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CHAPTER I

Introduction

The mathematical problem of two dimensional water waves concerns the evolution

of an interface separating an inviscid, incompressible, irrotational fluid, under the

influence of gravity, from a region of zero density (e.g., air) in two dimensional space.

It is assumed that the fluid region lies below the air region. Assume the fluid is

infinitely deep and has density 1, and that the gravitational field is g = (0,−1). At

t ≥ 0, denote the fluid interface by Σ(t) and the fluid region by Ω(t). If surface

tension is neglected, then the motion of the fluid is described by





vt + v · ∇v = g −∇p

divv = 0, curlv = 0

on Ω(t), t ≥ 0

p = 0 on Σ(t)

(1.1) (v, 1) is tangent to the free surface (Σ(t), t)

where v is the fluid velocity, p is the fluid pressure.

Assume further that the interface Σ(t) is parametrized by z = z(α, t) ∈ R2, where

α ∈ R is the Lagrangian coordinate, i.e., zt(α, t) = v(z(α, t), t). In the sequel we

make the usual identification R2 ∼= C and hence will regard z ∈ C . Let

(1.2) a = − ∂p

∂n

1

|zα| ,

1
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Figure 1.1: A snapshot for fixed time of the water wave problem.

where n = izα

|zα| is the unit outward normal of Ω(t). We know from [17] that (1.1) is

equivalent to the following complex system on the interface:

(1.3) ztt − iazα = −i

(1.4) (I − H)zt = 0,

where H is the Hilbert transform associated to the fluid region Ω(t):

Hf(α, t) =
1

πi
p.v.

∫ ∞

−∞

f(β, t)zβ(β, t)

z(α, t)− z(β, t)
dβ

=
1

πi
lim
ε→0

∫

|α−β|≥ε

f(β, t)zβ(β, t)

z(α, t)− z(β, t)
dβ.(1.5)

In this paper we consider the modulation approximation to the infinite depth

water wave equations (1.3)-(1.4), i.e., a solution which is to the leading order a wave

packet of the form

(1.6) εB(εα, εt, ε2t)ei(kα+ωt).

which can be described as a plane wave with a small amplitude of physical size ε

whose amplitude varies slowly; a typical profile of such a wave packet is given in

Figure 1.1. It is well-known (c.f. [12], [10]) that if one performs a multiscale analysis

to determine modulation approximations to the finite or infinite depth 2D water
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wave equations, one should expect to find that the amplitude B is a profile that

travels at the group velocity determined by the dispersion relation of the water wave

equations over time intervals of length O(ε−1), and evolves according to a nonlinear

Schrödinger equation (NLS) over time intervals of length O(ε−2). The first formal

derivations of the NLS from the 2D water wave equations was obtained by Zakharov

[21] for the infinite depth case, and by Hasimoto and Ono [9] for the finite depth

case. In [6], Craig, C. Sulem and P. L. Sulem applied modulation analysis to the

finite depth 2D water wave equation, derived an approximate solution of the form

of a wave packet and showed that the modulation approximation satisfies the 2D

finite depth water wave equation to leading order. More recently, in the preprint

[15], Schneider and Wayne justify NLS as the modulation approximation for a model

equation of the finite depth water wave equation.

A rigorous justification of the NLS from the full water wave equations would bring

us one step closer to understanding qualitative properties for wave packet-like solu-

tions of the water wave equations from that of solutions to NLS on the appropriate

time scales. Moreover, there are examples of nonlinear wave equations (c.f., [8] and

[13]) whose formal modulation approximations do not reflect the true dynamics of the

equation for seemingly reasonable initial modulations; a rigorous justification would

describe for which spaces of functions the modulation approximation holds. Such

a justification would also reduce the numerical solution of the water wave problem

in the NLS regime to the computationally cheaper numerical solution of the NLS

equation.

Rigorous justifications of the KdV, KP, Boussinesq, shallow water and various

other asymptotic models from the full water wave equations have been given in

[7], [14], [2]. As was noted in [6], the reason that a justification for NLS has not
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been given is that the longest existence time in Sobolev spaces for the water waves

equation demonstrated thus far have been on time scales of the order O(ε−1), for

data with Sobolev norms of the order O(ε). However these times are too short to

distinguish the NLS behavior of the wave packet from simple translation of the initial

wave packet at group velocity. Since there is no existence result in Sobolev spaces

on the necessary time scales, an attempt to justify NLS as a rigorous modulation

approximation to the water wave system on that scale has not been made.

Let Ugf = f ◦ g, and for κ : R→ R a diffeomorphism we introduce the notation

ζ := z ◦ κ−1, U−1
κ Dt := ∂tU

−1
κ , U−1

κ P := (∂2
t − ia∂α)U−1

κ

b := κt ◦ κ−1, U−1
κ A∂α := a∂αU−1

κ

(1.7) Dt = (∂t + b∂α), U−1
κ H = HU−1

κ , P = D2
t − iA∂α.

In [19], Wu showed that for any solution z of (1.3)-(1.4), the quantity Π := (I −

H)(z − z) satisfies the equation

P(Π ◦ κ−1) = −2

[
Dtζ,H 1

ζα

+H 1

ζα

]
∂αDtζ(1.8)

+
1

πi

∫ (
Dtζ(α, t)−Dtζ(β, t)

ζ(α, t)− ζ(β, t)

)2

∂β(ζ − ζ)dβ

=
4

π

∫
(Dtζ(α, t)−Dtζ(β, t))(=ζ(α, t)−=ζ(β, t))

|ζ(α, t)− ζ(β, t)|2 ∂βDtζ(β, t)dβ

+
2

π

∫ (
Dtζ(α, t)−Dtζ(β, t)

ζ(α, t)− ζ(β, t)

)2

∂β=ζ(β, t)dβ,

and furthermore there is a coordinate change κ such that in this coordinate system,

the equation (1.8) contains no quadratic nonlinear terms.1

1Since z represents a perturbation from the parametrization of the still water solution, the quantity z−α and its
derivatives are considered to be small of order one.
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Using this favorable structure and the method of vector fields, Wu further proved

the almost global well-posedness for the full water wave system (1.3)-(1.4) for data

small in the generalized L2 Sobolev spaces defined by the invariant vector fields.

However, the wave packet data εB(εα)eikα (for B sufficiently smooth and localized)

decays slowly at infinity, such that the generalized Sobolev norms used in [19] of

these wave packets are at least of size O(ε−1/2). On the other hand, these wave

packets are of size O(ε1/2) using the usual Sobolev norms. Moreover, the use of the

standard Sobolev norms alone gives enough existence time to rigorously justify the

modulation approximation, and so the standard Sobolev spaces suit our purposes

better.

As is suggested by the work of [11], in justifying the modulation approximation for

a nonlinear system it is advantageous if the nonlinear system contains no quadratic

nonlinear terms. We therefore use the equation (1.8) to perform the multiscale

analysis. In fact, we will use a slightly different change of variables κ than that given

in [19]. Upon performing this multiscale analysis, we derive an approximate wave

packet-like solution ζ̃ satisfying the transformed equations (see (2.7)-(2.8) below)

with a residual of size O(ε4). The special structure of (1.8) then allows us to obtain

bounds for the error r = ζ−ζ̃ between the true solution and the approximate solution

on the appropriate time scale in Sobolev spaces.

We will see in the course of the multiscale analysis that the envelope of the leading

term of ζ̃−α obeys a focusing cubic nonlinear Schrödinger equation which is globally

well-posed in sufficiently regular Sobolev spaces. The existence of a solution of NLS

on a time interval [0,T ] corresponds to the existence of the approximate solution

ζ̃ on the time interval [0, ε−2T ]. This fact, along with the a priori bounds on the

remainder r, allows us to show existence and uniqueness of solutions of the system
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(1.3)-(1.4) on the proper O(ε−2) time scales, for initial data no more than O(ε3/2)

away from a wave packet εB(εα)eikα in Sobolev spaces. A rigorous justification of

wave packet approximations to solutions of the water wave system is then obtained

in this special coordinate system κ. Upon changing variables, we obtain appropriate

wave packet approximations to water waves in Lagrangian coordinates. Finally,

by introducing some further restrictions on the initial data, we justify an Eulerian

version of the asymptotics.



CHAPTER II

Derivation of the Main Equations

2.1 The Governing Equations of the 2D Full Water Wave Problem

In this section we introduce our notation as well as collect for future reference

the main equations and formulas from [19] that we will use. We first recall the

definition of the Hilbert transform Hγ associated to the interface determined by a

curve parametrization γ(α) : R→ C :

(2.1) Hγf(α) :=
1

πi
p.v.

∫ ∞

−∞

γβ(β)

γ(α)− γ(β)
f(β)dβ.

We adopt the following notations for Hilbert transforms associated to specific curves:

H is the Hilbert transform associated to z already defined, H is the Hilbert transform

associated to ζ, and H0 is the flat Hilbert transform associated to the line γ(α) = α.

In general, the Hilbert transformHγ satisfies the conventionHγ1 = 0 and the identity

H2
γ = I in L2. Let Ω be a domain in R2, with ∂Ω parametrized by γ(α), α ∈ R,

oriented clockwise. We know f(·) = F (γ(·)) ∈ L2(R) is the trace of a holomorphic

function F in Ω if and only if (I − Hγ)f = 0. The celebrated result of [5] (see

Theorem II.6) states that Hγ is bounded on L2 provided that γ satisfies the chord-

arc condition: There exist constants ν, N > 0 so that

(2.2) ν|α− β| ≤ |γ(α)− γ(β)| ≤ N |α− β| for all α, β ∈ R.

7
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We will frequently use the properties of the Hilbert transform given in Lemmas

2.1 and 2.2 of [19] which for convenience are recorded here. Note that in the sequel

we will often be suppressing the dependence on t.

Proposition II.1 (c.f. Lemma 2.1 of [19]). Suppose that z(α, t) has no self inter-

sections at time t ∈ [0, T0] and satisfies zt, zα − 1 ∈ C1([0, T0]; H
1). Then for all

functions f ∈ C1(R × [0, T0]) having the property that fα(α, t) → 0 as |α| → ∞ we

have the identities

[∂t,H]f = [zt,H]
fα

zα

, [a∂α,H]f = [azα, H]
fα

zα

, [H, ∂α/zα] = 0

[∂2
t ,H]f = [ztt,H]

fα

zα

+ 2[zt, H]
ftα

zα

− 1

πi

∫ (
zt(α)− zt(β)

z(α)− z(β)

)2

fβ(β)dβ

[∂2
t − ia∂α, H]f = 2[zt,H]

ftα

zα

− 1

πi

∫ (
zt(α)− zt(β)

z(α)− z(β)

)2

fβ(β)dβ

(I − H)(−iatzα) = 2[ztt,H]
ztα

zα

+ 2[zt, H]
zttα

zα

− 1

πi

∫ (
zt(α)− zt(β)

z(α)− z(β)

)2

ztβ(β)dβ.

Remark. Observe that if we change variables via κ each formula above has a

corresponding formula in which z is replaced by ζ, ∂t is replaced by Dt, H is replaced

by H, etc.

Proposition II.2 (c.f. Lemma 2.2 of [19]). Let Ω ⊂ C be a region whose boundary

∂Ω is parametrized by γ(α), oriented clockwise. Then the following hold:

1. If f = Hγf and g = Hγg, then [f,Hγ]g = 0.

2. For all f, g ∈ L2(∂Ω), [f,Hγ]Hγg = −[Hγf,Hγ]g.

With these preparations, we give the change of variables used to convert (1.3)-

(1.4) into a more suitable equation for our purposes. Originally, in [19], the change

of variables κ was introduced using a Riemann map Φ(z, t) : Ω(t) → P− which for
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each t mapped the fluid region Ω(t) to the lower half plane, and then defined by

α 7→ z(α, t) + z(α, t)− h(α, t), where h was taken to be α 7→ Φ(z(α, t), t).

However, the only property of h that was used was that it was a real-valued trace

of a holomorphic function defined on Ω(t). This idea was already used in the 3D

setting to prove global existence of solutions to the 3D water wave problem [20]. We

use it here by choosing to set

h(α, t) = z(α, t)− 1

2
(I + H)(I + K)−1 (z(α, t)− z(α, t)) ,

where K = <H is the double layer potential operator associated to the curve z. It is

easy to see from the definition that h is a real-valued trace of a holomorphic function

in Ω(t). Then the change of variables is defined by

κ(α, t) = z(α, t) + z(α, t)− h(α, t)

= z(α, t) +
1

2
(I + H)(I + K)−1(z(α, t)− z(α, t)).(2.3)

Our choice of κ then gives us the crucial identity

(2.4) (I − H)(z − κ) = −(I − H)

(
1

2
(I + H)(I + K)−1(z − z)

)
= 0,

and from this it follows immediately in the new coordinates that

(2.5) (I −H)(ζ − α) = 0

and

(2.6) Π ◦ κ−1 = (I −H)(ζ − ζ) = (I −H)(ζ − α).

We denote

ξ := ζ − α,
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the perturbation of ζ from the rest state α. Then from (1.8) and (2.4) we have that

solutions z also satisfy the system

(2.7) P(I −H)ξ = G

(2.8) (I −H)ξ = 0

where as in (1.8) the cubic nonlinearity G is

(2.9)

G := −2

[
Dtζ,H 1

ζα

+H 1

ζα

]
∂αDtζ +

1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

(ζβ(β)− ζβ(β)) dβ.

We will also need the equations corresponding to the time derivative, which by virtue

of (1.4) and a derivative Dt to (2.7) are given by

(2.10) (D2
t − iA∂α)Dt(I −H)ξ = DtG + [P , Dt](I −H)ξ,

(2.11) (I −H)Dtζ = 0.

An explicit formula for DtG is

DtG = −2

[
D2

t ζ,H 1

ζα

+H 1

ζα

]
∂αDtζ

− 2

[
Dtζ,H 1

ζα

+H 1

ζα

]
∂αD2

t ζ

+
2

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

∂βDtζ(β) dβ

− 2

πi

∫ |Dtζ(α)−Dtζ(β)|2
(ζ(α)− ζ(β))2

∂βDtζ(β)

+
4

π

∫
(Dtζ(α)−Dtζ(β))(D2

t ζ(α)−D2
t ζ(β))

(ζ(α)− ζ(β))2
∂β=ζ(β)dβ

+
2

π

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

∂β=Dtζ(β)dβ

− 4

π

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)3

∂β=ζ(β) dβ.(2.12)
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We also have the following formulas for b and A in terms of ζ (c.f. Proposition 2.4

of [19] for a proof. From the proof, it is clear that (2.8) and (2.11) together imply

(2.13) and (2.14).):

(2.13) (I −H)b = −[Dtζ,H]
ζα − 1

ζα

,

(2.14) (I −H)A = 1 + i[D2
t ζ,H]

ζα − 1

ζα

+ i[Dtζ,H]
∂αDtζ

ζα

.

The commutator in the right hand side of (2.10) can be rewritten using

(2.15) [P , Dt](I −H)ξ = Uκ−1

(at

a

)
iA∂α(I −H)ξ,

and is controlled using the following formula (c.f. (1.9) and (2.32) of [19] for a

derivation):

(I −H)

(
AζαU−1

κ

(at

a

))
= 2i[D2

t ζ,H]
∂αDtζ

ζα

+ 2i[Dtζ,H]
∂αD2

t ζ

ζα

− 1

π

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

∂βDtζ(β)dβ.(2.16)

We also record Proposition 2.7 of [19]:

(I −H)Dtb = [Dtζ,H]
∂α(2b−Dtζ)

ζα

− [D2
t ζ,H]

ζα − 1

ζα

+
1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

(ζβ(β)− 1)dβ(2.17)

To estimate terms involving time derivatives of singular integral operators we record

the following

Lemma II.3. Suppose that T f =
∫

K(α, β)∂βf(β) dβ. Then

[Dt, T ]f =

∫
(∂t + b(α)∂α + b(β)∂β)K(α, β) ∂βf(β) dβ.
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Proof. We have

[Dt, T ]f = (∂t + b(α)∂α)

∫
K(α, β)fβ(β) dβ −

∫
K(α, β)∂βDtf(β) dβ

=

∫
(∂t + b(α)∂α + b(β)∂β)K(α, β)fβ(β) dβ

+

∫
K(α, β)

(
bβ(β)fβ(β) + Dtfβ(β)− ∂βDtf(β)

)
dβ,

and expanding the last integrand using Dt = ∂t + b∂α and the product rule implies

that the second integral above vanishes.

Denote the Fourier transform on R by

f̂(x) =
1

2π

∫ ∞

−∞
f(α)e−ixαdα.

For s ∈ R we have the usual Sobolev spaces

Hs = {f ∈ L2(R) : ‖f‖Hs := ‖(1 + | · |2)s/2f̂(·)‖L2 < ∞},

and the homogeneous Sobolev spaces

Ḣs = {f ∈ L2(R) : ‖f‖Ḣs := ‖ | · |sf̂(·)‖L2 < ∞}.

Also for s ∈ N we define W s,∞ = {f ∈ L∞ : ∂j
αf ∈ L∞, j = 1, . . . , s}, with

‖f‖W s,∞ :=
∑s

j=0 ‖∂j
αf‖L∞ . A well-known consequence of the Sobolev embedding

theorem is that Hs is continuously embedded in W s−1,∞ for s ≥ 1. Given a Banach

space X, let C([0, T ]; X) be the space of all X-valued functions f defined on [0, T ]

so that t 7→ ‖f(t)‖X is continuous on [0, T ]; equip C([0, T ]; X) with the norm

‖f‖C([0,T ];X) := max
t∈[0,T ]

‖f(t)‖X < ∞.

In the sequel we make the following
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Assumption II.4. Let s ≥ 6, and let ζ be a solution to the water wave system

(2.7)-(2.8)-(2.11) on some time interval [0, T0] satisfying for 0 ≤ t ≤ T0 the bounds

(2.18) S(T0) := ‖ζα − 1‖C([0,T0];Hs) + ‖Dtζ‖C([0,T0];Hs) ≤ δ.

First we choose δ > 0 sufficiently small so that ζ satisfies the chord-arc condition

(2.2) and A ≥ 1/2 (c.f. [19]). In the arguments to follow we will need to choose δ

smaller still.

In order to use the formulas (2.13), (2.14), (2.16) to get estimates for b, A and

U−1
κ (at/a) in Hs we use the following lemma, whose proof is essentially that of Lemma

3.8 and Lemma 3.15 of [19]:

Lemma II.5. Let s ≥ 4, and suppose that ζ satisfies (2.18). Then there exists a

constant C depending on S(T0), so that for all real-valued f we have the following

estimates:

1. ‖f‖Hs ≤ C‖(I −H)f‖Hs

2. ‖f‖Hs ≤ C‖(I −H)
(
fAζα

) ‖Hs

2.2 The Boundedness of Singular Integral Operators in Sobolev Space

In order to estimate the terms arising from the water wave equations in the last

section, we must show that operators of the form

(2.19) S1(A, f) =

∫ m∏
j=1

Aj(α)− Aj(β)

γj(α)− γj(β)

f(β)

γ0(α)− γ0(β)
dβ

and

(2.20) S2(A, f) =

∫ m∏
j=1

Aj(α)− Aj(β)

γj(α)− γj(β)
fβ(β)dβ

are bounded in Sobolev space. For these singular integrals to be well-defined we

insist that the γj each obey the chord-arc condition (2.2). Our starting point is the
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celebrated results of Coifman, Meyer, McIntosh and David, expanded upon by Wu,

which bounds these singular integrals in L2.

Theorem II.6. (c.f. [5], [4] and [19]) Both ‖S1(A, f)‖L2 and ‖S2(A, f)‖L2 are

bounded by

C

m∏
j=1

‖A′
j‖Xj

‖f‖X0 ,

where one of the X0, X1, . . . , Xn is equal to L2 and the rest are L∞. The constant C

depends ‖γ′0‖L∞ , ‖γ′1‖L∞ , . . . , ‖γ′m‖L∞.

Observe that the kernels of the operators S1 and S2 are functions of differences

of the form F (f1(α)− f1(β), . . . , fn(α)− fn(β)). When the differential operator

(∂α + ∂β) acts on such differences of functions, it yields another function of the same

kind, e.g., the Chain Rule becomes

(∂α + ∂β)F (f1(α)− f1(β), . . . , fn(α)− fn(β)) =
n∑

i=1

(∂iF )(∂α + ∂β)(fi(α)− fi(β)).

The other rules of differential calculus hold as well. Hence acting on kernels of S1 or

S2 with m factors by (∂α + ∂β) yields another kernel which is a sum of terms of the

same type with m + 1 factors. This allows us to cleanly prove the following

Proposition II.7. Let n ≥ 3 be given, and suppose that (2.2) holds. Then

‖S2(A, f)‖Hn ≤ C

m∏
j=1

‖A′
j‖Yj

‖f‖Z ,

where for all j = 1, . . . ,m the Banach spaces Yj = Hn−1 or W n−2,∞ and Z =

Hn or W n−1,∞. Moreover, the constant C = C (‖∂αγj − 1‖Hn−1 , j = 1, . . . , m).

Proof. Write S2f =
∫

K(α, β)fβ(β)dβ. To exploit the observations preceding the
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theorem, we expand ∂n
αS2f using the Binomial Theorem applied to ((∂α +∂β)−∂β)n:

∂n
αS2f(α) =

n∑
j=0

(
n

j

) ∫
(−1)j(∂α + ∂β)n−j∂j

βK(α, β)fβ(β)dβ

=
n∑

j=0

(
n

j

) ∫
(∂α + ∂β)n−jK(α, β)∂j

βfβ(β)dβ

After applying routine calculus identities, we see that (∂α + ∂β)n−jK(α, β) yields a

sum of terms, each of which is another kernel expressible in the form (2.20). Now

we apply Theorem II.6 to estimate each term in L2.

We proceed by cases. Since n ≥ 3, it suffices to consider the cases where j = 0 and

j = 1; in all other cases one can estimate however one pleases using Theorem II.6. If

a difference of the form A
(n−1)
j (α)−A

(n−1)
j (β) or γ

(n−1)
j (α)−γ

(n−1)
j (β) occurs in some

kernel, estimate this difference in L2; observe that only one of these can occur in a

given singular integral since n ≥ 3. If a difference of the form A
(n)
j (α) − A

(n)
j (β) or

γ
(n)
j (α)− γ

(n)
j (β) occurs in some kernel, split the integral into a difference of singular

integrals of the form S1 and estimate using Theorem II.6.



CHAPTER III

The Formal Multiscale Calculation

The goal of this section is to derive a formal solution to the system (2.7)-(2.8)

that is to leading order a wave packet. Since we want our approximation to remain

bounded for times on the order O(ε−2), we calculate this formal solution using a

multiscale analysis. As mentioned in the introduction, we expect from similar for-

mal derivations of modulation approximations to the water wave equations that the

amplitude of the wave packet is a profile which travels at the group velocity of the

water wave operator, and evolves according to a nonlinear Schrödinger equation.

To effect this multiscale analysis, we must first formally expand the Hilbert trans-

form H appearing in the water wave equations. In particular, we must interpret how

the flat Hilbert transform H0 acts on multiple scale functions of the form F (εα)eikα

for k 6= 0.

