Size EFFECT ON FATIGUE IN BENDING OF CONCRETE
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ABSTRACT: This paper presents a semianalytical method to predict fatigue behavior in flexure of concrete in
the case of maximum flexural moment larger than that of the first crack moment based on force equilibrium in
the critical cracked section. The model relies on the cyclic bridging law, the so-called stress—crack-width relation
under cyclic tensile load as the fundamental constitutive relationship in tension. The structural size effect on
fatigue in bending of concrete beams is studied by the present model. Eight series of beams, with heights from
50 to 800 mm, are analyzed. The model results show that the fatigue performance in bending, normally expressed
in terms of the maximum flexural stress versus fatigue life diagram (S-N) is strongly dependent on the structural
size, even when the same material parameters are used in the model. Under the same cyclic flexural stresslevels,
the smaller the beam height, the longer the fatigue life is. Besides this, the deformation characteristics, such as
fatigue crack growth history as well as the final fatigue crack length, are also size dependent. Finally, the model
predictions are compared with experimental results. Good agreement between model predictions and experiments

has been obtained.

INTRODUCTION

Interest in the fatigue of concrete arises because structures
such as concrete bridges, offshore elements, and concrete
pavements are loaded by cyclic forces. For example, concrete
overlays for highway or bridge decks are expected to resist
millions of cycles of repeated axle loads from passing traffic
during their service lives. Airport pavements are subjected to
a smaller number of repeated loadings during their design
lives, ranging from about several thousand to several hundred
thousand cycles of repeated loading. Concrete structures sup-
porting dynamic machines are also subjected to hundreds of
millions of load cyclesinvolving complicated stress states. The
fatigue performance of these structures has to be considered
by researchers and designers. First, the cyclic load may cause
structural fatigue failure. Second, the effects of repeated |oad-
ing on the characteristics of materials (static strength, stiffness,
toughness, durability, etc.) might be significant under service
loading even if the load does not cause a fatigue failure. A
number of studies have been made to evaluate the fatigue per-
formance of concrete (Murdock and Kesler 1959; Tepfers
1979; Tepfers and Kutti 1979; Hsu 1981; Zhang and Phillips
1989; Zhang and Stang 1998a). The size effect of structural
elements, as one of the most important consequences of frac-
ture mechanics, has been studied both experimentally and the-
oretically in concrete members over the last decade in the case
of monotonic load application (Bazant 1984, 1987, 1992; Li
et al. 1998). However, size effect of structural elements under
fatigue loading has so far received very little attention.

The main objective of the present work is to evaluate the-
oretically the structural size effect on fatigue in bending of
concrete. A semianalytical model to predict fatigue behavior
in flexure of concrete based on force equilibrium in the critical
cracked section is developed. The model relies on the cyclic
bridging law, the so-called stress—crack-width relation under
cyclic tensile load, as the fundamental constitutive relationship
in tension. Fatigue strength of concrete beams in bending, in
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terms of maximum flexural-stress—fatigue-life diagrams (S
N), is obtained.

Although the well-known empirical Paris Law (Paris and
Erdogan 1963) has been applied to the study of concrete fa-
tigue crack growth (Bazant and Xu 1991; Bazant and Schell
1993), the fact that concrete typically exhibits nonlinear frac-
ture processes because of the large process zone makes this
linear elastic fracture mechanics (LEFM)-based approach
questionable. Instead, the present work provides a model based
on physical principles, which embodies the experimentally ob-
served bridging degradation across a concrete crack under re-
peated tensile loading. When incorporated into a nonlinear
crack growth analysis, this model reproduces remarkably well
the macroscopic fatigue behavior of concrete beams under cy-
clic loading.

In the following, the fatigue model is first introduced. The
results of numerical analyses of fatigue crack growth in con-
crete beams with various heights are presented and discussed.
Model predictions are compared with experimental results.
Conclusions on size effect of concrete beams under cyclic
loading are drawn at the end of the paper.

