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Monotonic Algorithms for Transmission Tomography

Hakan Erd@an, Member, IEEE and Jeffrey A. Fessler,Member, IEEE

Abstract—We present a framework for designing fast and require attenuation correction, which can be done by repro-
monotonic algorithms for transmission tomography penalized- jecting 2-D attenuation maps. SPECT systems with trans-
likelihood image reconstruction. The new algorithms are based mission sources are becoming increasingly available where
on paraboloidal surrogate functions for the log likelihood. Due L ) - .
to the form of the log-likelihood function it is possible to find statistical algorlthms can be efficiently Usec_' fqr attenuation
low curvature surrogate functions that guarantee monotonicity. Map reconstructions. For low-count transmission scans, the
Unlike previous methods, the proposed surrogate functions lead nonstatistical FBP reconstruction method systematically over-
to monotonic algorithms even for the nonconvex log likelihood estimates attenuation map coefficients, whereas data-weighted

that arises due to background events, such as scatter and random |45t squares methods (WLS) for transmission reconstruction
coincidences. The gradient and the curvature of the likelihood

terms are evaluated only once per iteration. Since the problem are Sy_stematicall_y neg_ati\{ely biased [4]. By_accurate Statist_ical
is simplified at each iteration, the CPU time is less than that modeling, penalized-likelihood reconstruction of attenuation
of current algorithms which directly minimize the objective, yet maps eliminates the systematic bias and yields lower variance
the convergence rate is comparable. The simplicity, monotonic- relative to linear methods. Hence, we focus on penalized-
ity, and speed of the new algorithms are quite attractive. The ialihood image reconstruction rather than WLS in this paper.
convergence rates of the algorithms are demonstrated using real Th tructi lqorith based th
and simulated PET transmission scans. ) ere are many recon's rgc lon aigorithms based on the

Poisson model for transmission measurements. The expecta-
tion maximization (EM) algorithm [5], which led to a simple
M-step for the emission problem, does not yield a closed-
form expression for the M-step in the transmission case [6].
I. INTRODUCTION Modifications of the transmission ML-EM algorithm [7]-[9]

TTENUATION correction is required for quantitatively@S Well as algorithms that directly optimize the penalized-

accurate image reconstruction in emission tomograpH{kelinood objective [3], [10]-{13] have been introduced. Some
The accuracy of this correction is very important in botfl these algorithms seem to converge rapidly in the convex
PET and SPECT [1]. Transmission scans are performed $&>¢- . _ _ ,
measure the attenuation characteristics of the object and t§10Wever, up until now, no practically realizable monotonic
determine attenuation correction factors (ACF’s) for emissidfi’ convergent) algorithm has been found for the penalized-

image reconstruction. Conventional smoothing methods fiff€lihood problem when the objective is not convex. The neg-

ACF computation are simple and fast, but suboptimal [ﬁtive log likelihood is nonconvex when there are background
[3]. For low-count transmission scans, statistical reconstructiGRUNts in the data. This is unavoidable in PET and SPECT due

methods provide lower noise ACF’s. However, a drawback jiel the accidental coincidences in PET and emission crodstalk

statistical methods is the slow convergence (or possible §i-SPECT. The assumption of no background counts may be
vergence) of current reconstruction algorithms. This paper dg&sonable in X-ray CT. _ o
scribes fast and monotonic algorithms for penalized-likelihood N this paper, we present a new algorithm which is guar-
reconstruction of attenuation maps from transmission scapt€€d to be monotonic, even when the objective function is
data. These reconstructed attenuation maps can be reprojePffOnvex. This algorithm depends on paraboloidal surrogate
to calculate lower noise ACF’s for improved emission imag/nctions for the log likelihood, which transform the problem
reconstruction. into a simpler quadratic optimization problem at each iteration.
Statistical methods for reconstructing attenuation maps frohf€ transformed problem at each iteration is similar to a penal-
transmission scans are becoming increasingly important /f¢d Weighted least squares (PWLS) problem and, thus, has a
thorax and whole-body PET imaging, where lower counf@miliar and simple form.. This quadratic prpblem need not be
and short scan times are typical. 3-D PET systems alsglved exactly. An algquthm that monoton'lcally decrea;es the
surrogate function suffices. Since evaluating the gradient and
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objective functions, monotonicity alone does not guarant¢@€CA) algorithm of [12] and [15], which updates a subset
convergence to the global minimizer when local minima exisdf pixels at a time. The surrogate functions used in these
but it does ensure that the estimates do not diverge, since #étgorithms were obtained using De Pierro’s convexity trick
likelihood is bounded. Whether the transmission log likelihoofd 7] to form a separable function that is easier to minimize than
has multiple local minima is an open question. the nonseparable original objective function. The convergence
The surrogate or substitute function idea is not new tates per iteration decrease due to the higher curvature of
the tomographic reconstruction area. EM algorithms can beese surrogate functions, but these algorithms require less
viewed as providing a surrogate function for the log-likelihoodomputation per iteration as compared to single CD [11]
function by means of a statistically more informative complet@nd are parallelizable. Furthermore, it is trivial to impose the
data set which is unobservable [5]. The conditional expectationnnegativity constraint with an additively separable surrogate
of the log-likelihood function for this new space is often easidunction [12].
to maximize, having a closed form for the emission case.In this paper, we propose the use of a global surrogate
This statistical construction of surrogate functions is somewHaiction for the original objective function which is not
indirect and seems to yield a limited selection of choices. Deparable, but has a simple quadratic form. The method is
Pierro has developed surrogate functions for nonnegative lebased on finding 1-D parabolic functions that are tangent to
squares problems, based solely on convexity arguments, rathied lie above each of the terms in the log likelihood, similar
than statistics [14]. Our proposed approach is similar in spirto Huber's method for robust linear regression [19]. Whereas
The EM algorithm did not result in a closed-form M-stegHuber considered strictly convex cost functions, we extend
for the transmission case [6], so direct minimization of ththne method to derive provably monotonic algorithms, even
objective function became more attractive. Cyclic Newtoniaior nonconvex negative log-likelihood functions. Remarkably,
CD (CD,NR) [11] has been used effectively in transmissiotmese algorithms require less CPU time to converge than the
tomography. However, CD based on Newton’s iteration fdastest algorithm introduced before (GCA of [12]) and, as an
each pixel is not guaranteed to be monotonic. Furthermore, additional advantage, they are proven to be monotonic. We
iteration of Newton-based CD requires at ledstexponentia- call the new approach to image reconstruction the paraboloidal
tions andl7M floating point operation$yhere is the (very surrogates (PS) method.
large) number of nonzero elements in the system madrir In the rest of this paper, we describe the problem, develop
(1) below. These exponentiations and floating point operatiotie new algorithm, and present representative performance
constitute a significant fraction of the CPU time per iteratiomesults on real PET transmission data.
Recently, Zhenget al. introduced a functional substitution
(FS) method [15], [16] which is proven to be monotonic Il. THE PROBLEM
for transmission scans with no background coumis+ 0

in (1) below]. Like CD, the FS algorithm cyclically updates TrlleETmeasglr;aénc(:a?ts in-a p:oltodn—llmlted gp;p:matman; S.UCh
the coordinates of the image vector, i.e., the attenuatiéi or , are modeled appropriat€ly as Foisson

map values for each pixel. However, instead of minimizin fnt(:I]om varlattbleg. I.ré transm|33|on| ttor;ography, t'th|? f[ne?hns
the original complex objective function with respect to eac € prompt coincidences are refated exponentially 1o the

parameter, the FS algorithm minimizes a one-dimensio |ojecti0ns (or line ir_wt_egrals) of the attenuation map thr_ough
(1-D) parabolic surrogate function. The minimization of th eer’s law [6]. In addition, the measurements are contaminated

ch_ extra background counts, due mostly to random coinci-

surrogate is guaranteed to monotonically decrease the o . . )
inal objective function if the derivative of the negative lo nces gnd sc.atFer in PET and emission crosstalk in SPECT.
hus, it is realistic to assume the following model:

likelihood is concave (which is true when, = 0) [15],

[16]. On the other hand, the FS algorithm requires at least . . poissorb; e~ 14" + 7,1, i=1,---,N (1)

