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Gene Therapy for Pain: Results of a
Phase I Clinical Trial
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Objective: Preclinical evidence indicates that gene transfer to the dorsal root ganglion using replication-defective
herpes simplex virus (HSV)-based vectors can reduce pain-related behavior in animal models of pain. This clinical trial
was carried out to assess the safety and explore the potential efficacy of this approach in humans.
Methods: We conducted a multicenter, dose-escalation, phase I clinical trial of NP2, a replication-defective HSV-
based vector expressing human preproenkephalin (PENK) in subjects with intractable focal pain caused by cancer.
NP2 was injected intradermally into the dermatome(s) corresponding to the radicular distribution of pain. The
primary outcome was safety. As secondary measures, efficacy of pain relief was assessed using a numeric rating scale
(NRS), the Short Form McGill Pain Questionnaire (SF-MPQ), and concurrent opiate usage.
Results: Ten subjects with moderate to severe intractable pain despite treatment with >200mg/day of morphine (or
equivalent) were enrolled into the study. Treatment was well tolerated with no study agent-related serious adverse
events observed at any point in the study. Subjects receiving the low dose of NP2 reported no substantive change in
pain. Subjects in the middle- and high-dose cohorts reported pain relief as assessed by NRS and SF-MPQ.
Interpretation: Treatment of intractable pain with NP2 was well tolerated. There were no placebo controls in this
relatively small study, but the dose-responsive analgesic effects suggest that NP2 may be effective in reducing pain
and warrants further clinical investigation.

ANN NEUROL 2011;70:207–212

A significant limitation to the development of analge-

sic drugs is that off-target effects at doses below the

maximal analgesic threshold restrict the ability to selec-

tively interrupt nociceptive neurotransmission.1 To

address this limitation, we developed a series of replica-

tion-defective herpes simplex virus (HSV)-based vectors

to deliver gene expression cassettes directly to dorsal root

ganglion (DRG) neurons from skin inoculation.2,3 The

anatomically defined projection of DRG axons allows

targeting of specific ganglia by injection into selected der-

matomes. In preclinical studies, the release of antinoci-

ceptive peptides or inhibitory neurotransmitters in spinal

dorsal horn from the central terminals of transduced

DRG neurons effectively reduced pain-related behaviors

in rodent models of inflammatory pain, neuropathic

pain, and pain caused by cancer.4–9

The human PENK gene encodes for preproenke-

phalin, a precursor protein proteolytically cleaved to pro-

duce the endogenous opioid peptides met- and leu-en-

kephalin. In the spinal cord, enkephalin peptides inhibit

pain signaling through actions at presynaptic opioid

receptors located on central terminals of primary afferent

nociceptors and postsynaptic opioid receptors on second

order neurons involved in nociceptive neurotransmis-

sion.10 HSV vectors expressing opioid peptides appear to

be particularly effective in animal models of inflamma-

tory and cancer pain.4,5,8

Because there have been no previous clinical trials

of replication-defective HSV as a gene transfer vector, we

undertook this phase I dose-escalation study of NP2, a

PENK-expressing HSV vector, to assess the safety of the

HSV-based gene transfer platform. As secondary outcome
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measures we evaluated the effect of vector-mediated

delivery of PENK on pain, and on concurrent use of opi-

ate medication.

Patients and Methods

Study Design
The study was sponsored and implemented by Diamyd Incor-

porated, a subsidiary of Diamyd Medical AB. The protocol was

reviewed by the National Institutes of Health Recombinant

DNA Advisory Committee, conducted in accordance with the

US Food and Drug Administration-approved (investigational

new drug #13613) in compliance with Good Clinical Practice

and listed on ClinicalTrials.gov as ‘‘Gene transfer for intractable

pain: a phase I clinical trial to determine the maximum tolera-

ble dose of a replication-defective herpes simplex virus type I

(HSV-1) vector expressing human preproenkephalin (NP2) in

patients with malignancies’’ (#NCT00804076).

