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Incorporating spatial dependence into a multicellular tumor spheroid
growth model
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Recent models for organism and tumor growth yield simple scaling laws based on conservation of
energy. Here, we extend such a model to include spatial dependence to model necrotic core
formation. We adopt the allometric equation for tumor volume with a reaction-diffusion equation for
nutrient concentration. In addition, we assume that the total metabolic energy and average cellular
metabolic rate depend on nutrient concentration in a Michaelis-Menten-like manner. From
experimental results, we relate the necrotic volume to nutrient consumption and estimate both the
time and nutrient concentration at necrotic core formation. Based on experimental results, we
demand that the necrotic core radius varies linearly with tumor radius after core formation and
extend the equations for tumor volume and nutrient concentration to the postnecrotic core regime.
In particular, we obtain excellent agreement with experimental data and the final steady-state viable
rim thickness. © 2005 American Institute of Physics. �DOI: 10.1063/1.2146073�
I. INTRODUCTION

The interaction of pulsed electric fields �PEFs� with bio-
logical cells has evolved from initial applications in bacterial
decontamination1 to clinical applications in electrochemo-
therapy and gene therapy.2,3 Most of these studies utilized
PEFs below a few kilovolts per centimeter with pulse dura-
tions on the order of microseconds to milliseconds. When the
combination of pulse duration and applied voltage exceeds a
threshold, these pulses cause electroporation, the formation
of pores in the cell membrane that permits normally imper-
meant molecules and ions to traverse the cell membrane.4 It
is theoretically postulated that electroporation arises when
the applied PEF charges the cell membrane to potentials in
excess of approximately 1 V.4 Recent developments in
pulsed power technology have enabled the use of PEFs with
much higher electric fields ��100 kV/cm� in the nanosec-
ond pulse duration range in biological experiments.5,6 These
nanosecond pulsed electric fields �nsPEFs� interact with the
membranes of subcellular organelles in addition to the cell
membrane, paving the way for intracellular manipulation of
cells.6–8 Researchers have observed that nsPEFs can interact
with cells in a number of ways, including inducing apoptosis
in cell suspensions and tumors,9–11 altering electrical
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properties,12 initiating calcium release from the endoplasmic
reticulum,11,13 and externalizing phosphatidylserine.14 Of
particular interest is recent work involving the use of nsPEFs
to treat tumors in vivo,15 which is the primary motivation for
our current study into the mathematical modeling of tumor
growth. One consequence of these treatments is the destruc-
tion of the vasculature supplying the tumor, which has also
been observed for traditional electrochemotherapy, using mi-
crosecond to millisecond duration PEFs.16,17

While many models exist for tumor growth18 and some
for angiogenesis and antiangiogenesis,19–29 a simple first
question to ask is what would happen to a tumor that loses
all of its vasculature due to an external stimulus �e.g., PEF
exposure�? One could conjecture that such a tumor would
become a large avascular tumor, whose nutrient intake by
diffusion would likely be insufficient to maintain its size.
Thus, conducting a mathematical analysis on the growth of
an avascular tumor and its steady states becomes pertinent.
Particularly interesting is recent work attempting to develop
a universal law for tumor growth.30,31 This work attempts to
extend traditional allometric laws for physiological processes
ranging from metabolic rate to pulse rate32 to include physi-
cal and physiological bases for the parameters involved. Ul-
timately, coupling this type of model with other physical
© 2005 American Institute of Physics1-1
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models may permit using a universal growth law to analyze
cancer treatment modalities, such as recent work involving
ultrashort electrical pulses to treat tumors.