3.1 Formal Expansion of the Hilbert Transform

Understanding the system (2.7), (2.8) depends on understanding the Hilbert

Transform H. Since our first goal is to seek a perturbation expansion

ζ(α, t) = α + ξ = α +
∞∑

n=1

εnζ(n)(α, t, ε),

16
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we must find a corresponding development of H into a formal power series

H = H0 + εH1 + ε2H2 + · · ·

To predict what the terms of this series ought to be, we heuristically expand the

kernel of H in a formal power series as follows:

(3.1) Hf = H0f +
∞∑

n=1

(−1)n+1

nπi

∫
fβ(β)

(
ξ(α)− ξ(β)

α− β

)n

dβ

Equating like powers of ε on the right hand side of this last expression suggests the

following formulas for H1:

H1f :=
1

πi

∫
fβ

(
ζ(1)(α)− ζ(1)(β)

α− β

)
dβ

= [ζ(1),H0]fα

and for H2:

H2f :=
1

πi

∫
fβ(β)

(
ζ(2)(α)− ζ(2)(β)

α− β

)
dβ

− 1

2πi

∫
fβ(β)

(
ζ(1)(α)− ζ(1)(β)

α− β

)2

dβ

=
1

πi

∫
fβ(β)

(
ζ(2)(α)− ζ(2)(β)

α− β

)
dβ

− 1

πi

∫
fβζ

(1)
β

(
ζ(1)(α)− ζ(1)(β)

α− β

)
dβ

+
1

2πi

∫
fββ(β)

(
(ζ(1)(α)− ζ(1)(β))2

α− β

)
dβ

= [ζ(2),H0]fα − [ζ(1),H0](ζ
(1)
α fα) +

1

2
[ζ(1), [ζ(1),H0]]fαα(3.2)

and so we define the approximate Hilbert Transform

H̃ := H0 + εH1 + ε2H2.

If H̃ acts on a multiple scale function f(α0, α1) = f(α, εα), then we have the expan-

sion

H̃ = H(0) + εH(1) + ε2H(2) + O(ε3),



18

where

H(0)f = H0f, H(1)f = [ζ(1),H0]∂α0f,

(3.3)

H(2)f = [ζ(1),H0]∂α1f + [ζ(2),H0]∂α0f − [ζ(1),H0]ζ
(1)
α0

∂α0f +
1

2
[ζ(1), [ζ(1),H0]]∂

2
α0

f.

Later we will need to estimate the operator

H− H̃ = (H−Hζ̃) + (Hζ̃ − H̃),

whereHζ̃ is the Hilbert transform associated to the curve given by the approximation

ζ̃. We will see that for our purposes it suffices to develop the approximate solution

ζ̃ to the third order:

ζ̃(α, t) = α + εζ(1)(α, t) + ε2ζ(2)(α, t) + ε3ζ(3)(α, t).

Hence we record the following formula as a first step towards analyzing Hζ̃ − H̃:

Lemma III.1. (Hζ̃ − H̃)f can be written as the following finite sum of singular

integrals:

(Hζ̃ − H̃)f = − 1

πi

∫ (
ξ̃(α)− ξ̃(β)

)3

ζ̃β(β)

(α− β)3
(
ζ̃(α)− ζ̃(β)

)f(β)dβ(3.4)

+
∑

S

Cp1,p2ε
n1p1+n2p2+m

πi

∫ (
ζ(n1)(α)− ζ(n1)(β)

)p1

(α− β)p1+p2+1

× (
ζ(n2)(α)− ζ(n2)(β)

)p2
(
ζ(n2)(α)− ζ(n2)(β)

)p2
ζ

(m)
β (β)f(β)dβ

where S = {(n1, n2,m, p1, p2) : n1p1+n2p2+m ≥ 3, 0 ≤ p1+p2 ≤ 2, 0 ≤ n1, n2, m ≤

3} and Cp1,p2 are constants depending only on p1, p2.

Proof. First observe that with an integration by parts we have the formulas

H1f =
1

πi
p.v.

∫
f(β)

(
ζ

(1)
β (β)

α− β
− ζ(1)(α)− ζ(1)(β)

(α− β)2

)
dβ



19

and

H2f =
1

πi
p.v.

∫
f(β)

(
ζ

(2)
β (β)

α− β
− ζ(2)(α)− ζ(2)(β)

(α− β)2

)
dβ

− 1

πi

∫
f(β)

(
ζ(1)(α)− ζ(1)(β)

α− β

) (
ζ

(1)
β (β)

α− β
− ζ(1)(α)− ζ(1)(β)

(α− β)2

)
dβ.

Now we repeatedly apply the identity

1

ζ̃(α)− ζ̃(β)
=

1

α− β
− ξ̃(α)− ξ̃(β)

(α− β)
(
ζ̃(α)− ζ̃(β)

)

so as to arrive at the identity

(3.5)

1

ζ̃(α)− ζ̃(β)
=

1

α− β
− ξ̃(α)− ξ̃(β)

(α− β)2
+

(
ξ̃(α)− ξ̃(β)

)2

(α− β)3
−

(
ξ̃(α)− ξ̃(β)

)3

(α− β)3
(
ζ̃(α)− ζ̃(β)

) .

The last of these terms is of size O(ε3). As for the rest, if we expand

ζ̃β(β)/
(
ζ̃(α)− ζ̃(β)

)

in powers of ε up through ε2, we see that

ζ̃β(β)

ζ̃(α)− ζ̃(β)
=

1

α− β

+ ε

(
ζ

(1)
β (β)

α− β
− ζ(1)(α)− ζ(1)(β)

(α− β)2

)

+ ε2

(
ζ

(2)
β (β)

α− β
− ζ(2)(α)− ζ(2)(β)

(α− β)2

− ζ(1)(α)− ζ(1)(β)

α− β

(
ζ

(1)
β (β)

α− β
− ζ(1)(α)− ζ(1)(β)

(α− β)2

))

+ O(ε3).

All of the terms here up through order O(ε2) precisely comprise H̃, and so vanish

upon subtracting H̃. The remaining O(ε3) terms consists of a finite number of terms

which can be written explicitly in the form

∑
S

Cp1,p2ε
n1p1+n2p2+m

(
ζ(n1)(α)− ζ(n1)(β)

)p1
(
ζ(n2)(α)− ζ(n2)(β)

)p2

(α− β)p1+p2+1
ζ

(m)
β (β),



20

where S = {(n1, n2, m, p1, p2) : n1p1+n2p2+m ≥ 3, 0 ≤ p1+p2 ≤ 2, 0 ≤ n1, n2, m ≤

3} and Cp1,p2 are constants depend only on p1, p2.

3.2 The Action of H0 on Multiscale Functions

As we saw in the last section, the operators appearing in the power series expansion

of the Hilbert Transform of the interface can be written in terms of the flat Hilbert

transform

H0f :=
1

πi
p.v.

∫
f(β)

α− β
dβ.

It is known that H0 is a Fourier multiplier with Fourier symbol Ĥ0(ξ) = − sgn(ξ).

However, it still remains to be seen how to interpret the action of H0 on a multiscale

function f = f(α, εα) as a multiscale function.

Since we are interested in the modulation approximation of the water wave prob-

lem, we will choose the leading order of our approximation to be a wave packet of the

form B(εα)eikα for k > 0. Hence the formal calculation depends upon understanding

the action of H0 on such wave packets. Since the amplitude of B(εα)eikα is slowly

varying for small ε, we heuristically expect for k 6= 0 that

H0

(
B(εα)eikα

) ∼ B(εα)H0

(
eikα

)
= B(εα) sgn(k)eikα,

where ∼ indicates an error depending on ε. The following result confirms this in-

tuition. We adopt the usual practice of assuming, unless otherwise stated, that a

constant C may denote different constants in the process of deriving an inequality.

Proposition III.2. Let k 6= 0 and s,m ≥ 0 be given. Assume ε ≤ 1. Then if

f ∈ Hs+m,

‖(H0 − sgn(k))f(εα)eikα‖Hs ≤ C
εm−1/2

km
‖f‖Hs+m

where the constant depends only on s.
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Figure 3.1: A frequency space portrait of quantities in Proposition III.2

ξ

̂(I −H0) = 1 − sgn(ξ)

2

k > 0

̂f(εα)eikα

Proof. It suffices to consider the case k > 0, since the case k < 0 follows

by complex conjugation and the fact that H0 = −H0. We first derive a bound

for ‖∂n
α(I − H0)f(εα)eikα‖L2 . In essence, the wave packet f(εα)eikα is localized in

frequency space about the wave number ξ = k, whereas the operator (I − H0)

truncates to negative frequencies; see Figure 3.1. We calculate that

‖∂n
α(I −H0)f(εα)eikα‖L2 =

(∫ ∞

−∞

∣∣∣∣(iξ)n(1− sgn(ξ))
1

ε
f̂

(
ξ − k

ε

)∣∣∣∣
2

dξ

)1/2

= 2

(∫ −k

−∞

∣∣∣∣(ξ + k)n 1

ε
f̂

(
ξ

ε

)∣∣∣∣
2

dξ

)1/2

≤ 2

(∫ −k

−∞
ε2(n+m)−1|ξ|−2m

∣∣∣∣∂̂n+m
α f

(
ξ

ε

)∣∣∣∣
2
dξ

ε

)1/2

≤ 2εn+m−1/2

(
sup
ξ≤−k

|ξ|−m

) (∫ ∣∣∣∣∂̂n+m
α f

(
ξ

ε

)∣∣∣∣
2
dξ

ε

)1/2

≤ 2
εn+m−1/2

km
‖∂n+m

α f‖L2 .
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But since ε ≤ 1, we have for any m ≥ 0 that

‖(I −H0)f(εα)eikα‖Hs ≤ C

s∑
n=0

‖∂n
α(I −H0)f(εα)eikα‖L2

≤ C

s∑
n=0

εn+m−1/2

km
‖∂n+m

α f‖L2

≤ C
εm−1/2

km
‖∂m

α f‖Hs

≤ C
εm−1/2

km
‖f‖Hs+m .¤

As a consequence we may freely assume in the multiscale calculation that H0

formally treats the amplitude of the wave packet B(εα)eikα as a constant when

k 6= 0. However, note that in the case k = 0 we can at best say that

H0(f(ε·))(α) = (H0f)(εα),

and so these must be retained as functions of the slow variable α1 = εα whenever

they occur in the multiscale calculation.

We record an immediate consequence of this result that will be used frequently

in the multiscale calculation.

Corollary III.3. Let s ≥ 1,m ≥ 0, ε ≤ 1 and f, g ∈ Hs+m(R) and suppose that k, l

are given so that l 6= 0,−k, and sgn(l) = sgn(k + l). Then

‖[f(εα)eikα,H0]g(εα)eilα‖Hs ≤ Cεm−1/2

(
1

(k + l)m
+

1

km

)
‖f‖Hs+m‖g‖Hs+m .

3.3 The Multiscale Calculation

We are now prepared to find an approximate solution ζ̃ to the four equations

(2.7)-(2.11) that is to leading order a wave packet, where G is given by (2.9). Our

approach will be to derive an approximate solution to the system (2.7)-(2.8) having

residual O(ε4) with a multiscale analysis and then verify that this approximate so-

lution also satisfies (2.10)-(2.11) up to a residual of size O(ε4). We begin by seeking



23

a perturbative ansatz for (2.7)-(2.8)

ζ(α, t) = α +
∞∑

n=1

εnζ(n)(α, t, ε).

In order to construct an expansion that is valid on times on the order O(ε−2), we

introduce multiple scales

t0 = t, t1 = εt, t2 = ε2t, α0 = α, α1 = εα,

and so we seek a solution of the form

ζ(α, t) = α +
∞∑

n=1

εnζ(n)(α0, α1, t0, t1, t2)

which formally satisfies the original equations up to terms of size O(ε4).

Before we begin solving these equations, we expand the auxiliary quantities and

operators in powers of ε. In particular we must determine the expansions in ε of the

quantities

b =
∞∑

n=0

εnbn, A =
∞∑

n=0

εnAn, G =
∞∑

n=0

εnGn.

Notice that since b and A−1 are of quadratic order and G is of cubic order, it follows

that that

b0 = b1 = A0 = A1 = G0 = G1 = G2 = 0.

We will also show in the sequel that A2 = 0 and b2 = b2(α1, t1, t2); the linear operator

associated to the water wave equation thus has the multiscale expansion

D2
t − iA∂α = (∂2

t0
− i∂α0) + ε(2∂t0∂t1 − i∂α1)

(3.6) + ε2(2∂t0∂t2 + ∂2
t1

+ 2b2∂t0∂α0) + O(ε3).

Recall that we also have the formulas for the multiscale expansion of the Hilbert

Transform given by (3.3)
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We will find explicit formulas for b2, b3 and G3 in the course of the analysis. In

what follows we will repeatedly use the fact, justified by the last section, that

(3.7) H0(f(α1)e
ikα0) = sgn(k)f(α1)e

ikα0 + O(ε4), k 6= 0

and hence that

(3.8)

[f(α1)e
ikα0 ,H0]g(α1)e

ilα0 = O(ε4) whenever sgn(l) = sgn(k + l), l, l + k 6= 0.

We are now ready to expand (2.7)-(2.8) in powers of ε. Collecting like terms yields

a hierarchy of systems that allow us to successively solve for the holomorphic trace

1
2
(I +H0)ζ

(n) and the antiholomorphic trace 1
2
(I −H0)ζ

(n) of the ζ(n)’s in the lower

half plane. The terms of order O(ε) in (2.7)-(2.8) yield the system

(3.9) (∂2
t0
− i∂α0)(I −H0)ζ

(1) = 0

(3.10) (I −H0)ζ
(1) = 0.

Because we are interested in solutions which to leading order are given by wave

packets, we assume an ansatz concentrated in Fourier space about the fixed wave

number k > 0:

ζ(1) = B+(α1, t0, t1, t2)e
ikα + B−(α1, t0, t1, t2)e

−ikα

Injecting the above ansatz into (3.10) forces B− = 0 by (3.7). Similarly substitut-

ing this ansatz into (3.9) yields the condition (∂2
t0

+ k)B+ = 0, which implies that

B+(α1, t0, t1, t2) = B(α1, t1, t2)e
iωt0 , where we have introduced the wave frequency ω

which satisfies the water wave dispersion relation

(3.11) ω2 = k.
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Thus we take as our solution

(3.12) ζ(1) = B(α1, t1, t2)e
iφ,

where we have introduced the phase φ := kα0 + ωt0.

Moving to the O(ε2) terms from (2.7), we have by (3.12) and using (3.8) that

(∂2
t0
− i∂α0)(I −H0)ζ

(2) = −(∂2
t0
− i∂α0)(−H(1))ζ(1)

− (2∂t0∂t1 − i∂α1)(I −H0)ζ
(1)(3.13)

= −4iω(Bt1 − ω′Bα1)e
iφ,

where ω′ = dω/dk is the group velocity of the wave packet. If we want (I −H0)ζ
(2)

to be uniformly bounded for all time we must insist that the right hand side of (3.13)

be equal to zero in order to avoid secular terms. Therefore we choose

(3.14) B(α1, t1, t2) = B(α1 + ω′t1, t2) := B(X, T ),

where ω′ = dω/dk is the group velocity. The O(ε2) terms from (2.8) yield the

equation

(I −H0)ζ
(2) = H(1)

ζ(1)

= [ζ
(1)

,H0]ζ
(1)
α0

(3.15)

= ik(I −H0)|B|2

An obvious choice seems to be ζ(2) = ik|B|2 + B2(α1, t1, t2)e
iφ. However such choice

leads to unavoidable secular growth in the O(ε3) level. Instead, we find that taking

ζ(2) so that (I −H0)ζ
(2) = 0 avoids such secular growth. Hence we take

(3.16) ζ(2) =
1

2
ik(I −H0)|B|2.
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Before we move on to the O(ε3) system, we must first derive formulas for b2, A2

and G3. Substituting the expansion of ζ into the formula (2.13) we see immediately

upon collecting like powers of ε that b0 = b1 = 0. Therefore we have

(I −H0)b2 = −[ζ
(1)
t0 ,H0]ζ

(1)

α0
= −kω(I −H0)|B|2,

and so since b2 is real-valued we conclude that

(3.17) b2 = −kω|B|2.

Similarly, using (2.14) we have immediately that A1 = 0 and that

(I −H0)A2 = i[∂t0ζ
(1)
t0 ,H0]ζ

(1)

α0
+ i[ζ

(1)
t0 ,H0]∂t0ζ

(1)

α0
= −ikω∂t0(I −H0)|B|2 = 0,

whence A2 = 0 as claimed.

Finally we derive from (2.9) a formula for G3:

G3 =
4

π

∫ (
ζ

(1)
t0 (α)− ζ

(1)
t0 (β)

) (=ζ(1)(α)−=ζ(1)(β)
)

(α− β)2
ζ

(1)
t0β0

(β) dβ

+
2

π

∫
(ζ

(1)
t0 (α)− ζ

(1)
t0 (β))2

(α− β)2
=ζ

(1)
β0

(β)dβ

:= I1 + I2
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Using (3.7) and (3.8) yields

I1 = − 2

πi

∫ (
ζ

(1)
t0 (α)− ζ

(1)
t0 (β)

)(
ζ

(1)
(α)− ζ

(1)
(β)

)

(α− β)2
ζ

(1)
t0β0

(β) dβ

=
2

πi

∫ (
ζ

(1)
t0 (α)− ζ

(1)
t0 (β)

)(
ζ

(1)
(α)− ζ

(1)
(β)

)

(α− β)
ζ

(1)
t0β0β0

(β) dβ

− 2

πi

∫ (
ζ

(1)
t0 (α)− ζ

(1)
t0 (β)

)
ζ

(1)

β0
(β)

(α− β)
ζ

(1)
t0β0

(β) dβ

− 2

πi

∫ ζ
(1)
t0β0

(β)
(
ζ

(1)
(α)− ζ

(1)
(β)

)

(α− β)
ζ

(1)
t0β0

(β) dβ

=
2k3

πi
ζ

(1)
(α)

∫ (
ζ(1)(α)− ζ(1)(β)

)

(α− β)
ζ(1)(β) dβ

− 2k3[ζ
(1)

,H0]
(
(ζ(1))2

)

= 0.

Similarly, we simplify

I2 =
2

π

∫
(ζ

(1)
t0 (α)− ζ

(1)
t0 (β))2

(α− β)2
=ζ

(1)
β0

(β)dβ

= 2i

(
2[ζ

(1)
t0 ,H0](ζ

(1)
t0α0

=ζ(1)
α0

)− [ζ
(1)
t0 , [ζ

(1)
t0 ,H0]]=ζ(1)

α0α0

)

= −2[ζ
(1)
t0 ,H0](ζ

(1)
t0α0

ζ
(1)

α0
) + [ζ

(1)
t0 , [ζ

(1)
t0 ,H0]]ζ

(1)

α0α0

= 2k3Beiφ(I +H0)|B|2 − 2k3BeiφH0|B|2

= 2k3B|B|2eiφ.

In summary,

(3.18) G3 = 2k3B|B|2eiφ.

We can now arrange the O(ε3) terms of (2.7), and using (3.12) and (3.16) along
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with (3.17), (3.18) and (3.8) arrive at the equation

(∂2
t0
− i∂α0)(I −H0)ζ

(3) = −(∂2
t0
− i∂α0)(−H(1))ζ(2)

− (∂2
t0
− i∂α0)(−H(2))ζ(1)

− (2∂t0∂t1 − i∂α1)(I −H0)ζ
(2)

− (2∂t0∂t1 − i∂α1)(−H(1))ζ(1)

− (2∂t0∂t2 + ∂2
t1

+ 2b2∂t0∂α0)(I −H0)ζ
(1) + G3

= −(2∂t0∂t2 + ∂2
t1

+ 2b2∂t0∂α0)(I −H0)ζ
(1)

+ 2k3B|B|2eiφ

= −2ω(2iBT − ω′′BXX + k2ωB|B|2)eiφ,(3.19)

where ω′′ = d2ω/dk2. To supress secular growth we now insist that the amplitude B

satisfy the focusing cubic nonlinear Schrödinger equation1

(3.20) 2iBT − ω′′BXX + k2ωB|B|2 = 0.

With this choice made we solve (3.19) by taking (I −H0)ζ
(3) = 0.

Finally, the O(ε3) terms from (2.8) yields the equation

(I −H0)ζ
(3) = H(1)

ζ(2) +H(2)
ζ(1)

= [ζ
(1)

,H0]ζ
(2)
α0

+ [ζ
(2)

,H0]ζ
(1)
α0

+ [ζ
(1)

,H0]ζ
(1)
α1

(3.21)

− [ζ
(1)

,H0](ζ
(1)

α0
ζ(1)
α0

) +
1

2
[ζ

(1)
, [ζ

(1)
,H0]]ζ

(1)
α0α0

= (I −H0)(BBX)− k2Be−iφ(I +H0)|B|2 + k2Be−iφH0|B|2

= −k2B|B|2e−iφ + (I −H0)
(
BBX

)
.

Hence we choose

(3.22) ζ(3) = −1

2
k2B|B|2e−iφ +

1

2
(I −H0)

(
BBX

)
.

1Observe that this equation agrees with the equation derived in [6] when one formally lets the depth of the fluid
tend to infinity.
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This completes the demonstration that the modulation of the wave packet ζ(1) is

a profile traveling at group velocity and evolves according to NLS on time scales on

the order O(ε−2); a diagram of the evolution of B is given in Figure 3.2.

Figure 3.2: Typical evolution of the modulation B in (α, t)-space.
t O(ε−2)

O(ε−1)

sl
op

e
O

(ε
−

1
)

α

Now that we have constructed an approximate solution ζ̃ to the equations (2.7)-

(2.8), we claim that ζ̃ also solves the system (2.10)-(2.11) up to an O(ε4) residual.

First we notice that (2.10) is obtained by applying a derivative Dt to (2.7), therefore

it is clear that ζ̃ solves (2.10) up to an O(ε4) residual. Now we consider (2.11). By

(2.8) we have that

(I −H)Dtζ = (I −H)Dt(ζ − α) + (I −H)Dtα

= [Dt,H](ζ − α) + (I −H)Dtα

= [Dtζ,H]
ζα − 1

ζα

+ (I −H)b.