FATIGUE MODEL
Mechanism of Fatigue Crack Growth in Concrete

Normally, it can be said that fatigue is a process of pro-
gressive, permanent internal structural changes occurring in a
material subjected to repetitive stress. The progressive fatigue
damage on material constituents is responsible for fatigue life
of a material. For plain concrete, the material phases can
broadly be classified as cement paste and aggregates, as well
as the interfaces between aggregate and hydrated cement paste.
The fatigue loading causes these physical phases to undergo
microscopic changes, such as opening and growth of bond
cracks, which exist at the interfaces between coarse aggregate
and hydrated cement paste even prior to the application of load
(Neville and Brooks 1987), reversed movement of aggregates
along the interface, aggregate surface abrasion, and damage of
the interface under repeated load. These microscopic changes
in turn cause detrimental changes in macroscopic material
properties. Typically, the aggregate bridging force decreases
with number of cycles because of the interfacial damage or
aggregate breakage (Zhang et al. 2000). So it can be said that
fatigue damage to interfaces of aggregate/matrix, which are
generally the weakest phase in concrete, as well as to soft
aggregates, resultsin aggregate bridging stress degradation and
leads to fatigue crack growth in concrete. On the other hand,
fatigue life of concrete structures is controlled by fatigue crack
growth behavior.
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The fatigue crack growth process in concrete can be divided
broadly into two stages: the crack initiation period and the
development period. Consider a simply supported rectangular
beam loaded in bending fatigue load with constant amplitude
between maximum and minimum moment M., and My,
When M.« < M, where M is the first crack moment, the
fatigue life of the beam can be given by

N, = Ng + Ny (1)
When M. = My, the fatigue life is
N: = Ngg @)

where N, = total fatigue life; and Ny and N, = fatigue life
component for the crack initiation and growth, respectively
(Fig. 1). The first term N, is dependent on the microcracking
in the material, which is highly influenced by the microstruc-
ture of the concrete matrix, such as the water/cement ratio,
aggregate properties as well as pore structure, size distribution,
and content. The second term N, is strongly dependent on the
bridging performance within the fracture zone under fatigue
loading.

This paper focuses on the fatigue life prediction of N; i.e.,
the case where maximum bending moment M., is larger than
the first crack bending moment M;.. Based on the above dis-
cussions, some assumptions for fatigue modeling of N, can
be stated:

« After a dominant fatigue crack is created, the bridging
behavior within the fracture zone governs the rate of fa
tigue crack advancement.

e The stress at the crack tip remains constant and is equal
to the materia tensile strength.

» Material properties outside the fracture zone are un-
changed during fatigue loading.

It is further assumed that the concrete essentially shows alin-
ear response in tension up to peak load. After peak load, one
discrete crack is formed. The discrete crack formation is de-
scribed by the crack bridging law (or stress—crack-width re-
lationship) under both monotonic and cyclic loading. Thus the
following material parameters are fundamental in the consti-
tutive relations of concrete in tension fatigue: Young's mod-
ulus E, tensile strength o, and cyclic-stress—crack-width (o-
w, N) relationship. In compression the behavior of concrete
and fiber-reinforced concrete materials is assumed to be linear
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FIG. 2. Constitutive Law of Concrete in Tension Fatigue

elastic and the Young's modulus in compression is the same
as in tension. The mechanical behavior of concrete in tension
fatigue is summarized in Fig. 2.

Bridging Model of Concrete under Tension Fatigue

Monotonic Tension

Crack bridging in concrete is mainly provided by fine ag-
gregate bridging and coarse aggregate bridging, which are gen-
erally governed by the characteristics of aggregates, such as
the grading, maximum particle size, and surface texture
(smooth or rough). The detailed physics of aggregate bridging
in concrete have not been fully understood and a model based
on the mechanism of this bridging action is not available at
present. Some empirical models of aggregate bridging have
been proposed in recent years (Hordijk 1992; Stang 1992).
In the present investigation, an empirical model proposed
by Stang (1992) will be adopted. In this model the aggre-
gate bridging stress o is expressed as a function of the crack
width w

771+ (Wiwo)®

where o, = maximum bridging stress due to aggregate action
at w = 0, which is equal to the tensile strength of material; w,
corresponds to the crack opening when the stress has dropped
to half of o; and p = shape factor. It has been shown that the
aggregate bridging model given by (3) with p = 1.2 and w, =
0.015 mm fits a wide range of experimental data extremely
well, including normal and high-strength concrete.

