
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 9, SEPTEMBER 1999 801

Monotonic Algorithms for Transmission Tomography
Hakan Erdŏgan, Member, IEEE, and Jeffrey A. Fessler,*Member, IEEE

Abstract—We present a framework for designing fast and
monotonic algorithms for transmission tomography penalized-
likelihood image reconstruction. The new algorithms are based
on paraboloidal surrogate functions for the log likelihood. Due
to the form of the log-likelihood function it is possible to find
low curvature surrogate functions that guarantee monotonicity.
Unlike previous methods, the proposed surrogate functions lead
to monotonic algorithms even for the nonconvex log likelihood
that arises due to background events, such as scatter and random
coincidences. The gradient and the curvature of the likelihood
terms are evaluated only once per iteration. Since the problem
is simplified at each iteration, the CPU time is less than that
of current algorithms which directly minimize the objective, yet
the convergence rate is comparable. The simplicity, monotonic-
ity, and speed of the new algorithms are quite attractive. The
convergence rates of the algorithms are demonstrated using real
and simulated PET transmission scans.

Index Terms— Image reconstruction, maximum likelihood,
PET, SPECT.

I. INTRODUCTION

A TTENUATION correction is required for quantitatively
accurate image reconstruction in emission tomography.

The accuracy of this correction is very important in both
PET and SPECT [1]. Transmission scans are performed to
measure the attenuation characteristics of the object and to
determine attenuation correction factors (ACF’s) for emission
image reconstruction. Conventional smoothing methods for
ACF computation are simple and fast, but suboptimal [2],
[3]. For low-count transmission scans, statistical reconstruction
methods provide lower noise ACF’s. However, a drawback of
statistical methods is the slow convergence (or possible di-
vergence) of current reconstruction algorithms. This paper de-
scribes fast and monotonic algorithms for penalized-likelihood
reconstruction of attenuation maps from transmission scan
data. These reconstructed attenuation maps can be reprojected
to calculate lower noise ACF’s for improved emission image
reconstruction.

Statistical methods for reconstructing attenuation maps from
transmission scans are becoming increasingly important in
thorax and whole-body PET imaging, where lower counts
and short scan times are typical. 3-D PET systems also
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require attenuation correction, which can be done by repro-
jecting 2-D attenuation maps. SPECT systems with trans-
mission sources are becoming increasingly available where
statistical algorithms can be efficiently used for attenuation
map reconstructions. For low-count transmission scans, the
nonstatistical FBP reconstruction method systematically over-
estimates attenuation map coefficients, whereas data-weighted
least squares methods (WLS) for transmission reconstruction
are systematically negatively biased [4]. By accurate statistical
modeling, penalized-likelihood reconstruction of attenuation
maps eliminates the systematic bias and yields lower variance
relative to linear methods. Hence, we focus on penalized-
likelihood image reconstruction rather than WLS in this paper.

There are many reconstruction algorithms based on the
Poisson model for transmission measurements. The expecta-
tion maximization (EM) algorithm [5], which led to a simple
M-step for the emission problem, does not yield a closed-
form expression for the M-step in the transmission case [6].
Modifications of the transmission ML-EM algorithm [7]–[9]
as well as algorithms that directly optimize the penalized-
likelihood objective [3], [10]–[13] have been introduced. Some
of these algorithms seem to converge rapidly in the convex
case.

However, up until now, no practically realizable monotonic
(or convergent) algorithm has been found for the penalized-
likelihood problem when the objective is not convex. The neg-
ative log likelihood is nonconvex when there are background
counts in the data. This is unavoidable in PET and SPECT due
to the accidental coincidences in PET and emission crosstalk1

in SPECT. The assumption of no background counts may be
reasonable in X-ray CT.

In this paper, we present a new algorithm which is guar-
anteed to be monotonic, even when the objective function is
nonconvex. This algorithm depends on paraboloidal surrogate
functions for the log likelihood, which transform the problem
into a simpler quadratic optimization problem at each iteration.
The transformed problem at each iteration is similar to a penal-
ized weighted least squares (PWLS) problem and, thus, has a
familiar and simple form. This quadratic problem need not be
solved exactly. An algorithm that monotonically decreases the
surrogate function suffices. Since evaluating the gradient and
Hessian of the surrogate function is much less costly, the CPU
time per iteration is greatly reduced as compared to algorithms
that directly attempt to minimize the objective function, such
as coordinate descent (CD). Remarkably, the convergence
rate is comparable to other direct algorithms. For nonconvex

1Even though different photon energies are used in simultaneous emis-
sion/transmission SPECT imaging, some emission events are recorded in
the transmission energy window, due to Compton scatter and finite energy
resolution.
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objective functions, monotonicity alone does not guarantee
convergence to the global minimizer when local minima exist,
but it does ensure that the estimates do not diverge, since the
likelihood is bounded. Whether the transmission log likelihood
has multiple local minima is an open question.

The surrogate or substitute function idea is not new to
the tomographic reconstruction area. EM algorithms can be
viewed as providing a surrogate function for the log-likelihood
function by means of a statistically more informative complete
data set which is unobservable [5]. The conditional expectation
of the log-likelihood function for this new space is often easier
to maximize, having a closed form for the emission case.
This statistical construction of surrogate functions is somewhat
indirect and seems to yield a limited selection of choices. De
Pierro has developed surrogate functions for nonnegative least
squares problems, based solely on convexity arguments, rather
than statistics [14]. Our proposed approach is similar in spirit.