2M exponentiations and7M floating point operatiorfsper ' '

iteration, which means that the guarantee of monotonicityhere V is the number of measuremenis; is the average

comes at a price of significantly increased computation tinieear attenuation coefficient in voxel for j = 1, ---, p,

per iteration for that method. Furthermore, the FS algorithmdd p denotes the number of voxels. The notatiety]; =

not monotonic in the nonconvex case of interest in PET a@le a;;1t; represents théth line integral of the attenuation

SPECT, wherer; # 0. mapy andA = {a;,} is the N x p system matrix. We assume
De Pierro [17] has used a surrogate function for the penattyat {#;}, {r;}, and {a;;} are known nonnegative constafits,

part of the penalized-likelihood problem for convex penaltiestherer; is the mean number of background evemisis the

The surrogate function idea was also used in several algorithbignk scan factor, angl represents the number of transmission

which update a group of pixel values at a time, rather thanesients counted by thah detector (or detector pair in PET).

sequential update of each pixel. Examples of these types ofVe seek to find a statistical estimate of the attenuation map

algorithms are the convex algorithm of [18], which updates which agrees with the data and is anatomically reasonable.

all pixels simultaneously, and the grouped coordinate ascerlLFhe assumption that the background countsare known nonnegative

P . . . . . constants is an approximation. In PET, we estimatertfgeby smoothing the
This can be reduced %/ floating point operations if the denominator ge|ayed coincidences from the transmission scan [20]. Alternatively, one can
terms are precomputed similarly to Section IlI-F in this paper. use time scaled delayed coincidences from a blank scan (which are less noisy
3Precomputation of the denominator terms in FSCD would destroy mondue to longer scan times) as the factors [21] or use Bayesian estimation
tonicity. techniques to estimate the’s from delayed coincidences [3], [20].
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For this purpose, a natural approach is to use a likelihood-
based estimation strategy. The log-likelihood function for the O o(us
independent transmission data is 2 :

N
L) =3 {un tow(bie 490 ) — (e 90 1)
=1
ignoring constant terms. The log likelihood depends on the

parameter vector through its projection§Ay]; only and can
be expressed in the following form:

]
I

—u

N
—L(/J) = Z hz([AN]Z) (2) . In+1 n‘+1 n

im1 R By
where the contribution of th&h measurement to the r“:—‘gativq:ig_ 1. One-dimensional illustration of the optimization transfer principle.

log likelihood is given by Instead of minimizing® (), we minimize the surrogate functia#{(z; ™) at
thenth iteration. Here, the surrogate functign has a smaller curvature and is

(3) wider thangy, thus, it has a bigger step size and hence a faster convergence
rate to the local minimum.*.

hi(l) 2 (bie™ 1) — yi log(bie™ 4+ 7).
The proposed algorithm exploits the additive form of (2).
Directly minimizing —L(;) (maximum likelihood) results in lll. PARABOLOIDAL SURROGATESALGORITHMS
a very noisy estimatgi due to the ill-posed nature of the The penalized-likelihood objective functio®(u) has a
problem. However, it is well known that the attenuatiogomplex form that precludes analytical minimization. Thus,
map in the body consists of approximately locally homogeterative methods are necessary for minimizifég.). Our
neous regions. This property has formed the basis of magyproach uses the optimization transfer idea proposed by De
segmentation methods for transmission scans [22]. Rathmerro [14], [17], summarized as follows. Let* be the
than applying hard segmentation, we add to the negatiyenuation map estimate after th¢h iteration. We would
log likelihood a penalty term which encourages piecewisie to find a surrogate functidng(u; ™), which is easier
smoothness in the image, resulting in the penalized-likeliho@sl minimize or to monotonically decrease thér:). This
image reconstruction formulation as given below: approach transforms the optimization problem into a simpler
) ) problem at each iteration, as illustrated in Fig. 1. The following
K= argfém @(p), (1) = =L(p) + BR(p).  (4) “monotonicity condition on the surrogate function is sufficient
B to ensure that the iteratds™} monotonically decreasé
/fCL)L\j/;i?r??‘:];ﬁi:‘i\)aieégf)ptﬁ:eélgomhm for finding the minimizing B() — D(u™) < s 1) — ™ @), Y0, (6)
We consider roughness penaltig.) that can be expressed We restrict ourselves to differentiable surrogate functions,

in the following very general form [17], [23]: for which the following conditions are suffici€rb ensure (6):
K 1) (™ ) = 2(u")
R(p) = dil[Culx) (5) ap . 9P .
k=1 2) T(N%N) IT(N) ;o J=1-p
g p=p" # n=p"
where the+;’s are potential functions acting as a norm3) ¢(u; pu™) > ®(p), for p > 0. (7)

on the soft constraint€;, ~ 0 and K is the number of . .
such constraints. The functions, we consider are convex, Fig. 1 illustrates two surrogate functions that are tangent to

symmetric, nonnegative, differentiable, and satisfy some mdhe original objective at the current iterate and lie above it for

conditions that are listed in Section ll-C. The in (4) is &l feasible values of the parameters.
a parameter which controls the level of smoothness in the ! EM algorithm [6] provides a statistical method for con-

final reconstructed image. For more explanation of the penaftyucting surrogate functions(y; 1), satisfying the above

function, see [23]. conditions. However, in the transmission tomography problem,

The objective function defined in (4) is not convex whethe natural EM surrogat_e is difficult to minimize a_nd leads to
there are nonzero background counts£ 0) in the data, In SIOW convergence. In this paper, we construct a simpler surro-
this realistic case, there is no guarantee that there is a sin@f€: using ordinary calculus rather than statistical techniques.
global minimum. However, some practical algorithms exist | N€ 109-likelihood function (2) has a certain kind of depen-

that seem to work very well, yet none of them are proven gjance on the parameteys namely through their projections

be monotonic. In this paper we introduce an algorithm that is®We use the notation(s; ™) to emphasize that the surrogate is a function
monotonic, even whem is not convex. The new approach iéjf I onceét”his fixedland ti1t cr[la]nges for eagh*, following the @ function