Manufacturing and Preclinical Evaluation
NP2 is a replication-defective HSV-based vector deleted for the

essential immediate early (IE) genes ICP4 and ICP27 with a

human cytomegalovirus IE promoter-driven human PENK gene

expression cassette inserted into both ICP4 loci. The deletions

of the ICP4 loci also remove the promoters for the ICP22 and

ICP47 genes, rendering NP2 defective in expression of 4 HSV

IE genes.

NP2 was propagated in an ICP4 and ICP27 comple-

menting cell line created by sequentially transfecting Vero cells

(American Type Culture Collection Catalogue #CCL-81) with

separate plasmids containing ICP4 and ICP27 and drug selec-

tion markers. Clonally derived cell lines were tested for comple-

menting activity and stability prior to subsequent retransfection

and drug selection. The final isolated cell line, PHC11-54-1,

provided stable propagation and amplification of NP2 and was

expanded as a master cell bank (MCB). The certified MCB was

employed to produce the NP2 master virus bank (MVB) and

subsequently to produce the NP2 clinical product in compli-

ance with FDA current Good Manufacturing Practices

(cGMP). The MCB, MVB, and clinical cGMP products each

passed a thorough panel of safety and identity testing criteria. A

Good Laboratory Practice (GLP) preclinical toxicology program

was implemented in mice for up to 90 days after inoculation.

No target organ of toxicity was identified at any time point. A

comprehensive GLP preclinical biodistribution study established

that quantifiable vector genomes were limited to the site of

injection and the innervating DRG.

The NP2 clinical cGMP stock was produced by infecting

10-layer cell factories of MCB cells with NP2 MVB. The

infected culture was harvested, salt treated, and clarified by cen-

trifugation and filtration. Residual DNA was digested with

endonuclease, and the vector was purified by ion exchange

chromatography. The product was further purified and concen-

trated by tangential-flow filtration, and recovered NP2 was ster-

ile filtered, formulated, filled into cryovials, and stored below

�70�C until use. The final product was tested for safety

(including absence of replication competent vector), identity,

purity, titer, and enkephalin expression. A stability program was

initiated to monitor NP2 product titer, enkephalin expression,

pH, appearance, and sterility over the course of the trial.

Subjects
Subjects 18 years of age or older with intractable pain due to

primary or metastatic cancer that was moderate to severe in in-

tensity (�40 on a 100mm visual analogue scale) despite (1) sta-

ble analgesic treatment with at least 200mg/day morphine or

equivalent or (2) having reached a stable maximum tolerated

dose of narcotic or other analgesics that was <200mg/day mor-

phine or equivalent were eligible for enrollment.

Trial subjects were excluded if they were pregnant and

had to be able to reliably provide pain assessment. Subjects

with a clinical diagnosis of active herpetic disease within 6

months of recruitment or vaccination to prevent HSV infection

were excluded. We also excluded patients with recent chemo-

therapy, radiation therapy, or a surgical stabilization procedure.

Subjects with serious uncontrolled medical conditions other

than malignancy, positive serology for human immunodefi-

ciency virus, hepatitis B or hepatitis C, severe anemia, uncon-

trolled coagulopathy or bleeding diathesis, or documented im-

munodeficiency were excluded.

This phase I study was approved by the institutional

review boards of the University of Michigan and Chesapeake

Research Review and was conducted in accordance with the

principles of the Declaration of Helsinki. All subjects executed

written informed consent prior to screening. Subjects that

passed all inclusion and exclusion screening criteria had vector

administered as 10 intradermal injections of approximately

100ll each (total 1.0ml) distributed within the dermatome(s)

corresponding to the radicular distribution of the pain in a sin-

gle session on study day 0. Enrollment of the first cohort com-

menced with a dose of 1 � 107 plaque forming units (pfu).

Subjects were monitored for 4 weeks, and dosing was sequen-

tially escalated to the 1 � 108 and 1 � 109 pfu cohorts follow-

ing approval by the Data and Safety Monitoring Committee

(DSMC).

Study Assessments
Subjects were observed for at least 12 hours after dosing before

being discharged and were scheduled for re-examination at 1,

3, 7, 10, 14, 21, and 28 days postdosing and monthly there-

after. Safety data examination included adverse events, a full

physical examination, vital signs, mucositis evaluation, and clin-

ical laboratory analyses.

