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Stem Cell Technology for
Neurodegenerative Diseases
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Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat
neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into
translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the
burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell
therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline
important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the
current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing
on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular
atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that
stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.

eurodegenerative diseases are characterized by the

loss of neurons in the brain or spinal cord. Acute
neurodegeneration may result from a temporally discrete
insult, such as stroke or trauma, leading to a localized
loss of neurons at the site of injury. Chronic neurodegen-
eration may develop over a long period of time and
results in the loss of a particular neuronal subtype or
generalized loss of neuronal populations. In the brain,
Alzheimer disease (AD) and Huntington disease (HD)
result in widespread loss of neurons, whereas Parkinson
disease (PD) involves the specific and localized loss of do-
paminergic (DA) neurons in the substantia nigra. In the
brainstem and spinal cord, amyotrophic lateral sclerosis
(ALS) and spinal muscular atrophy (SMA) involve the
degeneration and loss of motor neurons (MNs). Although
these conditions all exhibit unique neuronal pathologies,
the exact mechanisms for neuronal loss are complex, mak-
ing the identification of efficacious treatments elusive.

The lack of effective therapies for these neurological
diseases creates an enormous burden on society. In the
USA, approximately 7 million people are living with AD,
HD, PD, ALS, or SMA (Fig 1A; http://www.alz.org/,

heep://www.apdaparkinson.org/,  http://www.hdsa.org/,
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http://www.alsa.org/,  http://www.smafoundation.org/).
Projected research spending by the National Institutes of
Health (NIH) in 2011 for these 5 diseases totals $768
million, and spending allocation is proportional to the
number of individuals affected by each disease (see Fig
1A; http://report.nih.gov/redc/categories/). In the USA,
an estimated 5.3 million individuals suffered from AD in
2010, making it by far the most prevalent neurodegenera-
tive disorder, carrying an estimated health care cost of $172
billion (http://www.alz.org/). PD affects up to an estimated
1.5 million people in the USA, with approximately 50,000
new cases diagnosed each year, and the estimated costs of
PD stood at $11 billion per 500,000 affected Americans in
2009." Furthermore, HD and ALS each affect 30,000
Americans, and SMA affects 25,000 Americans.

Despite the destructive nature of these diseases, the
number of affected individuals, and health care costs sur-
passing billions of dollars, there is a stunning lack of
treatment options. Recently, cellular therapies have
earned increased attention as potentially feasible novel
therapies. Analysis of published scientific articles demon-
strates that <2% of all papers per disease field examine
the application of stem cells (see Fig 1B). However, it is
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FIGURE 1: Analysis of the current state of stem cell research
for neurodegenerative diseases. (A) Comparison of approxi-
mate number of affected individuals in the USA (blue) and
anticipated breakdown of National Institutes of Health (NIH)
spending on diseases in 2011 (green). (B) Portion of published
literature focusing on stem cell technologies for individual
neurodegenerative diseases overall (blue) and between 2006
and 2010 (green). Literature mining was performed using the
MeSH terms "Alzheimer disease,” (AD) “Parkinson disease,”
(PD) “Huntington disease,” (HD) “amyotrophic lateral sclero-
sis,” (ALS) "muscular atrophy, spinal,” (SMA) and “stem cell.”
(C) NIH spending on stem cell technologies in 2006 and 2011
by stem cell type and species. ES = embryonic stem.

likely that these figures will increase as the field of cellu-
lar therapy advances. In the past 5 years this percentage
rose for each neurodegenerative disease analyzed (see Fig
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1B), and NIH spending on stem cell research doubled
between 2006 and 2011 (see Fig 1C; http://report.nih.
gov/rcdc/categories/). Although stem cell therapies in the
USA are methodically examined via cautiously designed
trials and basic laboratory science, the lack of available
and effective treatments has prompted people suffering
with neurologic diseases to turn elsewhere for “stem cell
treatments.” Reports of “stem cell treatments” from clin-
ics in China and India are followed by glowing patient
testimonials; however, these treatments are not the result
of rigorous trials investigating safety and efficacy. Analysis
of 7 spinal cord injury patients receiving treatment at a
clinic in China included uncertainties concerning the
type of cells utilized, appropriate delivery for the level of
injury, and ultimate presence of any clinical benefit.”
Since this analysis, improvements in cell quality, cell
identification, delivery accuracy, and delivery targeting
and reduced postoperative complications may have been
made but have clearly not been documented.
Neurodegenerative diseases create a tremendous
burden on society, and despite decades of research, effec-
tive treatments do not exist. Cellular therapies are attrac-
tive options, and the application of stem cell research to
neurodegenerative diseases is rapidly expanding. In the
current review, we detail the current state of stem cell
research for neurodegenerative diseases, beginning with a
brief introduction to the various stem cell technologies
available. We also describe the rationale and remaining
hurdles associated with transitioning stem cell therapies
from bench to bedside. Finally, we discuss the current
data and progress for translational stem cell therapies for