©)

Cyclic Tension

Degradation of aggregate bridging of concrete under cyclic
uniaxia tension had been found by Gopalaratnam and Shah
(1985), Reinhardt et al. (1986), and Hordijk (1992) and further
investigated by Zhang et al. (1999, 2000). By analyzing the
experimental data, it is concluded that degradation of crack
bridging under cyclic load is controlled by the number of cy-
cles and the maximum and minimum crack openings. From a
large number of experimental data of uniaxial fatigue tension
tests on a precracked stedl fiber-reinforced concrete specimen,
it was shown that the cyclic crack-bridging law of fiber-rein-
forced concrete at maximum crack width level w,, can be
fitted by a linear model as a function of the logarithm of the
number of cycles (Zhang et a. 1999, 2000). The slope reflects
the influence of the amplitude of the crack opening during
fatigue loading. The aggregate bridging degradation is in-
cluded as well as the fiber bridging degradation. For plain
concrete, one assumes that the described law can still be ap-
plied. The cyclic aggregate bridging law can then be fitted by

IN-1 — dlog(N) fordlog(N) <1 (4a)
(O}
IN=0 fordlog(N) = 1 (4b)
01
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where o and o, denote bridging stress at the Nth cycle and
first cycle, respectively; o, is given by (3); and d = stress
degradation factor, which reflects the rate of aggregate bridg-
ing degradation and is a function of maximum and minimum
crack openings during fatigue loading. As the minimum crack
width corresponding to the zero load, d can be approximately
related to the maximum crack width w;,. by

d=dy + YW (5
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where d, = stress degradation factor at w,,,, = 0; and -y = slope
of the linear relation between the bridging degradation factor
d and maximum crack width w,,. Through analysis of ex-
perimental results of concrete under cyclic uniaxia tensile
tests (Hordijk 1992), it is found that, when d, = 0.08 and vy =
4 mm™* for Wy, = 0.016 mm and when d, = 0.14 and vy =
0.12 mm™* for W, > 0.016 mm, the model predictions can
fit the test results well. The comparison between (5) and test
results is shown in Fig. 3. Fig. 4 shows the cyclic bridging
law of concrete given by (4). The figure shows the bridging
stress as a function of crack width after undergoing a certain
number of cycles.

Prediction of Fatigue Crack Growth in Concrete
Beams under Bending Load

In recent years, a number of fictitious crack analytical mod-
els (Hillerborg et al. 1976) for predicting the structural behav-
ior of concrete and fiber-reinforced concrete beams under
bending load have been developed. Maalgl and Li (1994) de-
veloped an analytica model of a fiber-reinforced concrete
beam in bending based on the equilibrium of forces in the
critical cracked section. Ulkjaa et al. (1995) developed an an-
alytical model for plain concrete beams in bending based on
plastic hinge analysis, which assumes development of a ficti-
tious crack in an elastic layer with a thickness proportional to
the beam depth. A linear tension softening relation is assumed.
In this paper, an analytical bending model based on the equi-
librium of forces in the critical cracked section with a power
function softening relation (Stang 1992) for fatigue analysis
of plain concrete will be developed.

Consider a short segment of a simply supported rectangular
beam with width B, depth H, and span L that is subjected to
an external bending moment M. The behavior of the beam is
assumed to be elastic until the maximum principle tensile
stress reaches the tensile strength of the material. After that it
is assumed that a single crack is formed with a maximum
tensile strength at the crack tip. The moment corresponding to
the initiation of the fictitious crack is the so-called first crack
moment M;. corresponding to the first crack load P, when the
moment is transformed into force load. Thus the failure pro-
cess of a beam can be divided into two stages: linear elastic
and fictitious crack developing. The assumed stress distribu-
tion in the second stage is shown in Fig. 5, where the crack
tip is defined at a crack width equal to zero (w = 0).

At the end of the first stage, according to classical elastic
theory, one has

_ BH?

Mre 6

O (6)

FIG. 5. Distribution of Normal Stress in Critical Cracked Section
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where o, = tensile strength of the material.