Allometric laws fit the growth rate of organisms to equa-
tions of the form33

dm

dt
= amx − bmy , �1�

where m is organism mass, a and b are constants, and x and
y are generally fractional exponents. Many empirical fits us-
ing this data estimate x to be 3/4 and y to be 1.32 Recently,
West et al. have analyzed this behavior in detail, speculating
that these fractional powers could arise to maximize the
metabolic capacity by minimizing transport distances.34 Fur-
thermore, they pointed out that while Eq. �1� can be used to
fit many processes, it is based strictly on empirical evidence
and not directly on the physical or physiological properties
of the organism in question.35,36 West et al. reproduced the
form of Eq. �1� from first principles.35,36 Assuming that the
total-energy input to the organism must equal the sum of the
energy required to maintain the organism’s tissue and the
energy required to create new cells allowed them to write

B = �
c
�Nc� + �

dNc

dt
� , �2�

where B is the average resting metabolic rate of the whole
organism, � is the metabolic rate of a single cell, � is the
energy required to create a new cell, and Nc is the total
number of cells.35 Based on Ref. 34, they further assumed
that B=B0m3/4 with B0 a constant and m=mcNc, where mc is
the mass of a single cell. Applying this to Eq. �2� yields

dm

dt
= am3/4 − bm , �3�

where a=B0mc /� and b=� /�.35 While Eqs. �1� and �3� are
qualitatively the same,36 their formulations differ impor-
tantly, in that the parameters a and b in Eq. �3� are directly
related to physical parameters, while a and b in Eq. �1� are
strictly empirically obtained parameters. This work was sub-
sequently extended to include structures ranging in size from
molecules to mitochondria,37 the effects of size and tempera-
ture on metabolic rate,38 and the effects of body size and
temperature on population growth.39

Another application of this approach is to analyze the
growth of avascular tumors, whose growth pattern is similar
to the allometric growth observed for organisms.40 Using en-
ergy conservation as in Eq. �2� and assuming that B=B0mp

and v=�Nc, where p is a fractional exponent, v is the volume
of the tumor �the typical unit of tumor measurement�, and �
is the volume of the typical cell,31 gives

dv
dt

= avp − bv , �4�

where a=B0� /� and b=� /�.31

Delsanto et al. modeled the effect of nutrient depletion
and mechanical stress on multicellular tumor spheroids
�MTS�.31 MTS are artificial tumors grown from spherical

aggregations of malignant cells under strict nutritional and
mechanical controls to model tumor growth.41–43 Originally
grown for studies of irradiation effects on tumors,41–43 MTS
have since been used for general studies of avascular tumor
growth and function, including studies of nutrient supply to
MTS40,44 and mechanical stress deformation of MTS.45

Moreover, because of their relative simplicity, they have
been the popular choice for mathematical modelers studying
avascular tumor growth.31,46–49 MTS represent the growth
dynamics of avascular tumors fairly accurately,40 including
the development of a necrotic core, hypoxic region, and pro-
liferating rim �Fig. 1�, which makes them excellent model
systems for this early stage of tumor growth and develop-
ment that takes place until the tumors reach a few millime-
ters in diameter. At this point, diffusion alone is inadequate
to provide sufficient nutrients to the tumor. This halts tumor
growth until angiogenesis, the development of external vas-
culature to supply further growth.50

Because of the importance of angiogenesis and vascula-
ture in tumor growth and metastasis, cancer researchers have
focused on angiogenesis and vasculature supply to the tumor
as potential targets for cancer treatment.16,17,50–56 Some of
these treatments focus on specific enzymes and chemicals
that inhibit angiogenesis,50 while others combine these
chemicals with radiation to exploit synergistic effects.56 Par-
ticularly interesting from our perspective is the use of elec-
trochemotherapy to destroy tumor vasculature.16,17

In Sec. II, we outline the inclusion of nutrient concen-
tration and spatial dependence in an allometric model of
MTS growth. In Sec. III, we apply this model to experimen-
tal results and consider the additional information that the
model provides. We summarize the results and provide con-
cluding remarks in Sec. IV.

