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Diffusion of High Energy Ga~~a-Rays t&~ough Matter ~

II. Solution of the Diffusion Equation

L. L. FozDv AND R. K. OssoRN
Case Institute of Technology, Cleveland, Ohio

(Received September 11, 1950}

An approximate solution of the diffusion equation derived by Foldy has been obtained for the case in
which the total gamma-ray cross section is independent of energy. This is the case for essentially all ma-
terials in the energy region in which the derived diffusion equation is valid. For monoenergetic gamma-rays
incident normally on a slab of material, the distribution in angle of gamma-rays of a given energy after
traversing a large thickness of material is shown to be Gaussian with a breadth depending on the energy
in accordance with a theorem derived by Foldy. Some numerical calculations for the case of 17-Mev gamma-
rays incident on water are presented to iOustrate the nature of the results.

I. INTRODUCTION
' 'N the preceding paper' (hereinafter referred to as I)
~ ~ an equation was derived describing the difFusion of
high energy gamma-rays through matter. This equation
is applicable in the energy region extending from a few
Mev to the critical energy at which radiation by the
secondary electrons arising from the photoelectric efFect
and (more importantly) from pair production by the
gamma-rays became important. In light materials the
region of validity is a fairly wide energy range.

In the present paper a solution of this equation will

be derived applicable to the energy region in which the
total gamma-ray cross section is approximately inde-
pendent of energy. Since there is always a minimum
in the gamma-ray cross section as a function of energy,
there is in all materials an energy region in which the
total cross section will be substantially constant. The
breadth of this region varies greatly from material to
material, but an examination of the total cross-section
curves given in I shows that actually, for each material
over the energy range for which the derived transport
equation is valid, the cross section may legitimately be
regarded as approximately independent of energy.
Hence the assumption of a constant total cross section
represents really no further approximation to the
diffusion equation.

Unfortunately, even with this simplification, the
solution of the transport equation presents a formidable
problem. Indeed, it will be necessary to make a further
approximation with considerably less justification than
any made previously. The exact nature of the approxi-
mation is described below; it consists in replacing a
varying factor under the integral in the transport
equation by a constant value. The factor actually varies
from the value 2 at small angles to a value 1 at large
angles. In replacing it by the constant value 2, the
results will be correspondingly inaccurate but only for
gamma-rays much softer than the incident gamma-rays;
for gamma-rays only slightly softer than the incident

~This work was supported in part by the AEC and by a
grant-in-aid to one of the authors (LL.F.) from the Scientific
Research Society of America.' L. L. Foldy, Phys, Rev. 80, 395 (1950), preceding paper.

gamma-rays, there is no significant impairment of the
results.

II. SOLUTION OF THE TRANSPORT EQUATION

The transport equation derived in I can be written as
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where the total cross section, phd, may, in accordance
with the discussion in the introduction above, be re-
garded as constant. (For definitions of the symbols,
reference should be made to I). We first transform the
dependent variable by the transformation (o& is a
constant to be defined later)

g(o, 4», f)=(o/oo)f(o 4» f')

which reduces Eq. (1) to the simpler form:
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The approximation which we now make consists in
replacing the term [1+(o'/o)'j under the integral sign

by the constant value 2 which reduces the equation to
the form:
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The method of solution which we shall employ makes
use of Fourier transformations on the variables $ and»
and a Laplace transformation on the variable r .'

g(, g, », f')=,~ q(s, a, P, t')

Xexp(iag+iP»+so)dsdadP (6).
400



DIFFUSION OF HIGH ENERGY GAMMA —RAYS 40i

Inserting this expression into Eq. (4), one finds that
the transform function p must satisfy the equation

By/8/+ {fr—(2/s) exp[ —(a'+P')/2s]}'y= 0, (7)

with solution

y=G(a, P, s) exp{ P—rf+(2f/s)
(8)

Xexp[ —(oP+P')/2s]},
where G(a, p, s) is an arbitrary function of its argu-
ments.

The form of G is fixed by the initial conditions, that
is, the distribution function of the gamma-rays incident
on the face of the slab of material, /=0. We assume
that the incident gamma-rays fall normally on the slab
and are monoenergetic with softness o0. These condi-
tions can be stated mathematically by writing

g(, S, », 0)=B(.—.)B(~)B(»), (9)

and this condition, in turn, will be satisfied provided
we take 6 to have the form

G(a, P, S)=e-"2/(22r)22. (1o)

The remainder of the problem then consists in
substituting (8) and (10) into (6) and carrying out the
integrations. %'e have
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For 222&2, the integrations of a and P are easily carried
out. The further integration on s can be carried out by
the use of Jordan's lemma and the method of residues;
one obtains
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where the asterisk subscript on the parenthesis indicates
that the quantity inside the parenthesis is to be replaced
by zero if it is negative.