The EM algorithm did not result in a closed-form M-step
for the transmission case [6], so direct minimization of the
objective function became more attractive. Cyclic Newtonian
CD (CD,NR) [11] has been used effectively in transmission
tomography. However, CD based on Newton’s iteration for
each pixel is not guaranteed to be monotonic. Furthermore, an
iteration of Newton-based CD requires at leastexponentia-
tions and floating point operations,2 where is the (very
large) number of nonzero elements in the system matrixin
(1) below. These exponentiations and floating point operations
constitute a significant fraction of the CPU time per iteration.
Recently, Zhenget al. introduced a functional substitution
(FS) method [15], [16] which is proven to be monotonic
for transmission scans with no background counts [
in (1) below]. Like CD, the FS algorithm cyclically updates
the coordinates of the image vector, i.e., the attenuation
map values for each pixel. However, instead of minimizing
the original complex objective function with respect to each
parameter, the FS algorithm minimizes a one-dimensional
(1-D) parabolic surrogate function. The minimization of the
surrogate is guaranteed to monotonically decrease the orig-
inal objective function if the derivative of the negative log
likelihood is concave (which is true when ) [15],
[16]. On the other hand, the FS algorithm requires at least

exponentiations and floating point operations3 per
iteration, which means that the guarantee of monotonicity
comes at a price of significantly increased computation time
per iteration for that method. Furthermore, the FS algorithm is
not monotonic in the nonconvex case of interest in PET and
SPECT, where .

De Pierro [17] has used a surrogate function for the penalty
part of the penalized-likelihood problem for convex penalties.
The surrogate function idea was also used in several algorithms
which update a group of pixel values at a time, rather than a
sequential update of each pixel. Examples of these types of
algorithms are the convex algorithm of [18], which updates
all pixels simultaneously, and the grouped coordinate ascent

2This can be reduced to9M floating point operations if the denominator
terms are precomputed similarly to Section III-F in this paper.

3Precomputation of the denominator terms in FSCD would destroy mono-
tonicity.

(GCA) algorithm of [12] and [15], which updates a subset
of pixels at a time. The surrogate functions used in these
algorithms were obtained using De Pierro’s convexity trick
[17] to form a separable function that is easier to minimize than
the nonseparable original objective function. The convergence
rates per iteration decrease due to the higher curvature of
these surrogate functions, but these algorithms require less
computation per iteration as compared to single CD [11]
and are parallelizable. Furthermore, it is trivial to impose the
nonnegativity constraint with an additively separable surrogate
function [12].

In this paper, we propose the use of a global surrogate
function for the original objective function which is not
separable, but has a simple quadratic form. The method is
based on finding 1-D parabolic functions that are tangent to
and lie above each of the terms in the log likelihood, similar
to Huber’s method for robust linear regression [19]. Whereas
Huber considered strictly convex cost functions, we extend
the method to derive provably monotonic algorithms, even
for nonconvex negative log-likelihood functions. Remarkably,
these algorithms require less CPU time to converge than the
fastest algorithm introduced before (GCA of [12]) and, as an
additional advantage, they are proven to be monotonic. We
call the new approach to image reconstruction the paraboloidal
surrogates (PS) method.

In the rest of this paper, we describe the problem, develop
the new algorithm, and present representative performance
results on real PET transmission data.

II. THE PROBLEM

The measurements in a photon-limited application, such
as PET or SPECT, are modeled appropriately as Poisson
random variables. In transmission tomography, the means
of the prompt coincidences are related exponentially to the
projections (or line integrals) of the attenuation map through
Beer’s law [6]. In addition, the measurements are contaminated
by extra background counts, due mostly to random coinci-
dences and scatter in PET and emission crosstalk in SPECT.
Thus, it is realistic to assume the following model:

Poisson (1)

where is the number of measurements, is the average
linear attenuation coefficient in voxel for ,
and denotes the number of voxels. The notation

represents theth line integral of the attenuation
map and is the system matrix. We assume
that and are known nonnegative constants,4

where is the mean number of background events,is the
blank scan factor, and represents the number of transmission
events counted by theth detector (or detector pair in PET).

We seek to find a statistical estimate of the attenuation map
which agrees with the data and is anatomically reasonable.

4The assumption that the background countsri are known nonnegative
constants is an approximation. In PET, we estimate theri’s by smoothing the
delayed coincidences from the transmission scan [20]. Alternatively, one can
use time scaled delayed coincidences from a blank scan (which are less noisy
due to longer scan times) as theri factors [21] or use Bayesian estimation
techniques to estimate theri’s from delayed coincidences [3], [20].
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For this purpose, a natural approach is to use a likelihood-
based estimation strategy. The log-likelihood function for the
independent transmission data is

ignoring constant terms. The log likelihood depends on the
parameter vector through its projections only and can
be expressed in the following form:

(2)

where the contribution of theth measurement to the negative
log likelihood is given by

(3)

The proposed algorithm exploits the additive form of (2).
Directly minimizing (maximum likelihood) results in
a very noisy estimate due to the ill-posed nature of the
problem. However, it is well known that the attenuation
map in the body consists of approximately locally homoge-
neous regions. This property has formed the basis of many
segmentation methods for transmission scans [22]. Rather
than applying hard segmentation, we add to the negative
log likelihood a penalty term which encourages piecewise
smoothness in the image, resulting in the penalized-likelihood
image reconstruction formulation as given below:

(4)

Our goal is to develop an algorithm for finding the minimizing
with minimal CPU time.
We consider roughness penalties that can be expressed

in the following very general form [17], [23]:

(5)

where the ’s are potential functions acting as a norm
on the soft constraints and is the number of
such constraints. The functions we consider are convex,
symmetric, nonnegative, differentiable, and satisfy some more
conditions that are listed in Section III-C. The in (4) is
a parameter which controls the level of smoothness in the
final reconstructed image. For more explanation of the penalty
function, see [23].

The objective function defined in (4) is not convex when
there are nonzero background counts ( ) in the data. In
this realistic case, there is no guarantee that there is a single
global minimum. However, some practical algorithms exist
that seem to work very well, yet none of them are proven to
be monotonic. In this paper we introduce an algorithm that is
monotonic, even when is not convex. The new approach is
based on successive paraboloidal surrogate functions and will
be explained in the rest of the paper.

Fig. 1. One-dimensional illustration of the optimization transfer principle.
Instead of minimizing�(�), we minimize the surrogate function�(�; �n) at
thenth iteration. Here, the surrogate function�2 has a smaller curvature and is
wider than�1, thus, it has a bigger step size and hence a faster convergence
rate to the local minimum��.