II. MODEL DEVELOPMENT

A. Reaction-diffusion models

Traditional, first generation models for avascular tumor

FIG. 1. Typical structure of an avascular tumor, consisting of the necrotic
core �r�RN� and a viable region or viable rim �RN�r�R� containing a
hypoxic region �or hypoxic rim� and a proliferating rim, where R=R�t� is
the overall tumor size. As a tumor grows to a critical size, R�t�=�n, the cells
at the center of the tumor begin to die by necrosis and the necrotic core
begins to form. Not all the live cells receive sufficient nutrient to support
proliferation, leading to the formation of the hypoxic region or hypoxic rim
�see Refs. 40 and 57�.
growth typically couple a reaction-diffusion equation for nu-
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trient concentration, C�r , t�, with an integrodifferential equa-
tion describing the tumor radius with respect to this nutrient
to obtain57,58

�C

�t
= DC�C − �f�C� , �5�

d

dt
�4	R3

3
	 = 4	�


RN

R

�f�C� − 
1�r2dr − 

0

RN


2r2dr� ,

�6�

where DC is the diffusion coefficient of the nutrient, � is the
Laplacian operator, �f�C� models the rate of nutrient con-
sumption, R is the tumor radius, RN is the necrotic core ra-
dius with R and RN both time-varying functions �Fig. 1�,
f�C� is the growth rate in the viable rim due to the nutrient
supply, 
1 is the natural death rate of the cells in the viable
rim of the tumor, and 
2 is the decomposition rate of the cells
in the necrotic core. Before the necrotic core forms, only the
first integral of Eq. �6� is important and one can solve for the
radius when necrotic core formation begins, �n, in terms of
the critical nutrient concentration Cn, and solve Eq. �6� for
the corresponding time tn. Here, and in what follows, the
subscript n is reserved for the specific values when the ne-
crotic core begins to form, whereas the subscript N denotes
the necrotic boundary thereafter �Fig. 1�. This requires en-
forcing the boundary conditions Cr�0�=0 and C�R�t� , t�=C0,
where the subscript r denotes differentiation with respect to
space and C0 is the surrounding nutrient concentration.57,58

The latter condition also applies once the necrotic core
forms, i.e., the nutrient concentration on the outer boundary
of the tumor equals the nutrient concentration external to the
tumor. In the traditional case, this yields a third degree poly-
nomial for C in terms of R and RN that can be combined with
Eq. �6� to obtain expressions for R and RN at steady state.57,58

B. Incorporating nutrient concentration
into an allometric model

One way to incorporate spatial effects in an allometric
model for MTS growth is to combine the reaction-diffusion
equation for nutrient concentration with the allometric equa-
tion �4� for MTS volume rather than the integrodifferential
equation �6�. This additionally requires coupling �4� with �5�
by including a concentration dependence in �4�. The param-
eters a and b in �4� have a physical meaning with respect to
B, �, and �, which represent cellular energies that could po-
tentially depend on C in some fashion.31 The simplest first-
order approximation is to assume that �, the energy required
to create a new cell, is constant, while B and � depend on C
in a manner such that they are small when C is small and
plateau as C becomes larger. Mathematically, expressions for
B and � can be written in the same form as the Michaelis-
Menten equation for enzyme kinetics,59

B = Bmax
C

F + C
= B0v

p C

F + C
, � = �max

C

F + C
, �7�

where Bmax is the maximum average resting metabolic rate of

the tumor, �max is the maximum metabolic rate of a single
cell, and F is constant such that C=F corresponds to B�F�
=0.5Bmax and ��F�=0.5�max. Substituting Eq. �7� into Eq.
�4� allows us to couple the differential equation for volume
with nutrient concentration to obtain,

�C

�t
= DC�C − � , �8�

dv
dt

=
�C�

F + �C�
�avp − bv� , �9�

where � represents the consumption rate of C and �C� is the
spatial average of nutrient concentration over the region of
viable cells �Fig. 1�. We define the effect of nutrient concen-
tration in Eq. �9� by the spatial average; thus assuming that
the nutrient available to all the viable cells in the tumor
influences tumor growth.