Secondary measures included the numeric rating scale

(NRS) for pain intensity and the Short Form McGill Pain

Questionnaire (SF-MPQ) completed by the subject on study

day 0 prior to dosing and on postdosing days 1, 3, 7, 10, 14,

21, and 28. An SF12 short form Health Survey and complete

Eastern Cooperative Oncology Group performance status were

similarly completed on study day 0 and day 28. Concurrent

opiate analgesic usage was recorded on postdosing study days 1,

3, 7, 10, 14, 21, and 28.
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Results

Subjects
Ten subjects were enrolled into the study. Four subjects

received 1 � 107 pfu NP2, 3 subjects received 1 � 108

pfu NP2, and 3 subjects received 1 � 109 pfu NP2.

Subject demographics are presented in Table 1. The

mean predosing NRS pain score was 8.0 6 0.6 for sub-

jects in Cohort 1, 9.0 6 0.57 for subjects in Cohort 2,

and 7.7 6 1.3 for subjects in Cohort 3.

Adverse Events
No treatment-related serious adverse events (SAEs) were

reported during the 4-month follow-up period. Of the

10 terminal cancer subjects enrolled, 8 completed the

28-day study, and 4 subjects completed the 4-month fol-

low-up. Four of the 6 discontinued subjects were with-

drawn due to death (2 at the low dose, 1 at the mid

dose, and 1 in the high-dose cohort); 1 subject requested

discontinuation after 105 days of follow-up, and 1 sub-

ject discontinued for reasons that were not established.

Six of the 10 enrolled subjects reported a total of 8

SAEs. These adverse events included progression of

malignancy, obstruction of the common bile duct, pneu-

monia, asthma, and pleuritic pain. None of the SAEs

were judged to be related to the investigational product

by the study site principal investigator or the DSMC.

Nine of the 10 enrolled subjects had 1 or more treat-

ment-emergent adverse event (TEAE) during the 4 months

following drug delivery. A total of 72 TEAEs were

reported. The TEAEs that were deemed as possibly related

to treatment were all mild in severity and resolved, includ-

ing transient injection site erythema and pruritus, and 1

subject who had a transient elevation in body temperature.

No subject seroconverted from anti-HSV antibody

(Ab) negative at baseline to Ab positive at 1 or 4 months

after inoculation with NP2, and none of the subjects

who were anti-HSV Ab positive at enrollment showed

any increase in anti-HSV Ab titer after receiving NP2.

No HSV DNA was detected by quantitative polymerase

chain reaction (PCR) in the blood or urine of subjects at

1, 7, or 14 days following NP2 dosing.

Secondary Outcomes
The principal secondary outcome of this trial was the

NRS of pain. Because of the terminal nature of subjects

with cancer, by 2 months postdosing there was only 1

patient surviving in the 107 pfu cohort, and 2 each in

the 108 and 109 cohorts. By 3 months after dosing, there

was only 1 patient remaining in the 107 and in the 108

cohorts. Therefore, reporting of secondary outcomes is

limited to the 8 patients who remained in the study 28

days postdosing.

Subjects in the lowest dose cohort (107 pfu NP2)

did not report substantial changes in NRS over the 28

days following intradermal dosing. Subjects receiving 108

pfu NP2 reported an average reduction in NRS pain val-

ues at day 1 to approximately 50% of predosing values.

Thereafter, the 108 pfu cohort subjects’ average NRS val-

ues continued to decrease to <20% of predosing values

at 7 and 14 days, after which the NRS began to rise,

although not back to baseline levels. Subjects in the 109

pfu NP2 cohort showed a similar reduction in average

NRS pain scores to approximately 50% of baseline at

day 1 that continued to decline to approximately 20% of

baseline values by day 7; average NRS pain score

remained below this level through the 28-day time point

(Fig, A). Although this was not a blinded study, and

there were no placebo controls, there was an apparent

dose-response that could be measured as the percentage

maximal possible effect on the average NRS score from

days 7 through 28 (see Fig, B). A similar trend was

observed in section I of the subject-reported SF-MPQ

scores (Table 2), representing the sum of 15 individual

scores (each between 0 and 3) in response to questions

about pain (sensory and affective). The dose of concur-

rent opiate medication that patients continued to take

under the direction of their treating physician ranged

broadly, and it is difficult to draw conclusions on this pa-

rameter given the small number of patients in each

cohort (Table 3).