AD, PD, HD, ALS, and SMA.

Stem Cell Technology

Stem cells have the capacity to proliferate and differenti-
ate into muldple cellular lineages. There are different
classifications of stem cells that reflect the range of possi-
ble cell types they can produce and the ways in which
the stem cells are derived. These include embryonic stem
(ES) cells, progenitor cells, mesenchymal stem cells
(MSCs), and induced pluripotent stem (iPS) cells (Fig
2). To appreciate the potential applications of stem cell
technology to neurodegenerative diseases, it is important
to understand the characteristics of the various stem cell
types available and the potential impact of cellular thera-

pies on disease mechanisms.

Stem Cell Classifications

Each stem cell type possesses certain qualities and advan-
tages, and the rationale for udilizing each depends on the
desired applications and outcomes. ES cells are derived

Volume 70, No. 3



Lunn et al: Stem Cells

=TT T

Somatic cell Stem cell Tissue graft
Cells like fibroblasts may Fetal tissue grafts provide a
be used as shuttles for

i growth factors

Induced pluripotent Embryonic stem cell
stem (iPS) cell (ES cell)

Derived from blastocyst
inner cell mass
True “stem cell”
Pluripotent and self-renewing
Differentiated into NPCs

Reprogrammed adult somatic tissue
Characteristics of ES cells
Differentiated into NPCs

Potential to transdifferentiate into

source of progenitor cells

14
Mesenchymal stem Neural progenitor
cell (MsC) cell (NPC)

Restricted to neural lineages
Self-renewing
Common source for
neurodegenerative disease
cellular therapy

Derived from bone marrow

neural lineages

FIGURE 2: Stem cell technology and cellular therapy classifications. Cellular therapy involves the treatment of diseases using
cells or tissue grafts. Various types of stem cells may be utilized, each possessing unique characteristics and advantages
depending on the desired outcomes. Selecting the appropriate stem cell and treatment mechanisms for each disease is neces-
sary to support the translation of cellular therapies for neurodegenerative diseases from bench to bedside. Solid arrows repre-
sent divisions within each category. Dashed arrows represent sources of iPS cells and NPCs.

from the inner cell mass of a developing blastocyst and
are pluripotent, possessing the capacity to give rise to all
3 germ layers. Progenitor cells, which are derived from
more developed fetal or adult tissues, are multipotent,
meaning they give rise to more restricted lineages than
ES cells. These potential lineages are usually determined
by the germ layer of origin. For example, neural progeni-
tor cells (NPCs), or neural stem cells (NSCs), are capable
of differentiating to cell types within a neural lineage.
NPCs may be derived directly from fetal or adult neural
tissue, or by directed differentiation of ES cells via cell
culture manipulation.>* Along with this limited differen-
tiation potential, NPCs also appear to have a more
restricted  self-renewal potential; although the self-
renewal state may be maintained in culture, cells stop
proliferating and start to differentiate when transplanted
in vivo.” MSCs are an alternative source of multipotent
self-renewing cells and are derived from adult bone
marrow. Naturally, they differentiate to produce osteo-
blasts, chondrocytes, and adipocytes; however, there is
evidence that they can transdifferentiate to a neural line-
age.® MSCs provide an accessible alternative to ES cells
and potentially circumvent the need for immunosup-
pression in cellular therapies because they are derived
from an autologous source. Using autologous cells,

however, may be less desirable when dealing with
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genetic diseases because the cells may possess the same
genetic predisposition to disease. For example, MSCs
derived from ALS patients exhibit diminished growth
and differentiation capacity; however, these issues may
be circumvented by enhancing cell culture techniques
and establishing optimal cell passage numbers.”®