In the second stage, the crack length aH, o € [0, 1], crack-
mouth opening displacement (CMOD) 8, and external moment
M can be related through the analysis shown below. First one
assumes that the crack has a linear crack opening profile, then

X
w=23 (1 - m) (7)
where w = crack width at location x; and § = width at the

crack mouth (Fig. 5). Next from equilibrium conditions, one
has

f o (X) dx + J o, (X)dx=0 ()]

H

oaH H
f o (X)(H — x)B dx + f o(XH —xBdx=M (9)
0 aH

where M = PL/4 for the three-point bending case (P = external
load); and o,(x) and o, (X) = normal stress functions in the
cracked and uncracked parts, respectively—a,(X) can be re-
lated to ah and & through the stress—crack-width relationship
together with (7)

o) = oW) = & (a <1 - ﬁ)) (10)

From the assumed stress distribution at the uncracked part,
o, (X) can be related to aH, BH, and 3 by

o =o (1 - 20 ) (1)
where BH = depth of the tensile zone, B € [0.5, 1]. To obtain
the complete solution of external load and CMOD for a given
crack length, another relationship between them is necessary.
According to the principle of superposition, the CMOD under
bending load can be decomposed

8 = B + Buyco (12)

where 8y, and 3,0 = CMOD components caused by an exter-
na moment M on an unbridged cracked beam and due to
bridging stress o,(x), respectively—3,, can be obtained
through simplifying o, (X) as a cracked beam with crack length
aH and subjected to moment M’ and axial stress ¢’. Then

8,09 = O t+ O (13)
where M’ and ¢’ are given by
aH
M’ =f a(X) (E - x) B dx (14)
o 2
1 oH
o == j a,(X) dx (15)
H 0
According to Tada (1985), the total CMOD can be expressed
2400 40’ aH
8= ShE [MVi(e) = MVi@)] = =5 Vale)  (16)
where, under three-point bending load
Vi(a) = 0.33 — 1.42a + 3.870% — 2.04a° + (10;66;)2

0.66

Vi) = 0.8 — 1.7« + 2.40° + _
1-a®

1.46 + 3.42 (1 — cos “;‘)

2
cos =

V(o) =

where E = elastic modulus of material; and V,(«) is dightly
changed from Tada's function after comparing with the finite-
element implementation of Zhang and Stang (1998b).

According to the basic assumptions given above, as a first
approximation, the fatigue analysis can be carried out by re-
placing the bridging stress in the fracture zone o, (x) with the
cycle dependent models given by (4). The determination of
fatigue crack length and crack mouth opening corresponding
to certain cycles for a given fatigue loading procedure is per-
formed according to the following algorithm.

For a given maximum and minimum load level M., and
Muin (here only the case of M. > M is considered), in the
first cycle, the crack length and crack mouth opening are de-
termined by solving the nonlinear (8), (9), and (16) through a
simple bisection iteration scheme. The bridging law without
stress degradation (N = 1) will be used as the input for o,(x),
and a numerical integration method is employed. In the second
cycle (N = 2), because the fatigue crack undergoes a closing
and opening procedure, bridging degradation will occur in the
fracture zone. The load capacity M cannot reach M., with the
aready formed crack area when this crack opens to the pre-
vious maximum width. Therefore, a new crack area is needed
to reach the maximum load level. The bridging laws with N
=2 and N = 1 will be used in the old fracture zone and the
newly developed fracture zone, respectively. Solving (8), (9),
and (16) again, the new developed crack length Aa, and crack
mouth opening & can be obtained. Through similar repeated
calculations, one can get all the new developed crack length
Aag, Aa,, Aas, ... and corresponding crack mouth openings at
cycleN =3, 4, 5, .... This procedure will be continued until
the load capacity starts to drop with increasing crack length.
At this stage, the beam is considered to have failed in fatigue.
According to this procedure, for the Nth load cycle, the frac-
ture zone will be divided into N sections with different fatigue
history, ranging from 1 to N cycles. To speed up the calcula-
tion procedure, increments with >1 cycle can be used, nor-
mally 5 to 10 or 20 cycles. This depends on the load level,
fatigue crack growth rate, and required accuracy. In this case,
alinear interpolation of crack length in one increment has been
used.