III. PARABOLOIDAL SURROGATESALGORITHMS

The penalized-likelihood objective function has a
complex form that precludes analytical minimization. Thus,
iterative methods are necessary for minimizing . Our
approach uses the optimization transfer idea proposed by De
Pierro [14], [17], summarized as follows. Let be the
attenuation map estimate after theth iteration. We would
like to find a surrogate function5 , which is easier
to minimize or to monotonically decrease than . This
approach transforms the optimization problem into a simpler
problem at each iteration, as illustrated in Fig. 1. The following
“monotonicity condition on the surrogate function is sufficient
to ensure that the iterates monotonically decrease

(6)

We restrict ourselves to differentiable surrogate functions,
for which the following conditions are sufficient6 to ensure (6):

for (7)

Fig. 1 illustrates two surrogate functions that are tangent to
the original objective at the current iterate and lie above it for
all feasible values of the parameters.

The EM algorithm [6] provides a statistical method for con-
structing surrogate functions , satisfying the above
conditions. However, in the transmission tomography problem,
the natural EM surrogate is difficult to minimize and leads to
slow convergence. In this paper, we construct a simpler surro-
gate, using ordinary calculus rather than statistical techniques.

The log-likelihood function (2) has a certain kind of depen-
dence on the parameters, namely through their projections

5We use the notation�(�; �n) to emphasize that the surrogate is a function
of � once�n is fixed and it changes for each�n, following theQ function
notation of the EM algorithm [5].

6The second condition follows from the other two conditions for differen-
tiable surrogate functions.
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. The negative log likelihood is the sum of individual
functions , each of which depends on a single projection
only. We can exploit this form of the likelihood function by
selecting a 1-D surrogate function for each of the 1-D
functions in the projection () domain. The overall sum of these
individual 1-D functions will be an appropriate surrogate for
the likelihood part of the objective.

Let denote the estimate of theth line integral
of the attenuation coefficient at theth iteration. We choose
the following quadratic form for the surrogate functions:

(8)

where is the curvature of the parabola and de-
notes the first derivative of . This construction ensures that

and similar to (7). To
ensure monotonicity, we must choose the curvatures to satisfy
the following inequality at each iteration:

for (9)

After determining the parabolas, one can easily verify that
the following function is a global surrogate function for the
objective which satisfies the properties in (7)

(10)

where

(11)

(12)

where the column vector , denotes the
transpose of and is the diagonal matrix
with diagonal entries for .

The surrogate function in (10) consists of the sum
of a paraboloid (i.e., a quadratic form) and the convex penalty
term. An algorithm that decreases the functionwill also
monotonically decrease the objective function if the inequality
in (9) holds. The general paraboloidal surrogates (PS) method
can be outlined as follows:

for each iteration

determine and consequently

find a that decreases (or minimizes)

end.

The key design choices in the general method outlined above
are the following:

1) the different ways of choosing the curvatures ’s
which would satisfy (9);

2) the algorithm to monotonically decrease de-
fined in (10) for .

Each combination of choices leads to a different algorithm, as
we elaborate in the following sections.

A. Maximum Curvature

A natural choice for is the maximum second deriva-
tive in the feasible region for the projections. This maximum
curvature ensures that (9) holds, which follows from the gen-
eralized mean value theorem for twice differentiable functions
[24, p. 228]. The feasible region for the projections is ,
due to the nonnegativity constraint. Hence, the choice

(13)

is guaranteed to satisfy (9). We show in Appendix A that the
closed-form expression for is

(14)

where for and zero otherwise. Thus, it is
trivial to compute the terms in this case. The choice
(14) for the curvature does not depend on the iteration

, so it is a constant. We refer to this choice as the maximum
curvature (PS,M,CD).

Having specified the curvatures , the paraboloidal
surrogate in (12) is now fully determined. Next, we
need an algorithm that decreases or minimizes the surrogate
function .

B. Algorithms for Minimizing the Paraboloidal Surrogate

In the absence of the nonnegativity constraint, in principle,
one could minimize the surrogate function over
by zeroing its gradient. The column gradient of with
respect to is given by

(15)

If is a quadratic form, i.e., , then we can
analytically zero the gradient, yielding the iteration

(16)

There are three problems with the above iteration. It does
not enforce the nonnegativity constraint, the matrix inverse is
impractical to compute exactly, and it is limited to quadratic
penalty functions. To overcome these limitations, we instead
apply a monotonic CD iteration to decrease .

C. Coordinate Descent Applied to the Surrogate Function

To apply CD to monotonically decrease the surrogate func-
tion , we need a quadratic function that majorizes
(lies above) the function at each pixel. We treat the
likelihood part and the penalty part separately. Let

and

where denotes the current estimate of the parameter. Then
we must select curvatures and that satisfy the following:

(17)
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and

(18)

where

(19)

where and are treated as functions of only.
Equality is achievable in (17) since the likelihood surrogate

is quadratic. For the penalty part , we must find
a quadratic function that lies above it, by appropriate
choice of , as considered below.

The derivative of the likelihood surrogate parabola atis
[from (11)]

where from (8)

(20)

where and

(21)

From (8) and (11), the curvature of the parabola is
obviously

(22)

From (5), the derivative of the penalty part at is

We must obtain a parabolic surrogate that satisfies
(18). We assume the potential functions satisfy the
following conditions.

1) is symmetric.
2) is everywhere differentiable (and therefore continu-

ous).
3) is nondecreasing (and hence is

convex).
4) is nonincreasing for .
5) is finite and nonzero, i.e.,

.