Thus to show ζ̃ satisfies (2.11) up to an O(ε4) residual it suffices to show that our

approximation of b satisfies (2.13) up to a residual of size O(ε4). Hence we need only
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choose b3 so that

(I −H0)b3 = H(1)
b2

− [∂t0ζ
(2)

,H0]ζ
(1)
α0
− [∂t1ζ

(1)
,H0]ζ

(1)
α0

− [∂t0ζ
(1)

,H(1)
]ζ(1)

α0
− [∂t0ζ

(1)
,H0]ζ

(2)
α0

− [∂t0ζ
(1)

,H0]ζ
(1)
α1

+ [∂t0ζ
(1)

,H0]|ζ(1)
α0
|2

= −1

2
iω(I −H0)(BBX)

− iωk2Be−iφ(I −H0)|B|2

+ iω(I −H0)(BBX)

− iωk2Be−iφ(I +H0)|B|2

= iω(I −H0)

(
BBX − 1

2
BBX

)
− 2iωk2B|B|2e−iφ.(3.23)

In summary, we have shown that the equations (2.7)-(2.8)-(2.10)-(2.11) are satisfied

up to a residual of size O(ε4) by the approximation

ζ̃ := α + εζ(1) + ε2ζ(2) + ε3ζ(3)

= α + εBeiφ + ε2 1

2
ik(I −H0)|B|2

+ ε3

(
−1

2
k2B|B|2e−iφ +

1

2
(I −H0)

(
BBX

))
,(3.24)

where B = B(ε(α + ω′t), ε2t) = B(X,T ) satisfies the NLS equation

2iBT − ω′′BXX + k2ωB|B|2 = 0.
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From (3.23), enforcing the reality condition on b3 yields

b̃ := b0 + εb1 + ε2b2 + ε3b3

= ε2(−kω|B|2)

+ ε3

(
< (

2iωk2B|B|2eiφ
)

+
3

4
iω(BBX −BBX)− 1

4
iωH0(BBX + BBX)

)
.(3.25)

We also define

(3.26) Ã := A0 + εA1 + ε2A2 = 1

and

(3.27) G̃ := G0 + εG1 + ε2G2 + ε3G3 = ε3G3.

Corresponding to this approximate solution (3.24) we introduce

ξ̃ := ζ̃ − α

as well as

(3.28) D̃t := ∂t + b̃∂α, P̃ := D̃2
t − iÃ∂α.

We then have the formulas for the differences

(3.29) Dt − D̃t = (b− b̃)∂α

and

(3.30) D2
t − D̃2

t =
(
Dt(b− b̃)

)
∂α + (b− b̃)

(
Dt∂α + ∂αD̃t

)

from which we have

(3.31) P − P̃ =
(
Dt(b− b̃)− i(A− Ã)

)
∂α + (b− b̃)

(
Dt∂α + ∂αD̃t

)
.

For future reference we also include the following calculation.
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Proposition III.4. Let ζ̃, b̃, Ã be as above. Then

1. P̃ ξ̃ = O(ε3).

2. [P̃ , H̃]ξ̃ = O(ε4).

Proof. The first statement is straightforward to verify. For the second, observe

that by (3.8) we have that H(1)ζ(1) = H(2)ζ(1) = O(ε4). The O(ε) term is [∂2
t0
−

i∂α0 ,H0]ζ
(1) = 0. The O(ε2) terms are

[∂2
t0
− i∂α0 ,H0]ζ

(2) + [∂2
t0
− i∂α0 ,H(1)]ζ(1) + [2∂t0∂t1 − i∂α1 ,H0]ζ

(1),

which vanishes by virtue of the above observation, (3.12), (3.14), and (3.16). Finally,

the O(ε3) terms are given by

[∂2
t0
− i∂α0 ,H0]ζ

(3)

+ [∂2
t0
− i∂α0 ,H(1)]ζ(2)

+ [∂2
t0
− i∂α0 ,H(2)]ζ(1)

+ [2∂t0∂t1 − i∂α1 ,H0]ζ
(2)

+ [2∂t0∂t1 − i∂α1 ,H(1)]ζ(1)

+ [2∂t0∂t2 + ∂2
t1

+ 2b2∂α0∂t0 ,H0]ζ
(1).

For the same reasons as for the O(ε2) terms all of the above are immediately seen to

vanish except for the last, which by (3.17) is given by

2[b2,H0]ζ
(1)
α0t0 = 2k3[|B|2,H0]Beiφ = 0,

by (3.8).

Now we have shown that the approximation ζ̃ depends on B and BX , where B

satisfies the NLS equation (3.20). To be certain that the forthcoming objects are

well-defined, we appeal to the following global well-posedness result for NLS:
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Theorem III.5. (c.f. [3], [16]) Let m ≥ 1 be given, and suppose that B0 ∈ Hm is

given. Then there exists a unique solution B ∈ C([0,∞); Hm) to (3.20) with initial

condition B(0) = B0.

Fix s ≥ 6, T > 0. For the rest of the paper we assume that B0 ∈ Hs+7,

and hence by the above theorem that B ∈ C([0,∞), Hs+7) with ‖B‖C([0,T );Hs+7) ≤

C(‖B0‖Hs+7 , T ). If we calculate ζ̃ and D̃tζ̃ from B ∈ Hs+7 through (3.24), we see by

counting the maximum number of derivatives that fall on B that we have the bound

(3.32)
∥∥∥
(
ξ̃, D̃tζ̃ , D̃2

t ζ̃
)∥∥∥

C([0,T );Hs+6×Hs+4×Hs+2)
≤ C(‖B0‖Hs+7 ,T )ε1/2.

For the rest of the paper, we choose ε < ε0 for ε0 ≤ 1 sufficiently small depending

on B0 so that ζ̃ satisfies the chord-arc condition (2.2). Along with the a priori

assumption (2.18) using an appropriately small choice of δ > 0 , this implies that

the singular integrals in the next section are well-defined.



CHAPTER IV

Estimates of the Remainder

Now that we have derived a formal approximation of the solution ζ to the system

(2.7)-(2.8)-(2.10)-(2.11), we can consider the size of the remainder r = ζ − ζ̃. Our

basic approach is to expand the known equations for ζ and formulas for quantities

defined in terms of ζ given in §2 by writing ζ = r+ ζ̃ and thereby find the appropriate

governing equations from which we will derive energy estimates for r.

In §4.1 we derive from (2.7)-(2.8)-(2.10)-(2.11) new equations in terms of quanti-

ties related to r. Many functions and operators will arise in these equations that we

need to study before we can estimate them appropriately. In particular we devote

§4.2 to studying the remainder between the true and approximate Hilbert transforms

introduced in §3.1.

To clearly describe the respects in which we consider quantities to be small, we

adopt the following terminology: we say a term is of nth order (with linear, quadratic,

cubic having the typical meaning) if the term consists of n small factors.

Alternately, given a Banach space X with norm ‖ · ‖X , we say that a term f ∈ X

as being O(εn) in X when there exists a constant C so that ‖f‖X ≤ Cεn. If we

use the notation O(εn) without mentioning a norm explicitly, we mean size in the

physical sense O(εn) as we have used in §3. Since we ultimately seek bounds in

34
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Sobolev spaces Hs, we introduce the special notation that f ∈ Hs is O(εn), which

means that f is O(εn) in Hs where the index s will be clear from context.

We ultimately plan to control all of our quantities in terms of rα and Dtr in

Sobolev space, and so we need some idea of how large we expect rα and Dtr to be in

terms of ε. Since we are only interested in the leading term of the approximation, it

is a suitable goal to seek a remainder which is of physical size O(ε2), and in the L2

sense to be O(ε3/2). Therefore, we expect here that rα and Dtr should be O(ε3/2).

In §4.3 we bound in Hs the remaining quantities appearing in the cubic nonlin-

earities of the equations of §4.1 by terms involving the quantity

E1/2
s := ‖rα‖Hs + ‖Dtr‖Hs ,

which we expect to be O(ε3). We will then show that for ε < ε0 with ε0 chosen

sufficiently small, the quantity Es is bounded above by the quantity

s∑
n=0

‖Dt∂
n
αρ‖2

L2 + ‖Dt∂
n
ασ‖2

L2 ,

where

ρ :=
1

2
(I −H)r and σ :=

1

4
(I −H)

(
Dt(I −H)ξ − D̃t(I − H̃)ξ̃

)
,

which in turn is bounded above by the energy E for the remainder.

We then use these estimates to show that the cubic nonlinearities of the remainder

equations of §4.1 are O(ε7/2). Having done so, we derive in §4.5 an energy inequality

which roughly reads dE/dt ≤ O(ε5). Heuristically, an inequality of this type is

suitable since on time scales on the order O(ε−2) this implies Es is of size O(ε3), as

we would like. We then go on to rigorously derive a priori bounds of Es on O(ε−2)

time scales.
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4.1 The Derivation of the Equations for the Remainder

Here we derive the equations governing the evolution of the quantities1

(4.1) ρ :=
1

2
(I −H)r and σ :=

1

4
(I −H)

(
Dt(I −H)ξ − D̃t(I − H̃)ξ̃

)
.

Our goal in this section is to manipulate the nonlinearities of these equations so that

they will be in a suitable form for showing they are of size O(ε7/2). For example,

from (2.11) we have

(4.2) (I −H)Dtr = −(I − H̃)D̃tζ̃ − (I − H̃)(Dt − D̃t)ζ̃ + (H− H̃)Dtζ̃ .

We will show in §4.2 that the operator norm of H− H̃ on Hs is of size O(ε3/2), and

in §4.3 that the function b − b̃ is of size O(ε5/2). Hence the right hand side of (4.2)

is of size O(ε5/2).

We now give the equation for the remainder corresponding to (2.7). In decompos-

ing the right hand side of this equation, we keep two goals in mind. First, we must

split the terms in such a way as to arrive at G̃ so as to cancel the O(ε3) contribution

from G. Next, we must whenever possible avoid estimating terms formed by P act-

ing on complicated terms, so as to reduce all estimates whenever possible to those

1We use σ rather than the more obvious choice Dtρ in order to avoid a loss of regularity in the energy estimates.
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already derived. Specifically we expand using Proposition II.1 as follows:

P(I −H)r = G− P(I −H)ξ̃

= G + [P ,H]ξ̃ − (I −H)P ξ̃

= G + 2[Dtζ,H]
∂α

ζα

Dtξ̃ − 1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

ξ̃β(β) dβ

− (I −H)(P − P̃)ξ̃ − (I −H)P̃ ξ̃

= G + 2[Dtζ,H]
∂α

ζα

Dtξ̃ − 1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

ξ̃β(β) dβ

− (I −H)(P − P̃)ξ̃ + (H− H̃)P̃ ξ̃ − (I − H̃)P̃ ξ̃

= (G− G̃) + 2[Dtζ,H]
∂α

ζα

Dtξ̃ − 1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

ξ̃β(β) dβ

− (I −H)(P − P̃)ξ̃ + (H− H̃)P̃ ξ̃ − [P̃ , H̃]ξ̃ + ε4R,

where ε4R := G̃− P̃(I − H̃)ξ̃ is the residual arising from the approximate equation

corresponding to (2.7).

Note that at most five2 derivatives of B are taken in R through the term ∂2
tH2ζ

(3),

and so R ∈ Hs provided B ∈ Hs+5. Similarly, at most seven derivatives of B are

taken in D̃tR through the term ∂3
tH(2)ζ(3), and so D̃tR ∈ Hs provided B ∈ Hs+7.

The only term that is not immediately of size O(ε7/2) is 2[Dtζ,H]∂α

ζα
Dtξ̃. As in the

calculation (2.13) et. seq. of [19], we exploit the fact that Dtξ̃ is almost holomorphic.

Using (2.11) and Proposition II.2 allows us to rewrite this term as

2[Dtζ,H]
∂α

ζα

Dtξ̃ = 2

[
Dtζ,H 1

ζα

+H 1

ζα

]
∂αDtξ̃ − 2[Dtζ,H]

∂α

ζα

(Dtζ −Dtα−Dtr)

= 2

[
Dtζ,H 1

ζα

+H 1

ζα

]
∂αDtξ̃ + 2[Dtζ,H]

bα

ζα

+ 2[Dtζ,H]
∂α

ζα

Dtr.

To see that the last of these terms is acceptably small, we again apply Proposition

2Observe that, despite the appearance of formulas (3.3), since the operators H1 and H2 can be written as singular
integrals as in (3.2), they do not lose derivatives due to Proposition II.7.
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II.2 to see that

(4.3) 2[Dtζ,H]
∂α

ζα

Dtr = [(I +H)Dtζ,H]
∂α

ζα

Dtr = [Dtζ,H]
∂α

ζα

(I −H)Dtr,

which is now easily seen to be O(ε7/2) by (4.2). Thus our equation for ρ is now

2Pρ = (G− G̃)− (I −H)(P − P̃)ξ̃ + (H− H̃)P̃ ξ̃ − [P̃ , H̃]ξ̃

+ 2

[
Dtζ,H 1

ζα

+H 1

ζα

]
∂αDtξ̃ + 2[Dtζ,H]

bα

ζα

+ 2[Dtζ,H]
∂αDtr

ζα

− 1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

ξ̃β(β) dβ + ε4R.(4.4)

Note that the terms on the right hand side of (4.4) are cubic, and so a priori there

may be contributions of size O(ε5/2). However, we will show later that all such con-

tributions arise as terms depending only on ξ̃ and ε of physical size O(ε3); moreover,

these putative terms will be shown to vanish by multiscale calculations.

Next we derive the evolution equation for σ. First we calculate that

P(I −H)Dt(I −H)ξ = −[P ,H]Dt(I −H)ξ + (I −H)PDt(I −H)ξ

= −2[Dtζ,H]
∂αD2

t (I −H)ξ

ζα

+
1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

∂βDt(I −H)ξ(β)dβ

+ (I −H)[P , Dt](I −H)ξ + (I −H)(DtG)

= −2[Dtζ,H]
∂αD2

t (I −H)ξ

ζα

+
1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)
∂βDt(I −H)ξ(β)dβ

+ (I −H)iUκ−1

(at

a

)
∂α(I −H)ξ

+ (I −H)(DtG).
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Similarly we have

P(I −H)D̃t(I − H̃)ξ̃ = −[P ,H]D̃t(I − H̃)ξ̃ + (I −H)PD̃t(I − H̃)ξ̃

= −2[Dtζ,H]
∂αDtD̃t(I − H̃)ξ̃

ζα

+
1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

∂βD̃t(I − H̃)ξ̃(β)dβ

+ (I −H)PD̃t(I − H̃)ξ̃

= −2[Dtζ,H]
∂αDtD̃t(I − H̃)ξ̃

ζα

+
1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

∂βD̃t(I − H̃)ξ̃(β)dβ

+ (I −H)(P − P̃)D̃t(I − H̃)ξ̃ − i(I −H)b̃α∂α(I − H̃)ξ̃

+ (I −H)(D̃tG̃) + (I −H)ε4(D̃tR).

Subtracting these two equations then gives the desired evolution equation for σ:

4Pσ = −8[Dtζ,H]
∂αDtσ

ζα

+
4

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

σβ(β)dβ

+ (I −H)iUκ−1

(at

a

)
∂α(I −H)ξ

− (I −H)(P − P̃)D̃t(I − H̃)ξ̃

+ i(I −H)b̃α∂α(I − H̃)ξ̃

+ (I −H)(DtG− D̃tG̃)− (I −H)ε4(D̃tR)(4.5)

The right hand side of (4.5) is O(ε7/2) provided we can show that the right hand

side of (4.5) is O(ε7/2). The formula (2.16) implies that the third term on the right

hand side of (4.5) is of size O(ε7/2). Before we can show that the rest of the terms are

appropriately small, we must study the quantities appearing on the right hand side

of these equations further. We will see that estimates for these quantities presuppose
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a satisfactory bound for the difference H − H̃, and so estimating this operator in

Sobolev space is our first task.

4.2 Estimates for the Difference Operator H− H̃

While the operator H̃ is well suited for multiscale calculation, it remains to be

seen how H̃ compares to our original Hilbert Transform H corresponding to the true

solution ζ of the water wave system. To do so, we will bound the operator H−H̃ in

Hs. This entails decomposing it as

H− H̃ = (H−Hζ̃) + (Hζ̃ − H̃),

where Hζ̃ is the Hilbert transform corresponding to the approximate interface ζ̃. If

we apply Proposition II.7 to the formula of Lemma III.1 we arrive at

Lemma IV.1. Let s ≥ 4 be given. Then we have the bounds

‖(Hζ̃ − H̃)f‖Hs ≤ Cε3‖f‖Hs and ‖(Hζ̃ − H̃)f‖Hs ≤ Cε5/2‖f‖W s,∞ ,

where the constant C = C (‖B‖Hs+2).

The analogous result for the first sum in the decomposition is

Lemma IV.2. Let s ≥ 4 be given, and suppose (2.18) holds. Then for all t ≤ T0,

‖(H−Hζ̃)f‖Hs ≤ C‖rα‖Hs−1‖f‖Hs and ‖(H−Hζ̃)f‖Hs ≤ C‖rα‖Hs−1‖f‖W s,∞ ,

where the constant C = C(S(T0), ‖B‖Hs+2).

Proof. We use the fact that this operator can be written in two different ways using

integration by parts:

(H−Hζ̃)f =
1

πi

∫
log

(
1 +

r(α)− r(β)

ζ̃(α)− ζ̃(β)

)
fβ(β)dβ

=
1

πi

∫ (
rβ(β)

ζ(α)− ζ(β)
− ζ̃β(r(α)− r(β))

(ζ(α)− ζ(β))(ζ̃(α)− ζ̃(β))

)
f(β)dβ
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Now consider the nth derivative of the first formula. If all n derivatives fall on f ,

then we can pass to an integral of the second form above via integration by parts.

Such an integral can then be bounded in L2 by either

C (S(T0), ‖B‖Hn+2) ‖rα‖H2‖f‖Hn or C (S(T0), ‖B‖Hn+2) ‖rα‖H2‖f‖W n,∞ .

If at least one derivative falls on the logarithm, then we have a kernel of the form

(∂α + ∂β) log

(
1 +

r(α)− r(β)

ζ̃(α)− ζ̃(β)

)
=

rα(α)− rβ(β)

ζ(α)− ζ(β)
− (r(α)− r(β))(ζ̃α(α)− ζ̃β(β))

(ζ(α)− ζ(β))(ζ̃(α)− ζ̃(β))
.

This yields a singular integral which can be bounded in Hn by either

C
(
S(T0), ‖ζ̃α − 1‖Hn+1

)
‖rα‖Hn−1‖f‖Hn−1

or

C
(
S(T0), ‖ζ̃α − 1‖Hn+1

)
‖rα‖Hn−1‖f‖W n−1,∞ .

The proposition follows by summing these bounds n = 0, 1, . . . , s.

Combining these lemmas yields the

Corollary IV.3. Let s ≥ 4 be given, and suppose that (2.18) holds. Then for all

t ≤ T0,

‖(H− H̃)f‖Hs ≤ C(ε3 + ‖rα‖Hs−1)‖f‖Hs

‖(H− H̃)f‖Hs ≤ C(ε5/2 + ‖rα‖Hs−1)‖f‖W s,∞ ,

where C = C (S(T0), ‖B‖Hs+2).

We will also need to estimate the operator Dt(H−H̃). To do so, it will suffice to

consider the commutator [Dt,H− H̃].

Proposition IV.4. Let s ≥ 4, and suppose that (2.18) holds. Then

‖[Dt,H− H̃]f‖Hs ≤ C(ε3 + ‖rα‖Hs−1 + ‖Dtr‖Hs)‖f‖Hs ,

where the constant C = C (S(T0), ‖B‖Hs+4).
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Proof. We decompose H − H̃ = (H − Hζ̃) + (Hζ̃ − H̃) and estimate each term

separately. We begin with the latter operator and apply Lemma II.3 to (3.4). Using

the product rule, this results in a sum of singular integrals whose numerators are

products of differences involving the functions ξ̃, ζ(n), Dtξ̃, Dtζ
(n), n = 1, 2, 3. Then

using the identity Dtg = (b − b̃)gα + D̃tg, we can further split these terms until we

arrive at a sum of kernels whose numerators are products of differences involving the

functions

ξ̃, ζ(n), D̃tξ̃, D̃tζ
(n), (b− b̃)ξ̃, (b− b̃)ζ(n)

α , n = 1, 2, 3

In order to estimate the terms (b− b̃)g that arise here for g = ξ̃, ζ(n), notice that

(2.18), along with (2.13) and Lemma II.5, shows that

‖(b− b̃)gα‖Hs ≤ C‖b− b̃‖Hs‖gα‖W s,∞ ≤ C (S(T0)) ‖gα‖W s,∞ .

The resulting kernels have the properties that (1) each has at least three factors in

its numerator of size at most O(ε) in the sense of L∞, (2) each has the same number

of factors in the numerator as in the denominator. In estimating this sum of singular

integrals we always estimate f in L2 so as not to lose any half-powers of ε. In doing

so, the largest number of derivatives of B that appears is in D̃tζ̃; a time derivative

will fall on BX in the formula for ζ(3) which by (3.20) is equivalent to a term with

three derivatives on B. The result is the bound C(S(T0), ‖B‖Hs+3)ε3‖f‖Hs .

Next, using Lemma II.3, we explicitly write the kernel

[Dt,H−Hζ̃ ]f =
1

πi

∫
fβ(β)

(
Dtr(α)−Dtr(β)

ζ(α)− ζ(β)

−(r(α)− r(β))(Dtζ̃(α)−Dtζ̃(β))

(ζ(α)− ζ(β))(ζ̃(α)− ζ̃(β))

)
dβ,

and appealing to the crude bound of b− b̃ above now implies the proposition.
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Corollary IV.5. Let s ≥ 4 be given, and suppose that (2.18) holds. Then

‖Dt(H− H̃)f‖Hs ≤ C(ε3 + ‖rα‖Hs−1 + ‖Dtr‖Hs)(‖f‖Hs + ‖Dtf‖Hs),

where the constant C = C (S(T0), ‖B‖Hs+3).

4.3 Formulas for Remainders of b and A

Applying the energy method to the remainder equations (4.4)-(4.5), we expect to

obtain bounds on the quantity

(4.6) E1/2
s := ‖rα‖Hs + ‖Dtr‖Hs .

However in (4.4)-(4.5), the quantities b − b̃, A − Ã, etc., arise as coefficients of the

operators P−P̃ and Dt(P−P̃). Moreover, such energy estimates would give bounds

on the quantities Dt∂
n
αρ and Dt∂

n
ασ, not directly on the quantities rα and Dtr. So

in the following subsections we must perform the following tasks:

1. Bound b− b̃ in terms of Es and ε.

2. Bound Dt(b− b̃) in terms of Es, ε, and a small multiple of D2
t r.

3. Bound A− Ã in terms of Es, ε, and a small multiple of D2
t r.

4. Bound D2
t r in terms of Es, ε and a small multiple of A − Ã, and thus bound

D2
t r, A− Ã and Dt(b− b̃) appropriately by Es and ε alone.

5. Show that Dtρ and Dtσ are equivalent to Dtr and D2
t r, respectively.

Since b̃ and Ã are intended to be power expansions in ε of b and A up to at least

quadratic terms, we expect that the differences b− b̃, Dt(b− b̃) and A−Ã will be of

size O(ε5/2).
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Step 1. Controlling b− b̃ by Es and ε.

In order to use (2.13), we write

(I −H)(b− b̃) = (I −H)b + (H− H̃)b̃− (I − H̃)b̃.

By the multiscale calculation, the residual quantity

(I − H̃)b̃ + [D̃tζ̃ , H̃]
ζ̃α − 1

ζ̃α

consists only of terms O(ε4). The largest number of derivatives of B appearing in

this residual is through the term H2D̃tζ
(3), where three derivatives fall on B. Hence

this residual is bounded in Hs by C(‖B‖Hs+3)ε7/2. By Corollary IV.3, we have

‖(H− H̃)b̃‖Hs ≤ C(ε3 + E1/2
s )‖b̃‖Hs

≤ C(ε3 + E1/2
s )ε3/2

≤ C(εE1/2
s + ε5/2),

where C = C(S(T0), ‖B‖Hs+3). Observe that in the last step we have relaxed the

estimate so that every term is of the optimal size O(ε5/2).