NUMERICAL ANALYSES AND DISCUSSIONS

To investigate the size effect on fatigue in bending, a series
of concrete beams with height 50, 100, 150, 200, 300, 400,
500, and 800 mm are simulated under fatigue bending load
with the above model. Constant amplitude between maximum
and minimum flexural load is adopted. As an example, a spe-
cific fatigue loading procedure with minimum flexural load
equal to zero is assumed in the numerical calculation. The
material parameters used in the model are listed in Table 1.

S-N Curves

Fatigue strength is commonly defined as a stress level, ei-
ther in absolute or in normalized form, which can be supported
repeatedly for a given number of cycles. It can be represented

TABLE 1. Material Parameter Values Used in Model

Parameter Value

E (GPa) 30

o (MPa) 5.2

o. (MPa) 53.22

p 12

W, (mm) 0.015

do 0.08 (for Wy = 0.016 mm)

0.14 (for Wy, > 0.016 mm)
4 (for Wy = 0.016 mm)
0.12 (for Wy, > 0.016 mm)

vy (mm™?)
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by stress—fatigue-life curves, normaly referred to as SN
curves. In the case of fatigue in bending, S refers to the flex-
ural stress according to classical elastic theory.

To compare the results between monotonic and fatigue |oad-
ings, the monotonic bending behavior is simulated first in
terms of the flexural stress and deformation (CMOD and crack
length) relation. Fig. 6 shows the monotonic flexural stress
versus normalized crack length curves of concrete beams with
different heights. The flexural stress versus CMOD diagram is
shown in Fig. 7.

On inspecting the numerical results shown in Figs. 6 and 7,
severa features of the concrete beam under bending load can
be distinguished:

¢ Load level oneiswhen the flexure stress increaseslinearly
with deformation up to tensile strength of the material,
5.2 MPa. In this stage, material behavior obeys €elastic
constitutive relations and no fictitious crack is formed;
therefore, CMOD is equal to zero.

¢ Load level two is when the flexural stress increases up to
flexural strength, called the modulus of rupture (MOR).
In this period, the deformation increases little more than
proportionally with respect to the stress. A fictitious crack
develops at the midlength of the beam and grows with

10.00 T T T T T T T T T
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FIG. 6. Flexura Stress versus Normalized Crack Length Diagrams of
Concrete Beams under Monotonic Bending Load; Effect of Beam Height
Is Shown
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the load increasing. The ratio between stress and displace-
ment, the so-called stiffness of beam (do/dd) is size de-
pendent.

 In addition to the well-known size dependence in flexural
strength (MOR), the critical crack length a. and critical
crack mouth opening 3., defined as the CMOD when
MOR is reached, are size dependent also. The quantity of
a. sometimes is very important if a simplified load-car-
rying capacity design method is to be used, which is usu-
ally based on the stress distribution along the critical cross
section of a concrete beam (i.e., a critical crack length at
failure is assumed).

Plotted in Fig. 8, is the normalized critical crack length and
critical crack mouth opening versus beam height curves. It is
obvious that both critical crack length and critical crack mouth
opening are strongly dependent on the structural size. Atten-
tion needs to be taken in any design practice with regard to
this aspect.

Fig. 9 shows the relation between maximum flexural stress
and fatigue life, the so-called SN curves for concrete beams
with different heights. First, the S.Log(N) curve of concrete
is amost linear, which agrees with a number of experimental
observations (Murdock and Kesler 1959; Tepfers 1979; Tep-
fers and Kutti 1979; Hus 1981; Zhang and Phillips 1989;
Zhang and Stang 1998a). Second, the SN curve of concrete
under bending load is size dependent; i.e., for a given maxi-
mum flexural load level, different fatigue life can be obtained
for different beam size. The larger the beam height, the shorter
is the fatigue life under the same maximum flexural stress.
Here, the case of maximum flexural stress larger than the first
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crack strength of concrete is simulated only. For example, as
the maximum and minimum flexural stresses are equal to 5.3
MPa and zero, respectively, for beams with heights from 50
to 800 mm, the fatigue life changes from 10° to 10° cycles.
The reason for this size dependence in fatigue is a combination
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FIG. 10. Size-Effect Law in Fatigue, Showing Some Typica Fatigue
Life Requirements
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of adifferent initial crack length and crack openings along the
crack even under the same maximum load level (Figs. 6 and
7). These differences in crack length and crack openings then
led to significant different bridging degradation during cyclic
loading between different beam sizes and finally result in dif-
ferent fatigue life.