More recently, the development of iPS cells has
provided an additional source of autologous stem cells
for modeling and treating diseases. iPS cells are generated
from somatic tissue such as fibroblasts and are reprog-
rammed into ES-like cells by the addition of select tran-
scription factors. The original approach utilized Oct 3/4,
KIf, Sox2, and c-Myc,” and multiple research groups
have now accomplished successful reprogramming of fibro-
blasts using various combinations of factors delivered by
vector-, virus-, protein-, or RNA-mediated approaches.'*™"?
Although many neurological disorders rely on complex
genetic rodent models or chemical treatments that may not
fully represent human neurodegenerative diseases, these cells
afford options for disease modeling and provide novel sour-
ces for autologous cellular therapies. It should be noted
that residual alterations from the genetic reprogramming
required to induce pluripotency are possible'®'%; therefore,
careful characterization of patient iPS lines must be per-
formed. With the continued advancement of iPS technol-
ogy, however, directed differentiation of patient iPS cells
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may be utilized to model human disease processes for
mechanistic and therapeutic discovery.

Cellular Therapy Strategies and Applications

Cellular therapies utilize cell or tissue grafts to treat dis-
eases or injury (see Fig 2). Treatment objectives of stem
cell therapies typically center on cellular replacement or
providing environmental enrichment. Cellular replace-
ment for neurodegenerative diseases involves the deriva-
tion of specific neuronal subtypes lost in disease and sub-
sequent grafting into affected areas of the nervous
system. The newly transplanted neurons may then inte-
grate, synapse, and recapitulate a neural network similar
to that lost in disease. Alternatively, stem cells may pro-
vide environmental enrichment to support host neurons
by producing neurotrophic factors, scavenging toxic fac-
tors, or creating auxiliary neural networks around
affected areas. Many strategies for environmental enrich-
ment utilize stem cells to provide de novo synthesis and
delivery of neuroprotective growth factors at the site of
disease. Growth factors such as glial-derived neurotrophic
factor (GDNEF), brain-derived neurotrophic  factor
(BDNF), insulin-like growth factor-I (IGF-I), and vascu-
lar endothelial growth factor (VEGF) are protective in
neurodegenerative disease models and provide in situ
support at the main foci of disease.'®" The appropriate
objective of cellular therapy for each neurodegenerative
disease must be based on the specific neuronal pathology
of each disorder. Whereas cellular replacement may be
effective in diseases like PD where a specific neuronal
subpopulation is lost, ALS is most likely to benefit from
cellular therapies that enrich the local spinal cord envi-
ronment to support the remaining MNs. Factors such as
how well grafted neurons integrate and migrate within
the host tissue, and the distances that axons must extend
to reach their targets, must be considered when deter-
mining the potential efficacy of cellular therapies for

neurodegenerative diseases.

Cellular Therapy for Neurodegenerative
Diseases

Selecting the appropriate stem cell type and understand-
ing the desired mechanism of support is only 1 step in
developing and translating cellular therapies to patients.
The course from bench to bedside is long and complex;
and although each disease and cellular therapy is unique,
certain universal issues must be considered for a safe tran-
sition to patient therapies.”>>* The Table describes some
of these issues that are pertinent to the development of
any clinical trial, and describes some of the issues that
arise along these lines for stem cell therapies. This transi-
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tion from bench to bedside may take well over a decade
of in vitro, in vivo, and large animal studies (Fig 3). As
we acknowledge and overcome these issues, however,
advances in the field of translational stem cell therapy will
continue to gain momentum. Next, we will discuss the
potential for therapeutic success, supported approaches,
and current progress in translating stem cells from bench
to bedside for specific neurodegenerative diseases.

AD

AD, the most frequent form of dementia, is characterized
by memory loss and cognitive decline.”” As the disease
progresses, there is a widespread loss of neurons and syn-
aptic contacts throughout the cortex, hippocampus,
amygdala, and basal forebrain.?® Although the exact
pathology of AD remains unclear, pathologic hallmarks
include Af plaques and neurofibrillary tangles.”*” There
is an increased risk of developing AD with age, and the
majority of AD cases are late onset, developing after 65
years of age.”®* With an increasingly aging population,
the burden from AD is anticipated to rise.