It now suffices to consider the difference

−[Dtζ,H]
ξα

ζα

+ [D̃tζ̃ , H̃]
ξ̃α

ζ̃α

= −[Dtr,H]
ξα

ζα

− [(Dt − D̃t)ζ̃ ,H]
ξα

ζα

− [D̃tζ̃ ,H]
rα

ζα

− [D̃tζ̃ ,H]ξ̃α

(
1

ζα

− 1

ζ̃α

)

− [D̃tζ̃ ,H− H̃]
ξ̃α

ζ̃α

.

Estimating each of these terms in Hs using Proposition II.7, we sum the bounds
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under the assumption of (2.18) to find by Corollary IV.3 that for s ≥ 4:

‖b− b̃‖Hs ≤ Cε7/2 + C(εE1/2
s + ε5/2)

+ CE1/2
s (E1/2

s + ε) + C‖b− b̃‖Hs(δ + ε)

+ CεE1/2
s + Cε(ε3 + E1/2

s )ε1/2

≤ C
(
Es + εE1/2

s + ε5/2
)

+ C‖b− b̃‖Hs(ε + δ),

and so choosing ε0 and δ so that the coefficient C(ε + δ) of ‖b − b̃‖Hs on the right

hand side is less than 1
2

for all ε < ε0 yields the bound

(4.7) ‖b− b̃‖Hs ≤ C
(
Es + εE1/2

s + ε5/2
)
,

where the constant C = C(S(T0), ‖B‖Hs+4). From this bound and (3.25) we also

have

(4.8) ‖b‖Hs ≤ C
(
E1/2

s + ε3/2
)

Step 2. Controlling Dt(b− b̃) by Es, ε, and a small multiple of D2
t r.

To control Dt(b− b̃), we write

(I −H)Dt(b− b̃) =
(
(I −H)Dtb− (I − H̃)D̃tb̃

)
+ (H− H̃)D̃tb̃− (I −H)(b− b̃)∂αb̃.

By Step 1 and Corollary IV.3 we have that

‖(I −H)(b− b̃)∂αb̃‖Hs ≤ C(Es + εE1/2
s + ε5/2)

and

‖(H− H̃)D̃tb̃‖Hs ≤ C(ε3 + E1/2
s )(ε5/2) ≤ C(εE1/2

s + ε5/2),

where the constant C depends only on S(T0) and ‖B‖Hs+4 . To estimate the remain-
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ing terms we appeal to the formula (2.17):

(I −H)Dtb = [Dtζ,H]
∂α(2b−Dtζ)

ζα

− [D2
t ζ,H]

ζα − 1

ζα

+
1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

(ζβ(β)− 1)dβ.

By a multiscale calculation, the term (I − H̃)D̃tb̃ has the property that the residual

quantity

(I − H̃)D̃tb̃− [D̃tζ̃ , H̃]
∂α(2b̃− D̃tζ̃)

ζ̃α

+ [D̃2
t ζ̃ , H̃]

ζ̃α − 1

ζ̃α

− 1

πi

∫ (
D̃tζ̃(α)− D̃tζ̃(β)

ζ̃(α)− ζ̃(β)

)2

(ζ̃β(β)− 1)dβ

is of size O(ε4). Therefore it suffices to estimate the difference between each term

in (2.17) with its approximate analogue. We may estimate the first such difference

crudely, since by Step 1 we have that

∥∥∥∥∥[Dtζ,H]
bα

ζα

− [D̃tζ̃ , H̃]
b̃α

ζ̃α

∥∥∥∥∥
Hs

≤
∥∥∥∥∥[Dtζ,H]

(b− b̃)α

ζα

∥∥∥∥∥
Hs

+

∥∥∥∥∥[Dtζ,H]
b̃α

ζα

∥∥∥∥∥
Hs

+

∥∥∥∥∥[D̃tζ̃ , H̃]
b̃α

ζ̃α

∥∥∥∥∥
Hs

≤ C(Es + εE1/2
s + ε5/2) + Cδε5/2 + Cε1/2ε5/2

≤ C(Es + εE1/2
s + ε5/2),

where the constant C depends only on S(T0) and ‖B‖Hs+4 , and where we estimated

the commutator [Dtζ,H] b̃α

ζα
term-by-term. The estimate of the difference

[Dtζ,H]
∂αDtζ

ζα

− [D̃tζ̃ , H̃]
∂αD̃tζ̃

ζ̃α

proceeds by decomposing in the same manner as in Step 1, and yields the bound

C(Es + εE
1/2
s + ε5/2).
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Next, by writing Dtζ = Dtr + (b− b̃)ζ̃α + D̃tζ̃, the remaining singular integrals

1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

(ζβ(β)−1)dβ− 1

πi

∫ (
D̃tζ̃(α)− D̃tζ̃(β)

ζ̃(α)− ζ̃(β)

)2

(ζ̃β(β)−1)dβ

are controlled in Hs with Proposition II.7 by C(Es+εE
1/2
s +ε5/2). Finally we address

the difference

[D2
t ζ,H]

ζα − 1

ζα

− [D̃2
t ζ̃ , H̃]

ζ̃α − 1

ζ̃α

.

Again decomposing in the fashion of Step 1, we arrive at a sum of commutators all

controlled in Hs by C(Es + εE
1/2
s + ε5/2) except for two commutators. The first is

[D2
t r,H]

ζα − 1

ζα

,

which is controlled in Hs by (E
1/2
s + ε)‖D2

t r‖Hs . The second is

[(D2
t − D̃2

t )ζ̃ ,H]
ζα − 1

ζα

=
[(

Dt(b− b̃)
)

ζ̃α + (b− b̃)
(
Dtζ̃α + ∂αD̃tζ̃

)
,H

] ζα − 1

ζα

,

which has been expanded using (3.30), and is controlled in Hs by

Cδ‖Dt(b− b̃)‖Hs + C(Es + εE1/2
s + ε5/2)

Summing all of these estimates, we therefore have for δ chosen sufficiently small that

‖Dt(b− b̃)‖Hs ≤ C(Es + εE1/2
s + ε5/2) + C(E1/2

s + ε)‖D2
t r‖Hs .(4.9)

Step 3. Controlling A− Ã in terms of Es, ε, and a small multiple of D2
t r.

Since Ã = 1 by (3.26), it suffices to control A− 1 in Hs. The right hand side of

the formula (3.26) consists of terms that are almost the same as those in the formula

(2.17) for Dtb, and so the same methods of estimation will apply. However, from

§3.3 we know that A2 = 0, and so we will want to decompose the right hand side of

the formula (2.14) so that it is easily seen that the pure O(ε2) contribution vanishes.
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From (2.14) we have

(I −H)(A− 1) = i[D2
t ζ,H]

ζα − 1

ζα

+ i[Dtζ,H]
∂αDtζ

ζα

:= I1 + I2.

Decomposing the difference corresponding to I2 as in Step 2, we have
∥∥∥∥∥[Dtζ,H]

∂αDtζ

ζα

− [D̃tζ̃ , H̃]
∂αD̃tζ̃

ζ̃α

∥∥∥∥∥
Hs

≤ C
(
Es + εE1/2

s + ε5/2
)
,

where C = C(S(T0), ‖B‖Hs+4). The difference corresponding to I1 is decomposed as

follows:

[D2
t ζ,H]

ξα

ζα

− [D̃2
t ζ̃ , H̃]

ξ̃α

ζ̃α

= [D2
t r,H]

ξα

ζα

+ [(D2
t − D̃2

t )ζ̃ ,H]
ξα

ζα

+ [D̃2
t ζ̃ ,H]

(
ξα

ζα

− ξ̃α

ζ̃α

)
+ [D̃2

t ζ̃ ,H− H̃]
ξ̃α

ζ̃α

.

Note that in the expression D̃2
t ζ̃, five derivatives fall on B through ζ(3), and so we

need five extra derivatives on B to bound D̃2
t ζ̃ in Hs. Using Step 1 and Corollary

IV.3 then gives
∥∥∥∥∥[D2

t ζ,H]
ξα

ζα

− [D̃2
t ζ̃ , H̃]

ξ̃α

ζ̃α

∥∥∥∥∥
Hs

≤ C(Es + εE1/2
s + ε5/2)

+ C
(
ε + E1/2

s

) (
‖D2

t r‖Hs + ‖Dt(b− b̃)‖Hs

)
,

where C = C(S(T0), ‖B‖Hs+5). Now since a multiscale calculation shows that the

function

[D̃tζ̃ , H̃]
∂αD̃tζ̃

ζ̃α

+ [D̃2
t ζ̃ , H̃]

ξ̃α

ζ̃α

consists only of terms of order O(ε3), the highest number of derivatives appearing is

through the term H2∂
2
t ζ

(3) which contains five derivatives of B. This residual is thus

controlled in Hs by C(‖B‖Hs+5)ε5/2. Combining these estimates, we can choose ε0

and δ sufficiently small so as to arrive at the following estimate for A− Ã:

‖A − Ã‖Hs ≤ C
(
Es + εE1/2

s + ε5/2
)

+ C
(
ε + E1/2

s

)
(‖D2

t r‖Hs + ‖Dt(b− b̃)‖Hs)
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Now using Step 2 and possibly choosing δ and ε0 smaller still allows us to give the

following preliminary bound for A− Ã:

(4.10) ‖A − Ã‖Hs ≤ C
(
Es + εE1/2

s + ε5/2
)

+ C
(
ε + E1/2

s

) ‖D2
t r‖Hs

Step 4. Bounding D2
t r in terms of Es, ε, and a small multiple of A− Ã.

We start by deriving a formula for D2
t r. Changing variables via Uκ−1 in (1.3)

yields the equation Pζ = −i and so decomposing as ξ = ξ̃ + r yields

Pr = −i− Pα−P ξ̃

= −i− (Dtb− iA)− (P − P̃)ξ̃ − P̃ ξ̃

= −Dtb + i(A− 1)− (P − P̃)ξ̃ − P̃ ξ̃,

and so

(4.11) D2
t r − irα = i(A− 1)(1 + ξα)− (D2

t − D̃2
t )ξ̃ − P̃ ξ̃ −Dtb.

By Proposition III.4 we have ‖P̃ ξ̃‖Hs ≤ Cε5/2 with the constant depending on S(T0)

and ‖B‖Hs+5 . Next, using Step 1, (3.30) and (4.10) gives

‖(D2
t − D̃2

t )ξ̃‖Hs ≤ Cε‖Dt(b− b̃)‖Hs + Cε
(
Es + εE1/2

s + ε5/2
)

≤ C(ε1/2 + δ)‖D2
t r‖Hs + C

(
Es + εE1/2

s + ε5/2
)
.

We also have

‖Dtb‖Hs ≤ ‖Dt(b− b̃)‖Hs + ‖(Dt − D̃t)b̃‖Hs + Cε5/2

≤ C(ε1/2 + δ)‖D2
t r‖Hs + C(Es + εE1/2

s + ε5/2).

Finally we have from (4.10) that

‖(A− 1)ζα‖Hs ≤ C
(
Es + εE1/2

s + ε5/2
)

+ C(ε1/2 + δ)‖D2
t r‖Hs .
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Combining these estimates through (4.11) gives

‖D2
t r − irα‖Hs ≤ C

(
Es + εE1/2

s + ε5/2
)

+ C(ε1/2 + δ)‖D2
t r‖Hs .

Hence we can choose ε0 and δ sufficiently small so that

‖D2
t r‖Hs ≤ ‖rα‖Hs + C

(
Es + εE1/2

s + ε5/2
)

≤ C(E1/2
s + ε5/2),(4.12)

where the constant C depends only on S(T0) and ‖B‖Hs+5 . Then we immediately

have

(4.13) ‖A − Ã‖Hs ≤ C(Es + εE1/2
s + ε5/2)

by virtue of Step 3, as well as

(4.14) ‖Dt(b− b̃)‖Hs ≤ C(Es + εE1/2
s + ε5/2)

from Step 2. From this last inequality we have

(4.15) ‖Dtb‖Hs ≤ C(Es + εE1/2
s + ε5/2).

Note that from (4.11), applying (4.13), (4.15), we also have the estimate

‖rα‖Hs − C(Es + εE1/2
s ) ≤ C‖D2

t r‖Hs + Cε5/2,

and hence if we choose δ and ε0 sufficiently small, we conclude that

(4.16) E1/2
s ≤ C(‖Dtr‖Hs + ‖D2

t r‖Hs + ε5/2).

Step 5. Showing that Dtρ, σ and Dtσ are equivalent to rα and Dtr.

In the sequel we will show that the energy constructed from the equations of §4.1

is bounded below by the sum

s∑
n=0

‖Dt∂
n
αρ‖L2 + ‖Dt∂

n
ασ‖L2
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Therefore, this energy will control Es provided we can show that Es is bounded above

by this sum. We will show that this is the case with the following three claims.

Claim 1. For s ≥ 4 we have, for δ and ε < ε0 chosen sufficiently small, that

‖Dtr‖Hs ≤ C‖σ‖Hs + C(δ + ε)E1/2
s + Cε5/2

and

‖σ‖Hs ≤ CE1/2
s + Cε5/2.

Proof of Claim 1. Denote I := 1
2
Dt(I −H)ξ − 1

2
D̃t(I − H̃)ξ̃. First consider the

difference

(4.17)

Dtr −I = Dtξ − 1

2
Dt(I −H)ξ

− D̃tξ̃ +
1

2
D̃t(I − H̃)ξ̃

− (Dt − D̃t)ξ̃

=
1

2
Dt(H +H)ξ

− D̃tξ̃ +
1

2
D̃t(I − H̃)ξ̃

− (b− b̃)ξ̃α.

By Step 1 we have that ‖(b − b̃)ξ̃α‖Hs ≤ C(Es + εE
1/2
s + ε5/2), and by a multiscale

calculation we have that ‖D̃tξ̃ − 1
2
D̃t(I − H̃)ξ̃‖Hs ≤ Cε5/2. The final term can be

expanded as

1

2
Dt(H +H)ξ =

1

2
[Dtζ,H]

ξα

ζα

+
1

2
[Dtζ,H]

ξα

ζα

+
1

2
(H +H)Dtξ.

Decomposing these terms as in Step 1 yields a sum of terms all bounded in Hs

by C(Es + εE
1/2
s ). The only terms which are not immediately O(ε5/2) after this
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decomposition are

1

2
[D̃tζ̃ , H̃]

ξ̃α

ζ̃α

+
1

2
(H̃ + H̃)D̃tξ̃

whose leading O(ε2) term is

1

2
[ζ

(1)

t0
,H0]ζ

(1)
α0

+
1

2
H(1)

ζ
(1)
t0 = 0.

Hence, we have

‖Dtr −I ‖Hs ≤ C(Es + εE1/2
s + ε5/2).

We can further write

Dtr − σ = Dtr − 1

2
(I −H)I

=
1

2
(I −H)Dtr +

1

2
(H +H)Dtr

+
1

2
(I −H)(Dtr −I ),

which by virtue of (4.2) and the above bound on Dtr −I yields

‖Dtr − σ‖Hs ≤ C(Es + εE1/2
s + ε5/2)

Hence for sufficiently small δ and ε0 the claim follows.¤

Claim 2. Given s ≥ 4, then for δ and ε < ε0 chosen sufficiently small we have for

all n = 0, 1, . . . , s that

‖D2
t r‖Hs ≤ C

s∑
n=0

‖Dt∂
n
ασ‖L2 + C(ε + δ)E1/2

s + Cε5/2

and
s∑

n=0

‖Dt∂
n
ασ‖L2 ≤ CE1/2

s + Cε5/2.

Proof of Claim 2. First note that for every n = 0, 1, . . . , s we have

∂n
αD2

t r −Dt∂
n
ασ = ∂n

α(D2
t r −Dtσ)− [b, ∂n

α]σα.



53

The latter term can be easily estimated by C(E
1/2
s + ε3/2)2 using the product rule,

Claim 1, and Step 1. Therefore it suffices to bound D2
t r−Dtσ in Hs. Again denote

I := 1
2
Dt(I −H)ξ − D̃t(I − H̃)ξ̃, so that σ = 1

2
(I −H)I . We first write

D2
t r −Dtσ = D2

t r −
1

2
Dt(I −H)I

=
1

2
Dt(I −H)Dtr +

1

2
Dt(H +H)Dtr +

1

2
Dt(I −H) (Dtr −I )

=
1

2
Dt(I −H)Dtr +

1

2
Dt(H +H)Dtr − 1

2
[Dtζ,H]

∂α

ζα

(Dtr −I )

+
1

2
(I −H)

(
D2

t r −DtI
)
.

All of the terms except the last are appropriately bounded in Hs, by (4.2), Lemma

II.3, Claim 1, and Proposition II.7. Hence it suffices to estimate D2
t r −DtI in Hs.

We have by (4.17) that

D2
t r −DtI =

1

2
D2

t (H +H)ξ

−Dt(D̃tξ̃ − 1

2
D̃t(I − H̃)ξ̃)

−Dt((b− b̃)ξ̃α).

The last two terms are controlled by C(Es + εE
1/2
s + ε5/2) by Step 1, (4.14) and by

a multiscale calculation. Using Proposition II.1 we can write

D2
t (H +H)ξ = [D2

t ζ,H]
ξα

ζα

+ 2[Dtζ,H]
∂αDtξ

ζα

− 1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

ξβ(β)dβ

+ [D2
t ζ,H]

ξα

ζα

+ 2[Dtζ,H]
∂αDtξ

ζα

− 1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

ξβ(β)dβ

+ (H +H)D2
t ξ.

Now we effect the usual decomposition of all of these terms. The terms which are
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not of size O(ε5/2) are

ε2[ζ
(1)

t0t0
,H0]ζ

(1)
α0

+ 2ε2[ζ
(1)

t0
,H0]ζ

(1)
α0t0 + ε2H(1)

ζ
(1)
t0t0

= ε2[ζ
(1)

t0t0
,H0]ζ

(1)
α0

+ 2ε2[ζ
(1)

t0
,H0]ζ

(1)
α0t0 + ε2[ζ

(1)
,H0]ζ

(1)
α0t0t0

= 0,

This completes the estimate of the term D2
t r −DtI , and hence the claim.¤

Claim 3. Given s ≥ 4, for δ and ε < ε0 chosen sufficiently small, we have for all

n = 0, 1, . . . , s that

‖Dtr‖Hs ≤ C

s∑
n=0

‖Dt∂
n
αρ‖L2 + C

(
Es + εE1/2

s + ε5/2
)
.

Proof of Claim 3. First observe that we can write

Dtr − 1

2
Dt(I −H)r = Dtr − 1

2
(I −H)Dtr +

1

2
[Dtζ,H]

rα

ζα

=
1

2
(I −H)Dtr +

1

2
(H +H)Dtr +

1

2
[Dtζ,H]

rα

ζα

,

and thus

∂n
αDtr −Dt∂

n
αρ = ∂n

αDtr − 1

2
∂n

αDt(I −H)r − 1

2
[b, ∂n

α]∂α(I −H)r

= ∂n
α

(
1

2
(I −H)Dtr +

1

2
(H +H)Dtr +

1

2
[Dtζ,H]

rα

ζα

)

+
1

2

n∑
j=1

(
n

j

) (
∂j−1

α bα

) (
∂n−j+1

α (I −H)r
)
.

Taking the L2 norm of this equation, using (4.2) and summing over n = 0, 1, . . . , s

yields

‖Dtr‖Hs ≤ C

s∑
n=0

‖Dt∂
n
αρ‖L2 + C

(
Es + εE1/2

s + ε5/2
)
,

and so the claim follows.¤
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Summary of Estimates

Hence we have shown that for s ≥ 4, there exists an ε0 > 0 and a δ > 0 so

that if (2.18) holds, then for all 0 < ε < ε0, the quantity b is bounded in Hs by

C(E
1/2
s + ε3/2), and the quantities

b− b̃, A− Ã, Dt(b− b̃), Dtb

are bounded in Hs by C
(
Es + εE

1/2
s + ε5/2

)
, where the constant C depends only on

S(T0) and ‖B‖Hs+7 . It is also useful to note that under the same conditions,

(4.18) ‖bα‖Hs−1 ≤ ‖b− b̃‖Hs + ‖b̃α‖Hs−1 ≤ C(Es + εE1/2
s + ε5/2).

Finally, from step 4 we have that for δ and ε0 sufficiently small,

(4.19) C1(‖Dtr‖Hs + ‖D2
t r‖Hs − ε5/2) ≤ E1/2

s ≤ C2(‖Dtr‖Hs + ‖D2
t r‖Hs + ε5/2);

from Step 5 and (4.16) we have that for δ and ε0 sufficiently small,

(4.20)

E1/2
s ≤ C

s∑
n=0

(‖Dt∂
n
αρ‖L2 + ‖Dt∂

n
ασ‖L2) + Cε5/2

‖σ‖Hs + ‖Dtσ‖Hs +
s∑

n=0

‖Dt∂
n
ασ‖L2 ≤ CE1/2

s + Cε5/2.

4.4 The Estimates of the Cubic Nonlinearities in the Equations for the
Remainder

Now that we have satisfactory estimates of the remainders of the auxiliary quanti-

ties, we can show that the right hand sides of (4.4) and (4.5) are sufficiently small to

provide suitable energy estimates. We begin by controlling the quantities appearing

in the right hand side of (4.4).

Proposition IV.6. Let s ≥ 4 be given. Then there exist ε0, δ so that if (2.18) holds,

then for all ε < ε0,

‖Pρ‖Hs ≤ C
(
E3/2

s + εEs + ε2E1/2
s + ε7/2

)
,



56

where the constant C = C(S(T0), ‖B‖Hs+7).

Proof. By (4.4) we must estimate the terms

(G− G̃)− (I −H)(P − P̃)ξ̃ + (H− H̃)P̃ ξ̃ − [P̃ , H̃]ξ̃

+ 2

[
Dtζ,H 1

ζα

+H 1

ζα

]
∂αDtξ̃ + 2[Dtζ,H]

bα

ζα

+ 2[Dtζ,H]
∂αDtr

ζα

− 1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

ξ̃β(β) dβ.

We estimate these terms in steps. We make the blanket assumption that all constants

C may depend on S(T0) and ‖B‖Hs+7 .

Step 1. We collect in this step terms with immediate bounds. We have already

seen though Proposition III.4 that ‖[P̃ , H̃]ξ̃‖Hs ≤ Cε7/2. We also have by Corollary

IV.3 that

‖(H− H̃)P̃ ξ̃‖Hs ≤ C(ε3 + E1/2
s )‖P̃ ξ̃‖Hs ≤ C

(
ε2E1/2

s + ε7/2
)
.