In the context of robust regression, Huber showed ([19,
Lemma 8.3, p. 184], [23]) that for potential functions that
satisfy the conditions above, we can find a parabola that
lies above . This parabola is tangent to

the potential function at the current point and at
and has the curvature where was defined

above. The surrogate parabola is given by

Fig. 2. Illustration of the tangent parabolas lying above a potential function.

and is illustrated in Fig. 2. Thus, the following is a surrogate
parabola for the penalty part of the objective function:

(23)

The curvature of the parabola is

(24)

Combining the above surrogate parabolas (17) and (23), the
minimization step of the CD for pixel is simply

(25)

This is an update that monotonically decreases the value of
and consequently the value of . One iteration is

finished when all pixels are updated via (25) in a sequential
order. We usually update the paraboloidal surrogate function
after one iteration of CD, but one could also perform more
than one CD iteration per surrogate. We call this method the
paraboloidal surrogates CD (PSCD) method.

The PSCD algorithm with the curvatures obtained from (14)
is outlined in Table I. In this table, the algorithm flow is given
for the general case where may change at each iteration.
However, the curvatures given in (35) in Table I are
constant throughout the iterations. If one uses fixed
values which do not depend onas in (35), then the terms
can be precomputed and the algorithm should be reorganized
to take this computational advantage into account.

Another computational advantage of curvatures that do not
depend on the iterations is as follows. If we define
and , then the update in (38) will be simplified to
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TABLE I
ALGORITHM OUTLINE FOR A PARABOLOIDAL SURROGATES ALGORITHM WITH COORDINATE DESCENT

(PSCD). THE CURVATURE CHOICE SHOWN HERE IS THE MAXIMUM SECOND DERIVATIVE

which decreases the computation time devoted to back and
forward projections per iteration by about 20% for implemen-
tations using precomputed system matrices. Equations (37) and
(39) should also be modified to use the new variables. We have
not implemented this faster version for this paper.

The algorithm in Table I requires roughly double the float-
ing point operations required for one forward and one backpro-
jection per iteration. The gradient of the original log likelihood
with respect to the projections and the curvature
terms are computed only once per iteration.7 The
gradient of the surrogate paraboloid usesterms which can
be updated easily, as shown in (38) in the algorithm. This
implementation does not update the projectionsafter each
pixel update, since they are only needed in the outer loop
(34). The projections are computed in (39) after updating all
pixels. The update (39) requires to work. In (36),
we constrain the curvature value to some small value
(which obviously does not hurt monotonicity) so that (39) can
be evaluated for all . However, should not be
very small, since it will cause undesirable numerical precision
errors. Storage requirements are also modest for the proposed
algorithm. A single copy of the image and four sinograms for

7In contrast to the PSCD algorithm, when coordinate descent (CD,NR)
is applied to the original objective function, new gradients and curvatures
must be computed after each pixel is updated. These computations involve
expensive exponentiations and floating point operations which increase the
CPU time required for original CD.

, , , and need to be stored in addition to data vectors
.

In the following, we discuss the convergence rate of the
algorithm, which provides motivation for obtaining better
curvatures.

D. Convergence and Convergence Rate

In the absence of background events, i.e., when
, the penalized-likelihood objective is convex and our

proposed PSCD algorithm is globally convergent. This is a
fairly straightforward consequence of the proof in [25] for the
convergence of SAGE, so we omit the details.

However when , little can be said about global
convergence due to the possibility that there are multiple
minima or a continuous region of minima. Our practical
experience suggests that local minima are either unlikely to be
present, or are quite far from reasonable starting images, since
all experiments with multiple initializations of the algorithm
yielded the same limit within numerical precision. The PSCD
algorithm is monotonic, even with the nonconvex objective
function. One can easily show that every fixed point of the
algorithm is a stationary point of the objective function and
vice versa. Thus, it is comforting to know that the algorithm
will converge to a local minimum and will not blow up.

The convergence rate of the proposed algorithm with the
maximum curvature choice is suboptimal. The curvatures
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are too conservative and the paraboloids are unneces-
sarily narrow. Intuitively, one can deduce that smaller
values will result in faster convergence. The reason for this is
that the lower the curvature, the wider the paraboloid and the
bigger the step size, as can be seen in Fig. 1. To verify this
intuition, we analyze the convergence rate of the algorithm.
For simplicity, we assume that a quadratic penalty is used in
the reconstruction and that the surrogate function
(10) is minimized exactly.

Let be the unconstrained minimizer of the original ob-
jective function. At step , by zeroing the gradient of (10)
we get the simple Newton-like update in (16). By the Taylor
series, for , we can approximate the gradient of the
objective function as where
is the Hessian of at . Define ,
then from (16)

(26)

This equation describes how the convergence rate of the
proposed algorithm is affected by differentchoices. We use
the results from [26] to evaluate the convergence rate. Let

and be two matrices corresponding to curvature
vectors and , respectively, with . Then,
obviously, is positive definite and it follows
from [26, Lemma 1] that the algorithm corresponding to
has a lower root-convergence factor and thus converges faster
than the algorithm corresponding to.

Therefore, to optimize the convergence rate, we would like
the values to be as small as possible while still satisfying
(9). The optimal choice for the curvatures is the solution to
the following constrained optimization problem for each:

(27)

This choice yields the fastest convergence rate while still guar-
anteeing monotonicity. In the following section, we discuss
the solution to (27).

E. Optimum Curvature

The curvature that satisfies (27) is not trivial to find for
general functions . However, the marginal negative log-
likelihood functions for each projection [ defined in (3)] in
transmission tomography have some nice properties. We show
the following in Appendix B. The parabola that is 1) tangent
to at the current projection and 2) intersects at
is guaranteed to lie above . This claim is true only
when the curvature of is nonnegative. If the curvature
obtained by the above procedure is negative, then we set
to zero.8 When , the function is the line which is
tangent to the curve at the current projection value.

8In fact, any nonnegativeci(lni ) will ensure monotonicity, hence, the� in
(36).

Fig. 3. This figure illustrates the optimum curvature and the maximum
curvature surrogate functions and their derivatives forbi = 100; yi = 70,
ri = 5, and ln

i
= 2:5.