The monotonic size effect in flexural strength is controlled
only by the fictitious crack length and crack openings. How-
ever, the size effect on fatigue in bending is controlled by the
deformation (crack length and crack openings) and stress deg-
radation along the crack during cyclic loading, which is gov-
erned by the cyclic crack bridging law. Fig. 10 shows the
numerical results for the size-effect law on fatigue in terms of
flexural strength versus beam height curves. From the figure,
it can be seen that the shape of the curves are quite different
between different fatigue life requirements. So it seems diffi-
cult to use a simple expression to describe the size effect in
the case of fatigue. Specia attention needs to be taken in any
design case as far as fatigue life of the structures is concerned.

Note that if the results in Fig. 9 are presented in the form
of stress normalized with respect to the flexural strength at
monotonic loading (MOR), the conclusion given above will
be reversed, as shown in Fig. 11. For a given maximum nor-
malized stress level, the fatigue life for alarger beam is longer
than that for a smaller beam. That is because the MOR is size
dependent also. So if the beam is designed with the size effect
under monotonic loading taken into account, then the beam
will also have an enhanced fatigue life, in comparison to that
of a smaller beam similarly designed. This implies that beams
designed according to size effect law under monotonic loading
will also be safe under fatigue loading.

Development of Fatigue Crack

Typical numerical results for relations between fatigue crack
length and number of cycles for different beam sizes, with the
same loading condition (i.e., the maximum and minimum flex-
ural stress equal to 5.3 MPa and zero) are shown in Fig. 12.
The theoretical simulation successfully reproduced the three
experimentally observed stages of crack growth (Stang and
Zhang 1994), involving a decelerated stage, steady-state stage,
and accelerated stage toward final failure. These three stages
are caused by bridging stress degradation within the growing
fracture zone in concrete. The crack bridging degradation law
controlled the shape of the fatigue crack length versus number
of cycles curve. On the other hand, from this figure, it can be
seen that fatigue crack growth history as well as the final crack
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length at failure are aso dependent on the beam size. The
smaller the beam height, the lower is the rate of fatigue crack
propagation. The explanation for this observation can still be
traced back to the differences in the initial crack length and
crack openings, which result in different bridging stress after
degradation that led to different crack growth rate.

A general concept in the literature on concrete materials
subjected to cyclic loading is that of an envelope curve, which
provides a bound for the stress and strain (for compression)
values that can be attained under general loading (Otter and
Naaman 1988; Kim and Kim 1996). Most authors agree that
this envelope coincides with the monotonic loading curve or
is a least very close to this curve for plain concrete. This
concept may be applicable for fatigue in compression but is
questionable for fatigue in flexure or tension. Based on the
present investigation, bridging stress degradation exists in the
fracture zone. This implies that the toughness of a beam grad-
ualy reduces with the number of cycles. Thus, it may be con-
cluded that the CMOD and fatigue crack length at fatigue fail-
ure will be less than the values that can be attained under the
monotonic case for the same load level, even though further
experimental verification is needed to support this conclusion.
On the other hand, fatigue failure under bending or tension
load will depend not only on the maximum load level but also
on the minimum load level because they will affect the bridg-
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FIG. 13. Effect of Beam Size on Critical Fatigue Crack Length

8.00

ing degradation simultaneously. The theoretically calculated
fatigue failure lines in terms of fatigue crack length under
different maximum load levels in the case of minimum load
equal to zero for a plain concrete beam with three typical
heights (300, 200, and 100 mm) are presented in Fig. 13. First,
one can see that al the fatigue crack lengths at failure, called
the critical fatigue crack length for different load levels, are
less than the monotonic critical crack length due to the bridg-
ing degradation within the fracture zone. With decreasing max-
imum load, the critical fatigue crack length is smaller and
smaller. The critical fatigue crack length is also dependent on
the beam size. Second, the lower the load level, the closer the
values of the critical fatigue crack length between beams of
different sizes. This indicates diminishing size dependence as
the maximum cyclic load level decreases.