By (3.31) and the estimates we obtained in Section 4.3, we have

‖(I −H)(P − P̃)ξ̃‖Hs ≤ C
(
εEs + ε2E1/2

s + ε7/2
)

Next,

∥∥∥∥[Dtζ,H]
bα

ζα

∥∥∥∥
Hs

=

∥∥∥∥∥[Dtζ,H]
∂α(b− b̃)

ζα

∥∥∥∥∥
Hs

+

∥∥∥∥∥[Dtζ,H]
b̃α

ζα

∥∥∥∥∥
Hs

≤ C
(
E1/2

s + ε
) (

Es + εE1/2
s + ε5/2

)

≤ C
(
E3/2

s + εEs + ε2E1/2
s + ε7/2

)
,

where as usual we estimated the former term with Proposition II.7 and the latter
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term crudely in Hs. By (4.2), (4.3) and Corollary IV.3 we have

∥∥∥∥2[Dtζ,H]
∂α

ζα

Dtr

∥∥∥∥
Hs

=

∥∥∥∥[Dtζ,H]
∂α

ζα

(I −H)Dtr

∥∥∥∥
Hs

≤ C
(
E1/2

s + ε
) (

Es + εE1/2
s + ε5/2

)

≤ C
(
E3/2

s + εEs + ε2E1/2
s + ε7/2

)
.

Step 2. Next we consider the integral

1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

ξ̃β(β) dβ.

Since this integral is cubic, the only way it will contribute a term larger than O(ε7/2)

is if it contributes a term independent of r of order O(ε3). To see that this does not

occur, we decompose the integral in the same way as in Step 2 of §4.3.

Decomposing the differences in the numerator of the integrand by writing

Dtζ = Dtr + (b− b̃)ζ̃α + D̃tζ̃

yields a sum of integrals depending on r or b− b̃ which are controlled in Hs by

C
(
εEs + ε2E1/2

s

)
,

as well as the following integral:

1

πi

∫ (
D̃tζ̃(α)− D̃tζ̃(β)

ζ(α)− ζ(β)

)2

ξ̃β(β) dβ.

Next, decomposing the differences in the denominator of this integral via the identity

1

ζ(α)− ζ(β)
=

1

α− β
− ξ(α)− ξ(β)

(ζ(α)− ζ(β)) (α− β)

yields a sum of integrals controlled in Hs by

Cε3
(
E1/2

s + ε1/2
)
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along with the integral

1

πi

∫ (
D̃tζ̃(α)− D̃tζ̃(β)

α− β

)2

ξ̃β(β) dβ.

Expanding D̃tζ̃ and ξ̃α in powers of ε and collecting like powers yields a sum of

integrals controlled by Cε7/2 except for the leading term of size O(ε3) given by the

integral

ε3

πi

∫ (
ζ

(1)
t0 (α)− ζ

(1)
t0 (β)

α− β

)2

ζ
(1)
β0

(β) dβ

= 2ε3[ζ
(1)
t0 ,H0](ζ

(1)
t0α0

ζ(1)
α0

)− ε3[ζ
(1)
t0 , [ζ

(1)
t0 ,H0]]ζ

(1)
α0α0

,

which is also controlled by Cε7/2 by Corollary III.3.

Step 3. We turn to the term

[
Dtζ,H 1

ζα

+H 1

ζα

]
∂αDtξ̃

= − 2

π

∫
(Dtζ(α)−Dtζ(β)) (=ζ(α)−=ζ(β))

|ζ(α)− ζ(β)|2 ∂βDtξ̃(β) dβ.

Decomposing the differences in the numerator of the integral as in Step 2 yields a

sum of singular integrals. All but one of these singular integrals depends on r and

are controlled in Hs by

C
(
εEs + ε2E1/2

s + ε7/2
)

The remaining singular integral is given by

2

π

∫
(D̃tζ̃(α)− D̃tζ̃(β))(=ξ̃(α)−=ξ̃(β))

(α− β)2
∂βD̃tξ̃ dβ,

of which the leading term is isolated by expanding ζ̃ = α + εζ(1) + ε2ζ(2) + ε2ζ(3),

yielding

2

π
ε3

∫
(ζ

(1)
t0 (α)− ζ

(1)
t0 (β))(=ζ(1)(α)−=ζ(1)(β))

(α− β)2
ζ

(1)
t0β0

(β) dβ.
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By the same calculation in §3.3 showing that the I1 term of G3 vanished, we see that

this leading term is actually O(ε4) by Corollary III.3. Therefore only terms of size

O(ε4) appear, and so we have that

∥∥∥∥
[
Dtζ,H 1

ζα

+H 1

ζα

]
∂αDtξ̃

∥∥∥∥
Hs

≤ C(εEs + ε2E1/2
s + ε7/2).

Similarly, the same method of decomposition allows us to expand G in the same

way, until the leading term of the part of the decomposition that is independent of r

is apparent. However, this leading term of size O(ε3) is by construction equal to G̃,

with which it cancels. Therefore G− G̃ and hence the whole right hand side of (4.4)

is bounded in Hs by C(E
3/2
s + εEs + ε2E

1/2
s + ε7/2).

Next we consider the right hand side of (4.5).

Proposition IV.7. Let s ≥ 4 be given. Then there exist ε0 > 0 and δ > 0 so that if

(2.18) holds, then for all ε < ε0,

‖Pσ‖Hs ≤ C
(
E3/2

s + εEs + ε2E1/2
s + ε7/2

)
,

where the constant C = C(S(T0), ‖B‖Hs+7).

Proof. It suffices to show that the following terms are O(ε7/2):

− 8[Dtζ,H]
∂αDtσ

ζα

+
4

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

σβ(β)dβ

+ (I −H)iUκ−1

(at

a

)
∂α(I −H)ξ

− (I −H)(P − P̃)D̃t(I − H̃)ξ̃

+ i(I −H)b̃α∂α(I − H̃)ξ̃

+ (I −H)(DtG− D̃tG̃)− (I −H)ε4(D̃tR)

:= I1 + I2 + I3 + I4 + I5 + I6 + I7.
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Clearly ‖I7‖Hs ≤ Cε7/2 and ‖I5‖Hs ≤ Cε7/2. By (3.31), and the estimates of §4.3 we

have that

‖I4‖Hs ≤ C(Es + εE1/2
s + ε5/2)ε

≤ C(E3/2
s + εEs + ε2E1/2

s + ε7/2).

Using Lemma II.3 along with Proposition II.7, we can decompose DtG into a sum

of singular integrals as in Step 2 of §4.3. Each of these integrals can be bounded by

C(E
3/2
s + εEs + ε2E

1/2
s ) except for D̃tG̃, which has leading term of size O(ε3); but

then I6 is O(ε7/2). Similarly, if we effect the usual decomposition on the right hand

side of the formula (2.16), we see that the only term not of size O(ε5/2) is the term

ε22i
(
[ζ

(1)
t0t0 ,H0]ζ

(1)

α0t0
+ [ζ

(1)
t0 ,H0]ζ

(1)

α0t0t0

)
= 0

and hence that ‖I3‖Hs ≤ C(E
3/2
s + εEs + ε2E

1/2
s + ε7/2). By Step 5 of §4.3 and

Proposition II.7 we estimate I2 as

‖I2‖Hs ≤ C(E1/2
s + ε)2‖σ‖Hs

≤ C(E1/2
s + ε)2(E1/2

s + ε5/2)

≤ C(E3/2
s + εEs + ε2E1/2

s + ε7/2).

The only term left to estimate is I1. We first write

2[Dtζ,H]
∂αDtσ

ζα

= 2[Dtζ,H]
∂αD2

t r

ζα

+ 2[Dtζ,H]
∂α(Dtσ −D2

t r)

ζα

,

and by Step 5 of §4.3 we have that the latter term is bounded by C(E
3/2
s + εEs +

ε2E
1/2
s + ε7/2) in Hs. Next we have

2[Dtζ,H]
∂αD2

t r

ζα

= 2

[
Dtζ,H 1

ζα

+H 1

ζα

]
∂αD2

t r − 2[Dtζ,H]
∂αD2

t r

ζα

,
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and the former term is bounded in Hs by C(E
3/2
s + εEs + ε2E

1/2
s ). Of the latter term

we write using Proposition II.1 that

2[Dtζ,H]
∂αD2

t r

ζα

= [(I +H)Dtζ,H]
∂αD2

t r

ζα

= [Dtζ,H]
∂α

ζα

(I −H)D2
t r.

Finally, we have by (4.2) that

(I −H)D2
t r = [Dtζ,H]

∂αDtr

ζ̄α

+ Dt

(
−(I − H̃)D̃tζ̃ − (I − H̃)(Dt − D̃t)ζ̃ + (H− H̃)Dtζ̃

)
.

Therefore ‖(I − H)D2
t r‖Hs ≤ C(Es + εE

1/2
s + ε5/2), from which the Proposition

follows.

4.5 Construction of the Energy for the Remainder

In this section we construct the energy corresponding to the equations (4.4) and

(4.5). We then show that this energy obeys a differential inequality which yields

a priori bounds on a O(ε−2) time scale. The energy so constructed will control the

quantity ‖Dtr‖2
Hs +‖D2

t r‖2
Hs , and hence by (4.16) it follows that for sufficiently small

energies also yields suitable bounds on Es.

Bounds on the Equations for the Derivatives

We must first show that the nonlinearities in the corresponding equations for the

derivatives are appropriately bounded in L2.

Proposition IV.8. Let s ≥ 4 and 1 ≤ n ≤ s be given. Then there exist ε0 > 0 and

δ > 0 so that if (2.18) holds, then for all ε < ε0, if Θ = ρ, σ, then

‖P∂n
αΘ‖L2 ≤ C(E3/2

s + εEs + ε2E1/2
s + ε7/2),

where C depends only on S(T0) and ‖B‖Hs+7.
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Proof. Let Θ = ρ, σ as above. Observe that for any n ≥ 1 we can write

P∂n
αΘ = ∂n

αPΘ−
n∑

j=1

∂n−j
α [∂α,P ]∂j−1

α Θ.

Using the identity

(4.21) [∂α,P ] =
{
∂α

(
Dtb− i(A− 1)

)}
∂α + 2bαDt∂α

we rewrite as

P∂n
αΘ = ∂n

αPΘ−
n∑

j=1

∂n−j
α

(
∂α

(
Dtb− i(A− 1)

)
∂j

αΘ
)

− 2
n∑

j=1

∂n−j
α

(
bαDt∂

j
αΘ

)
.

Now using the identity

Dt∂
j
α = ∂j

αDt −
j∑

l=1

∂j−l
α [∂α, Dt]∂

l−1
α

= ∂j
αDt −

j∑

l=1

∂j−l
α (bα∂l

α),(4.22)

we have by the product rule, Steps 2 and 3 of §4.3, (4.18) and Proposition IV.6 that

for all 1 ≤ n ≤ s,

‖P∂n
αΘ‖L2 ≤ C‖PΘ‖Hs

+ C‖Dtb− i(A− 1)‖Hs‖∂αΘ‖Hs−1

+ C‖bα‖Hs−1(‖DtΘ‖Hs + ‖∂αΘ‖Hs−1)

≤ C
(
E3/2

s + εEs + ε2E1/2
s + ε7/2

)
,

where the last inequality follows from Step 5 of §4.3.

Construction of the Energy and the Energy Inequality

Now that we have shown that the equations for the derivatives of the quantities

in (4.4) and (4.5) also have O(ε7/2) nonlinearities, we can construct the energies
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corresponding to these equations. Since the principal operator of (4.4) and (4.5) is

P , we can use the same construction given by Lemma 4.1 of [19] to construct our

energy; we record this lemma here for convenience.

Proposition IV.9 (c.f. Lemma 4.1 of [19]). Suppose that a function

Θ ∈ C0([0, T ]; Ḣ1/2) ∩ C1([0, T ]; L2)

is given satisfying PΘ = G . Define

E(t) :=

∫
1

A|DtΘ(α, t)|2 + iΘ(α, t)Θα(α, t)dα.

Then

dE

dt
=

∫
2

A<
(
G DtΘ

)− 1

AU−1
κ

(at

a

)
|DtΘ|2dα.

Moreover if Θ is the trace of a holomorphic function on Ω(t)c, i.e., if Θ = 1
2
(I−H)Θ,

then ∫
iΘΘαdα = −

∫
iΘΘαdα ≥ 0.

For brevity, we introduce the quantities

(4.23) ρ(n) := ∂n
αρ and σ(n) := ∂n

ασ.

We cannot use the second part of Proposition IV.9 directly for n > 0 since ρ(n) and

σ(n) need not be the trace of a holomorphic function on Ω(t)c. Hence we further

introduce the notation

ρ(n) =
1

2
(I −H)ρ(n) +

1

2
(I +H)ρ(n) := φ(n) +R(n)

σ(n) =
1

2
(I −H)σ(n) +

1

2
(I +H)σ(n) := ψ(n) + S(n).(4.24)

Consider now the case 0 ≤ n ≤ s. Define

(4.25) En(t) =

∫
1

A|Dtρ
(n)|2 + iφ(n)φ

(n)

α dα
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and

(4.26) Fn(t) =

∫
1

A|Dtσ
(n)|2 + iσ(n)σ(n)

α dα.

We must show that the parts contributed by dEn

dt
to the energy inequality by the

parts of these terms that are antiholomorphic in Ω(t)c are at most of size O(ε5).

Observe first that we can write

R(n) =
1

2
(I +H)∂n

αρ

=
1

4
∂n

α(I +H)(I −H)r − 1

2

n∑
j=1

∂n−j
α [∂α,H]∂j−1

α ρ

= −1

2

n∑
j=1

∂n−j
α [ζα − 1,H]

∂j
αρ

ζα

,(4.27)

and so R(n) is bounded by C(Es + εE
1/2
s + ε5/2) in L2. Writing φ(n) = ρ(n) −R(n) in

En yields

En =

∫
1

A|Dtρ
(n)|2 + iρ(n)ρ(n)

α dα− i

∫
φ(n)R(n)

α +R(n)φ
(n)

α +R(n)R(n)

α dα.

Differentiating this with respect to t and integrating by parts yields

dEn

dt
=

∫
2

A<
(
Dtρ

(n)Pρ(n)
)− 1

AU−1
κ

(at

a

)
|Dtρ

(n)|2 dα

+ 2=
∫
R(n)

t φ
(n)

α + φ
(n)
t R(n)

α +R(n)
t R(n)

α dα.(4.28)

We want to show that the right hand side of this inequality is O(ε5). By Proposi-

tion IV.8 and (2.16) it is clear that the first integral is O(ε5), and so it suffices to

show that the second integral is of size O(ε5).

The arguments for handling the first two terms rely on the fact that φ(n) and

R(n) are almost orthogonal in L2; accordingly the arguments showing these terms

are small are similar to each other, so we will only consider the term R(n)
t φ

(n)

α . We

have

R(n)
t =

1

2
∂t(I +H)R(n) =

1

2
(I +H)R(n)

t + [ζt,H]
∂αR(n)

ζα

,



65

and since the latter term is O(ε5/2), it suffices to consider only the former term.

Likewise, recalling that the adjoint3 H∗ of the Hilbert transform satisfies the identity

H∗f = −ζαH(f/ζα), the identity [H, ∂α/ζα] = 0 of Proposition II.1 implies that

∂αH = −H∗∂α, and so we can write φ
(n)

α as

φ
(n)

α =
1

2
∂α(I −H)∂n

αρ =
1

2
(I +H∗

)∂n+1
α ρ.

But now, using the usual L2 pairing4 〈, 〉, we have

1

4

〈
(I +H)R(n)

t , (I +H∗
)∂n+1

α ρ
〉

=
1

4

〈
HR(n)

t , (I +H∗
)∂n+1

α ρ
〉

+
1

4

〈
R(n)

t ,H∗
(I +H∗

)∂n+1
α ρ

〉

=
1

2

〈
(H +H)R(n)

t , φ
(n)

α

〉
.

Therefore

∫
R(n)

t φ
(n)

α dα =

∫
1

2
φ̄(n)

α (H +H)R(n)
t dα +

∫
φ

(n)

α [ζt,H]
∂αR(n)

ζα

dα,

and so these integrals are bounded by

CE1/2
s (E1/2

s + ε)(Es + εE1/2
s + ε5/2) ≤ C(E2

s + εE3/2
s + ε2Es + ε7/2).

From (4.27), estimating as usual gives bound of R(n)
α and R(n)

t in L2 of C(Es +εE
1/2
s )

and C(Es + εE
1/2
s + ε5/2), respectively. Summing these bounds, (4.28) now reads

dEn

dt
≤ C(E2

s + εE3/2
s + ε2Es + ε7/2E1/2

s ).

If we try to apply the same argument to Fn as we just did to En, we find that dFn

dt

has an extra half-derivative than can be controlled by the energy, since Fn consists

of quantities with one time derivative more than the quantities comprising En. Now

dFn

dt
=

∫
2

A<
(
Dtσ

(n)Pσ(n)
)− 1

AU−1
κ

(at

a

)
|Dtσ

(n)|2 dα,

3The adjoint T ∗ of a linear operator T : L2 → L2 is defined by
∫

f T ∗(g) dα =
∫

g T (f) dα for all f, g ∈ L2.
4Here we use the real inner product 〈f, g〉 =

∫
f g dα for f, g ∈ L2.
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which by Step 5 of §4.3 and Proposition IV.8 implies

dFn

dt
≤ C(E2

s + εE3/2
s + ε2Es + ε7/2E1/2

s + ε6).

Hence we need only show that the quantity Fn itself is bounded below by ‖Dtσ
(n)‖2

L2

up to a term of size O(ε5), for n = 0, . . . , s. By writing σ(n) = ψ(n) +S(n) we can use

Proposition IV.9 to estimate

Fn =

∫
1

A|Dtσ
(n)|2 + iσ(n)σ(n)

α dα

≥
∫

1

A|Dtσ
(n)|2dα−

∣∣∣∣
∫

ψ(n)S(n)

α + S(n)ψ
(n)

α + S(n)S(n)

α dα

∣∣∣∣ .

Now, as with R(n), we can rewrite

S(n) = −1

2
(I +H)

n∑
j=1

∂n−j
α [ζα − 1,H]

∂α

ζα

∂j−1
α σ

S(n)
α = −1

2
(I −H∗)

n∑
j=1

∂n−j+1
α [ζα − 1,H]

∂α

ζα

∂j−1
α σ.

From the above formula for ψ(n) we see that ψ
(n)
α has one more spatial derivative

than the energy provides. However, if we integrate by parts and use Step 5 of §4.3,

we can estimate

Fn ≥
∫

1

A|Dtσ
(n)|2dα−

∣∣∣∣
∫

ψ(n)S(n)

α − S(n)
α ψ

(n)
+ S(n)S(n)

α dα

∣∣∣∣

≥
∫

1

A|Dtσ
(n)|2dα− Cδ(E1/2

s + ε5/2)2

≥
∫

1

A|Dtσ
(n)|2dα− Cδ(Es + ε5).

If we set

(4.29) E =
s∑

n=0

(En + Fn),

and if we choose δ sufficiently small, then we have by (4.20) that

E1/2
s ≤ CE1/2 + Cε5/2.
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Thus if we choose ε0 and δ still smaller, we have from the inequality

s∑
n=0

(
dEn

dt
+

dFn

dt

)
≤ C(E2

s + εE3/2
s + ε2Es + ε7/2E1/2

s + ε6)

that the following lemma is demonstrated:

Lemma IV.10. Let E be defined as in (4.29). Then there exists an ε0 > 0 and a

δ > 0 so that if (2.18) holds, then there is a constant C = C(ε0, δ) so that for all

ε < ε0,

(1) E
1/2
s ≤ C(E1/2 + ε5/2),

(2) dE
dt
≤ C(E2 + εE3/2 + ε2E + ε7/2E1/2 + ε6),

where the constants C depend only on ε0 and δ.

A Priori Bounds on the Remainder Energy

Now we can derive a priori bounds from the energy inequality derived in the last

section.

Proposition IV.11. Let s ≥ 4, T , B0 ∈ Hs+7 be given, let ε0, δ be given. Let T0

be a time so that (2.18) hold. Suppose further that E(0) = M2
0 ε3. Then there is a

possibly smaller ε0 = ε0(T ,M0, δ, ‖B0‖Hs+7) so that for all 0 < ε < ε0 and 0 ≤ t ≤

min(T0, ε
−2T ) we have E(t) ≤ Cε3, where the constant C = C(T ,M0, δ, ‖B0‖Hs+7).

Proof. Let C0 be the constant appearing in Lemma IV.10. Define

S(T ) = sup
0≤t≤T

E(t).

Then for any T ∈ [0, min(T0, ε
−2T )] we have for all t ∈ [0, T ] that

dE
dt

(t) ≤ C0

(E2(t) + εE3/2(t) + ε2E(t) + ε7/2E1/2(t) + ε6
)

≤ C0

(S(T ) + εS(T )1/2 + ε2
) E(t) + C0(ε

7/2S(T )1/2 + ε6).
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Solving this differential inequality for 0 ≤ t ≤ T gives

E(t) ≤
(
E(0) +

ε7/2S(T )1/2 + ε6

S(T ) + εS(T )1/2 + ε2

)
eC0(S(T )+εS(T )1/2+ε2)t,

and so taking the supremum over [0, T ] gives for all T ≤ min(T0, ε
−2T ) that

(4.30) S(T ) ≤
(
E(0) +

ε7/2S(T )1/2 + ε6

S(T ) + εS(T )1/2 + ε2

)
eC0(S(T )+εS(T )1/2+ε2)T .

We now begin a continuity argument. Let M1 be the positive root of the equation

1
2
e−3C0T M1 = M0 +

√
M1 +1. If S(min(T0, ε

−2T )) ≤ M1ε
3 then we are done. If not,

let T ∗ < min(T0, ε
−2T ) be the first time at which S(T ∗) = M1ε

3. Choose ε0 so that

ε0M1 ≤ 1. Then we have from (4.30) that

S(T ∗) ≤
(
E(0) +

ε5
√

M1 + ε6

ε2

)
eC0(M1ε3+

√
M1ε5/2+ε2)ε−2T

≤ (M0 +
√

M1 + 1)e3C0T ε3

≤ 1

2
M1ε

3,

which contradicts the definition of T ∗.



CHAPTER V

Long Time Existence of Wave Packet-Like Solutions

We would like to show that for wave packet-like data, the solution of the water

wave system (1.3)-(1.4) exists on the O(ε−2) time scale, and is well approximated

by the wave packet whose modulation evolves according to NLS. Thus far we have

found a globally existing approximation ζ̃, as well as a suitable a priori bound on the

energy of the remainder r for O(ε−2) time scales. Since ζ̃ does not in general satisfy

the water wave system, the wave packet data (ζ̃(0), D̃tζ̃(0), D̃2
t ζ̃(0)) cannot be taken

as the initial data for the water wave system (1.3)-(1.4).

In what follows, we will show that there are data for the water wave system

that is within O(ε3/2) to the wave packet (ζ̃(0), D̃tζ̃(0), D̃2
t ζ̃(0)). Moreover for all

such data, the solution of the system (1.3)-(1.4) exists on the O(ε−2) time scale.

The a priori bound on r gives the estimate of the error between ζ and the wave

packet ζ̃ on the order O(ε3/2) for time on the O(ε−2) scale. The appropriate wave

packet approximation to z is then obtained upon changing coordinates back to the

Lagrangian variable.

5.1 Construction of Appropriate Initial Data

Notice that we can parametrize the initial interface z = z(·, 0) arbitrarily, and

that we are only concerned with such data that zα(·, 0)−1 is O(ε1/2). For any initial

69
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interface that is a small perturbation of the x-axis in this sense, κ(·, 0) : R → R

is a diffeomorphism (c.f. Lemma V.5). Hence we may without loss of generality

assume that z = z(·, 0) is initially parametrized so that κ(α, 0) = α, and hence that

z(·, 0) = ζ(·, 0).