To simplify the notation and reduce parameters, we shall
define the following dimensionless parameters:

R̄ =
R

R0
, v̄ =

v
V0

=
v

�4/3�	R0
3 , C̄ =

C

C0
, t̄ = f0t ,

�* =
�R0

2

C0DC
, A =

aV0
p−1

f0
, B =

b

f0
, F̄ =

F

C0
, �10�

where the bars denote the dimensionless quantities, and typi-
cal values of the scaling parameters are shown in Table I. We
will omit the bars in future discussions for notational conve-
nience. Further scaling time with respect to b �i.e., b= f0� or
the time required for the tumor to grow to asymptotic size36

permits us to eliminate B and rewrite Eqs. �8� and �9� in
nondimensional form as

�
�C

�t
= �C − �*, �11�

dv
dt

=
�C�

F + �C�
�Avp − v� , �12�

where �= f0R0
2 /Dc. For typical parameter values �Table I�, �

�1 and the quasi-steady-state assumption can be used.57 For
the parameters shown in Table I, �=0.0063 and �*=27.58.

C. Prenecrotic core formation

Prior to necrotic core formation �i.e., R�Rn�, Cr�0, t�
=0 and C�R�t� , t�=1. Applying these conditions and the
quasi-steady-state assumption to �11� yields

C�r,t� =
�*

6
�r2 − R2�t�� + 1, �13�

where r is nondimensional, spatial position within the tumor.
To determine the spatial average of C over the entire radius
of the tumor, we integrate using

�C�r,t�� =
1

�4/3�	R3

0

R

4	r2C�r,t�dr
to obtain
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�C�r,t�� = 1 −
�*

15
v2/3, �14�

where v=R3 is the dimensionless volume of the tumor.
Substituting Eq. �14� into Eq. �12� and defining a univer-

sal volume u as u=zv, where z= ��* /15�3/2, yields

du

dt
=

1 − u2/3

F + �1 − u2/3�
�A�up − u� , �15�

where A�=Az1−p and we have reduced the volumetric equa-
tion to two free parameters. In addition to steady states at
u=0 and u= �A��1/�1−p�, which Eq. �4� shared in form, Eq.
�15� now has an additional steady state at u=1, at which the
radius is designated R=R1. To interpret the meaning of the
additional steady state, we determine the corresponding tu-
mor size and compare it to the data from Freyer and
Sutherland.40 Table I shows the typical values of the param-
eters required to estimate R1 for u=1 with 0.28 mM oxygen
and 16.5 mM glucose assuming that glucose is the nutrient
we are considering. Using these values gives �*=27.58 and
R1=0.737 �R1=737 
m in dimensional units� while the A�
dependent steady state gives u=237�1.

While the tumor size at the u=1 steady state is dramati-
cally smaller than the final steady-state size of the tumor
predicted from the prenecrotic core data, it is on the same
order of magnitude as �n, the tumor radius at which the ne-
crotic core starts to form.40 For 0.28 mM oxygen and
16.5 mM glucose, R1
2.8�n. Assuming that the volume at
which the necrotic core forms is given by 4	�n

3 /3 in dimen-
sional units,60 un=0.047. While R1 /�n depends on nutrient
concentration, similar relationships can be derived for the
other nutrient concentrations studied by Freyer and Suther-
land. This allows us to plot experimental data for �n vs R1 to
obtain the following empirical relationship for un as a func-

*

TABLE I. Typical parameters for 0.28 mM oxygen a

Parameter Value

A� 6.18 �prenecrotic
1.55 �postnecroti

b 0.0016 h−1 �prenecr
0.0084 h−1 �postnec

p 2/3

F̄ 0.50

R0 0.10 cm

C0 16.5 mM

Cell concentration 2.01�108 cells
f0 0.0025 h−1

DC �glucose� 1.1�10−6 cm
� �glucose� 24.9�10−17 mol/ce
tion of � :
un = 0.0331��*

15
	0.5724

. �16�

Thus, Eq. �16� gives the necrotic volume as a function of
normalized nutrient consumption rate and implicitly as a
fraction of the steady state at u=1. Using this relationship,
un=0.047 for 0.28 mM oxygen and 16.5 mM glucose. The
numerical solution to Eq. �15� is only valid until u=un or
until t= tn, beyond which a new relationship for �C� must be
applied. In first generation models of avascular tumor
growth, tn can be obtained analytically;57,58 however, intro-
ducing the more complicated expression for �C� into Eq. �12�
prohibits this direct approach.