' . . ) . natation of the EM algorithm [5].
based on successive paraboI0|daI surrogate functions and W'i he second condition follows from the other two conditions for differen-

be explained in the rest of the paper. tiable surrogate functions.
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Ap. The negative log likelihood is the sum of individualA. Maximum Curvature
functions /;, each of which depends on a single projection a nagyral choice fore;(12) is the maximum second deriva-
only. We can exploit this form of the likelihood function byyjye in the feasible region for the projections. This maximum

selecting a 1-D surrogate function for each of the %D ¢ a1ure ensures that (9) holds, which follows from the gen-
functions in the projectior’ domain. The overall sum of theseg5jized mean value theorem for twice differentiable functions
individual 1-D functions will be an appropriate surrogate fo[24, p. 228]. The feasible region for the projectionglisc),

the likelihood part of the objectiye. I due to the nonnegativity constraint. Hence, the choice
Let [ = [Au™]; denote the estimate of thi#h line integral

of the attenuation coefficient at theth iteration. We choose ai(li) = max {hi()} (13)
the following quadratic form for the surrogate functions 029
) is guaranteed to satisfy (9). We show in Appendix A that the
Gl 1) 2 ha(I) + h(I)A = 17) + L (1)U —17)? (8)  closed-form expression for;(17) is

notes the first derivative of. This construction ensures that bi +7i

il 1) = ha(l}') and g;(I7; 1) = hy(L7) similar t0 (7). Ty here 4], = « for + > 0 and zero otherwise. Thus, it is

ensure monotonicity, we must choose the curvatures to satiﬁ%a“ to compute thee;(I%) terms in this case. The choice
the following inequality at each iteration: (14) for the curvature;({*) does not depend on the iteration
hi() < q(; 1),  forl>0. (9) ™ SO itis a constant. We refer to this choice as the maximum
curvature (PS,M,CD).

After determining the parabolas, one can easily verify thatHaving specified the curvatures;((;')}, the paraboloidal

the following function is a global surrogate function for théurrogatel(u; p") in (12) is now fully determined. Next, we
objective ®(1) which satisfies the properties in (7) need an algorithm that decreases or minimizes the surrogate

function ¢(p; p™).
s 1) = Qs 1) + BR(1) (10)
B. Algorithms for Minimizing the Paraboloidal Surrogate

where ¢;(I) is the curvature of the parabolg and i de- (1) = Kl _ %)bz} (14)
+

where . L o
In the absence of the nonnegativity constraint, in principle,

oy A N one could minimize the surrogate functigiy; ™) over
Qs ") = Z a([Apli; 1) (11) by zeroing its gradient. The column gradientgf; 1) with
=t o . respect tou is given by
=0(u") +dn(l") A(p — p") .
£ 3= ADEENA— ) (12) TR
= Ad (") + AD(ci(I) Ak — 1) + SVR(p). (15)

N

where the column vectat,, (") 2 [h;(1")],, =’ denotes the
transpose ofc and D(¢;(I7)) is the N x N diagonal matrix
with diagonal entries; (1) for i =1, ---, N.

The surrogate functiom(s; ) in (10) consists of the sum — p" ™ = p™ — [A'D(c;(I7)A + BR]™'V, (™).  (16)
of a paraboloid (i.e., a quadratic form) and the convex penalty . . .
term. An algorithm that decreases the functigrwill also There are three problems with the above iteration. It does

monotonically decrease the objective function if the inequalifj°t €nforce the nonnegativity constraint, the matrix inverse is

in (9) holds. The general paraboloidal surrogates (PS) metHgpractical to compute exactly, and it is limited to quadratic
can be outlined as follows: penalty functions. To overcome these limitations, we instead

apply a monotonic CD iteration to decreasgs; p™).

If R(y) is a quadratic form, i.eR(n) = % p/ Ry, then we can
analytically zero the gradient, yielding the iteration

for each iteratiom

determinec; (I*) and consequently(u; 1) C. Coordinate Descent Applied to the Surrogate Function
find ap* > 0 that decreases (or minimizes) To apply CD to monotonically decrease the surrogate func-
B(ps ™) tion ¢(u; ™), we need a quadratic function that majorizes

(lies above) the functiorp(p; ™) at each pixel. We treat the
likelihood part and the penalty part separately. Let

The key design choices in the general method outlined above
are the following:

1) the different ways of choosing the curvaturg§i*)'s R A X X X X
which would satisfy (9); RS (pj) = R([jin, -5 frj—1, g, fij1s -5 fip))

2) the algorithm to monotonically decreagey; u™) de- where/i; denotes the current estimate of the paramgtdrhen

i i > , .
fined !n (.10) for = 0. ] . we must select curvature andp; that satisfy the following:
Each combination of choices leads to a different algorithm, as

we elaborate in the following sections. Q7 (1) = QUits ™)+ Q7 () (i — i) +% & (i —f1;)* (17)

end.

A N A R X o
Q7 (1) = Qs -y flim1, fjy g1y -y fipls 1)
and
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and
R(nj) < Ry(ny), Vi 20 (18)
where
Ri(ny) 2 R + Ry(i)py — fy) + 3Dy — iy)* (19)

where” (1;) and R9(yu;) are treated as functions pf; only.

Equality is achievable in (17) since the likelihood surrogate

Q7 (u;) is quadratic. For the penalty pake(; ), we must find
a quadratic functionl?j(uj) that lies above it, by appropriate
choice ofp;, as considered below.

The derivative of the likelihood surrogate parabolgiats
[from (11)]

HE

where from (8)

Gi(li) = ha(I?) + (i) (L = 1) (20)
wherel; = 3 | ai;ii; and
; Y; _1
i = —— -1 i . 21
h (l) <biG_l “+7r; )b ¢ ( )

From (8) and (11), the curvature of the parabéj?(uj) is
obviously

dy = 3" ale(ly). (22)
7=1

From (5), the derivative of the penalty partaf is

K
2 =" ain([Cily)-

k=1

R;(j2)

d -
— R%u;
auj J (I’LJ)

Hi=i
We must obtain a parabolic surrogafe»(uj) that satisfies

(18). We assume the potential functions.(-) satisfy the
following conditions.

1) ¢ is symmetric.

805

5p i 1 e
Y 1 i 1
A il 1 1
4.5 v \ 1 I
4}
=3.5f
>
s
€251
=
(18
® 2f
o]
o
1.5f
1 3
0.5
0 .
-6 -4
t (residual difference)
Fig. 2. lllustration of the tangent parabolas lying above a potential function.

and is illustrated in Fig. 2. Thus, the following is a surrogate
parabola for the penalty part of the objective function:

K
Ri(p) =Y dw([Cul . (23
0 =32 0O, L, @
The curvature of the parabold;(y:;) is
A K
i = @ ((Cilw)- (24)

k=1

Combining the above surrogate parabolas (17) and (23), the
minimization step of the CD for pixeJ is simply

snew

A = argmin Q7 () + AR (1)

n;=0

Q) + BR; ()
=\ — (25)

d} + 3p;

This is an update that monotonically decreases the value of
¢(-; u') and consequently the value @f-). One iteration is
finished when all pixels are updated via (25) in a sequential
order. We usually update the paraboloidal surrogate function

2) ¢ is everywhere differentiable (and therefore ContinL%'lf’ter one iteration of CD, but one could also perform more

ous).
3) (t) = d/dt+(t) is nondecreasing (and henge is
convex).
4) wy(t) 2 ¢(t)/t is nonincreasing fot > 0.
5) wy(0) = lim,_o ¢(t)/¢ is finite and nonzero, i.eq <
wy(0) < 0.
In the context of robust regression, Huber showed ([1
Lemma 8.3, p. 184], [23]) that for potential functiotig that
satisfy the conditions above, we can find a parahfal@t) that
lies aboveyy(t), vVt € IR. This parabola/?k(t) is tangent to
the potential function at the current poiht 2 [Cii]. and at
—t) and has the curvature,, () wherew,,(-) was defined
above. The surrogate parabola is given by

Dn(t) = () + PENE — 1) + 5wy, (B (E — B)?

than one CD iteration per surrogate. We call this method the
paraboloidal surrogates CD (PSCD) method.