TABLE 1: Patient Demographics

Characteristic Cohort 1 Cohort 2 Cohort 3

Age, yr

Mean 63.3 (8.8) 51.3 (25.5) 73.0 (8.9)

Median 62 51 70

Min-Max 54–75 26–77 66–83

Gender

M 1 0 2

F 3 3 1

Ethnicity

NHW 4 0 1

Hispanic 0 3 2

Height 64.0 (2.5) 62.7 (2.1) 65.0 (4.4)

Weight 153.0
(38.5)

181.0
(32.1)

139.0
(17.6)

Numbers in parentheses represent standard error of the
mean.
NHW ¼ non-Hispanic white.
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Discussion

Despite extensive basic research and clinical trials, chronic

pain is a condition that often remains refractory to avail-

able treatments.11–13 Innovative approaches have largely

focused on the search for novel targets for analgesic drugs,

based on insights gained from broad-based investigations

into the neurobiology of chronic pain.14 Unfortunately, it

has been difficult to identify amenable targets for systemi-

cally delivered small molecules that are located exclusively

within nociceptive pathways. Not unlike more conven-

tional analgesic agents,15,16 even drugs designed to interact

with newly identified apparently nociceptive-specific tar-

gets such as the vanilloid receptor TRPV1 have been found

to have biological roles unrelated to nociception that pose

a significant constraint to their use.17,18

HSV is a ubiquitous, naturally neurotropic virus

spread by contact of skin or mucous membranes that

establishes a persistent latent state in neurons of sensory

ganglia. By the same cellular transduction mechanisms,

replication-defective HSV-based vectors delivered subcu-

taneously or intradermally transfer genetic material into

DRG neurons in vivo.19 The human PENK gene carried

by NP2 encodes preproenkephalin, a precursor protein

that is processed to produce 6 met-enkephalin and 1 leu-

enkephalin moieties; endogenous opioid peptides that are

the naturally occurring high-affinity ligands of the delta

opioid receptor.10 In this clinical trial, the mechanism of

action of the vector was not directly confirmed, but in

animal studies the analgesic effects achieved by HSV-

mediated expression of PENK are blocked by opioid re-

ceptor antagonists naloxone and intrathecal naltrexone,4–

6 suggesting a site of action at spinal opioid receptors,

and in vitro biological effects of vector-produced enke-

phalins are blocked by 10pM naltrindole,20 consistent

with in vitro activity at the delta opioid receptor.

Although met-enkephalin has a higher affinity for the

delta compared to the mu opioid receptor,21 it is cer-

tainly possible that the analgesic effects observed are

mediated through mu as well as delta opioid receptors.

Conceptually, HSV-mediated delivery of PENK

represents a logical extension of the technique of

TABLE 2: Short Form McGill Pain Questionnaire
Score and Range of Scores at 1-Week Intervals
up to 28 Days after Dosing

Day Cohort 1 Cohort 2 Cohort 3

0 18 (10–32) 32 (17–42) 25 (18–32)

7 18 (7–35) 11 (0–22) 6 (1–11)

14 17 (3–41) 5 (0–13) 5 (1–9)

21 22 (5–39) 13 (6–22) 8 (1–16)

28 19 (9–41) 12 (2–15) 1 (0–1)

TABLE 3: Morphine Equivalent Dose of Opiate
Medication Taken by Subjects up to 28 Days after
Treatment with NP2 Presented as Mean Dose
(Milligrams Morphine Equivalent) and the Range
at Each Time Point

Day Cohort 1 Cohort 2 Cohort 3

0 182 (81–360) 215 (15–400) 377 (45–708)

7 373 (84–930) 115 (15–231) 377 (45–708)

14 266 (63–630) 115 (15–231) 399 (45–753)

21 267 (64–630) 82 (0–231) 399 (45–753)

28 267 (66–630) 115 (15–231) 399 (45–753)