The curvature of the parabola described above is:9

(28)
We prove in Appendix B that this curvature is the optimum
curvature that satisfies (27). The nonnegativity constraint plays
an important role in the proof. If nonnegativity is not enforced,
the projections at an iteration may go negative and the cur-
vature (28) will not guarantee monotonicity anymore. Fig. 3
illustrates this surrogate parabola with the optimum curvature
(28). In Table I, the curvature computation in (35) should be
changed to (28) to implement the PSCD method with the
optimum curvature (PS,O,CD).

F. Precomputed Curvature

By relaxing the monotonicity requirement, we can develop
faster yet almost always monotonic algorithms. We can do
this by choosing curvatures in (8) such that

but rather than requiring the
inequality (9). In this case, the paraboloids are quadratic
approximations to the log-likelihood function at each iteration.
A reasonable choice for the curvatures is

(29)

The value is the point that mini-
mizes the function. These curvatures in (29) are close
approximations to the second derivative offunctions at the
projection values where is the solution to the penalized-
likelihood problem [12]. This is called the fast denominator

9When ln
i

is nonzero but small, due to numerical precision, (28) might
turn out to be extremely large during computation. Ifci(lni ) > [�hi(0)]+
(which theoretically should not happen, but practically happens due to limited
precision), then we setci(lni ) to be equal to the maximum second derivative
[�hi(0)]+ which eliminates the problem.
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approach in [12], since it features a one-time precomputed
approximation to the curvature that is left unchanged during
the iterations so that the denominator terms (22) can be
computed prior to iteration [similar to maximum curvature
in (14)]. Computational benefits for iteration independent
curvatures, as summarized in Section III-C, can be utilized.
This approximation works well because we usually start the
iterations with an FBP image where projections are
usually close to . Nevertheless, unlike (28), monotonicity
is not guaranteed with (29).

The PS method with the curvature (29) yields faster con-
vergence than the other PS algorithms presented above. This
method is related to the PWLS image reconstruction method
[11], [27], but instead of making a one-time quadratic ap-
proximation to the log-likelihood function, the approximation
is renewed at each iteration. Although the curvature of the
paraboloid remains same, the gradient is changed to match
the gradient of the original objective function at the current
iterate. The nonnegativity constraint does not play an important
role for the derivation, and this curvature may be used for
algorithms where nonnegativity is not enforced. We refer to
this curvature as precomputed curvature (PS,P,CD).

IV. RESULTS

To assess the effectiveness and speed of the new PS algo-
rithms, we present results using real PET data. We acquired
a 15-h blank scan (’s) and a 12-min transmission scan data
( ’s) using a Siemens/CTI ECAT EXACT 921 PET scanner
with rotating rod transmission sources [28]. The phantom
used was an anthropomorphic thorax phantom (Data Spectrum,
Chapel Hill, NC). Delayed coincidence sinograms were col-
lected separately in each scan. The blank and transmission scan
delayed-coincidence sinograms were shown to be numerically
close10 [21], so we used a time-scaled version of blank
scan delayed coincidences as thefactors, with no other
processing. The projection space was 160 radial bins and 192
angles and the reconstructed images were 128128 with
4.2-mm pixels. The system matrix was computed by
using 3.375-mm-wide strip integrals with 3.375-mm spacing,
which roughly approximates the system geometry [4].

We performed reconstructions of the phantom by FBP as
well as various penalized-likelihood methods. For the penalty
term in PL reconstructions, we used the following function:

which is a special case of (5). Here, is normally equal
to one for horizontal and vertical neighbors and for
diagonal neighbors. We used the modified ’s described
in [29] to achieve more uniform resolution. For the potential
function, we used one of the edge-preserving nonquadratic cost
functions that were introduced in [30]

10This is due to the fact that singles rate is mostly affected by transmission
rods.

This function acts like a quadratic penalty for small differences
in neighboring pixels and is close to the absolute value
function for differences greater than. This nonquadratic
function penalizes sharp edges less than quadratic functions.
We used cm chosen by visual inspection. In the
final reconstructed image, the horizontal and vertical neighbor
differences are less than thisin homogeneous regions (90%
of all differences) which makes the curved part of the penalty
effective in those regions. However, at edges for which the
differences are greater than, this penalty penalizes less than
the quadratic one.

The PS algorithms described throughout this section are
named using the following format: PS,,CD. PS stands for
paraboloidal surrogates as the general framework for the
algorithms and CD stands for coordinate descent applied to
the surrogate function. The letter in the format represents
the curvature type . The types are M, O, and P for
maximum second derivative curvature (14), optimum curva-
ture (28), and precomputed curvature (29), respectively. The
other algorithms we used for comparison in this section are
as follows: the LBFGS, a constrained quasi-Newton algorithm
[31]; CD,P,CD with precomputed denominators; CD,NR,CD
with Newton–Raphson denominators [11], [12] applied to the
objective function; and GD,P, grouped descent with precom-
puted denominators [12].

Fig. 4 shows images reconstructed by FBP and statistical
methods from a 12-min scan. For comparison, an FBP re-
construction of a 7-h scan is also shown. Qualitatively, the
statistical reconstruction looks better than the FBP image,
having less noise and more uniform homogeneous regions.
However, our focus here is not the image quality but the
amount of time it takes the algorithms to converge to the min-
imizer image. Nevertheless, improved emission image quality
is our ultimate goal. Statistical methods for transmission
reconstruction yield better ACF’s, as compared to conventional
methods and result in better emission images. Our goal here
is to speed up and stabilize statistical methods to make them
usable routinely in clinic.

Fig. 5 shows that the proposed PSCD algorithms decreased
almost as much per iteration as the CD algorithm applied

to directly. This result is important because it shows
that the surrogate paraboloids (especially with the optimum
curvature) closely approximate the original log likelihood.
More importantly, in Fig. 6 the PSCD algorithms are seen to
be much faster than CD in terms of the actual CPU time.11 One
of the main overhead costs in CD is the computation of the log-
likelihood gradient term after each pixel change [12]. In the
PSCD algorithm, the gradient of the surrogate function (’s)
can be computed (updated) by a single multiplication (20).
The maximum curvature method introduced in Section III-A
precomputes the denominator terms () for the likelihood
part since ’s do not depend on the iterations. However,
these ’s are much larger than the optimal curvatures, so
more iterations are required for PS,M,CD to converge than for
PS,O,CD.