The PSCD algorithm with the curvatures obtained from (14)
is outlined in Table 1. In this table, the algorithm flow is given
for the general case wheeg(I?") may change at each iteration.
However, the curvatures;(I?) given in (35) in Table | are
Bonstant throughout the iterations. If one uses fixgd!)
values which do not depend enas in (35), then the] terms
can be precomputed and the algorithm should be reorganized
to take this computational advantage into account.

Another computational advantage of curvatures that do not
depend on the iterations is as follows. If we define= ¢;/./c;
anda;; = a;;./¢;, then the update in (38) will be simplified to

)

work o

G = @ + ai; (11} i
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TABLE |
ALGORITHM OUTLINE FOR A PARABOLOIDAL SURROGATES ALGORITHM WITH COORDINATE DESCENT
(PSCD). HE CURVATURE CHOICE SHOWN HERE Is THE MAXIMUM SECOND DERIVATIVE

Initialize: & = FBP{log(b;/(y: — )}, and [; — 57

;;] (I,,]'ﬁ,j, Vi — 1,.. .,J\‘Y

for each iteration n = 0, ..., Niter — 1
s Yi A s ;
gi = h,-f(.i - l)b,j(; iofori—1,...,N (34
bic—li 4 r;
¥ Yir S ;
¢i— 1i12;10x71,,(1) = [(] — o i ;’L)2> b,'} . fori = 1,...,N (35)
Ci, ¢ > €
TR 3
“ { € <€ (36)
repeat one or more times
forj==1,...,p
N N
Q; = Lazjqu d; = Lafjcz 37)
i1 i=1

old _ ~
Hy =y

for a couple sub-iterations

i g Q4 dilfiy = p) + B30 et (Cily)
A L A AN~K o ~
ds + 830 (:f,jww (ICal,)

b

end

Gy 1= gy + agyes(fiy; — /;_‘;ld) Vist a; #0 (38)
end
end

—i
;Ll, fori—1 N (39)

end

which decreases the computation time devoted to back alh,dci, h, andg; need to be stored in addition to data vectors
forward projections per iteration by about 20% for implemeny;, b;, ;.
tations using precomputed system matrices. Equations (37) anth the following, we discuss the convergence rate of the
(39) should also be modified to use the new variables. We halgorithm, which provides motivation for obtaining better
not implemented this faster version for this paper. curvatures.

The algorithm in Table | requires roughly double the float-
ing point operatipns required f_or one forwa_rd_ and one bgckprB—_ Convergence and Convergence Rate
jection per iteration. The gradient of the original log likelihood )
with respect to the projectionh;(27)}Y, and the curvature N the absence of background events, i.e., when=
terms ¢;(I7) are computed only once per iteratibriThe 0, the penallzed—llkehhood .ObjeCtIV@ is convex and our
gradient of the surrogate paraboloid ugegerms which can Proposed PSCD algorithm is globally convergent. This is a
be updated easily, as shown in (38) in the algorithm. Thiairly straightforward consequence of the pro_of in [25] for the
implementation does not update the projectidnafter each Cconvergence of SAGE, so we omit the details.
pixel update, since they are only needed in the outer loopHowever whenr; 7 0, little can be said about global
(34). The projections are computed in (39) after updating QPnvergence due .to the posgbﬂny th_at. there are mul't|ple
pixels. The update (39) require§ > 0 to work. In (36), Minima or a continuous region pf minima. Our practlcal
we constrain the curvature value to some small value 0 €XPerience suggests that local minima are either unlikely to be
(which obviously does not hurt monotonicity) so that (39) caRresent, or are quite far from reasonable starting images, since
be evaluated for all = 1, ---, N. However,e should not be a]l experiments WIT[h .mulltlplle |n|t|al|;at|ons (_)f_the algorithm
very small, since it will cause undesirable numerical precisigfielded the same limit within numerical precision. The PSCD
errors. Storage requirements are also modest for the propo@l@prithm is monotonic, even with the nonconvex objective

algorithm. A single copy of the image and four sinograms fdknction. One can easily show that every fixed point of the
algorithm is a stationary point of the objective function and
7In contrast to the PSCD algorithm, when coordinate descent (CD,NRjce versa. Thus, it is comforting to know that the algorithm
is applied to the original objective function, new gradients and curvatur?ﬁ” converge to a local minimum and will not blow up.
must be computed after each pixel is updated. These computations invo vel_h f th d al ith ith th
expensive exponentiations and floating point operations which increase the e convergence rate of the proposed algorithm with the
CPU time required for original CD. maximum curvature choice is suboptimal. The curvatures
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¢; (1) are too conservative and the paraboloids are unneces- function (1)
sarily narrow. Intuitively, one can deduce that smaligi) tap ; T 7
values will result in faster convergence. The reason for this is “\ 7.
that the lower the curvature, the wider the paraboloid and the P s
bigger the step size, as can be seen in Fig. 1. To verify this-7p o Somng ]
intuition, we analyze the convergence rate of the algorithm. ' _=F ——  original function
For simplicity, we assume that a quadratic penalty is used in |: ___---~ . S| TTIL gptimum curvature
the reconstruction and that the surrogate functjgp; p™*) -2t -
(10) is minimized exactly. first derivative d/dl h()
Let /i be the unconstrained minimizer of the original ob- e~
jective function. At stepn, by zeroing the gradient of (10)
we get the simple Newton-like update in (16). By the Taylor
series, forp™ = [i, we can approximate the gradient of the

objective function a&v® (™) ~ H(j)(u™ — fi) where H(i) T 7 N S/ ——  original derivative
is the Hessian ofp at ji. Define N(c) = A'D(c;)A + BR, ,,/ 7. Optimum curvature
then from (16) ~aolds . £ .
0 P 1 1°=2.5
N"+1 R ST - [N(c)]_lH(/fL)(u" — i) Fig. 3. This figure illustrates the optimum curvature and the maximum
_1 R n oA curvature surrogate functions and their derivativestioe= 100, y; = 70,
= = [N()] 7 H(@)(n" — ft). (26) 1, =5, andI” = 2.5.