In order for (ζ0, v0, w0) = (ζ(0), Dtζ(0), D2
t ζ(0)) = (z(0), zt(0), ztt(0)) to be data

for a solution z of the water wave system (1.3)-(1.4), we must enforce the compat-

ibility conditions (I − Hζ0)v0 = 0 and w0 := iA0∂αζ0 − i, with the formula for A0

given through (2.14) by

(5.1) (I −Hζ0)(A0 − 1) = i[w0,Hζ0 ]
∂αξ0

∂αζ0

+ i[v0,Hζ0 ]
∂αv0

∂αζ0

,

where ζ0 := ξ0 + α. We therefore define the manifold of initial data for (1.3)-(1.4) or

for (2.7)-(2.11) by

A s = {(ξ0, v0, w0) : (|Dα|1/2ξ0, v0, w0) ∈ Hs+1/2 ×Hs+1 ×Hs+1/2,

ξ0 = Hξ0+αξ0, (I −Hξ0+α)v0 = 0, w0 = iA0(∂αξ0 + 1)− i},
with A0 defined by (5.1).

In the remainder of this section let s ≥ 6 and k > 0 be fixed, and let an arbitrary

initial envelope B0 ∈ Hs+7 be given. By Theorem III.5, for any T > 0 there is

a B ∈ C([0,T ]; Hs+7) which solves (3.20) with initial data B(0) = B0. Using

(3.24) we can construct, using this B, an approximate profile ζ̃ ∈ C([0,T ε−2]; Hs+6)

satisfying (3.32) which solves the equations (2.7)-(2.8)-(2.10)-(2.11) up to a residual

of size O(ε4), provided the initial profile ζ̃(0) is calculated through B0.

As we observed above, we cannot simply take (ξ̃(0), D̃tζ̃(0), D̃2
t ζ̃(0)) as our initial

data for (2.7)-(2.11), as these may not be in the manifold A s. Since we found in

Proposition IV.11 that a O(ε3/2) error is acceptable, we construct data for (ζ −

α, Dtζ, D2
t ζ) which lie in the manifold A s, and which are also O(ε3/2) away from

(ξ̃(0), D̃tζ̃(0), D̃2
t ζ̃(0)).
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Lemma V.1. For sufficiently small ε0(‖B0‖Hs+7) > 0, there exist functions ξ0 ∈

Hs+6 and v0 ∈ Hs+4 with ζ0 := α+ξ0 such that for all ε < ε0 the following properties

hold:

1. ξ0 = 1
2
(1 +Hζ0)ξ̃(0),

2. ‖ξ0 − ξ̃(0)‖Hs+6 ≤ C(‖B0‖Hs+7)ε3/2.

3. v0 := 1
2
(I +Hζ0)D̃tζ̃(0) satisfies ‖v0 − D̃tζ̃(0)‖Hs+4 ≤ C(‖B0‖Hs+7)ε3/2.

4. for (ξ0, v0) as constructed in parts (1) - (3), w0 := iA0∂αζ0−i, with A0 calculated

by (5.1) satisfies ‖w0 − ε(iω)2ζ(1)(0)‖Hs+4 ≤ Cε3/2.

Proof. We prove Part 1 by an iteration argument. Define a sequence of functions

gn(α, t), n = −1, 0, 1, . . . along with γn(α, t) := α + gn(α, t) by setting g−1 = 0 and

for n ≥ −1,

(5.2) gn+1 =
1

2
(1 +Hγn)ξ̃(0)

Observe first that g0 = 1
2
(I +H0)ξ̃(0) and so ‖g0‖Hs+6 ≤ C(‖B0‖Hs+7)ε1/2. Next, as

in the proof of Lemma IV.2, we can write

(Hγn −Hγn−1)f =
1

πi

∫
log

(
1 +

(gn − gn−1)(α)− (gn − gn−1)(β))

γn−1(α)− γn−1(β)

)
fβ(β) dβ

=
1

πi

∫ (
(g′n(β)− g′n−1(β))

γn(α)− γn(β)
− γ′n−1(β) ((gn − gn−1)(α)− (gn − gn−1)(β))

(γn(α)− γn(β))(γn−1(α)− γn−1(β))

)
f(β) dβ.

From this formula and Proposition II.7 we have the estimate

‖(Hγn −Hγn−1)f‖Hs+6 ≤ C (‖gn‖Hs+6 , ‖gn−1‖Hs+6) ‖gn − gn−1‖Hs+6‖f‖Hs+6

if we can show that γn and γn−1 obey the chord-arc condition. However, there

indeed exists some δ ∈ (0, 1
2
] so that if ‖gn‖Hs+6 , ‖gn−1‖Hs+6 ≤ δ, then γn and γn−1

satisfy the chord-arc condition and the operator norm ‖Hγn − Hγn−1‖Hs+6→Hs+6 ≤
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C1‖gn − gn−1‖Hs+6 , where C1 is a universal constant. Choose ε0 so small so that

C1‖ξ̃(0)‖Hs+6 ≤ δ and ‖g0‖Hs+6 ≤ 1
2
δ.

It now suffices to prove the following statement by induction: For every n ≥ 0,

‖gn+1 − gn‖Hs+6 ≤ 1

2
δ‖gn − gn−1‖Hs+6 and ‖gn‖Hs+6 ≤ δ

By our choice of ε0 we have already shown the case n = 0. If we assume the above

statement is true for all integers k = 0, 1, . . . , n, note that

‖gn+1 − gn‖Hs+6 =
1

2
‖(Hγn −Hγn−1)ξ̃(0)‖Hs+6

≤ 1

2
‖Hγn −Hγn−1‖Hs+6→Hs+6 · ‖ξ̃(0)‖Hs+6

≤ 1

2
δ‖gn − gn−1‖Hs+6 ,

from which the induction statement follows immediately.

To prove Part 2, we note that since ‖ξ0‖Hs+6 and ‖ξ̃(0)‖Hs+6 do not exceed δ, we

can estimate that

‖ξ0 − ξ̃(0)‖Hs+6 =
1

2
‖(1−Hζ0)ξ̃(0)‖Hs+6

≤ 1

2
‖(Hζ0 −Hζ̃(0))ξ̃(0)‖Hs+6 + ‖(I −Hζ̃(0))ξ̃(0)‖Hs+6

≤ δ‖ξ0 − ξ̃(0)‖Hs+6 + Cε3/2,

from which Part 2 follows. Since the construction of v0 is determined by ζ0, Part 3

is now shown in the same way as was Part 2 once we observe that D̃tζ̃(0) ∈ Hs+4

and Hζ0 is bounded from Hs+4 to Hs+4.

We now prove Part 4. By the definition of w0 we have

w0 − ε(iω)2ζ(1)(0) = iA0∂αζ0 − i− ε(iω)2ζ(1)(0)

= i(A0 − 1)∂αζ0 + i
(
∂αξ0 − ε(ik)ζ(1)(0)

)
.
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Since we are assuming ξ0 and v0 are constructed as above, we can write v0 = (v0 −

ε(iω)ζ(1)(0)) + ε(iω)ζ(1)(0) ∈ Hs+4 and ∂αξ0 = (∂αξ0 − ε(ik)ζ(1)(0)) + ε(ik)ζ(1)(0) ∈

Hs+5 in the above formula for A0 − 1. As usual, we can isolate the O(ε2) leading

term and see that it vanishes by a multiscale calculation, and what remains gives us

the estimate

‖A0 − 1‖Hs+4 ≤ Cε3/2 + Cε‖w0 − ε(iω)2ζ(1)(0)‖Hs+4 .

But then we have by the above that ‖w0−ε(iω)2ζ(1)(0)‖Hs+4 ≤ Cε3/2 for a sufficiently

small choice of ε0.

Definition V.2. We call (ξ0, v0, w0) a B0-admissible initial data if (ξ0, v0, w0) ∈ A s

and there is a constant C depending only on ‖B0‖Hs+7 so that

∥∥∥(|Dα|1/2ξ0, v0, w0)− (ε|Dα|1/2ζ(1)(0), εζ
(1)
t0 (0), εζ

(1)
t0t0(0))

∥∥∥
Hs+1/2×Hs+1×Hs+1/2

≤ Cε3/2.

Recall from (4.29) that

E =
s∑

n=0

(En + Fn)

≤ C

s∑
n=0

(‖Dt∂
n
αρ‖2

L2 + ‖Dt∂
n
ασ‖2

L2) + ‖|D|1/2ρ‖2
Hs+1/2 + ‖σ‖2

Hs+1 .

It is clear that for B0-admissible initial data, we have

(5.3) E(0) ≤ Cε3.

5.2 Long-Time Existence of ζ and z

In this section we will make rigorous the existence and uniqueness of the solutions

z and ζ on the appropriate O(ε−2) time scales. We begin with the following local

well-posedness (c.f., [17], [19]):
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Theorem V.3. Let n ≥ 5 be given. Suppose that initial data ξ0, v0, w0 are given so

that ∂αz(0)−1 = ∂αξ0 is in Hn−1/2, zt(0) = v0 is in Hn+1/2, ztt(0) = w0 is in Hn; ξ0,

v0, w0 satisfy the water wave system: i.e. v̄0 = Hz(0)v̄0, and w0 = ia0∂αz(0) − i for

some real valued function a0. Suppose further that z(0) = α + ξ0(α), α ∈ R defines

a chord-arc curve: i.e. there exists ν > 0, such that

|α + ξ0(α)− β − ξ0(β)| ≥ ν|α− β|, for all α, β ∈ R;

Then there exists a T0 > 0 so that the system (1.3)-(1.4) with initial data z(0) =

ξ0 + α, zt(0) = v0, ztt(0) = w0 has a unique solution z(α, t) for t ∈ [0, T0] with the

property that there exist constants C = C(T, ‖∂αξ0‖Hn−1/2 , ‖v0‖Hn+1/2 , ‖w0‖Hn , ν) and

µ > 0,

‖(zα−1, zt, ztt)‖C([0,T0];Hn−1/2×Hn+1/2×Hn) ≤ C (‖∂αξ0‖Hn−1/2 + ‖v0‖Hn+1/2 + ‖w0‖Hn) ,

and |z(α, t)− z(β, t)| ≥ µ|α− β| for all α, β ∈ R, t ∈ [0, T0].

Moreover, if T ∗ is the supremum over all such T0, then either T ∗ = ∞ or

(5.4) lim
t↗T ∗

(
‖(zt, ztt)‖C([0,t],Hn×Hn) + sup

α 6=β

∣∣∣∣
α− β

z(α, t)− z(β, t)

∣∣∣∣
)

= ∞.

Given this result, we take any B0-admissible initial data (ξ0, v0, w0) ∈ A s and

use Theorem V.3 to construct a solution z = z(α, t) on the time interval [0, T0] with

(zα(t) − 1, zt(t), ztt(t)) ∈ Hs ×Hs+1 ×Hs+1/2. Using this solution we construct the

change of variables

κ = z +
1

2
(I + H)(I + K)−1(z − z)

on [0, T0] as in §2. In order to use this change of variables to control ζ in terms of z,

we need the following elementary calculus lemma.

Lemma V.4. Let n ≥ 3, let f ∈ Hn, and let γ ∈ Hn be given with γ′(α) ≥ c0 > 0

for all α ∈ R and ‖γ′ − 1‖Hn−1 ≤ M . Then
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1. ‖f ◦ γ‖L2 ≤ C(c0)‖f‖L2.

2. ‖f ◦ γ‖Hn ≤ C(M, c0)‖f‖Hn.

Proof. First we have

‖f ◦ γ‖L2 =

(∫
|f ◦ γ|2dα

)1/2

=

(∫
|f |2dα

γ′

)1/2

≤ 1√
c0

‖f‖L2 ,

which proves (1). To prove (2), first observe that

‖∂α(f ◦ γ)‖L2 = ‖(f ′ ◦ γ)γ′‖L2

≤ C(c0)‖γ′‖L∞‖f ′‖L2

≤ C(c0)(1 + ‖γ′ − 1‖H2)‖f ′‖L2 .

Now let n ≥ 3 and let 2 ≤ j ≤ n be an integer. By the chain and product rules there

exist polynomials pl,j(γ
′, . . . , γ(j−1)) of total degree1 at most j such that

∂j
α(f ◦ γ) = (f ′ ◦ γ)∂j−1

α (γ′ − 1) +

j∑

l=2

(f (l) ◦ γ) pl,j(γ
′, . . . , γ(j−1)).

The lemma follows upon estimating the first term with f ′◦γ in L∞ and ∂
(j−1)
α (γ′−1)

in L2, and the remaining terms with f (l) ◦ γ in L2 by (1) and pl,j in L∞.

To use this Lemma to change from the ζ quantites back to the z quantities, we

need control of κα − 1 in terms of zα − 1 in Hs.

Lemma V.5. For n ≥ 3, if ‖zα − 1‖C([0,T0];Hn) is sufficiently small, then

‖κα − 1‖C([0,T0];Hn) ≤ C‖zα − 1‖C([0,T0];Hn).

Proof. Differentiating (2.3) with respect to α we get

κα − 1 = (zα − 1) +
1

2
(I + H)∂α(I + K)−1(z − z) +

1

2
[zα − 1, H]

∂α(I + K)−1(z − z)

zα

.

Now the Lemma follows from Lemma II.5 and the Hn boundedness of H.
1This is meant to include both algebraic multiplicity and the number of differentiations. For instance, the term

f ′′(f ′)2 has total order 4.
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Since we have chosen initial data that are O(ε1/2), by Theorem V.3 there is an

interval [0, T0], such that for all t ∈ [0, T0], both ‖zα(t) − 1‖Hs and ‖zt(t)‖Hs are of

order O(ε1/2). Also by Lemma V.5 we have that ‖κα−1‖Hs is of order O(ε1/2). Then

for ε < ε0 we can choose ε0 > 0 so small that ‖κα − 1‖L∞ ≤ 1
2

and ‖κα − 1‖Hs ≤ 1.

Applying Lemma V.4, we can choose ε0 sufficiently small so that

‖ζα(t)− 1‖Hs ≤ C

∥∥∥∥
zα

κα

− 1

∥∥∥∥
Hs

≤ C‖zα − 1‖Hs + C‖κα − 1‖Hs

≤ 1

2
δ

and

‖Dtζ(t)‖Hs+1 = ‖zt ◦ κ−1(t)‖Hs+1 ≤ 1

2
δ

for all times t ∈ [0, T0], where δ is the quantity required by (2.18).

This now justifies the a priori bound (2.18) on [0, T0]. Since we now legitimately

have such a bound, all of the work through Proposition IV.11 now holds on [0, T0]

for δ and ε0 chosen sufficiently small. We are now ready to prove the main

Theorem V.6. Let s ≥ 6 and k > 0 be given. Let B0 ∈ Hs+7, and T > 0 be given.

Denote by B(X,T ) the solution of (3.20) with initial data B(0) = B0, and let ζ(1)

be defined as in (3.12). Then there exists an ε0 = ε0(‖B0‖Hs+7) > 0 so that for all

ε < ε0 the following holds: there exists initial data (ξ0, v0, w0) ∈ A s for the system

(1.3)-(1.4) satisfying

‖(|Dα|1/2ξ0, v0, w0)− ε(|Dα|1/2, ∂t, ∂
2
t )ζ

(1)(0)‖Hs+1/2×Hs+1×Hs+1/2 ≤ M0ε
3/2,

and for all such initial data, there exists a possibly smaller ε0 > 0 depending on

‖B0‖Hs+7, T , and M0 so that the system (1.3)-(1.4) has a unique solution z(α, t) with
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(|Dα|1/2(z − α), zt, ztt

)
in the space C([0,T ε−2]; Hs+1/2 ×Hs+1 ×Hs+1/2) satisfying

(5.5)
‖(ζα(t)− 1, Dtζ(t), D2

t ζ(t))− (εζ(1)
α (t), εζ

(1)
t (t), εζ

(1)
tt (t))‖Hs×Hs×Hs

≤ C(‖B0‖Hs+7 ,T ,M0)ε
3/2

for all 0 ≤ t ≤ ε−2T .

Proof. Given our initial data, we have shown that there is some time interval [0, T0]

on which a solution to (1.3)-(1.4) exists with that initial data. We have also shown

that for sufficiently small ε0 the a priori bound (2.18) on ζ holds and κ satisfies

‖κα − 1‖L∞ ≤ 1
2

and ‖κα − 1‖Hs ≤ 1 on [0, T0]. Now assume that [0, T ∗] is the

maximum of such intervals contained in [0,T ε−2]. We will show in what follows

that T ∗ = T ε−2. We assume now T ∗ < T ε−2 for otherwise we are done.

First we have by (3.32), (5.3), the estimates in Section 4 and Proposition IV.11

that for all t ∈ [0, T ∗],

(5.6)

‖Dtζ(t)‖Hs + ‖ζα(t)− 1‖Hs+‖D2
t ζ(t)‖Hs ≤ ‖D̃tζ̃(t)‖Hs + ‖ξ̃α(t)‖Hs + ‖D̃2

t ζ̃(t)‖Hs

+ ‖(Dt − D̃t)ζ̃(t)‖Hs + ‖(D2
t − D̃2

t )ζ̃(t)‖Hs

+ C(E1/2 + ε5/2)

≤ Cε1/2.

In particular, this estimate holds with a constant C independent of T ∗.

In order to use this bound on ζ to in turn control z, we would like to show that

the change of variables κ can be constructed in terms of ζ so that it is controlled

independently of T ∗. This will imply that there are similar a priori estimates for z,

and so the long-time existence with appropriate regularity will then follow from the

blow-up criterion of Theorem V.3.
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We know κ(α, t) satisfies

(5.7)





κt(α, t) = b(κ(α, t), t)

κ(α, 0) = α

with b determined through (2.13). Writing (5.7) in integral form, differentiating with

respect to α, and using Lemma V.4 then gives the bound

‖κα(t)− 1‖Hs−1 ≤
∫ t

0

‖bα(κ(τ), τ)‖Hs−1 (1 + ‖κα(τ)− 1‖Hs−1) dτ

≤ Cε1/2
(
1 + ‖κα(t)− 1‖C([0,T ∗];Hs−1)

)
.

Taking the supremum over 0 ≤ t ≤ T ∗ and choosing ε0 sufficiently small then yield

(5.8) ‖κα − 1‖C([0,T ∗];Hs−1) ≤ Cε1/2

where the constant C depends on T , and is independent of T ∗.

Now on [0, T ∗], we have that ζ(κ(α, t), t) = z(α, t). Hence if we apply Lemma V.4

we have for t ∈ [0, T ∗],

‖zα(t)− 1‖Hs−1 + ‖zt(t)‖Hs + ‖ztt(t)‖Hs

≤ C
(‖ζα(t)− 1‖Hs−1 + ‖κα(t)− 1‖Hs−1 + ‖Dtζ(t)‖Hs + ‖D2

t ζ(t)‖Hs

)

≤ Cε1/2

and that

sup
α 6=β

∣∣∣∣
α− β

z(α)− z(β)

∣∣∣∣ ≤
1

(1− ‖ζα − 1‖L∞)(1− ‖κα − 1‖L∞)
,

where the constants C are independent of T ∗. Thus it follows by the blow-up criteria

given in Theorem V.3 that we can continue the solution z to t ∈ [0, T1] for some

T1 > T ∗. On the other hand, we can choose ε0 so small that for ε < ε0, the bounds

Cε1/2 in (5.6) and (5.8) are small enough that there exist T ∗ < T2 < T1, so that
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on [0, T2], ‖κα − 1‖L∞ ≤ 1
2
, ‖κα − 1‖Hs ≤ 1 and the a priori estimate (2.18) holds.

This contradicts the maximality of T ∗. Therefore we must have T ∗ = T ε−2 and the

long time existence of z follows. The error estimate (5.5) then follows from (5.3) and

Proposition IV.11.

There is still the matter of interpreting this result in more familiar coordinates.

Changing variables by κ, we can convert the estimates of the above theorem into

estimates in Lagrangian coordinates:

(5.9) ‖(zα − κα, zt, ztt)− (εζ(1)
α ◦ κ, εζ

(1)
t ◦ κ, εζ

(1)
tt ◦ κ)‖Hs×Hs×Hs ≤ Cε3/2.

Calculating the asymptotic expansion of zα−1, zt, ztt now depends on understanding

κ− α. From (5.7) we have that

κ(α, t)− α =

∫ t

0

b(κ(α, τ), τ)dτ.

Using our estimate of ‖κα− 1‖Hs ≤ Cε1/2 and writing the integrand as b = (b− b̃) +

ε2b2 + ε3b3 yields the following leading order expression:

κ(α, t)− α = −kωε2

∫ t

0

|B|2(εα + εω′τ, ε2τ)dτ +O(ε1/2).(5.10)

From (5.10), we can obtain and justify asymptotics for ∂α=z, zt and ztt without

any additional restriction on the initial data. However, justifying the asymptotics

for <zα − 1 requires an understanding of the asymptotic for κα up to order O(ε3/2),

which is not available merely from the estimates given in Theorem V.6. We therefore

leave open the justification of the modulation approximations for <zα−1. Note that

the leading term of the right hand side of (5.10) can be as large as O(1) on times

of order O(ε−2), and so would contribute corrections to the asymptotic formula for

<zα − 1.



CHAPTER VI

Justification of an Eulerian Version

By imposing some additional mild restrictions on the initial data, we are able

to obtain justifications of the derivative in the space variable of the interface and

the trace of the velocity field on the interface in Eulerian coordinates. With further

restrictions on the initial data, we are able to justify the asymptotics for the profile

itself. All these reduce to obtaining an appropriate bound and, in the latter case,

asymptotics for <ζ(α, t)−α in C([0,T ε−2]; L2), which can be achieved by introducing

another quantity as follows.

Following the proof of Proposition 2.3 of [19], we introduce the velocity poten-

tial Φ(x, t) of the fluid in the domain Ω(t) that satisfies ∇Φ = v. Let ψ(α, t) =

Φ(z(α, t), t) be the trace of Φ on the interface Σ(t). If we write Ψ = ψ ◦ κ−1, then

the time derivative of the quantity λ := (I − H)Ψ is comparable to the imaginary

part of ζ through the identity (c.f. (2.46) of [19]):

(6.1) Dtλ = −(I −H)=(ζ)− 1

2
[Dtζ,H]

ζαDtζ

ζα

.

We also know by Proposition 2.3 of [19] that λ satisfies an evolution equation of the

80
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form

Pλ = −
[
Dtζ,H 1

ζα

+H 1

ζα

]
(ζαD2

t ζ) + [Dtζ,H]

(
Dtζ

∂αDtζ

ζα

)
+ Dtζ[Dtζ,H]

∂αDtζ

ζα

− 2[Dtζ,H]
Dtζ · ∂αDtζ

ζα

+
1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

(Dtζ(β) · ζβ(β))dβ

:= Gλ.