Current treatment options for AD are centered on
regulating neurotransmitter activity. Enhancing choliner-
gic function improves AD behavioral and cognitive
defects.®® Targeting the cholinergic system using stem
cell therapies may provide environmental enrichment.
Neurogenesis in the hippocampus decreases as we age

D332, therefore, cellular thera-

and is exacerbated in A
pies that enhance neurogenesis or replace lost neurons
may also delay the progression of AD. Enhancing BDNF
levels, which are decreased with age and in AD, pro-
motes neurogenesis and protects neuronal function.”?
Rodent AD models receiving NPC grafts demonstrate
increased hippocampal synaptic density and increased
cognitive function associated with local production of
BDNE"? Similarly, BDNF upregulation along with NPC
transplants also improves cell incorporation and func-
tional outcomes in an AD rat model.”! Nerve growth
factor (NGF) production is another mechanism of cellu-
lar therapy efficacy. Genetically engineered patient fibro-
blasts that produce NGF are currently being examined in
a phase 1 trial for AD.>*** Integration of NGF fibro-
blasts into a major cholinergic center of the basal fore-
brain provided some benefit to AD patients.** The Dan-
ish company NsGene (http://nsgene.dk/) is currently
developing an NGF-releasing therapy using encapsulated
epithelial cells. Combining engineered growth factor
overexpression with the benefits of NPC integration into
neural networks may provide an enhanced approach to
treating AD. Furthermore, given the widespread neuronal
loss involved in AD pathogenesis, targeting multiple sys-
tems simultaneously may be advantageous.
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Patients

Inclusion/exclusion criteria

Realistic expectation

Controlled study

Immunosuppression

Potential side effects

Safety of cellular therapy

administration

CNS = central nervous system; PD = Parkinson disease.

TABLE: Common Considerations When Translating Stem Cell Therapies to Neurodegenerative Disease

Enrolling late stage patients may prevent loss of quality of life

Late stage patients may mask any positive effects due to the
intervention occurring too late in the disease course

Informed consent forms must clearly illuminate the goals of the study
Safety trials vs efficacy trials

Expectations of therapeutic effects based on disease state at intervention
Ideal study is a double-blind placebo study

Late stage patients may mask any positive effects not observed due
to the intervention occurring too late in disease

Original PD studies offered control arm treatment after a 1-year
follow-up, which confuses interpretation of efficacy

Although the brain remains an immunologically privileged site
due to the blood-brain barrier, there is evidence that this barrier
can be compromised in disease

Studies of cell graft survival demonstrate that immunosuppression
increases the survival of graft tissue

Prevent/minimize potential side effects (ie, meningitis, fever)
Avoid exacerbation of disease and tumor formation

Risk vs quality of life

Consider CNS accessibility and safety of delivery methods

Pros/cons of systemic delivery, lumbar puncture, or stereotactic
injection are important

PD

PD results from the progressive loss of DA neurons in
the substantia nigra.’® Patients suffer from severe motor
deficits manifesting as tremors, muscle rigidity, and
unstable gait and posture. Current treatment options
include deep brain stimulation or therapies that aim to
increase dopamine levels by providing a dopamine pre-
cursor, L-dopa, or providing dopamine agonists.yf39
These treatments are effective early in disease to alleviate
symptoms, but long-term efficacy is uncertain; they do
not correct the deficit, have long-term side-effects, and
become increasingly ineffective with PD progression.
Cellular approaches for PD, on the other hand, focus on
the replacement of lost DA neurons. Inidal cellular thera-
pies for PD utilized fetal ventral midbrain tissue as a
source of DA neurons. Clinical trials have had varying
degrees of success, but they supported cellular therapies
for a potential functional benefit in PD.*® Potential limi-
tations of utilizing fetal tissue, however, include ethical
concerns, and the ability to obtain adequate amounts of
tissue for treatment. Alternatively, ES cells offer sources
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for large-scale production of neurons that acquire a
midbrain DA phenotype.*®*' Grafting both ES- and
MSC-derived DA neurons into rat PD models results in
functional recovery.*>*® The ability to produce patient-
specific DA neurons has recently been demonstrated
using iPS cells.** Transplantation of these cells into a
rodent PD model improved functional deficits and dem-
onstrated cell integration in the host tissue.”> These
reports are among the first to demonstrate a therapeutic
use for iPS cells in a neurodegenerative disease.