This equation describes how the convergence rate of thel’he curvature of the parabola described abovk is:
proposed algorithm is affected by differantchoices. We use '

the results from [26] to evaluate the convergence rate. Let hi(0) = hi(12) + ha(I2)(I2) n

N(ct) and N(c?) be two matrices corresponding to curvature Yy — 2 BE ;>0

vectors ¢! and ¢?, respectively, withc} < ¢, Vi. Then, eilli) = . ' +

obviously, N(c?) — N(c!) is positive definite and it follows |:hi(0):|+7 i =0

from [26, Lemma 1] that the algorithm correspondingclo (28)

has a lower root-convergence factor and thus converges fastér prove in Appendix B that this curvature is the optimum
than the algorithm corresponding 8. curvature that satisfies (27). The nonnegativity constraint plays

Therefore, to optimize the convergence rate, we would liken important role in the proof. If nonnegativity is not enforced,
thec;(I7") values to be as small as possible while still satisfyintiie projections at an iteration may go negative and the cur-
(9). The optimal choice for the curvatures is the solution teature (28) will not guarantee monotonicity anymore. Fig. 3

the following constrained optimization problem for each illustrates this surrogate parabola with the optimum curvature
(28). In Table I, the curvature computation in (35) should be
(1) = min{c > 0: hi(l) < R (L) + ha(I)(1 = 1) changed to (28) to implement the PSCD method with the

optimum curvature (PS,0,CD).
+lel—1r)2 VI 0}. @27)
F. Precomputed Curvature

This choice yields the fastest convergence rate while still guar-By relaxing the monotonicity requirement, we can develop
anteeing monotonicity. In the following section, we discusaster yet almost always monotonic algorithms. We can do

the solution to (27). this by choosing curvatures(I7) in (8) such thath,; (1) =
¢l 17), but hi(l) ~ ¢(l;17), rather than requiring the
E. Optimum Curvature inequality (9). In this case, the paraboloids are quadratic

. . L ! approximations to the log-likelihood function at each iteration.
The curvature that satisfies (27) is not trivial to find for, PP g

. . . A reasonable choice for the curvatures is
general functiong;(-). However, the marginal negative log-
likelihood functions for each projectiort] defined in (3)] in ci = h; <10g bi ) = (yi — )% /. (29)
transmission tomography have some nice properties. We show Yi — T
the following in Appendix B. The parabola that is 1) tangenfpa ygluermin — log(bi /(i — 7)) is the point that mini-
to h; at the current projectiotf' and 2) intersect#; atl =0 ises theh, function. These curvatures in (29) are close
is guaranteed to lie above(l) VI > 0. This claim is true only 555 6ximations to the second derivativelgffunctions at the
when the curvature; (1) of ¢; is nonnegative. If the curvature projection valuesd;i whereji is the solution to the penalized-

obtained by the above procedure is negative, thenwe @8 jikelinood problem [12]. This is called the fast denominator
to zero® Whene; (1) = 0, the ¢; function is the line which is

tangent to theh; curve at the current projection valug.

SWhen I? is nonzero but small, due to numerical precision, (28) might
turn out to be extremely large during computation.clfl}*) > [fzi(())]+
(which theoretically should not happen, but practically happens due to limited

81n fact, any nonnegative; (1) will ensure monotonicity, hence, thein ~ precision), then we sef;(I7') to be equal to the maximum second derivative
(36). [~i(0)]+ which eliminates the problem.
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approach in [12], since it features a one-time precomputétiis function acts like a quadratic penalty for small differences
approximation to the curvature that is left unchanged during neighboring pixels and is close to the absolute value
the iterations so that the denominator terdjs(22) can be function for differences greater thafi This nonquadratic
computed prior to iteration [similar to maximum curvaturéunction penalizes sharp edges less than quadratic functions.
in (14)]. Computational benefits for iteration independeme useds = 0.004 cm~* chosen by visual inspection. In the
curvatures, as summarized in Section IlI-C, can be utilizefinal reconstructed image, the horizontal and vertical neighbor
This approximation works well because we usually start thhfferences are less than thisn homogeneous regions (90%
iterations with an FBP imagg® where projectionsAy® are of all differences) which makes the curved part of the penalty
usually close td™i, Nevertheless, unlike (28), monotonicityeffective in those regions. However, at edges for which the
is not guaranteed with (29). differences are greater thanthis penalty penalizes less than

The PS method with the curvature (29) yields faster cothe quadratic one.
vergence than the other PS algorithms presented above. Thi¥he PS algorithms described throughout this section are
method is related to the PWLS image reconstruction methadmed using the following format: RSCD. PS stands for
[11], [27], but instead of making a one-time quadratic agparaboloidal surrogates as the general framework for the
proximation to the log-likelihood function, the approximatioralgorithms and CD stands for coordinate descent applied to
is renewed at each iteration. Although the curvature of thiee surrogate function. The lett€rin the format represents
paraboloid remains same, the gradient is changed to matibbl curvature type:;(I). The types are M, O, and P for
the gradient of the original objective function at the curremhaximum second derivative curvature (14), optimum curva-
iterate. The nonnegativity constraint does not play an importante (28), and precomputed curvature (29), respectively. The
role for the derivation, and this curvature may be used fother algorithms we used for comparison in this section are
algorithms where nonnegativity is not enforced. We refer s follows: the LBFGS, a constrained quasi-Newton algorithm
this curvature as precomputed curvature (PS,P,CD). [31]; CD,P,CD with precomputed denominators; CD,NR,CD
with Newton—Raphson denominators [11], [12] applied to the
objective function; and GD,P, grouped descent with precom-

. Puted denominators [12].

To assess the effectiveness and speed of the new PS alggeig. 4 shows images reconstructed by FBP and statistical
rithms, we present results using real PET data. We acquitg@thods from a 12-min scan. For comparison, an FBP re-
a 15-h blank scanb(’s) and a 12-min transmission scan datgonstruction of a 7-h scan is also shown. Qualitatively, the
(vi's) using a Siemens/CTI ECAT EXACT 921 PET scannetatistical reconstruction looks better than the FBP image,
with rotating rod transmission sources [28]. The phantoRhying less noise and more uniform homogeneous regions.
used was an anthropomorphic thorax phantom (Data Spectrigwever, our focus here is not the image quality but the
Chapel Hill, NC). Delayed coincidence sinograms were cofmount of time it takes the algorithms to converge to the min-
lected separately in each scan. The blank and transmission SggRer image. Nevertheless, improved emission image quality
delayed-coincidence sinograms were shown to be numerically oyr ultimate goal. Statistical methods for transmission
close® [21], so we used a time-scaled version of blanksconstruction yield better ACF’s, as compared to conventional
scan delayed coincidences as thefactors, with no other methods and result in better emission images. Our goal here
processing. The projection space was 160 radial bins and 182 speed up and stabilize statistical methods to make them
angles and the reconstructed images were %2828 with | ;5aple routinely in clinic.

4.2-mm pixels. The system matrif;;} was computed by  Fig. 5 shows that the proposed PSCD algorithms decreased
using 3.375-mm-wide strip integrals with 3.375-mm spacing aimost as much per iteration as the CD algorithm applied
which roughly approximates the system geometry [4]. to ® directly. This result is important because it shows

We performed reconstructions of the phantom by FBP @at the surrogate paraboloids (especially with the optimum
well as various penalized-likelihood methods. For the pena'&ervature) closely approximate the original log likelihood.
term in PL reconstructions, we used the following function: pjore importantly, in Fig. 6 the PSCD algorithms are seen to

be much faster than CD in terms of the actual CPU ti@ne
R(p) =1 Z Z wirth(pj — i) (_)f th_e main ove_rhead costsinCDis th_e computation of the log-
J=1 KeN, likelihood gradient term after each pixel change [12]. In the
PSCD algorithm, the gradient of the surrogate functi@’s)
which is a special case of (5). Herg,; is normally equal can be computed (updated) by a single multiplication (20).
to one for horizontal and vertical neighbors ambgh/2 for The maximum curvature method introduced in Section IlI-A
diagonal neighbors. We used the modified,’s described precomputes the denominator term#') for the likelihood
in [29] to achieve more uniform resolution. For the potentiglart sincec;(I*)'s do not depend on the iterations. However,
function, we used one of the edge-preserving nonquadratic cthgisec; (I7')’s are much larger than the optimal curvatures, so
functions that were introduced in [30] more iterations are required for PS,M,CD to converge than for
PS,0,CD.