11All CPU times are recorded on a DEC 600 5-333-MHz workstation with
compiler optimization enabled.
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(a)

(b)

(c)

Fig. 4. (a) FBP reconstruction of phantom data from 7-h transmission
scan. (b) FBP reconstruction from 12-min transmission scan. (c) Penal-
ized-likelihood reconstruction from 12-min transmission scan using 12 itera-
tions of the optimum curvature PSCD algorithm.

We also compared the PSCD algorithms to the general-
purpose constrained quasi-Newton algorithm (LBFGS) [31] in
Figs. 5 and 6. Although the LBFGS algorithm takes about 25%
less CPU time (0.88 s) per iteration than PSCD algorithms,
it did not converge as fast as the proposed algorithms. This
shows that the algorithms such as PSCD, which are tailored to
our specific problem, converge faster than the general-purpose
quasi-Newton method.

In Fig. 7, we consider the fastest previous algorithm we
know of (i.e., GD with 3 3 groups with a precomputed de-
nominator [12] and compare it to the fastest PS algorithms. The
PSCD with precomputed curvatures (PS,P,CD) (introduced in
Section III-F) requires slightly less CPU time than GD,P to

Fig. 5. Comparison of objective function decrease�(�0) � �(�n) versus
iteration numbern of monotonic PS methods with CD and LBFGS methods
for real phantom data.

Fig. 6. Same as Fig. 5, butx axis is CPU seconds on a DEC AlphaStation
600 5-333 MHz.

converge. Although the PS,P,CD algorithm is not provably
monotonic, it is a reasonable approximation and we did not
observe any nonmonotonicity in our practical experience,
when initializing with an FBP image. The monotonic PS,O,CD
method is shown in this plot as a baseline for comparison with
Fig. 6.

In Fig. 8, we present the results of a transmission scan
simulation with zero background counts ( ) and compare
the monotonic PSCD algorithm with the functional substitution
(FS) method of Zhenget al. [15], [16]. The FS algorithm
is proven to be monotonic when , in which case
is convex. However, the FSCD method requires considerably
more computation per iteration than both CD and PSCD. The
plot in Fig. 8 shows that FSCD requires more CPU time than
PSCD.

Table II compares the number of iterations and CPU sec-
onds required to minimize the objective function by each
method. The CPU times,12 floating point operations, and mem-

12The CPU times are computed on a DEC 600 5-333 MHz. We also
compiled the code on a SUN Ultra 2 computer and got similar CPU time ratios
for the algorithms. However, the ratios could differ on another architecture or
with another compiler, due to cache size and pipelining differences.
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TABLE II
COMPARISON OFCPU TIMES, NUMBER OF ITERATIONS TO CONVERGE, FLOATING POINT OPERATIONS AND MEMORY ACCESSES FOR THEPS
ALGORITHMS VERSUSCD, GD, AND FS METHODS. CONVERGENCE IN THIS TABLE MEANS �(�0)� �(�n) > 0:999[�(�0)� �(��)]

WHERE �(��) IS THE SMALLEST OBJECTIVE VALUE OBTAINED IN 30 ITERATIONS AMONG ALL THE METHODS. THE

FLOATING POINT OPERATIONS, AND MEMORY ACCESSESONLY IN THE ORDER OFM ARE SHOWN FOR EACH METHOD

Fig. 7. Comparison of the speed of the proposed PS algorithms with the
fastest algorithm that was introduced before: grouped CD with 3� 3 groups.

Fig. 8. Comparison of objective function decrease�(�0)� �(�n) versus
CPU time of monotonic PS and FS methods with CD. Noteri = 0 in this
simulation.

ory accesses (of order only) per iteration are also tabulated,
where is the number of nonzero entries in system matrix.
For comparison purposes, a single forward and backprojection
requires about 0.78 CPU s. The CD and FS methods are

significantly different from our proposed PSCD methods in
the following respect. In our methods, the terms are kept
updated for all outside the projection loop in (38). In contrast,
both CD and FS require terms within the backprojection
loop and these change with every pixel update so they must
be computed on the fly within the backprojection loop. Thus,
that backprojection must access and the system
matrix within the loop and perform quite a few floating point
operations (including the exponentiations) with them. Not only
is there inherently more floating point operations required for
CD and FS, we suspect that the need to nonsequentially access
parts of four sinogram-sized arrays, in addition to the system
matrix, significantly degrades the ability of the CPU to pipeline
operations. This leads to the dramatic differences in the CPU
time between PSCD and CD methods.

If a monotonic algorithm is required, the PSCD algorithm
with the optimal curvature (PS,O,CD) is the fastest algorithm.
The other algorithms are not guaranteed to be monotonic ex-
cept PSCD with maximum curvature. Although the PS,M,CD
algorithm consumes less CPU time per iteration, it takes longer
to converge since the curvatures result in an unnecessarily
narrow surrogate function which causes small step sizes.