(6.2)

Since Gλ is of third order and depends only on ζα − 1, Dtζ,D2
t ζ, we expect that

we can construct an energy from this equation that allows us to bound Dtλ by

Cε1/2, provided the initial energy is bounded by Cε. This is enough to control

‖<ζ(·, t) − α‖L2 and justify an Eulerian version of Theorem V.6. The details are

given in Section 6.1 below.

However, with further restrictions on the initial data we can justify asymptotics

for the profile itself, and we will devote the remainder of Section 6 to this task.

Specifically, we will develop an approximate solution λ̃ to (6.2) to the desired order

O(ε4) and thereby construct an energy for the remainder l = λ − λ̃. As was the

case with the quantities Dtρ and Dtσ, such an energy will bound the L2 norm of

Dtl for O(ε−2) times. This will allow us to justify asymptotics for the profile under

reasonable restrictions on the initial profile and the initial velocity potential restricted

to the initial interface.

6.1 Justifying Eulerian Asymptotics for Derivatives of the Profile

Our first task is to prove the

Lemma VI.1. Suppose that the hypotheses of Theorem V.6 hold. Suppose further

that ‖ξ0‖L2 ≤ Cε1/2 and ‖v0‖L2(Ω(0)) ≤ Cε1/2, where v0 is the initial velocity field.

Then ‖<ζ(·, t)− α‖L2 ≤ Cε1/2 for all t ≤ T ε−2.
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Proof. We begin by deriving conditions under which <(ζ) − α is controlled in L2.

We can construct the energy corresponding to (6.2):

L(t) =

∫
1

A|Dtλ|2 + iλλα

Since λ is the trace of a holomorphic function on Ω(t)c, we have by Proposition IV.9

that ‖Dtλ‖2
L2 ≤ CL(t). Formula (6.1) provides the estimate

∣∣∣‖Dtλ‖L2 − ‖(I −H)=ζ‖L2

∣∣∣ ≤ ‖Dtλ + (I −H)=(ζ)‖L2

≤ Cε5/2.

Clearly we also have ‖(I −H)=ζ‖L2 ≤ C‖ξ‖L2 . However, by (2.8) and Lemma II.5,

we conversely have that

‖ξ‖L2 ≤ ‖(I −H)<ξ‖L2 + ‖=ξ‖L2

= ‖(I −H)=ξ‖L2 + ‖=ξ‖L2

≤ C‖(I −H)=ξ‖L2

≤ CL1/2 + Cε5/2.

Hence it suffices to show that L(t) is O(ε) whenever t ≤ T ε−2. Now by Proposition

IV.9 and Theorem V.6 the energy L satisfies

dL
dt

≤ Cε5/2L1/2 + Cε2L;

therefore

dL1/2

dt
≤ Cε5/2 + Cε2L1/2.

Solving this inequality gives us that

sup
0≤t≤T ε−2

L(t)1/2 ≤ CL(0)1/2 + Cε1/2.
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Hence the question now reduces to asking which conditions on the initial data

imply that L(0) is O(ε). We first have that

∫
1

A0

|Dtλ0|2dα ≤ C‖Dtλ0‖2
L2 ≤ (‖ξ0‖L2 + Cε5/2)2,

and so to control this part of L(0) it suffices to take ‖ξ0‖L2 ≤ Cε1/2.

The second part of L(0) takes more work. Recall that our parametrization for

the initial data was chosen so that ζ(0) = z(0). Let ψ0, λ0, etc., be the initial

values of ψ, λ, etc., respectively. To estimate the second part of L(0), we follow

the discussion of initial data in section 5.1 of [19]. Observe that we can choose a

function Ξ0 holomorphic in Ω(0) for which <(Ξ0) ◦ ζ0 = Ψ0, specifically Ξ0 ◦ ζ0 =

(I +Hζ0)(I + Kζ0)
−1Ψ0; such a function will satisfy ∂zΞ0 = v0. Since we have the

operator identity

(I −H)− (I +H)(I +K)−1 = −(I +H)(I +K)−1K,

it follows that

λ0 − Ξ0 ◦ ζ0 = −(I +Hζ0)(I +Kζ0)
−1Kζ0Ψ0.

Observe that we can control derivatives of Ψ0 but not Ψ0 itself; however, the expres-

sion for Kζ0Ψ0 contains an extra derivative. Write zτ
0 = (1 − τ)ζ0 + τζ0, so z1

0 = ζ̄0

and z0
0 = ζ0. Then by the Fundamental Theorem of Calculus we have

Kζ0 =
1

2
(H0 +H0) = −1

2
(Hz1

0
−Hz0

0
)

= −1

2

∫ 1

0

∂τHzτ
0
dτ

= −1

2

∫ 1

0

[ξ0 − ξ0,Hzτ
0
]
∂α

zτ
α

dτ,

and so estimating this expression crudely gives the bound

‖Kζ0Ψ0‖L2 ≤ C‖ξ0‖L∞‖v0‖L2 ≤ Cε
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and so ‖λ0 − Ξ0 ◦ ζ0‖L2 ≤ Cε as well. But then we can by Green’s Theorem write

∣∣∣∣
∫

iλ0∂αλ0dα

∣∣∣∣ ≤ 2

∣∣∣∣
∫

∂αλ0(λ0 − Ξ ◦ ζ0)dα

∣∣∣∣ +

∣∣∣∣
∫

i(Ξ ◦ ζ0)∂α(Ξ ◦ ζ0)dα

∣∣∣∣

≤ Cε3/2 +

∫∫

Ω(0)

|v0(x)|2dx.

Hence if we choose ‖v0‖L2(Ω(0)) ≤ Cε1/2, the lemma follows.

We can now prove the

Theorem VI.2. Let s ≥ 6 and k > 0 be given. Let B0 ∈ Hs+7, and T > 0 be

given. Denote by B(X, T ) the solution of (3.20) with initial data B(0) = B0, and

let ζ(1) be defined as in (3.12). Suppose that the initial interface Σ(0) is given by a

graph {(x, η0(x)) : x ∈ R}, the initial velocity is v0, the trace of the initial velocity,

acceleration on {(x, η0(x)) : x ∈ R} are v0, w0, which satisfy the compatibility con-

ditions as stated in Theorem V.3, and (η0, v0,w0) ∈ Hs+1 ×Hs+1 ×Hs+1/2 with the

remainder estimates

(6.3)

‖(|Dx|1/2η0, v0,w0)− ε(=|Dx|1/2ζ(1)(0), ζ
(1)
t (0), ζ

(1)
tt (0))‖Hs+1/2×Hs+1×Hs+1/2 ≤ C1ε

3/2

along with

(6.4) ‖η0‖L2 ≤ C1ε
1/2 and ‖v0‖L2(Ω(0)) ≤ C2ε

1/2.

Then there exists an ε0 = ε0(‖B0‖Hs+7 , T , C1, C2) so that for all ε < ε0 the following

holds: There exists a solution to (1.1) for times 0 ≤ t ≤ T ε−2 for which Σ(t)

is given by a graph {(x, η(x, t)) : x ∈ R, t ≥ 0}, the trace of the velocity field on

{(x, η(x, t)) : x ∈ R, t ≥ 0} is given by v(x, t), and which satisfies

‖(ηx(t), v(t))− ε(k<ζ(1)(t), ζ
(1)
t (t))‖Hs×Hs ≤ C(‖B0‖Hs+7 ,T , C1, C2)ε

3/2

for all 0 ≤ t ≤ T ε−2.
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Proof. First, we will show that the initial data is B0-admissible after being reparametrized

by κ−1. Once we do, a solution z(α, t) exists as in Theorem V.6. We must then show

that this solution can be, for possibly smaller ε0, written as a graph, and we must

give remainder estimates for this graph corresponding to the remainder estimates of

ζ in Theorem V.6.

We begin by showing that the reparametrized data satisfy the hypotheses of The-

orem V.6. Let γ0(α, t) = α + iη0(α, t). Let ζ0(α) = (γ0 ◦ κ−1
0 )(α), where as in (2.3)

we define

κ0(α) = γ0(α) +
1

2
(I +Hγ0)(I +Kγ0)

−1(γ0(α)− γ0(α)).

Then if we denote ξ0 := ζ0 − α as usual, we have (I −Hζ0)ξ0 = 0. This implies that

ξ0 = i(I +Hζ0)(I +Kζ0)
−1=ξ0. By Proposition III.2 we have ζ(1) = i(I +H0)=ζ(1) +

O(ε3/2). For brevity, temporarily denote ‖ · ‖ := ‖|Dα|1/2 · ‖Hs+1/2 . Then by Lemma

V.4 and interpolation we have

‖ξ0 − εζ(1)(0)‖ ≤ ‖i(I +Hζ0)(I +Kζ0)
−1=ξ0 − i(I +H0)=εζ(1)(0)‖+ Cε3/2

≤ ‖=ξ0 −=εζ(1)(0)‖+ ‖(Hζ0 −H0)=εζ(1)(0)‖+ Cε3/2

≤ C‖η0 −=ζ(1)(0)‖+ Cε‖ζ(1)(0) ◦ κ0 − ζ(1)(0)‖+ Cε3/2.

Since ‖η0‖Hs+1 ≤ Cε1/2 by hypothesis, ‖κ0 − α‖Hs+1 ≤ Cε1/2, and so by the Mean

Value Theorem ‖ζ(1)(0) ◦ κ0 − ζ(1)(0)‖ ≤ Cε1/2. But then ‖ξ0 − εζ(1)(0)‖ ≤ Cε3/2

follows from ‖η0 −=εζ(1)(0)‖ ≤ Cε3/2.

Let v0 = v0 ◦ κ−1
0 , w0 = w0 ◦ κ−1

0 . By Lemma V.4, we also have

‖v0 − εiωζ(1)(0)‖Hs+1 ≤ Cε3/2,

‖w0 + εkζ(1)(0)‖Hs+1/2 ≤ Cε3/2.

This gives B0-admissible initial data, and so by Theorem V.6 there exists a solution

to the ζ system with justified asymptotics.
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We must now show that we can give Eulerian estimates for the remainders of

this solution. Since ζ and z parametrize the same interface Σ(t), it suffices to write

ζ = x + iy, where

x = x(α, t) = α + <ξ(α, t)

y = y(α, t) = =ξ(α, t)(6.5)

For sufficiently small ε0, Σ(t) describes a graph by Lemma VI.1, and so we can invert

to solve for α = α(x, t). Then we wish to justify asymptotics of η(x, t) := y(α(x, t), t).

The rigorous justifications of the asymptotics for ζα − 1 and Dtζ give rise to

rigorous justifications of the quantities ηx and v. The derivations of each are similar,

and so we will focus on ηx. By Theorem V.6, we have a solution ζ = x+ iy satisfying

‖yα(·, t)− kε<ζ(1)(·, t)‖Hs
α
≤ Cε3/2

for sufficiently small ε0, and ε < ε0. Since x = α(x, t) + <ξ(α(x, t), t), we have

immediately that ‖αx − 1‖Hs
x
≤ Cε1/2. Changing variables then gives us

‖yα(α(·, t), t)− kε<ζ(1)(α(·, t), t)‖Hs
x
≤ Cε3/2.

Moreover, since we would like to take advatage of asymptotics for αx(x)−1, we write

αx(x)− 1 = −<ξα(α(x))αx(x)

= −<ξα(α(x))−<ξα(α(x))(αx(x)− 1)

= −<ξ̃α(α(x)) +
(
<(ξα(α(x))<ξ̃α(α(x))−<rα(α(x))

)

−<ξα(α(x))
(
αx(x) + <ξ̃α(α(x))− 1

)
,

from which we have the estimate

‖αx(·) + <ξ̃α(α(·))− 1‖Hs
x
≤ Cε3/2.
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Next, we estimate the derivative of the graph ηx:

‖yα(α(·), t)− ηx(·, t)‖Hs
x

= ‖yα(α(·), t)(αx(·, t)− 1)‖Hs
x

≤ ‖yα(α(·))‖Hs
x
‖αx(·) + <ξ̃α(α(·))− 1‖Hs

x

+ C‖yα(α(·))‖Hs‖ξ̃α‖W s,∞
α

≤ Cε3/2.

By the Mean Value Theorem and Lemma VI.1, we have that

‖<ζ(1)(α(x), t)−<ζ(1)(x, t)‖Hs
x

≤ ‖B(εα(x) + εω′t, ε2t)−B(εx + εω′t, ε2t)‖Hs
x

+ ‖B(εx + εω′t, ε2t)‖W s,∞‖ei(kα(x)+ωt) − ei(kx+ωt)‖Hs
x

≤ ‖B‖W s+1,∞‖α(x)− x‖Hs

≤ Cε1/2.

Thus we have

‖ηx(·, t)− kε<ζ(1)(·, t)‖Hs
x
≤ ‖ηx(·, t)− yα(α(·), t)‖Hs

x

+ ‖yα(α(·), t)− kε<ζ(1)(α(·), t)‖Hs
x

+ ‖εζ(1)(α(·), t)− εζ(1)(·, t)‖Hs
x

≤ Cε3/2,

and with a similar argument we also have

‖v(·, t)− εζ
(1)
t (·, t)‖Hs+1

x
≤ Cε3/2.

6.2 The Multiscale Calculation for Ψ̃ and λ̃.

We have two formal calculations to complete. The first is to derive an expansion

for the quantity Ψ = ψ◦κ−1 of the form Ψ̃ = εΨ(1)+ε2Ψ(2)+ε3Ψ(3) so that it satisfies
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the transformed version of Bernoulli’s principle (c.f. (2.14) of [19]):

(6.6) DtΨ = −=(ζ) +
1

2
|Dtζ|2

up to the order O(ε4). The second is to check whether λ̃ = (I − H̃)Ψ̃ satisfies (6.2)

up to the order O(ε4). We will repeatedly use the formula (3.24) for ζ̃ in the sequel.

Deriving the expansion of Ψ

The O(ε) terms of (6.6) yield1

Ψ
(1)
t0 = −=(ζ(1))

= − 1

2i
Beiφ + c.c.,

from which we have

Ψ(1) =
1

2ω
Beiφ + c.c. + C(1)(α0, α1, t1, t2).

Equating the O(ε2) terms of (6.6) gives

Ψ
(2)
t0 = −Ψ

(1)
t1 −=(ζ(2)) +

1

2
|ζ(1)

t0 |2

= −ω′
1

2ω
BXeiφ + c.c.− C

(1)
t1 −=

(
1

2
ik(I −H0)|B|2

)
+

1

2
k|B|2

= − 1

4k
BXeiφ + c.c.− C

(1)
t1 − 1

2
k|B|2 +

1

2
k|B|2

= − 1

4k
BXeiφ + c.c.− C

(1)
t1 .

To avoid secular terms we set C(1) = 0 and so arrive at the solution

(6.7) Ψ(2) = − 1

4ikω
BXeiφ + c.c. + C(2)(α0, α1, t1, t2)

and hence determine Ψ(1) as

(6.8) Ψ(1) =
1

2ω
Beiφ + c.c..

1Here c.c. represents the complex conjugate of the term immediately preceding it.
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Finally, we collect the O(ε3) terms of (6.6) together to give the equation

Ψ
(3)
t0 = −Ψ

(2)
t1 −Ψ

(1)
t2 − b2Ψ

(1)
α0
−=(ζ(3)) + <

(
ζ

(1)

t0
(ζ

(1)
t1 + ζ

(2)
t0 )

)

= −Ψ
(2)
t1 −Ψ

(1)
t2 − b2Ψ

(1)
α0
−=(ζ(3)) + <(ζ

(1)

t0
ζ

(1)
t1 ).

We calculate that Ψ
(2)
t1 = − 1

8ik2 BXXeiφ + c.c. + C
(2)
t1 and Ψ

(1)
t2 = 1

2ω
BT eiφ + c.c..

Recalling from (3.25) that b2 = −kω|B|2 we also have b2Ψ
(1)
α0 = −1

2
ik2B|B|2eiφ +c.c..

As for the remaining terms, we can write

=(ζ(3)) = =
(
−1

2
k2B|B|2e−iφ +

1

2
(I −H0)

(
BBX

))

=
1

4i
k2B|B|2eiφ + c.c. +

1

2
=(I −H0)(BBX)

as well as <(ζ
(1)

t0
ζ

(1)
t1 ) = < (−1

2
iBBX

)
= = (

1
2
BBX

)
, and so

−=(ζ(3)) + Re(ζ
(1)

t0
ζ

(1)
t1 ) = − 1

4i
k2B|B|2eiφ + c.c.− 1

2
=(I −H0)(BBX) +

1

2
=(BBX)

= − 1

4i
k2B|B|2eiφ + c.c. +

1

2
=H0(BBX).

Summing these terms now gives

Ψ
(3)
t0

= −Ψ
(2)
t1 −Ψ

(1)
t2 − b2Ψ

(1)
α0
−=(ζ(3)) + <(ζ

(1)

t0
ζ

(1)
t1 )

=
1

8ik2
BXXeiφ + c.c.− C

(2)
t1 − 1

2ω
BT eiφ + c.c. +

1

2
ik2B|B|2eiφ + c.c.

− 1

4i
k2B|B|2eiφ + c.c. +

1

2
=H0(BBX)

=

(
− 1

2ω
BT +

1

8ik2
BXX +

3

4
ik2B|B|2

)
eiφ + c.c. +

(
−C

(2)
t1 +

1

2
=H0(BBX)

)

= − 1

4iω

(
2iBT − 1

2kω
BXX + 3k2ωB|B|2

)
eiφ + c.c. +

(
−C

(2)
t1 +

1

2
=H0(BBX)

)

= − 1

4iω

(
2iBT + 2ω′′BXX + 3k2ωB|B|2) eiφ + c.c. +

(
−C

(2)
t1 +

1

2
=H0(BBX)

)
.

We must choose C(2) so that C
(2)
X = ω=H0(BBX). Therefore

C(2) =
1

2
ωiH0(|B|2).
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Since B satisfies the NLS equation 2iBT − ω′′BXX + k2ωB|B|2 = 0, we have that

Ψ
(3)
t0 = −3ω′′

4iω
BXXeiφ − k2

2i
B|B|2eiφ + c.c. =

3

16ik2
BXXeiφ − k2

2i
B|B|2eiφ + c.c.,

and so we can take as our solution

(6.9) Ψ(3) = − 3

16k2ω
BXXeiφ +

k2

2ω
B|B|2eiφ + c.c..

Checking the Evolution Equation for λ

Now we would like to use our expansion of Ψ to check to see whether (6.2) is

satisfied up to terms of order O(ε4). The O(ε) equation that we must verify is

(∂2
t0
− i∂α0)(I −H0)Ψ

(1) = (∂2
t0
− i∂α0)(I −H0)

(
1

2ω
Beiφ + c.c.

)

= (∂2
t0
− i∂α0)

1

ω
Beiφ

= 0,

as desired. Similarly, recalling that H(1)f = [ζ(1),H0]fα0 , it is quick to see that the

O(ε2) terms vanish as well:

(∂2
t0
− i∂α0)(I −H0)Ψ

(2)

+ (∂2
t0
− i∂α0)(−H1)Ψ

(1)

+ (2∂t0∂t1 − i∂α1)(I −H0)Ψ
(1) = 0.
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For the O(ε3) terms, we must investigate the sum

(∂2
t0
− i∂α0)(I −H0)Ψ

(3)

+ (∂2
t0
− i∂α0)(−H1)Ψ

(2)

+ (∂2
t0
− i∂α0)(−H2)Ψ

(1)

+ (2∂t0∂t1 − i∂α1)(I −H0)Ψ
(2)

+ (2∂t0∂t1 − i∂α1)(−H1)Ψ
(1)

+ (2∂t0∂t2 + ∂2
t1

+ 2b2∂t0∂α0)(I −H0)Ψ
(1)

−G
(3)
λ

= I1 + · · ·+ I6 −G
(3)
λ ,

where G
(3)
λ is the third term in the formal expansion of the cubic term Gλ in (6.2).

We have

I1 = (∂2
t0
− i∂α0)

(
− 3

8k2ω
BXXeiφ +

k2

ω
B|B|2eiφ

)

= 0

and

I2 = (∂2
t0
− i∂α0)(−H(1))

(
− 1

4ikω
BXeiφ + c.c. + C(2)

)

= (∂2
t0
− i∂α0)

(
1

4ω
(I −H0)BBX

)

= 0.
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We also have

I4 = (2∂t0∂t1 − i∂α1)

(
− 1

2ikω
BXeiφ + (I −H0)C

(2)

)

= −iω(I −H0)=H0(BBX)

= −iω(I −H0)
H0(BBX)−H0(BBX)

2i

= −1

2
ω(I −H0)(BBX + BBX)

and

I5 = (2∂t0∂t1 − i∂α1)(−H(1))

(
1

2ω
Beiφ + c.c.

)

= (2∂t0∂t1 − i∂α1)
1

2
iω(I −H0)|B|2

=
1

2
ω(I −H0)(BBX + BBX).

Moreover, since B satisfies the NLS equation (3.20),

I6 = (2∂t0∂t2 + ∂2
t1
− 2kω|B|2∂t0∂α0)

1

ω
Beiφ

= (2iBt − ω′′BXX + 2k2ωB|B|2)eiφ

= k2ωB|B|2eiφ.

The remaining terms are more involved. Recall the multiscale operator

H(2)f = [ζ(1),H0]∂α1f + [ζ(2),H0]∂α0f − [ζ(1),H0]ζ
(1)
α0

∂α0f +
1

2
[ζ(1), [ζ(1),H0]]∂

2
α0

f
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Thus we first have

H(2)Ψ(1) = [Beiφ,H0]

(
1

2ω
BXeiφ + c.c.

)

+

[
1

2
ik(I −H0)|B|2,H0

](
1

2
iωBeiφ + c.c.

)

− [Beiφ,H0]

(
ikBeiφ

(
1

2
iωBeiφ + c.c.

))

+
1

2
[Beiφ, [Beiφ,H0]]

(
−1

2
kωBeiφ + c.c.

)

= [Beiφ,H0]

(
1

2ω
BXe−iφ

)

− 1

2
kω[Beiφ,H0]|B|2

+
1

2
[Beiφ, [Beiφ,H0]]

(
−1

2
kωBe−iφ

)

=
1

2ω
(I −H0)(BBX)

− 1

2
kωBeiφ(I +H0)|B|2

+
1

2
kωBeiφH0|B|2

= −1

2
kωB|B|2eiφ +

1

2ω
(I −H0)(BBX).

But then

I3 = (∂2
t0
− i∂α0)(−H(2))Ψ(1)

= (∂2
t0
− i∂α0)

(
1

2
kωB|B|2eiφ − 1

2ω
(I −H0)(BBX)

)

= 0.

Finally, we turn to calculating G
(3)
λ . We have by definition that

G
(3)
λ = −

[
Dtζ,H 1

ζα

+H 1

ζα

]
(ζαD2

t ζ) + [Dtζ,H]

(
Dtζ

∂αDtζ

ζα

)
+ Dtζ[Dtζ,H]

∂αDtζ

ζα

−2[Dtζ,H]
Dtζ · ∂αDtζ

ζα

+
1

πi

∫ (
Dtζ(α)−Dtζ(β)

ζ(α)− ζ(β)

)2

(Dtζ(β) · ζβ(β))dβ.
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We simplify the formal leading terms of the commutators first. We have that

[ζ
(1)
t0 ,H0](ζ

(1)

t0
ζ

(1)
t0α0

) = k2ωBeiφ(I −H0)|B|2

and

ζ
(1)
t0 [ζ

(1)
t0 ,H0]ζ

(1)

t0α0
= k2ωBeiφ(I −H0)|B|2.