As in the case of the traditional, first generation of avas-
cular tumor models, we can predict Cn, the nutrient concen-
tration at which necrotic core formation begins in the tumor
center �r=0�, from Eq. �14�. Noting that vn= �un /z�1/3 and
vn=Rn

3 in nondimensional units, and applying the empirical
relationship in Eq. �16� yields

Cn = 1 − 0.0917��*�0.382. �17�

Substituting the parameters from Table I gives Cn=0.674, the
normalized critical nutrient concentration for necrotic core
formation. �The external nutrient concentration is 1 in these
normalized units.�

D. Postnecrotic core formation

As mentioned in Sec. II C, C�r , t� changes mathematical
form after the necrotic core forms because the boundary con-
ditions change. Thus, we must now enforce boundary condi-
tions inside and at the boundary of the necrotic core in ad-
dition to the boundary of the tumor. For the necrotic core
�0�r�RN�, the boundary condition �BC� is

C�r,t� = Cn, r � RN, �18�

which states that C inside the necrotic core is at the level of
the critical concentration required to initiate necrosis. In the

6.5 mM glucose.

Reference

�
e�

Weighted least-squares fit
of data from Ref. 40.

ore�
core�

Weighted least-squares fit
of data from Ref. 40.

Diffusion limited nutrient
transport �Ref. 31�.

Assumption

Typical scale of largest
avascular tumor �Ref. 57�.

Surrounding nutrient
concentration �Refs. 40 and 57�.

Reference 61.
Weighted least-squares fit

of data from �Ref. 40�.
Reference 62.

ond Reference 44.
nd 1

core
c cor
otic c
rotic

/cm3

2 /s
ll-sec
viable rim �RN�r�R�t��, the BCs are given by
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C�R�t�,t� = 1,

Cr�RN�t�,t� = 0. �19�

Applying the BCs in Eqs. �18� and �19� and the quasi-steady-
state assumption to Eq. �12� yields

C�r,t� =
�*

6
�r2 − R2�t�� +

RN
3 �t��*

3
�1

r
−

1

R�t�� + 1, �20�

where r represents spatial position �RN�r�R� and RN�t�
represents the growing necrotic core radius as a function of
time. By demanding that Eq. �20� yields Cn when r=RN, we
obtain a cubic polynomial relating R and RN. Instead of using
this �complicated� relation, for simplicity and without sacri-
ficing much accuracy, we use instead the empirical relation,
Eq. �22� below, to evaluate the average nutrient concentra-
tion.

As in the prenecrotic core case, we average Eq. �20� over
space; however, in this case, we are interested only in C�r , t�
in the viable rim of cells, so we use

�C�r,t�� =
1

�4/3�	�R3 − RN
3 �



RN

R

4	r2C�r,t�dr

to obtain

�C�r,t�� =
1

�R3 − RN
3 �
�−

�*R5

15
+

�*RN
3 R2

3
−

3�*RN
5

5

+
�*RN

6

3R
+ R3 − RN

3� , �21�

where R and RN remain functions of time.
Equations �20� and �21� provide expressions for C and

�C� as functions of two unknowns: R and RN. In first genera-
tion avascular tumor models,57,58 these terms could be re-
solved analytically by using the integrodifferential equation
for R given by Eq. �6� in nondimensional units to eliminate
RN. However, as in Sec. II C, combining the reaction-
diffusion relationship with an allometric equation including
the dependence on C prevents using an analytic approach to
eliminate the additional variable. Thus, we again appeal to
the experimental results of Freyer and Sutherland, where we
observe that RN varied linearly with R for all combinations of
glucose and oxygen concentrations that they studied.40 By
drawing a best-fit line through the data for viable rim growth
for 0.28 mM oxygen and 16.5 mM glucose, we can relate RN

to R in nondimensional units by

RN = 1.065R − 0.275. �22�

Substituting Eq. �22� into Eq. �21� and using the relationship
u=zR3, allow us to write �C� as a function of the universal
volume u.

