease in the MOR value.

Fig. 13 shows the variation of the MOR/o,, ratio as a function of the
ultimate tensile strain (e,,) for the 2% polyethylene ECC (assuming that &,
can be varied without changing the other properties of the composite). This
figure indicates that the MOR-to-g,, ratio increases as a function of €, The
rate of increase is initially high, and as e,, becomes larger than 0.01, the
rate of increase becomes very small. The model indicates that the initial
high slope of the MOR/o, ¢, curve is associated with a significant increase
in the size of the microcracking zone as the ultimate tensile strain increases.
When ¢, becomes large, the size of the microcracking zone reaches about
90% of the beam depth and does not significantly change as ¢,, continues
to increase. This suggests that the MOR of the 2% polyethylene ECC would
not significantly change as a result of an increase in the ultimate tensile
strain of the material. On the other hand, the MOR of the 2% polyethylene
ECC can be increased by increasing the tensile first-cracking strength and/
or the ultimate tensile strength.

The results of this model can be used in conjunction with micromechanical
models of tensile properties of ECC materials to optimize their flexural
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FIG. 13, Variation of MOR-to-o,. Ratio as Function of Ultimate Tensile Strain
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strength. Li (1993) showed that the tensile first-cracking strength, the ul-
timate tensile strength, and the ultimate tensile strain can be increased while
maintaining a low-fiber-volume fraction by proper tailoring of the micro-
mechanical parameters (fiber, matrix, and fiber/matrix interface properties)
according to micromechanical models constructed on the basis of fracture
mechanics and deformation mechanisms.

CONCLUSIONS

In this paper it was found that the strain-hardening behavior gives ECC
materials a significant advantage under flexural loading. In a third-point
bending test, the flexural strength of an ECC was measured to be five times
its tensile (first-cracking) strength. In contrast, for quasi-brittle materials,
such as the 1% steel-fiber composite, the ratio of flexural strength to tensile
strength has an upper bound of 3. The positive effect of strain hardening
on the flexural/tensile-strength ratio was also predicted by a simple theo-
retical model. The model suggests that the flexural strength of ECC materials
can be increased by increasing the strain capacity, the tensile first-cracking
strength, and/or the ultimate tensile strength of the material.
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APPENDIX I. EQUATIONS FOR M AND ¢, (BILINEAR
STRESS DISTRIBUTION)
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APPENDIX Il. EQUATIONS FOR M AND ¢, (LINEAR

STRESS DISTRIBUTION)
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APPENDIX IV. NOTATION
The following symbols are used in this paper:

= depth of inelastic microcracking zone;
specimen width;
distance from extreme tension fiber to neutral axis;
specimen depth;
= distance from extreme tension fiber to point where material changes
stiffness in compression;
span length;
externally applied bending moment;
ultimate moment capacity;
depth of inelastic microcracking zone normalized by specimen depth;
= rvalue when compressive strain at extreme compression fiber equals
material’s compressive strain at peak stress;
r, = rvalue when tensile strain at extreme tension fiber equals material’s
ultimate tensile strain;
r, = smallest of . and r,;
x = distance from extreme tension fiber to arbitrary point along depth
of beam;
g(x) = strain at point x;
compressive strain at extreme compression fiber;
compressive strain at peak stress;
tensile strain at extreme tension fiber;
tensile first-cracking strain;
ultimate tensile strain;
beam radius of curvature;

Qa /e o8
Il I

nﬁ \Eggh
il

F A eg
W

©
I

527




o(x)

stress at point x;

compressive strength;

flexural stress corresponding to M;
tensile first-cracking strength; and
ultimate tensile strength.
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FLEXURAL/TENSILE-STRENGTH RATIO IN
ENGINEERED CEMENTITIOUS COMPOSITES

By Mohamed Maalej' and Victor C. Li,2 Members, ASCE

AssTRACT: In this paper the flexural behavior of a strain-hardening engineered
cementitious composite (ECC) is studied and compared with that observed in a
regular fiber-reinforced cementitious composite (FRC). Unlike concrete or regular
FRC, ECC materials are characterized by their ability to sustain higher levels of
loading after first cracking while undergoing additional straining. This strain-hard-
ening behavior gives ECC:s a significant advantage under flexural loading. In quasi-
brittle material such as regular FRC, the ratio of flexural strength (the modulus of
rupture) to tensile strength is known to vary between 1 and 3, depending on the
details of the reinforcement and the geometry of the specimen. In this paper, the
strain-hardening behavior observed in an ECC led to a high flexural-strength—to—
tensile-strength ratio. In a third-point bending test, the flexural strength of an ECC
was measured to be five times its tensile (first-cracking) strength. This result was
also predicted by a simple theoretical model. The model can be used for the purpose
of optimizing the flexural strength of ECCs.

INTRODUCTION

Three types of tensile failure modes have been observed in cementitious
materials (see Fig. 1 for a schematic illustration): brittle, quasi-brittle, and
ductile failure. Brittle failure can be observed in hardened cement paste
material. It is characterized by a linear stress-strain curve (curve A) followed
by a sudden drop in stress at first cracking with an ultimate tensile strain
in the order of 0.01%. Quasi-brittle failure can be observed in concrete and
most fiber-reinforced cements and concretes. It is characterized by a linear
stress-strain curve (curve B) followed by a softening tail (tension-softening
curve), after first cracking, due to the bridging action of aggregates, cement
ligaments, and/or fibers. The ultimate tensile strain of quasi-brittle materials
is of the same order of magnitude as that for brittle materials, although the
material toughness is enhanced by inelastic energy absorption in the post-
peak regime. For both brittle and quasi-brittle materials, the first cracking
strength corresponds to the tensile strength of the material. Ductile failure
can be observed in continuous aligned fiber-reinforced cement materials
(Aveston et al. 1974; Krenchel and Stang 1988). Ductile materials are char-
acterized by their ability to sustain higher levels of loading after first cracking
while undergoing large deformation (curve C). Recently ductile failure has
also been observed in short-fiber cementitious composites of low-fiber-vol-
ume fractions (Li 1993; Li and Hashida 1992) (e.g., 2% for polyethylene-
fiber composites). These composites have been designed according to mi-
cromechanical models that are constructed on the basis of micromechanics
of defect growth in a brittle matrix composite whereby crack bridging is
provided by fibers to achieve steady state cracking (Li and Leung 1992;
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