IV. RESULTS

(@) = 6°[|2/8] —log(1 + | /6])].

10This is due to the fact that singles rate is mostly affected by transmissiont*All CPU times are recorded on a DEC 600 5-333-MHz workstation with
rods. compiler optimization enabled.
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Fig. 5. Comparison of objective function decreasg:”) — ®(u™) versus
iteration numbemn of monotonic PS methods with CD and LBFGS methods
for real phantom data.
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Fig. 6. Same as Fig. 5, but axis is CPU seconds on a DEC AlphaStation
600 5-333 MHz.

converge. Although the PS,P,CD algorithm is not provably
monotonic, it is a reasonable approximation and we did not
observe any nonmonotonicity in our practical experience,
when initializing with an FBP image. The monotonic PS,0,CD
©) method is shown in this plot as a baseline for comparison with
Fig. 4. (a) FBP reconstruction of phantom data from 7-h transmissi(ﬁg- 6.
scan. (b) FBP reconstruction from 12-min transmission scan. (c) Penal-|n Fig. 8, we present the results of a transmission scan
ized-likelihood reconstruction from 12-min transmission scan using 12 iter@imulation with zero background counts & 0) and compare
tions of the optimum curvature PSCD algorithm. . g_ . . p, .
the monotonic PSCD algorithm with the functional substitution
We also compared the PSCD algorithms to the genergkS) method of Zhenget al. [15], [16]. The FS algorithm
purpose constrained quasi-Newton algorithm (LBFGS) [31] i8 proven to be monotonic whery = 0, in which caseh;
Figs. 5 and 6. Although the LBFGS algorithm takes about 258 convex. However, the FSCD method requires considerably
less CPU time (0.88 s) per iteration than PSCD algorithmsiore computation per iteration than both CD and PSCD. The
it did not converge as fast as the proposed algorithms. Th®t in Fig. 8 shows that FSCD requires more CPU time than
shows that the algorithms such as PSCD, which are tailoredrgCD.
our specific problem, converge faster than the general-purpos&able Il compares the number of iterations and CPU sec-
quasi-Newton method. onds required to minimize the objective function by each
In Fig. 7, we consider the fastest previous algorithm weethod. The CPU time'$ floating point operations, and mem-
know of (i.e., GD with 3x 3 groups with a precomputed de- _
nominator [12] and compare it to the fastest PS algorithms. The’The CPU times are computed on a DEC 600 5-333 MHz. We also
ith ted curvatures (PS,P,CD) (introducedcompned the code on a SUN Ultra 2 computer and got similar CPU time ratios
PSC_D wit precompu ) " 1 the algorithms. However, the ratios could differ on another architecture or
Section llI-F) requires slightly less CPU time than GD,P taith another compiler, due to cache size and pipelining differences.
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TABLE I
ComPARISON OF CPU TiMES, NUMBER OF ITERATIONS TO CONVERGE, FLOATING POINT OPERATIONS AND MEMORY ACCESSES FOR THEPS
ALGORITHMS VERSUSCD, GD, AND FS MeTHODS CONVERGENCE IN THIS TABLE MEANS ®(10) — ®(u™) > 0.999[®(10) — & (p*)]
WHERE ®(¢*) Is THE SMALLEST OBJECTIVE VALUE OBTAINED IN 30 ITERATIONS AMONG ALL THE METHODS THE
FLOATING PoINT OPERATIONS, AND MEMORY ACCESSESONLY IN THE ORDER OF M ARE SHOWN FOR EACH METHOD

Real data, r; # 0 monotonic nonmonotonic

methods PSM,CD | PS,O,CD || PS,PCD [ GD.P3x3 | CD,P | CD,NR | ESCD
iters for convergence 18 12 11 14 11 11 11
CPU s for convergence 23.3 17.4 15.1 18.1 443 52.3 56.2
CPU s per itcration 12 1.3 1.2 1.1 3.8 4.6 4.9
exponentiations 0 4] 0 0 M M M
per iteration

add/subls oM M M M 4aM 6M ™
per iteration

mult/divs 3M 5M M 2M 5M 11M 10M
per iteration

nonsequential accesscs M 2M M M 4M 4M 4M
per backprojection

nonsequential accesses M 2M 2M M M M M
per forward projection

system matrix accesses M 2M M M 2M 2M M
per iteration

Transmission Algorithms

—x  PS,P,CD (Nonmonotonic)
G—96 PS,0,CD (Monotonic)
&—4 GD,P,3x3 (Nonmonotonic)

Real data, r, nonzero
initialized with FBP image

1550

16 18 20 22 24 26 28
CPU Seconds

30

significantly different from our proposed PSCD methods in
the following respect. In our methods, the terms are kept
updated for alk outside the projection loop in (38). In contrast,
both CD and FS requiré; terms within the backprojection
loop and these change with every pixel update so they must
be computed on the fly within the backprojection loop. Thus,
that backprojection must access b;, r;, I; and the system
matrix within the loop and perform quite a few floating point
operations (including the exponentiations) with them. Not only
is there inherently more floating point operations required for
CD and FS, we suspect that the need to nonsequentially access
parts of four sinogram-sized arrays, in addition to the system
matrix, significantly degrades the ability of the CPU to pipeline
operations. This leads to the dramatic differences in the CPU
time between PSCD and CD methods.

Fig. 7. Comparison of the speed of the proposed PS algorithms with thehc a monotonic algorithm is required, the PSCD algorithm

fastest algorithm that was introduced before: grouped CD with 3 groups.
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Fig. 8. Comparison of objective function decreasg:’) — ®(u™) versus
CPU time of monotonic PS and FS methods with CD. Nate= 0 in this
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with the optimal curvature (PS,0,CD) is the fastest algorithm.
The other algorithms are not guaranteed to be monotonic ex-
cept PSCD with maximum curvature. Although the PS,M,CD
algorithm consumes less CPU time per iteration, it takes longer
to converge since the curvatures result in an unnecessarily
narrow surrogate function which causes small step sizes.
Among the nonmonotonic algorithms, another PS method,
PSCD with precomputed curvatures (PS,P,CD) is the fastest.
It converged in about 15 s with the real data used. The CPU
time per iteration is the same as PS,M,CD, since they both
precompute the denominatof’{) terms. Since the curvatures
are smaller, this method decreases the objective very rapidly.
Nevertheless, it is not guaranteed to be monotonic. However,
as with the CD and GD with precomputed denominators [12],
we have never observed any nonmonotonicity in practical
applications with iterations started with an FBP image. The
FSCD and CD algorithms consume a lot of CPU cycles per it-
eration and they are much slower than the proposed algorithms.
The GD,P algorithm lowers the CPU requirements by decreas-
ing the number of exponentiations, but it does not decrease the

ory accesses (of ordé@d only) per iteration are also tabulated pbjective function as much per iteration as CD. Thus, it is also
whereM is the number of nonzero entries in system mattix slightly slower than the PS,P,CD algorithm. This table shows
For comparison purposes, a single forward and backprojectithat PSCD algorithms are preferable for both monotonic and
requires about 0.78 CPU s. The CD and FS methods amenmonotonic transmission image reconstructions.
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V. CONCLUSION medical purposes, we believe that a monotonic algorithm