The solution which we have obtained is, apart from
the over-all exponential absorption factor, in the form
of a power series in the thickness of material traversed.
Each of the terms in the series has a rather simple
physical interpretation. . The first term represents the
original gamma-rays which have filtered through to
any depth without undergoing scattering or absorption.
The second term, as can be seen from the correlation
between energy and angle, corresponds to gamma-rays
which have undergone only a single Compton scattering.
The succeeding terms represent gamma-rays which
have undergone 2, 3, etc. Compton scatterings in
reaching the indicated depth.

An examination of the quantities g for large m
reveals that they are closely related to the terms in the
power series expansion of the zeroth-order Bessel
function of imaginary argument. We write g as

B2 I (o/2)2ss
e~[ B'/2( —-.)7, (16)
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and note that for large m it may be approximated by

The evaluation of the g can be accomplished without
difBculty. One has immediately
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+iP» (a'+P')—/2s} dsdadP Now the zeroth-order Bessel function of imaginary

argument, Io(p) has the power series expansion8+»'&
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2 ) We can exploit this close relationship between the two
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series hy writmg
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Inserting these results into (11) and (3) we obtain two
equivalent forms for the distribution function:
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FIG. 1. Functions representing energy spectrum of multiply
scattered gamma-rays apart from factor ~o/o. (A) Spectrum on
axis, (A') asymptotic approximation for spectrum on axis, (B)
spectrum integrated over all angles, (B') asymptotic approxima-
tion for spectrum integrated over all angles.

The second form has the advantage that in toro impor-
tant cases the last term (the summation) can be
neglected compared to the other terms. First, if
8'/2(0 —00)«1 then the expression in braces in the
summation is very small for every term and the sum-
mation can be neglected. Secondly, for large values of

i (~—«), one finds that most of the contributions to the

series P g„comes from terms where m [2t'(0 —»0)]&;
tÃ»»I 2

hence if 82/2(a «)«[2$—(&r «)]&, th—e use of the
approximate expression (16) for g„ is justified and the
summation can again be neglected. Hence in these cases
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DIFFUSION OF HIGH ENERGY GAMMA —RAYS

On the axis, 8=0, the distribution function takes
the simpler form

acro
f(n, 0, 0, f)= b(n —op)8(0)b(0)+ 8(o —op)

32'' a' o 1 Io(p)+)pIg(p)
1 exp( P—rf) .(21)
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To show the distribution in energy of the multiply
scattered gamma-rays on the axis, we have plotted in
Fig. 1 as curve A the factor in braces in (21) as a
function of f'(rr —op). Aside from the additional factor
(rp/p' this shows the relative distribution in energy.

The distribution of the gamma-rays per unit energy
interval (rather than unit softness interval) can be
obtained from the above formulas by simply multiplying
by n'.

IIL ASYMPTOTIC DISTRIBUTION

If P=LS&(p —op)]& is not only large compared to
cP/2(o op) but —is also large compared to unity, then
it is permissible to replace the Bessel function occurring
in (20) by its asymptotic form. Furthermore, after the
differentiation with respect to o has been carried out,
one can obtain the asymptotic form of the distribution
function by neglecting all terms but the one which is
dominant when [Sf'(~—op)]& is very large. The re-
sultant asymptotic form is found to be

32' np

f(~ 5 n f) expl. —+/2(~ —~o)]

It is easily found that the integration over angles of
the approximate formula (20) gives exactly the same
result, so that the approximation involved in dropping
the last summation in (19) corresponds only to a
redistribution in angle of gamma-rays of given energy
at any depth without a change in their total number.

The firs term in (23) represents, of course, the
gamma-rays which have reached the depth f unscat-
tered and unabsorbed, while the second term represents
the scattered gamma-rays. The distribution in energy
of the latter as given by the factor in braces (neglecting
again the factor op/o) is plotted as curve B in Fig. 1
as a function of f (s np)—Wh.en f'(s —np) is very large
compared with unity, the Bessel function can be re-
placed by its asymptotic form giving the distribution
function

pp

l (2or)&PI I

(24)

The factor here in braces is also plotted in Fig. 1 as
curve B'.
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V. CALCULATIONS OF ANGULAR IHSTRIBUTION

In order to see in greater detail the angular distribu-
tion of the multiply scattered ga~~a-rays, some

gP

X exp( —Qrf'), (22)
(2or) &p'IP I

with the validity condition

p= [&i'(p no)]'»—1+op/2(n po)—
It will be noted that the distribution in angle of gamma-
rays of a given softness is just the Gaussian distribution
derived by elementary arguments in I.The distribution
in energy on the axis (except again for the factor op/p)
according to this asymptotic formula is given by the
curve A' in Fig. i.