Among the nonmonotonic algorithms, another PS method,
PSCD with precomputed curvatures (PS,P,CD) is the fastest.
It converged in about 15 s with the real data used. The CPU
time per iteration is the same as PS,M,CD, since they both
precompute the denominator () terms. Since the curvatures
are smaller, this method decreases the objective very rapidly.
Nevertheless, it is not guaranteed to be monotonic. However,
as with the CD and GD with precomputed denominators [12],
we have never observed any nonmonotonicity in practical
applications with iterations started with an FBP image. The
FSCD and CD algorithms consume a lot of CPU cycles per it-
eration and they are much slower than the proposed algorithms.
The GD,P algorithm lowers the CPU requirements by decreas-
ing the number of exponentiations, but it does not decrease the
objective function as much per iteration as CD. Thus, it is also
slightly slower than the PS,P,CD algorithm. This table shows
that PSCD algorithms are preferable for both monotonic and
nonmonotonic transmission image reconstructions.
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V. CONCLUSION

We have introduced a new class of algorithms for minimiz-
ing penalized-likelihood objective functions for transmission
tomography. The algorithms are shown to be monotonic, even
with the nonconvex objective function. In the nonconvex
case there is no proof that these algorithms will find the
global minimum, but at least the algorithms will monotonically
decrease the objective function toward a local minimum.
Practical experience suggests there are rarely multiple minima
in this problem, but there is no proof. In the strictly convex
case, the proposed algorithms are guaranteed to converge to
the global minimum by a proof similar to that in [32].

Convergence is very important for algorithms for any opti-
mization problem, particularly in medical applications. The
PSCD algorithm is globally convergent when there are no
background counts. Even when there are background counts,
the new algorithm is guaranteed to monotonically decrease
the objective function making the algorithm stable. Previous
algorithms could not guarantee that property without expensive
line searches. The robustness, stability, and speed of the new
algorithm renders it usable in routine clinical studies. Such
use should increase the emission image quality as compared
to conventional methods which use linear processing and FBP
for reconstruction. Further acceleration is possible by ordered
subsets [33], albeit without guaranteed monotonicity.

The algorithms we introduced are simple, easy to under-
stand, and fast. The simplicity, in part, is due to the additive
form of (2), which is a direct consequence of independent
measurements. Since the emission tomography log likelihood
has a very similar form, due to independence of measurements,
it is possible to apply the paraboloidal surrogates idea to the
emission case, as well, to get faster algorithms [34].

It is possible to parallelize the PS algorithms by applying
either the grouped descent (GD) [12], [13] algorithm to the
surrogate function, or by parallelizing the projection and
backprojection operators [35] for each pixel. However, in a
serial computer we found that the PS method with GD update
(PSGD) was not faster than the PSCD algorithm. This is due
to the fact that the gradient updates in the PSCD algorithm
consume much less CPU time than the gradient evaluations in
the original CD algorithm, which require expensive exponen-
tiations and floating point operations. Hence, grouped descent
did not reduce the CPU time per iteration as much in the PS
method as in the direct method.

In our opinion, the PS,O,CD algorithm supersedes all of
our previous methods [4], [12], [18], and is our recommended
algorithm for penalized-likelihood transmission tomography.
The PS,P,CD algorithm is a faster but nonmonotonic alterna-
tive, which can be used for noncritical applications. A possible
compromise would be to run a few iterations of the PS,O,CD
algorithm and then fix the curvatures and denominator terms
( ) for the rest of the iterations to save computation time.
Alternatively, one can run the PS,P,CD algorithm and check
the objective function after each iteration to verify that
it has decreased. If the objective does not decrease (which
happens very rarely), then the PS,O,CD algorithm can be
applied to the previous iterate to ensure monotonicity. For

medical purposes, we believe that a monotonic algorithm
should be used to reduce the risk of diagnostic errors due to
erroneous reconstructions. Fortunately, with the new proposed
methods, monotonicity can be assured with only a minor
increase in CPU time (17.2 versus 15.1 CPU s).

APPENDIX A

We prove in this Appendix that the maximum second
derivative of for is given by (14). We drop the
subscript for simplicity.

The form of the functions is critical in the following. The
second and third derivatives of the functionin (3) are

(30)

(31)

We assume , , and throughout these
appendices. First, we prove two lemmas about properties of
these functions. These lemmas are used for the proofs in
Appendix B as well.

Lemma 1: The following are equivalent for defined in
(3);

(E1) or ;
(E2) is strictly convex;
(E3) is strictly concave;
(E4) is monotonically increasing;
(E5) is monotonically decreasing.

Proof: Since is three times continuously differentiable,
is strictly convex if and only if and is strictly

concave if and only if . Clearly, if and only
if is monotonically increasing. So, (E2) (E4). For
similar reasons, (E3) (E5).

If or , then so, from (30),
. Thus, (E1) (E2).

To prove (E1) (E3), from (31), it suffices to show that
. But this is trivial since

under the conditions (E1).
To prove the opposite, if and , then one can

easily show that and can take negative values
for sufficiently large considering (30) and (31). So, (E2)
(E1) and (E3) (E1).

Lemma 2: When and , the nonconvex function
has the following properties:

(P1) is continuously differentiable;
(P2) has exactly one critical point , i.e., , and

is a local maximizer of ;
(P3) is strictly concave and monotone increasing for

;
(P4) is monotone decreasing for ;
(P5) has exactly one critical point , i.e.,

and is a local minimizer of .

Proof: (P1) is obvious from (21) and (30).
In the nonconvex case, the equation has exactly

one solution in , . Since
, is a local maximum, proving

(P2).
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Solutions to the equation are the roots of a
cubic polynomial in the variable which has only one
real solution. The real root is negative whenis convex,
resulting in no solution for . But, in the nonconvex case
the real root is positive and results in exactly one solution

where

So, has exactly one critical point. We have shown above
that and one can easily see that

for large . Thus, and for
. So, is monotonically decreasing for . Also

for , , and is monotonically increasing.
This proves that is a local minimum for . Hence, (P5)
is proven.

To prove (P3) we have to show and for
. However, as we found above and

for . Also, for since is the only
critical point and local maximizer of due to (P2). So, (P3)
is also proven.

The function has exactly one zero crossing from
(P2) which is a local maximizer of . Then, has to be
always negative for proving (P4). To verify, one can
easily see that for large values.
So .

The following result follows from (E5) of Lemma 1 for the
convex case and from (P5) of Lemma 2 for the nonconvex
case.

Corollary 1: The maximum value for in the region
is achieved at the end points, i.e.,

The result follows since .