We have introduced a new class of algorithms for minimizhould be used to redyce the risk of diagnostic errors due to
ing penalized-likelihood objective functions for transmissiofi’TON€OUS reconstructions. Fortunately, with the new proposed
tomography. The algorithms are shown to be monotonic, evBlfthds, monotonicity can be assured with only a minor
with the nonconvex objective function. In the nonconvelfc'€ase in CPU time (17.2 versus 15.1 CPU s).
case there is no proof that these algorithms will find the
global minimum, but at least the algorithms will monotonically
decrease the objective function toward a local minimum. We prove in this Appendix that the maximum second
Practical experience suggests there are rarely multiple minisherivative of h;(7) for > 0 is given by (14). We drop the
in this problem, but there is no proof. In the strictly convesgubscript: for simplicity.
case, the proposed algorithms are guaranteed to converge tbhe form of theh functions is critical in the following. The

APPENDIX A

the global minimum by a proof similar to that in [32]. second and third derivatives of the functibnin (3) are
Convergence is very important for algorithms for any opti- . yr
ot ; : : ot ) =(1- +—— Jbe! (30)
mization problem, particularly in medical applications. The (be=1 + )2

PSCD algorithm is globally convergent when there are no bl
background counts. Even when there are background counts, h(?’)(l) = <y7{ﬁ} — 1) be™!, (31)
the new algorithm is guaranteed to monotonically decrease (be=t +7)
the objective function making the algorithm stable. Previous We assuméb > 0, y > 0, andr > 0 throughout these
algorithms could not guarantee that property without expensig@gpendices. First, we prove two lemmas about properties of
line searches. The robustness, stability, and speed of the ib@seh functions. These lemmas are used for the proofs in
algorithm renders it usable in routine clinical studies. Su¢hppendix B as well.
use should increase the emission image quality as comparelemma 1: The following are equivalent fok(Z) defined in
to conventional methods which use linear processing and FED:
for reconstruction. Further acceleration is possible by orderedE1l) » = 0 or » > y;
subsets [33], albeit without guaranteed monotonicity. (E2) h is strictly convex;

The algorithms we introduced are simple, easy to under-(E3) h is strictly concave;
stand, and fast. The simplicity, in part, is due to the additive (E4) h is monotonically increasing;
form of (2), which is a direct consequence of independent(E5) % is monotonically decreasing.
measurements. Since the emission tomography log likelihood Proof: Sinceh is three times continuously differentiable,
has a very similar form, due to independence of measuremetitss strictly convex if and only if, > 0 and / is strictly
it is possible to apply the paraboloidal surrogates idea to thencave if and only if2(3 < 0. Clearly, h > 0 if and only
emission case, as well, to get faster algorithms [34]. if ~ is monotonically increasing. So, (E2y—= (E4). For

It is possible to parallelize the PS algorithms by applyingimilar reasons, (E3)<—= (E5).
either the grouped descent (GD) [12], [13] algorithm to the If » = 0 or = > v, thenyr < (be~" + )% so, from (30),
surrogate function, or by parallelizing the projection and(l) > 0, ¥!I. Thus, (E1)= (E2).
backprojection operators [35] for each pixel. However, in a To prove (E1)= (E3), from (31), it suffices to show that
serial computer we found that the PS method with GD updaflee =" +7)® > yr(—be~! +r). But this is trivial since-® > yr?
(PSGD) was not faster than the PSCD algorithm. This is du@der the conditions (E1).
to the fact that the gradient updates in the PSCD algorithmTo prove the opposite, if # 0 andy > r, then one can
consume much less CPU time than the gradient evaluationsesily show thati(1) and —2(®)(1) can take negative values
the original CD algorithm, which require expensive exponeffior sufficiently largel considering (30) and (31). So, (E2}

tiations and floating point operations. Hence, grouped descépi) and (E3)= (E1). u
did not reduce the CPU time per iteration as much in the PSLemma 2: Wheny > r andr # 0, the nonconvex function
method as in the direct method. h has the following properties:

In our opinion, the PS,0,CD algorithm supersedes all of (P1) ]:7, is continuously differentiable; .
our previous methods [4], [12], [18], and is our recommended (P2) & has exactly one critical poirit, i.e., A(I*) = 0, and

algorithm for penalized-likelihood transmission tomography. I* is a local maximizer of.(1);
The PS,P,CD algorithm is a faster but nonmonotonic alterna-(P3) & is strictly concave and monotone increasing for
tive, which can be used for noncritical applications. A possible <%

compromise would be to run a few iterations of the PS,0,CD (P4) % is monotone decreasing fér> I*;

algorithm and then fix the curvatures and denominator terms(P5) / has exactly one critical poiri€, i.e., A*)(1) = 0
(d7) for the rest of the iterations to save computation time. and/* is a local minimizer ofh(1).

Alternatively, one can run the PS,P,CD algorithm and check Proof: (P1) is obvious from (21) and (30).

the objective functiond(y) after each iteration to verify that  In the nonconvex case, the equatib(l) = 0 has exactly
it has decreased. If the objective does not decrease (white solution inR, I* = log(b/(,/y7 — 7)). Sinceh®(I*) =
happens very rarely), then the PS,0,CD algorithm can be((,/yr —r)?/,/y7) < 0, I* is a local maximum, proving
applied to the previous iterate to ensure monotonicity. F¢{P2).
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Solutions to the equation® (1) = 0 are the roots of a Proof: Suppose there exists ap; > x, such that
cubic polynomial in the variable = be~! which has only one f(z3) > I(x3). Consider the new linen(z) that intersects
real solution. The real root is negative whénis convex, f(z) at xz; and x3. Since m(x1) = l(x1) and m(z3) =
resulting in no solution forl. But, in the nonconvex case f(x3) > I(x3), it follows from the affine form ofl(x) and
the real root is positive and results in exactly one solution(z) that m(x2) > I(x2) = f(z2), which contradicts the
I = log(b/(a/3 — yr/a — 1)) where assumption thaf(x) is strictly concave. The casg < z; is
similar. ]

For simplicity in this appendix, we drop the subscrigtnd
the dependence onfor the variables. Lek(l) be the marginal
. negative log-likelihood function defined in (3) with derivatives
So, (1) has exactly one critical point. We have shown abov@resented in (21), (30), and (31) and ¢&t) be the parabolic
that A*)(I*) < 0 and one can easily see that®(l) ~ syrrogate function defined in (8) with the optimum curvature
(y/r—1)be™! > Ofor largel. Thus,l* > I andh®) (1) < 0for . defined in (28). We usé to denote the current projection
I < I*. So,h(l) is monotonically decreasing fdr< I*. Also yajye 7. The reader may visualize the following proofs by

for 1 > 1%, h®)(1) > 0, and (1) is monotonically increasing. considering the plots of and¢ functions shown in Fig. 3.
This proves that® is a local minimum forh(I). Hence, (P5)  \we define the difference function by

is proven. ) A

To prove (P3) we have to sha® (1) < 0 andh(l) > 0 for 6(1) = q(l) = h(D). (32)
I < I*. However, as we found above < I* andh<3>(l) <0 1o show thatg(l) > h(l) for I > 0, as required by (9), it
for I/ < 1. Also, h(l) > 0 for I < I* sincel" is the only g fices to show thas(l) > 0. Whenl® = 0, it is obvious
f:ritical point and local maximizer ok due to (P2). So, (P3) fom Appendix A that&(l)_z 0. Thus, we focus on the case
is also proven. I° > 0 in the following.