Although studies maintain cellular replacement as a
viable approach for treating PD, environmental enrich-
ment may also support existing DA neurons and slow or
prevent further degeneration. Growth factor therapy
through direct delivery or viral-based systems protects
against neuronal decay in PD.**" MSCs and NPCs
engineered to produce growth factors such as BDNE,
VEGE GDNEF, and IGF-I provide prolonged local
growth factor production in situ. Transplantation of
growth factor-producing MSCs and NPCs protects DA

neurons and promotes functional recovery in rodent
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FIGURE 3: Overview of the stages involved in translating a
stem cell therapy from the bench to patients, using the cur-
rent amyotrophic lateral sclerosis (ALS) stem cell trial as a
representative timeline. Supporting studies began in the late
1990s with the development of the HSSC line utilized in the
trial and transitioned from HSSC characterization, through
validation in animal models and stages required for human
applications,>’28%81 and finally to clinical trial approval in
2009.5788% The timeline in this figure reflects more than a
decade of preclinical supporting studies for the current ALS
trial. This road map provides an outline of the rigorous
stages required for the translation of stem cell therapies
from the bench to the bedside that may be applied to multi-
ple neurodegenerative diseases. FDA = US Food and Drug
Administration; IRB = institutional review board.

models of PD.'®%% Taken together, the combination
of cellular replacement and environmental enrichment

may improve the efficacy of cellular therapies for PD.

HD

HD is an autosomal dominant polyglutamine disease
caused by the accumulation of CAG repeats in the hun-
tingtin gene.”” Onset typically occurs in the 4th to 5th
decade of life, with a disease course of approximately 20 to
30 years.”® HD manifests with involuntary motor activity,
dementa, personality changes, and cognitive impairment
associated with the progressive loss of medium spiny neu-
rons (MSNs).”” Loss of these GABAergic neurons in the
striatum is also accompanied by degeneration in the cortex,
brainstem, and hippocampus.”” Despite the known genetic
basis for HD, insight into disease mechanisms and identifi-
cation of effective therapies remain elusive.

358

Cellular therapies have provided some of the only
positive treatment outcomes for HD. Initial therapies uti-
lized fetal-derived tissue,”® and grafting using the whole
ganglionic eminence offered an optimal source of MSNs
for HD.” The transplantation of neural cells and striatal
grafts into rodent HD models demonstrated that MSNs
integrate and form circuitry in the host.°*®" Translation of
fetal tissue grafting into HD patients prompted slight tran-
sient improvements and a period of stabilization prior to
the inherent decline.®> Key issues still remain, based on the
ethical implications of utilizing fetal tissues and the dangers
associated with cellular therapies such as graft overgrowth
and the presence of non-neuronal cells within grafts.®”
Overall, the relative safety of the technique has been dem-
onstrated in trials for both HD and PD.*>%>°%>°

Stem cells also have the potential to restore func-
tional loss of MSNs in HD. Striatal injections of NPCs
into HD rodents demonstrated incorporation as well as
migration to secondary sites associated with the disease.®®
The resulting functional improvements confirmed that
isolated cell types provide similar functional benefits to
those observed with fetal tissue, although mechanisms of
cellular therapy protection were not examined. To
address the role of environmental enrichment in cellular
therapy for HD, NPCs engineered to overexpress GDNF
were transplanted into HD rodents. Whereas unmodified
NSCs provided no neuroprotective effects, NPCs express-
ing GDNF protected neurons and promoted functional
recovery.'®** This study validates that environmental
enrichment and protection of endogenous neurons may

lead to functional recovery.