FIGURE : (A) Numeric rating scale (NRS) pain score (6standard error of the mean) for each cohort over the 4 weeks following
dosing of NP2. (B) Dose-response curve. %MPE 5 percent of maximal potential effect in reducing NRS, calculated using the
combined average NRS values at 7, 14, 21, and 28 days after dosing compared to the pretreatment NRS score.
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delivering opiate drugs by intrathecal infusion22 to maxi-

mize effects achieved at the spinal level while minimizing

systemic side effects. Following delivery, vector particles

are taken up by nerve terminals in the skin and trans-

ported to the DRG, where the circularized vector ge-

nome establishes a persistent state as an intranuclear epi-

somal element. Vector-derived expression of human

PENK in DRG following skin inoculation of HSV vec-

tors in rodents has been confirmed by in situ hybridiza-

tion, reverse transcriptase PCR, radioimmunoassay and

immunocytochemistry.4,23 Although we were not able to

study vector biodistribution in this clinical trial, preclini-

cal studies indicate that replication-defective vector

genomes are constrained to the injection site and related

DRG. This was confirmed by a preclinical GLP biodis-

tribution study of NP2, in which 16 different tissues

were examined between 1 and 91 days after inoculation.

Other gene transfer approaches including intrathe-

cal injection of adenovirus,24 adeno-associated virus,25

and naked plasmids26 have been demonstrated to reduce

pain-related behaviors in animal models of pain, but

none of these approaches has yet been brought to a

human clinical trial. In preclinical animal studies, skin

inoculation of HSV vectors expressing PENK have

reduced acute hyperalgesic responses,27 as well as pain-

related behaviors in models of arthritis,28 formalin injec-

tion,4 peripheral nerve damage,6 and bone cancer.5

Because this was the first human trial employing HSV

vectors to achieve gene transfer, we elected to carry out

the phase I clinical trial for safety and dose finding in

patients with pain caused by cancer.

The safety profile observed in this study was not

unanticipated. Oncolytic recombinant HSV-1 viruses

without transgenes that are intended to kill malignant

cells by limited replication have been injected directly

into tumors in brain, liver, and skin in >200 subjects to

date with no reported test agent-related SAEs.29–33 Repli-

cation-competent HSV recombinants have also been

examined in clinical trials as potential vaccines against

genital herpes. Although these approaches have in some

cases generated quite high anti-HSV antibody levels

(without effectively preventing HSV infection), no drug-

related SAEs have been observed.34–36

This phase I clinical trial primarily addressed the

question of whether intradermal delivery of NP2 to skin

would prove to be safe and well tolerated by subjects.

The small number of patients and the absence of placebo

controls warrant circumspect interpretation of the sec-

ondary outcome measures. But the observation that sub-

jects in the low-dose cohort had little change in the NRS

or SF-MPQ whereas subjects in the higher-dose cohorts

reported substantial reduction in NRS and improvement

in SF-MPQ is encouraging. Based partially upon these

results, Diamyd has initiated a randomized, double-blind

placebo-control phase II clinical trial in a similar patient

population (‘‘A phase II, randomized, double blind, pla-

cebo-controlled, multicenter study to investigate the

impact of NP2 in subjects with intractable pain due to

malignancy’’; ClinicalTrials.gov #NCT01291901).

Although pain associated with cancer is a significant

clinical problem with unmet medical need,37 the poten-

tial utility of HSV-mediated gene transfer to the DRG

from skin inoculation is not limited to treatment of can-

cer pain. The recombinant replication-defective HSV

approach represents a platform technology–nerve target-

ing drug delivery system (NTDDS)–that can be used to

deliver and express any of a number of genes in the nerv-

ous system. A related NTDDS vector, NG2, which

expresses human glutamic acid decarboxylase to effect the

release of the inhibitory neurotransmitter c aminobutyric

acid, reduces pain-related behaviors in preclinical models

of neuropathic pain from nerve injury38 and diabetes.39

Clinical trials of NTTDS vectors in pain have the

advantage that the biological effect of the transgene prod-

uct can be assessed continuously in real time. NTDDS

gene transfer to the DRG to express neurotrophins

locally prevents the progression of polyneuropathy in rel-

evant preclinical models,40–42 suggesting that the

NTDDS platform may be used to treat degenerative pol-

yneuropathies as well.
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