APPENDIX B

In this Appendix, we prove that the curvature defined in
(28) is the optimum curvature that satisfies (27), which in
turn implies from (26) that the choice (28) yields the fastest
convergence rate. We first prove two lemmas about strictly
concave functions.

Lemma 3: A 1-D line can intersect a strictly
concave (or strictly convex) function at most twice.

Proof: Suppose at points
. Then since is strictly concave, for

, which contradicts the initial assumption that
.

Lemma 4: Let be a 1-D strictly concave function, and
let be a line that intersects at the two
points . Then

for

Proof: Suppose there exists an such that
. Consider the new line that intersects

at and . Since and
, it follows from the affine form of and

that , which contradicts the
assumption that is strictly concave. The case is
similar.

For simplicity in this appendix, we drop the subscriptand
the dependence onfor the variables. Let be the marginal
negative log-likelihood function defined in (3) with derivatives
presented in (21), (30), and (31) and let be the parabolic
surrogate function defined in (8) with the optimum curvature

defined in (28). We use to denote the current projection
value . The reader may visualize the following proofs by
considering the plots of and functions shown in Fig. 3.

We define the difference function by

(32)

To show that for , as required by (9), it
suffices to show that . When , it is obvious
from Appendix A that . Thus, we focus on the case

in the following.
Lemma 5: The following conditions are sufficient to ensure

.

(C1) and ;
(C2) for ; and
(C3) either

(C31) , or
(C32) such that for

and for .

Proof: Since

(33)

Case : The integrand in (33) is nonnegative due to
(C2), so .

Case : If (C31) is true, then
.

If (C32) holds and , then
by (C1). Likewise, if (C32) holds and

, then again
by (C1).

Hence, under the above conditions.
We now establish the conditions of Lemma 5. (C1) follows

directly from the definition (27), so we focus on (C2) and (C3)
below. We first treat the case where is strictly convex.

Lemma 6: If is a convex function and is concave
for , then the difference function in (32) with the
curvature defined in (28) satisfies conditions (C2) and (C32)
in Lemma 5. Furthermore, .

Proof: It is trivial to show that the conditions (E2)
through (E5) of Lemma 1 hold in this case for . First we
prove . Suppose , so is a constant. Since is
increasing by (E4) in Lemma 1 and , it is obvious
that , so
contradicting (C1). So, in this case and by
design.
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To prove (C32), consider. The line cannot intersect the
strictly concave at more than two points due to Lemma 3.
We know that , thus is an intersection point. We
have and by definition. From mean value
theorem, there must be another intersection point
such that . We know by Lemma 3 that there cannot be
any additional points where . for
due to concavity of and for due to
Lemma 4. (C32) is proven.

To prove (C2), apply Lemma 4 to the strictly concave
function with two points and as the intersection points
of the line with the curve.

We now consider the realistic nonconvex case.
Lemma 7: Let be a nonconvex function with its deriva-

tive satisfying properties (P1), (P2), and (P3) in Lemma 2.
The difference function defined in (32) with the curvature
defined in (28) satisfies (C2) and (C3) in Lemma 5.

Proof: The reader can refer to Fig. 3 for representative
plots of and its first derivative. Note that in Lemma 2, (P2)

(P4) directly.
Consider these two cases whereis defined as in Lemma 2:
Case : By (P3) of Lemma 2, is in a concave

increasing region. By Lemma 6, (C32) holds as well as the
fact that . To prove (C2), we use property (P4), thatis
a decreasing function for . So, since [as
for (C2) in Lemma 6 again] and , .

Case : Since by (C1),
, cannot always be nonnegative over

the interval . So, either
or intersects ( ) at least once in . If the
former case occurs, (C31) holds by definition. If the latter
case occurs, then we have to prove that (C32) holds, i.e.,
there is no more than one point at whichintersects in

. Since and is decreasing in the region ,
the intersection point(s) . We cannot apply Lemma
3 here to prove that there is no other intersection point, but
we can use Lemma 4 to prove it. Assume there is another
intersection point. Then, the function in the concave
region outside the interval between two intersection points by
Lemma 4 which implies and for .
But this would contradict the fact that . So, (C32)
must hold.

In this case, the fact that is enough to prove (C2),
since is decreasing in this region.

Theorem 1: Let be a 1-D function that satisfies either
of the following:

(H1) is strictly convex and is strictly concave in
the feasible region or

(H2) satisfies (P1), (P2), and (P3) of Lemma 2.

Then the curvature defined in (28) satisfies the optimality
condition in (27).

Proof: For functions that satisfy conditions (H1),
Lemma 6 with Lemma 5 prove that the curvature (28) satisfies
(9) for . For functions satisfying conditions in (H2),
Lemmas 7 and 5 similarly prove that the curvature (28)
satisfies (9) for . The rest of the proof applies to both
cases (H1) and (H2). For , in (28) is the maximum

second derivative in , and (9) is satisfied by mean value
theorem as mentioned in Section III-A.

We need to prove that no other nonnegative curvature less
than (28) satisfies (9).

Assume , and let

Obviously can exist only when since is the
minimum curvature we allow. With , it is obvious from
(28) that . If , this clearly implies that

which shows that cannot satisfy
(9). If , then a curvature would force to lie
under for some small values of. That is, such that

for . Thus does not satisfy (9) even
for .

Corollary 2: The “optimum curvature” defined in (28) us-
ing the marginal negative log-likelihood function defined
in (3) for the transmission tomography problem satisfies the
optimality condition in (27) for , , .

Proof: The function defined in (3) satisfies the
conditions (H1) or (H2) of Theorem 1 depending on the values
of and as shown in Lemmas 1 and 2. Hence Theorem 1 is
directly applicable to the transmission tomography problem.
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[33] H. Erdŏgan, G. Gualtieri, and J. A. Fessler, “An ordered subsets
algorithm for transmission tomography,” inProc. IEEE Nuclear Sci-
ence Symp. Medical Imaging Conf.,1998. (Inadvertently omitted from
Proceedings.) Available: http://www.eecs.umich.edu/˜fessler
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