EXPERIMENTAL VERIFICATION

To verify the model, a number of fatigue bending tests on
plain concrete beams of different beam sizes carried out by
Zhang (1998) and Murdock and Kesler (1959) respectively are
simulated and analyzed. The specimens and test procedures
will be described as follows.

« Fatigue tests carried out by Zhang and Stang (1998a):
Zhang carried out some three-point bending fatigue tests
on plain concrete beams. In his tests, a rapid hardening
cement and natural sand and stone with maximum particle
size of 4 and 8 mm, respectively, were used. The concrete
proportion by weight was 1:1.62:1.62:0.477 (cement:
sand:stone:water). The beams were cured in 23°C water
for 2 months and then stored in air for another 2 weeks
before testing. The compressive and tensile strength after
28 days water curing were 53.2 and 5.20 MPa, respec-
tively. The size of the beam is 420 X 100 X 100 mm and
the bending span was 400 mm. One stage constant am-
plitude fatigue loading between maximum and minimum
load levels, where the minimum load is equal to zero, was
adapted. The tests were carried out in load control using
a sinusoidal waveform with a frequency of 4.5 Hz. All
the tests were carried out in a 250-kN-capacity, 8500 In-
stron dynamic testing machine.

 Fatigue tests carried out by Murdock and Kesler (1959):
Plain concrete specimens, 152.6 X 152.6 mm in cross
section, were loaded at the one-third points of a 1,524-
mm span. Type | portland cement was used in all speci-
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mens and the fine aggregate was well-graded river sand.
The coarse aggregate was river gravel and had a maxi-
mum nominal size of 12 mm. The concrete proportion by
weight was 1:2.7:3.9:0.52 (cement:sand:gravel:water).
The beams were moist cured for 7 days and then stored
in a normal laboratory environment. The average com-
pressive strength after 28 days was approximately 31.03
MPa and the estimated tensile strength was about 4.65
MPa. The age of the specimens at the time of testing
ranged from 150 to 300 days. One stage constant ampli-
tude fatigue loading between maximum and minimum
load levels was adapted. The tests were carried out in load
control with a frequency of 6—7 Hz.

The related material parameters described above, including
beam size and load form, as well as the concrete tensile and
compressive strength, were applied during numerical calcula-
tion using this model. Here, the same crack bridging degra-
dation parameter d was used in both concrete beams. The com-
parisons between model predictions and experimental results
in terms of maximum flexural stress versus fatigue life dia-
grams are shown in Fig. 14. Quite good agreement between
theoretical predictions and test results had been obtained. This
model can well capture the characteristics of fatigue in bend-
ing regarding the structural size dependence.

CONCLUSIONS

A semianalytical approach for modeling fatigue perfor-
mance in flexure of plain concrete that relies on the cyclic-
stress—crack-width relation as the fundamental constitutive re-
lationship in tension has been presented. The size effect on
fatigue in bending is studied by this model. The model results
show that the fatigue performance in bending, normally in
terms of maximum-stress versus fatigue-life diagram (SN) is
strongly dependent on the structural size. Under the same flex-
ural stress levels, the smaller the beam height, the longer is
the fatigue life. However, if the size effect in monotonic bend-
ing strength is taken into account (i.e., if the flexural stressis
normalized with respect to MOR), the conclusion given above
will be reversed. Hence, beams designed with standard size-
effect law under monotonic loading will also exhibit enhanced
fatigue life.

The deformation characteristics, such as fatigue crack
growth history as well as the final critical fatigue crack length
at fatigue failure, are also dependent on the beam size. At
smaler and smaller maximum load levels, the values of the
critical fatigue crack length between different beams of dif-
ferent sizes converge, indicating a diminishing size depen-
dency.

The model predictions are compared with the experimental
results and good correlation between the model and experi-
ments is found. The model can well capture the characteristics
of fatigue crack propagation and give reasonable predictions
on fatigue strength and its size-dependent behavior.

To further verify the various model predictions, additional
experimental studies on size effect in fatigue are necessary.
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