ALS

ALS is an adult onset disorder involving the degeneration
and loss of MNs. Patients present with loss of coordina-
tion and muscle strength with transition to complete loss
of muscle control. Death typically results from respira-
tory failure within 2 to 5 years of diagnosis. Multiple cell
types and mechanisms are likely involved in ALS patho-
genesis,”* which makes the development of conventional
drug therapies difficult. Cellular therapies for ALS pro-
vide both an integrating neural component and environ-
mental enrichment to support and protect MNs from
degeneration.'®"” Assessment of several stem cell types,
including NPCs and MSCs, in ALS rodent models dem-
onstrates that systemic and direct intraspinal injection

. . . ,65-71
ameliorates disease progresswn,5 >

suggesting that
intervention prior to the irreversible loss of critical MN
numbers may improve outcomes. Because it is crucial to
protect the remaining MNs in ALS, the ability of stem
cells to provide environmental enrichment via GDNE

VEGE and IGF-I expression has also been examined, as
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these growth factors all confer neuroprotection to MNs.'”
MN axonal degeneration precedes symptom onset and loss
of MNs in ALS; therefore, providing distal support
to MNs at neuromuscular junctions may also prevent neu-
rodegeneration. Distal production of GDNF in muscle
protects neuromuscular junctions and promotes MN pro-
tection, likely by retrograde transport.”" Overall, the litera-
ture supports targeting cellular therapies to maintain MNs
in the spinal cord and provide environmental enrichment
to MNs and neuromuscular junctions.”

These supporting studies have created the foundation
for the first phase I trial for ALS using fetal spinal cord-
derived NPCs (http://neuralstem.com/). The cells utilized
in the trial integrate safely into the spinal cord, synapse,
and interact with host MNs, and also provide a source of
growth factors upon direct spinal cord injection in
rodents.””? Delivery optimization and safety was further
established in minipigs.”*”> NPCs are being delivered to
nonambulatory, and ultimately ambulatory, ALS patients
through direct lumbar and cervical intraspinal injections to
demonstrate the safety of the procedure and lack of toxicity
from the cellular therapy. Because cellular therapies for
ALS are designed to provide support and enrichment to
existing MNs, it is likely that treatment efficacy in future

trials will be best examined in earlier stage patients.

SMA

SMA involves the selective loss of MNs and presents with a
broad range of onset and severity. SMA type I is the leading
genetic cause of infantile mortality’® and is characterized by
early onset severe muscle weakness and fatality within 2
years. SMA is caused by a mutation or loss of the SMNI
gene,”” and the resulting decrease in SMN protein levels
contributes to MN loss. In humans, low levels of SMN
protein may be produced by alternative splicing variants
encoded by the SMN2 gene. Current pharmaceutical devel-
opments and gene therapy treatments focus on regulating
SMN2 to treat SMA. Cellular therapies, however, have
been examined in mouse models of SMA, where grafting
of ES cell-derived NPCs protected MNs from degeneration
and improved survival.”®”? Tt is possible that for SMA,
transient rescue of the developmental loss of SMN may be
sufficient to confer efficacy, which may not be the case for
other neurodegenerative diseases where long-term degenera-
tion of the transplanted cells is a valid concern.

Future Challenges

Neurodegenerative diseases create a tremendous societal
burden due to their devastating nature, cost, and lack of
effective therapies. Cellular therapies offer great promise
for the treatment of these diseases, and research progress

to date supports the utilization of stem cells to offer cellu-
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lar replacement and/or provide environmental enrichment
to attenuate neurodegeneration. In diseases where specific
subpopulations of cells or widespread neuronal loss are
present, cellular replacement may reproduce or stabilize
neuronal networks. In addition, environmental enrichment
may provide neurotrophic support to remaining cells or
prevent the production or accumulation of toxic factors
that harm neurons. In many cases, cellular therapies pro-
vide beneficial effects through both mechanisms.

Many questions still remain unanswered, and cer-
tain issues must be addressed as we continue the transla-
tion of cellular therapies from the bench to the bedside
(see Table). The pathophysiology of each neurodegenera-
tive disease discussed in this review is unique, and thus
requires careful attention to the following topics. Which
type of cells offers the best approach to treat this disease?
What do we expect the stem cells to do, and what out-
comes are predicted? How do we anticipate patients early
and later in the disease course will respond to treatments?
As we begin to design clinical studies that take into
account these questions and learn lessons from the trials
currently underway, we are poised to maximize the
potential of cellular therapies to provide much-needed

treatments for neurodegenerative diseases.
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