The functionh(l) has exactly one zero crossirg from Lemma 5: The following conditions are sufficient to ensure
(P2) which is a local maximizer ok. Then, h(l) has to be 8(1) > 0, VI € [0, 50).

always negative fof > [* proving (P4). To verify, one can S o
easily see that(l) ~ (1 — y/r)be™" < 0 for large! values. (C1) 5(0) = 0 and 8(Z )c__ 0
Soh(l) < 0V1 > I*. (C2) 6(_1) >0 forl > 1I° and
The following result follows from (E5) of Lemma 1 for the (C3) e'thef .
convex case and from (P5) of Lemma 2 for the nonconvex (C31) 6(1) < 0, Y1 € 0,19, or

a= 6/27;1;7’2 + 34/ 3y3r3 + 8ly2rt.

case. (C32) Ji* € [0, I¢) such thatd(l) > 0 for I € [0, I*]
Corollary 1: The maximum value forh in the region a.md () < 0 for i e (i, I°].
[0, o0) is achieved at the end points, i.e., Proof: Since (1) = 0
l
ci(l?)zll[réax){h(l)}zmax{h(oo), h(0)} 6(1) = /l o(t) dt. (33)
Cl0, oo €
. yr Casel > [°: The integrand in (33) is nonnegative due to
=[rO0)]+=||1- G+ . (C2), soé(l) = 0.

Casel € [0, [°]: If (C31) is true, thend(l) = &(I¢) —
.. ¢ ey __
The result follows sincéim;_... i(l) = 0. Ji o) di = 6(1°) = 0.
If (C32) holds andl € [0, ], then &(1) = 6(0) +
[y 8(t)dt > §(0) > 0 by (C1). Likewise, if (C32) holds and
APPENDIX B Le (2, 17, thens(l) = 8(1°) — [} é(t)dt > 6(1°) = 0 again
In this Appendix, we prove that the curvature defined iy (C1).
(28) is the optimum curvature that satisfies (27), which in Hence,6(1) > 0 VI > 0 under the above conditions. =
turn implies from (26) that the choice (28) yields the fastest We now establish the conditions of Lemma 5. (C1) follows
convergence rate. We first prove two lemmas about stricgijrectly from the definition (27), so we focus on (C2) and (C3)

concave functions. below. We first treat the case wheli€l) is strictly convex.
Lemma 3: A 1-D line I(z) = az +b can intersect a strictly ~Lemma 6: If A(]) is a convex function and(’) is concave
concave (or strictly convex) functiofi(z) at most twice. for I > 0, then the difference functioi(l) in (32) with the

Proof: Supposel(x;) = f(x;) at pointsz; < xp < curvaturec defined in (28) satisfies conditions (C2) and (C32)
z3. Then sincef(z) is strictly concave,f(z) > I(z) for in Lemma 5. Furthermore; > 0.
x € (x1, x3), Which contradicts the initial assumption that  Proof: It is trivial to show that the conditions (E2)
f(z2) = l(z2). m through (E5) of Lemma 1 hold in this case for 0. First we
Lemma 4: Let f(z) be a 1-D strictly concave function, andprove c > 0. Suppose: = 0, so ¢ is a constant. Sincé(l) is
let I(z) = axz + b be a line that intersectg(x) at the two increasing by (E4) in Lemma 1 ardl®) = h(l°), it is obvious
points z; < 2. Then that 4(1) > (1), V1 € [0,1°), s08(0) = — [/ 8(t)dt < O
contradicting (C1). So¢ > 0 in this case and(0) = 0 by
flz) <l(z) for ze&(—o0, 21)U(x2, 00). design.
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To prove (C32), considek. The lineg cannot intersect the second derivative if0, co), and (9) is satisfied by mean value
strictly concaveh at more than two points due to Lemma 3theorem as mentioned in Section IlI-A.
We know thaté(lc) = 0, thusi¢ is an intersection point. We We need to prove that no other nonnegative curvature less
have(0) = 0 andé(I°) = 0 by definition. From mean value than (28) satisfies (9).
theorem, there must be another intersection pbirg [0, [°) Assume0l < ¢ < ¢, and let
such tha#(I”) = 0. We know by Lemma 3 that there cannot be

any additional points wheré() = 0. (1) < 0 for I € (17, 1) g" (1) = h(I°) + h(1°)(1 = 1°) + sc* (1 — 1°)%.
due to concavity ofh and 6(I) > 0 for I € [0, I?) due to
Lemma 4. (C32) is proven. Obviously ¢* can exist only where > 0 sincec = 0 is the

To prove (CZ)’ app'y Lemma 4 to the Strict'y Concavg'linimum curvature we a”OW. W|th > 0, |t iS ObViOUS from
function 7, with two points? andi® as the intersection points (28) thatg(0) = h(0). If I* > 0, this clearly implies that
of the line with the curve. m ¢(0) < ¢g(0) = A(0) which shows that=* cannot satisfy

We now consider the realistic nonconvex case. (9). If I* = 0, then a curvature™ < ¢ would forceg to lie

Lemma 7: Let h(1) be a nonconvex function with its deriva-underh for some small values dj That is, 3¢ > 0 such that
tive / satisfying properties (P1), (P2), and (P3) in Lemma 2() < h(l) for ¢ > 1 > 0. Thusc" does not satisfy (9) even
The difference functio({) defined in (32) with the curvature for I = 0. L o u
defined in (28) satisfies (C2) and (C3) in Lemma 5. _ Corollary 2 The optlmum _cur\_/ature defl_ned in (2_8) us-

Proof: The reader can refer to Fig. 3 for representati/99 the marginal negative log-likelihood functién(l) defined
plots of i and its first derivative. Note that in Lemma 2, (P2} (3) for the transmission tomography problem satisfies the
= (P4) directly. optlmallty condition in (27) forb; > 0, y; 20,7, = 0.

Proof: The function /;(I) defined in (3) satisfies the

Consider these two cases whéras defined as in Lemma 2: - /
Casel® < I*: By (P3) of Lemma 2,/° is in a concave conditions (H1) or (H2) of Theorem 1 depending on the values

increasing region. By Lemma 6, (C32) holds as well as tf ¥ andr; as showninLemmas 1 and 2. Hence Theorem 1is
fact thatc > 0. To prove (C2), we use property (P4), thiats directly applicable to the transmission tomography prolaem.

a decreasing function fdr > [*. So, sincej(l*) > h(I*) [as
for (C2) in Lemma 6 again] and > 0, ¢(1) > h(l), VI > I ACKNOWLEDGMENT
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