Also, since ζ
(1)
t0 · ζ(1)

t0α0
= 0, the third commutator vanishes. We will write the leading

orders of the remaining terms as singular integrals to which we can apply the following

formula:

1

πi

∫
(g(α)− g(β))(h(α)− h(β))

(α− β)2
f(β)dβ = [g,H0](hαf)+[h,H0](gαf)−[g, [h,H0]]fα.

Since to leading order, ζ
(1)
t0 · ζ(1)

α0 = ζ
(1)
t0 · 1+O(ε2) = <(ζ

(1)
t0 )+O(ε2) = 1

2
(ζ

(1)
t0 + ζ

(1)

t0
)+

O(ε2), we can rewrite the second singular integral above as

1

πi

∫ (
ζ

(1)
t0 (α)− ζ

(1)
t0 (β)

α− β

)2
1

2
ζ

(1)

t0
dβ = [ζ

(1)
t0 ,H0](ζ

(1)
t0α0

ζ
(1)

t0
)− 1

2
[ζ

(1)
t0 , [ζ

(1)
t0 ,H0]]ζ

(1)

α0t0
.

Similarly, the leading order of the first singular integral is

− 1

πi

∫ (
(ζ

(1)
t0 (α)− ζ

(1)
t0 (β))(ζ

(1)
(α)− ζ

(1)
(β))

(α− β)2

)
ζ

(1)
t0t0(β)dβ

= −[ζ
(1)
t0 ,H0](ζ

(1)

α0
ζ

(1)
t0t0)− [ζ

(1)
,H0](ζ

(1)
t0α0

ζ
(1)
t0t0) + [ζ

(1)
t0 , [ζ

(1)
,H0]]ζ

(1)
t0t0α0

.

By extracting the coefficients resulting from differentiation, the first terms of these

two expressions cancel each other. Therefore we are left with the following expression

as the sum of these singular integrals:

− 1

2
[ζ

(1)
t0 , [ζ

(1)
t0 ,H0]]ζ

(1)

α0t0
+ [ζ

(1)
t0 , [ζ

(1)
,H0]]ζ

(1)
t0t0α0

= k2ωBeiφH0|B|2 − k2ωBeiφ(I +H0)|B|2

= −k2ωB|B|2eiφ.
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Therefore, summing these calculations gives

G
(3)
λ = k2ωBeiφ(I +H0)|B|2 + k2ωBeiφ(I −H0)|B|2 − k2ωB|B|2eiφ

= k2ωB|B|2eiφ.

Therefore we have at last that the O(ε3) terms sum to

− 1

2
ω(I −H0)(BBX + BBX) +

1

2
ω(I −H0)(BBX + BBX)

+ k2ωB|B|2eiφ − k2ωB|B|2eiφ,

which exactly cancels. Thus the development of Ψ indeed satisfies (6.2) up to O(ε4).

Define

(6.10) Ψ̃ = εΨ(1) + ε2Ψ(2) + ε3Ψ(3)

as well as

(6.11) λ̃ = (I − H̃)Ψ̃

so that P̃λ̃−G
(3)
λ = O(ε4).

6.3 Estimates of the Remainder of λ

Our goal here is to construct an energy from an evolution equation for

(6.12) l = λ− λ̃.

This will enable us to show that the quantity Dtl = Dt(λ− λ̃) is bounded in L2. In

turn, we will control r in L2 for O(ε−2) times.

Showing that Dtl and r are comparable.

Following the proof of Lemma VI.1, we first show that r and (I − H)=(r) are

comparable in L2. First, since (I − H)ξ = 0 by (2.8), we have by the multiscale
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calculation of Section 3.3 and Corollary IV.3 that

(I −H)r = −(I −H)ξ̃ = −(H̃ − H)ξ̃ − (I − H̃)ξ̃ = O(ε5/2).

Hence we have

‖r‖L2 ≤ C‖(I −H)(r + r)‖L2 + C‖(I −H)=(r)‖L2

≤ C‖(I −H)=(r)‖L2 + Cε5/2,

and so

(6.13)
1

C
‖r‖L2 − Cε5/2 ≤ ‖(I −H)=(r)‖L2 ≤ C‖r‖L2 + Cε5/2.

Turning to Dtl and r, we expand

Dtl = Dtλ−Dtλ̃

= Dtλ− D̃tλ̃− (Dt − D̃t)λ̃

= Dtλ− D̃tλ̃− (b− b̃)λ̃α.

Another multiscale calculation confirms that the residual quantity

D̃tλ̃ + (I − H̃)=(ζ̃) +
1

2
[D̃tζ̃ , H̃]

ζ̃αD̃tζ̃

ζ̃α

is of size at most Cε3/2 in L2. Hence, using (6.1), we have that Dtl = −(I−H)=(r)+

O(ε3/2). But then this implies the bound

1

C
‖r‖L2 − Cε3/2 ≤ ‖Dtl‖L2 ≤ C‖r‖L2 + Cε3/2.(6.14)

The Evolution Equation and Energy Estimates for l.

We can write immediately that

Pl = Gλ − (P − P̃)λ̃− P̃λ̃

= (Gλ −G
(3)
λ )− (P − P̃)λ̃− (P̃λ̃−G

(3)
λ ),
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from which we have by the usual decompositions and estimates that Pl is controlled

in Hs by C(E
3/2
s + εEs + ε2E

1/2
s + ε7/2) = O(ε7/2). We can now construct the energy

∫
1

A|Dtl|2 + illαdα

corresponding to the above evolution equation for l. Since l need not be the trace

of a holomorphic function in Ω(t)c, we cannot conclude that this quantity bounds

‖Dtl‖2
L2 above. Hence we decompose l as

l =
1

2
(I −H)l +

1

2
(I +H)l := l− + l+

The energy

L (t) =

∫
1

A|Dtl|2 + il−l
−
αdα

does bound ‖Dtl‖2
L2 from above, by Lemma IV.9. We would like to show that

dL /dt ≤ Cε5. To do so, we write

L (t) =

∫
1

A|Dtl|2 + illαdα− i

∫
l−l

+

α + l+l
−
α + l+l

+

αdα := L1(t) + L2(t).

By Lemma IV.9 and (6.14), the time derivative of the first integral is

dL1

dt
≤ Cε7/2‖Dtl‖L2 + Cε2‖Dtl‖2

L2 .

We use the usual almost-orthogonality argument to treat the terms of L2(t). Observe

that with a change of variables we have

dL2

dt
=

d

dt

(
−i

∫
l−l

+

α + l+l
−
α + l+l

+

αdα

)

= −i

∫
Dtl

−l
+

α + Dtl
+l
−
α + Dtl

+l
+

α + l−∂αDtl
+

+ l+∂αDtl
−

+ l+∂αDtl
+
dα

=
1

i

∫
Dtl

−l
+

α + Dtl
+l
−
α + Dtl

+l
+

α − l−α Dtl
+ − l+α Dtl

− − l+α Dtl
+
dα

= 2=
∫

Dtl
−l

+

α + Dtl
+l
−
α + Dtl

+l
+

αdα.
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We calculate that

l+ =
1

2
(I +H)l

=
1

2
(I +H)(λ− λ̃)

= −1

2
(I +H)(I − H̃)Ψ̃

= −1

2
(I +H)(H− H̃)Ψ̃,

from which we have ‖l+‖H1 ≤ Cε5/2. Via Corollary IV.5 the same formula readily

implies that ‖Dtl
+‖L2 ≤ Cε5/2, and so we clearly have

∫
Dtl

+l
+

αdα ≤ Cε5.

The other two terms are controlled by exploiting their almost-orthogonality. Note

that Dtl
− = 1

2
(I −H)Dtl − 1

2
[Dtζ,H] lα

ζα
and l

+

α = 1
2
(I −H∗

)lα. Since we have

lα = λα − λ̃α

= (I −H)Ψα − [ξα,H]
Ψα

ζα

− λ̃α

= (I −H)<(ζαDtζ)− [ξα,H]
<(ζαDtζ)

ζα

− λ̃α,

we see that the only O(ε) terms contributed are (I−H0)<(ζ
(1)

t0
)−∂α0(I−H0)Ψ

(1) = 0.

Hence ‖lα‖L2 ≤ Cε3/2. But then we can rewrite the commutator as a term of third

order as follows:

[Dtζ,H]
lα
ζα

=

[
Dtζ,H 1

ζα

+H 1

ζα

]
lα − [Dtζ,H]

∂α

ζα

l

=

[
Dtζ,H 1

ζα

+H 1

ζα

]
lα − [Dtζ,H]

∂α

ζα

(
l+ − 1

2
(H +H)l

)
,
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and so ‖[Dtζ,H] lα
ζα
‖L2 ≤ Cε7/2. Since ‖l+α ‖L2 ≤ Cε5/2 as above, it suffices to estimate

the inner product

〈(I −H)Dtl, (I −H∗
)lα〉 = −〈(H +H)Dtl, (I −H∗

)lα〉

= −2〈(H +H)Dtl, l
+

α 〉

≤ Cε7/2‖Dtl‖L2 .

For the second term, we have that Dtl
+ = 1

2
(I + H)Dtl + 1

2
[Dtζ,H] lα

ζα
and l

−
α =

1
2
(I + H∗

)lα. The commutator is estimated by ‖[Dtζ,H] lα
ζα
‖L2 ≤ Cε7/2 as before.

Hence it suffices to consider

〈(I +H)Dtl, (I +H∗
)lα〉 = 〈(I +H)Dtl, (H∗ +H∗

)lα〉

=

〈
2Dtl

+ − [Dtζ,H]
lα
ζα

, (H +H)∗lα

〉

≤ C(ε7/2‖Dtl‖L2 + ε5).

Summing these estimates, we finally have that

dL

dt
(t) ≤ C(ε5 + ε7/2L (t)1/2 + ε2L (t)) ≤ Cε2(ε3 + L (t))

whenever 0 ≤ t ≤ T ε−2. Therefore

sup
0≤t≤T ε−2

L (t) ≤ C(L (0) + ε3)

Consequently

‖r‖C([0,T ε−2]:L2) ≤ C(L (0)1/2 + ε3/2).

6.4 Justifying the Eulerian Asymptotics for the Profile.

With these preliminaries, we can now prove the
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Theorem VI.3. Suppose the remainder hypotheses (6.3) hold, and moreover that

the stronger conditions hold:

(6.15) ‖η0−ε=ζ(1)‖L2 ≤ Cε3/2 and ‖Φ0(α+iη0(α))−εω−1<ζ(1)‖Ḣ1/2 ≤ Cε3/2

where Φ0 is the initial velocity potential. Then there exists a possibly smaller ε0 so

that in addition to the conclusions of Theorem VI.2 holding, the profile η satisfies

‖η(t)− ε=ζ(1)(t)‖Hs+1 ≤ C(‖B0‖Hs+7 ,T , C1, C2)ε
3/2

for all 0 ≤ t ≤ T ε−2.

Proof. As in the proof of Lemma VI.1, it suffices to derive conditions under which

L (0) = O(ε3). We will show that the quantity

L (0) =

∫
1

A0

|Dtl0|2 + il0∂αl0dα

is controlled by ‖r0‖L2 and ‖Φ0 ◦ z0 − εω−1<ζ(1)‖Ḣ1/2 .2

We can control the first term

∫
1

A0

|Dtl(0)|2 ≤ C‖Dtl0‖2
L2 ≤ C(‖r0‖L2 + ε3/2)2

by (6.13).

To estimate the other term in L (0), observe that we can write l in terms of Ψ−Ψ̃

as follows:

l = (I −H)Ψ− (I − H̃)Ψ̃

= (I −H)(Ψ− Ψ̃)− (H− H̃)Ψ̃,

2Ideally one would prefer, in keeping with the weaker conditions given in Theorem VI.2, to bound L (0) by
some difference of the initial velocity fields of the true and approximate solution in the square-mean. However,
since these velocity fields are defined in different domains, we instead give this equivalent condition, which is more
straightforward to state.
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and the latter term is O(ε5/2) by Corollary IV.3. Hence we expand our integral as

usual:

∫
il0∂αl0dα = i

∫ (
l0 − (I −Hz0)(Ψ0 − Ψ̃0)

)
∂αl0dα

− i

∫
∂α(I −Hz0)(Ψ0 − Ψ̃0)

(
l0 − (I −Hz0)(Ψ0 − Ψ̃0)

)
dα

+ i

∫
(I −Hz0)(Ψ0 − Ψ̃0)∂α(I −Hz0)(Ψ0 − Ψ̃0)dα.

The first two of these integrals are O(ε4), since ∂α(Ψ − Ψ̃) = <(ζαDtζ) − Ψ̃α is

O(ε3/2). Therefore since H is bounded on Ḣ1/2,3 it follows that

∣∣∣∣
∫

il0∂αl0dα

∣∣∣∣ ≤ ‖(Φ0 ◦ z0)− εω−1<ζ(1)‖2
Ḣ1/2 + Cε4.

Hence, if we choose the initial profile and the initial velocity potential Φ0 to satisfy

‖r0‖L2 ≤ Cε3/2 and ‖(Φ0 ◦ z0)− εω−1<ζ(1)‖Ḣ1/2 ≤ Cε3/2,

then L (0) ≤ Cε3, and so sup0≤t≤T ε−2 ‖r(t)‖L2 ≤ Cε3/2 as well.

Remark. With a few changes we can rigorously justify asymptotics for wave

packet-like solutions of the periodic water wave problem as well. One is interested

in the periodic case since the periodic 1D NLS equation exhibits different (and more

interesting) behavior than the 1D focusing NLS equation defined on R we derived

in §3. The periodic water wave problem is the same problem as (1.1) except that

the space variable of the velocity field is defined4 on NT := R/2Nπ, and hence the

fluid interface Σ(t) can be parametrized by a periodic curve, that is, a curve Σ ⊂ C

which is parametrized by a curve z : R → C for which z(α) − α is 2πN -periodic.

Given a holomorhphic function F that is 2πN periodic and whose trace is given by

3Since H is bounded on L2 → L2, this can be checked by showing that H is bounded on Ḣ1 → Ḣ1 using the
identity ∂αHf = Hfα + [zα,H] fα

zα
and then by using complex interpolation.

4The dependence on an integer N ∈ N will be explained presently.
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f(α, t) = F (z(α, t), t), we can recover the values of F in Ω(t) from those of f using

a Cauchy integral:

f(α) =
∞∑

j=−∞

1

πi
p.v.

∫ (2j+1)Nπ

(2j−1)Nπ

f(β)zβ(β))

z(α)− z(β)
dβ

=
1

πi
p.v.

∫ Nπ

−Nπ

f(β)

( ∞∑
j=−∞

1

z(α)− z(β) + 2πjN

)
zβ(β)dβ

=
1

πi
p.v.

∫ Nπ

−Nπ

f(β)

(
1

z(α)− z(β)

+
∑

j 6=0

1

z(α)− z(β) + 2πjN
− 1

2πjN

)
zβ(β)dβ,

and from the identity

π cot (πθ) =
1

θ
+

∑

j 6=0

1

θ + j
− 1

j
, θ /∈ Z

which is checked by a simple residue calculation, we have the following formula for

the Hilbert transform of a 2Nπ-periodic function:

(6.16) H[N ]f = Hf =
1

2Nπi
p.v.

∫ Nπ

−Nπ

f(β) cot

(
z(α)− z(β)

2N

)
zβ(β)dβ.

The other singular integrals which arise using this version of the Hilbert transform

yield slightly different formulas for the cubic expressions involving the Hilbert kernel

cot(θ/2) and its derivatives. However, the orders of the singularities in the kernel

are the same as those in the case of the real line. Therefore, using a slightly more

general version of our singular integral estimates stated in Proposition 3.2 of [19], we

have the same bounds of these singular integrals as those of the real line case.

We note also that this new version of the Hilbert Transform still satisfies (H[N ])2 =

1 and that f is the trace of a periodic holomorphic function on a periodic curve z if

and only if (I − H[N ])f = 0. We continue to observe the convention that H[N ]1 = 0.

Finally, since the product of two periodic holomorphic functions is also periodic, the

results of Lemma 2.2 hold.



103

The other major difference between the case of the real line and of the circle is in

the choice of leading term for the wave packet approximation. Suppose we are given

a periodic function B : T→ C ; in order to force the expression

εB(εα, εt, ε2t)ei(kα+ωt)

to be itself periodic, we will require choosing 1/ε := N ∈ N so that N/k ∈ N as well.

We must also adapt the estimate in Proposition III.2. However, if we denote

the Fourier series of a function f by f̂ , and the flat periodic Hilbert transform

corresponding to z(α) = α by H
[N ]
0 , we have for all Fourier modes m ∈ Z the formula

Ĥ
[1]
0 f(m) = − sgn(m)f̂(m). Therefore we can write for α ∈ [−Nπ, Nπ] that

H
[N ]

0

(
B(ε·)eik·) (α) = H

[1]

0

(
B(·)eikN ·) (α/ε)

and so we can imitate the proof Proposition III.2 to get the estimate

‖(I − H
[N ]

0 )B(εα)eikα‖Hs(NT) ≤ C
εm−1/2

km
‖B‖Hs+m(T)

Using this estimate, the formal calculation of Chapter 3 now carries through, and so

B satisfies the same NLS equation as on the real line. This is a focusing 1D NLS

equation on T, which is known to be completely integrable and therefore globally

well-posed. Hence given initial data B0 in Hs+7(T) we can make sense of the formal

approximation ζ̃ defined on NT for any N ∈ N.

The natural analogue of Theorem V.3 establishing the local well-posedness of the

water wave problem on the periodic domain NT holds as well provided we consider

our quantities in the Sobolev spaces Hs(NT) rather than Hs(R). However, in order

to assure that the approximation ζ̃ is sufficiently close to the rest solution α to guar-

antee convergence of singular integrals involved, we only consider N ≥ N0 for some

sufficiently large N0 depending on ‖B0‖Hs+7(T). Then we can define the remainder
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r = ζ − ζ̃ on NT, and with the necessary modifications to the norms involved, the

exact same results contained in Theorems V.6, VI.2, VI.3, with the following two

changes: (1) we make the periodicity restriction N/k ∈ N; the results then hold only

provided we consider an N ≥ N0 for some N0 depending on ‖B0‖Hs+7(T), M0 and T ,

and (2) the Sobolev norms on R are replaced by the respective Sobolev norms on T

and NT where appropriate.



CHAPTER VII

Conclusion and Discussion

In this dissertation, we have found formal solutions that satisfy the equations

(2.7)-(2.8) up to a residual of physical size O(ε4), and that have wave packet leading

terms. The modulation of the leading term of the approximate solution was found

to be a profile moving at group velocity and satisfying NLS.

We then showed that for any such initial modulation, there are corresponding

initial data of the original system no more than O(ε3/2) in Sobolev space away from

a wave packet having the initial modulation. Moreover, we showed that for any

initial data for the full water wave equations which are close to a wave packet in this

sense, the solution to the water wave equations remains comparably close on O(ε−2)

time scales.

Therefore we have shown that to every solution of NLS in sufficiently regular

Sobolev space, there exists a wave packet like solution to the equations (2.7)-(2.8)

whose modulation evolves according to the NLS solution, and moreover this solution

is stable. Because we proved existence by expressing the full solution as a perturba-

tion of the globally existing approximate solution, our stability result implies that

the water wave equations (1.3)-(1.4) can be solved up to time Tε−2 when given wave

packet-like initial data, where T is the time up to which NLS is solved when given

105
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the initial modulation.

However, we found that this last result has two drawbacks: it controls only the

derivatives of the water wave variables in a new coordinate system. While in the gen-

eral water wave problem this is a desirable generalization of a small data condition,

the wave packet profile ought to remain a small perturbation from the still water

solution for long times, and so one should be able to control the profile of the wave

packet-like solution itself. To achieve this, we realized that the profile can be con-

trolled through Bernoulli’s law, and so control on the trace of the velocity potential

yields control on the profile in Eulerian coordinates over the NLS time scales.

We have also left open the justification in Lagrangian coordinates, specifically of

the perturbation from rest of the horizontal velocity of the interface. We successfully

justified asymptotics in Eulerian coordinates, but only upon restricting the initial

velocity potential on the interface appropriately. It would be interesting to precisely

elucidate the relationship between the bad behavior the horizontal velocity in La-

grangian coordinates and the change of variables we have used to see whether the

horizontal velocity can be more effectively controlled.

The work in this dissertation depends on the existence of a change of variables

that converts the equations governing the interface to one with nonlinearities of at

least third order. As of this writing, a change of variables such as that given in

this dissertation exists only for the infinite depth problem, and it would of course be

desirable to discover a corresponding change of variables for more general problems,

such as finite or variable depth problems, retention of surface tension, nonzero vis-

cosity, or nonzero vorticity. Besides giving long-time well-posedness results in these

more general water wave problems, the discovery of such a change of variables in

these settings would yield the ability to give rigorous justifications for the modu-
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lation approximation in those cases as well. Moreover, it might be worthwhile to

pursue justifications of other model equations for the water wave problem which

have already been supplied, since in this case the results may be strengthened, or at

least the proofs of the results may be simplified.

In the papers [18], [20], Wu has given both the local well-posedness of the 3D

water wave problem, as well as a global well-posedness result analogous to that in

[19]. Hence one can attempt a justification of the 3D analogue of the subject of

this dissertation. The modulation approximation in 3D concerns a plane wave with

modulation that slowly varies in all directions. In the case of infinite depth, past

formal calculations suggest that the modulation is governed by a hyperbolic cubic

nonlinear Schrödinger equation (HNLS).

One meets many new challenges in the 3D setting. In order to construct the

3D analogue of Wu’s transformation, one must work in the framework of a Clifford

algebra (specifically the quaternions), which entails calculating with three mutually

noncommuting imaginary units. While one can generalize most of classical complex

analysis in this setting, there are some differences that cause difficulties, notably

the fact that the analytic functions are no longer closed under multiplication. The

governing equations in 3D are also less clean than in the 2D case: many a priori

quadratic nonlinearities must be carefully treated in the energy estimates in order

to suitably control them. One quadratic term in particular must be treated using

generalized Sobolev norms involving the invariant vector fields associated to the 3D

problem, which is a nontrivial obstacle since the size of a wave packet with respect

to such norms is not small.

A justification in 3D would have the same benefits as a justification in 2D; the sav-

ings in numerical computation would be even greater because of the higher dimension
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involved. Another point of interest is that HNLS is less well-behaved than the NLS

equation considered in this dissertation, and so less is known about it. For example,

the latter is completely integrable, while the former is not thought to be.1 Recall

that in this dissertation we showed long-time existence of a wave packet-like solution

to the full water wave equations by writing the full solution as a perturbation of the

globally existing approximation. It would be interesting to see if the process can

be reversed in 3D to get better existence times for HNLS in high-regularity Sobolev

spaces by regarding the modulation approximation as a perturbation of the full water

wave problem, at least for some possibly more restricted class of initial data.

1HNLS does not have the Painlevé property, so it would not be completely integrable if the Painlevé conjecture
holds. c.f. [1].
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