IV. INTEGRATION OVER ANGLES

To obtain the Qux of ga~~a-rays at any depth
independent of the direction in which they are travelling
one may simply integrate the distribution (19) over all
angles. One obtains the result:
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Fro. 2. Distribution in angle of multiply scattered gamma-rays
of energies of 5, 10, and 15 Mev at various depths in material for
17-Mev gamma-rays incident on water. Note variations in vertical
scales which represent the number of gamma-rays per unit solid
angle per Mev energy interval per incident gamma-ray.
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numerical calculations on the basis of Eq. (20) have
been performed for incident ga~~~-rays of 17-Mev
energy diffusing through water. The curves of angular
distribution as given by the number of gamma, -rays

per unit surgy interval (energy measured in Mev) and

per unit solid angle are plotted in Fig. 2 for energies of

15, 10, and 5 Mev and &= 1, 2, 4, 8, 16, and 32. It will

be noted that the angular distribution is very close to
Gaussian even for relatively small thicknesses of
material.

For a complete picture of the energy and angular
distribution one must add to the above curves the
contributions of the two terms containing delta-func-
tions in (20) representing the unscattered and singly
scattered gamma-rays.

l.0

0.8

0.6

0.4

0.2

VI. CONCLUDING REMARKS

The principal source of error in the solution obtained
above results from the approximation made in going
from Eq. (4) to Eq. (5). Going back to the fundamental

equations, this corresponds to approximating the factor
~(e'/e)'Le/e'+e'/e] in the Klein-Nishina formula LI,
Eq. (3)$ by e'/e (neglecting the term in sin'0). The
extent of this error is shown in Fig. 3 where both
factors are plotted. Some improvement in the results
might be obtained if one used in place of e'/e, the

quantity ce'/e where c is a number lying between 0.5
and 1.

0 0.2 0.4 , 0.6
~&c

0.8 l.o

FzG. 3.Extent of approximation to Klein-¹ishina formula involved
in solution of the diffusion equation.

It would be of value to determine the corrections due
to the difkrence between the approximate expression
used and the correct expression by a perturbation
treatment. A calculation of this type is planned for
the future.

%e wish to express our thanks to Mr. G. F. Bing
for his aid with the numerical calculations.
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Measurements of Ga~~a-Ray Absorption Coefficients*t
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The absorption of p-rays in Al, Cu, Sn, Ta, and Pb was measured using p-rays from I"', Cu~, Mn~,
{ o6O, Zn«, and Na'4. Tests showed that scattering from nearby objects and from the absorber were negli-

gible. Tests of the absorption of radium p-rays in Pb showed good agreement with other workers and
with theory. The absorption curves of I"' showed the presence of a 0.65-Mev p-ray about 15 percent as
abundant as the 0.367-Mev y-ray. Absorption coefBcients measured with the other sources showed agree-
ment within 0.5 percent to 2 percent with theory. An anomalous absorption coefBcient (5 percent less than
expected) with tantalum absorber (Z= 73) and Zn" and Co'0 sources (hv~1.2 Mev) needs reinvestigation.

I. INTRODUCTION

ITH the increasing use of radioactive materials,
~ ~

~

~

~
it is becoming important to know with greater

accuracy how the interaction of p-rays with matter
varies with p-ray energy and with atomic number. In
the energy range of most radioactive y-rays, that is,
from 0.1 Mev to 6 Mev, the processes to be considered

are the Compton eBect, the photoelectric effect, and

~ Assisted by the joint program of the ONR and AEC.
t Presented at the April, 1948, meetings of the American

Ph cal Society.
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pair production. Theoretical analyses of these processes
have been made, and from them values of absorption
coefficients can be found for comparison with experi-
ment. A summary of most of these theories has been
given by Heitler. ' %e have made a detailed study of
the results of the theories and shall publish elsewhere'
our calculations in the form of equations, tables, and
curves.

Early experimental studies of absorption coefficients

' W. Heitler, The Qgaetuns Theory of Radiatkoe (Oxford Univer-
sity Press, London, 1936), pp. 119 et seq.

~ C. M. Davisson and R. D. Evans, Revs. Modern Phys. (to be
published).