Note that the expression in Eq. �21� is much more com-
plicated than the corresponding relation in Eq. �14� and be-
comes even more complicated once it is written strictly in
terms of u. Therefore, it is not necessarily obvious from in-
spection whether �C� / �F+ �C�� has a zero, as in the prene-
crotic core case. Thus, we plotted H= �C� / �F+ �C�� vs R for

0.28 mM oxygen and 16.5 mM glucose from �n�=0.258� to
RSS �
1.14 based on our fit of the data from Ref. 40� in Fig.
2, where RSS is the steady-state radius of the tumor. Figure 2
shows that this term does not have a zero in the viable rim
region; therefore, it does not introduce a third steady state as
in the prenecrotic core case.

The final steady-state size of the tumor is determined by
the steady state at �A��1/�1−p� while the time to reach the
steady state is determined by b, which is physically related to
the metabolic rate of the cells. The structural and physiologi-
cal changes introduced by the necrotic core, as illustrated
mathematically by the change in the form of C, will also lead
to changes in a and b. While changes in a and b will be
absorbed directly by changes in A�, changes in b will also
effect the time normalization, so combining the models for
pre- and postnecrotic core formation requires using dimen-
sional time.

Particularly interesting at the final steady state �SS� is
the behavior of C. From Freyer and Sutherland, the viable
rim is 
0.20 �200 
m� for this spheroid nutrient concentra-
tion and radius. Thus, if RSS=1.14, then RNSS


0.94 in non-
dimensional units.40 From Eq. �18�, C�RN , t�=Cn, so substi-
tuting R�t�=RSS and r=RNSS

into �20� should yield Cn


0.674. In fact, substituting RSS �determined here to be
1.14� and Cn�=0.674� into �20� yields RNSS

=0.98, which
agrees well with the 0.94 estimated using Freyer and
Sutherland.40

III. MODEL APPLICATION

Figure 3 shows the numerical solution to Eq. �15� for
u�un and with Eq. �21� substituted for �C� for u�un.
Clearly, carrying out a weighted least-squares fit of the data
and incorporating it into the normalized equations yield

FIG. 2. H vs R, where H=C / �F+C� following necrotic core formation and
R is the nondimensional radius of the tumor. Note that H has no zeros for
�n�R�RSS, the range of the abscissa, meaning that this term does not
introduce a third steady state into Eq. �12�.

FIG. 3. Numerical solution of u for 16.5 mM glucose and 0.28 mM oxygen.
The solid circles represent experimental data �see Ref. 40� and the line

represents the numerical solution of Eq. �12�.
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physically realistic data from which physical and physiologi-
cal parameters, such as B0, �, and �, can be studied.

As mentioned earlier, b=� /�, where � is the metabolic
rate of a single cell and � is the energy required to create a
new cell. From the weighted least-squares fit above, b
=0.0016 h−1 before necrotic core formation and b
=0.0084 h−1 after necrotic core formation. Typical values for
� and � are 6�10−11 W �Ref. 29� and 2.0�10−5 J,27 respec-
tively, meaning that a typical value for b would be approxi-
mately 0.01 h−1, which is within an order of magnitude from
the values obtained from the weighted least-squares fits. The
magnitude of b decreases as the tumor becomes larger �i.e.,
postnecrotic core� because it represents the ratio of the power
required to maintain cellular function relative to the energy
required to create a new cell,36 which rises as tumor size
increases.

From a weighted least-squares fit of the data, a
=0.0012 cm/h before necrotic core formation and
0.00155 cm/h after necrotic core formation. Although diffi-
cult to directly compare to the values obtained by others
because of the dimensions �most growth models use p=3/4
instead of 2/3�, the relative invariance of a and the impor-
tance of b in determining the maximum steady-state values
of u agree with the observations by West et al.36 These pa-
rameters allow us to calculate a maximum volume of 6.25
�10−3 cm3, which is slightly higher, but on the same order
of magnitude, as that calculated by Delsanto
et al. �4.4�10−3 cm3� based on the same data. Our value is
lower than that estimated by Freyer and Sutherland �4.4
�10−2 cm3� although it is important to note that there is a
great deal of extrapolation involved in these estimations,40

which could play a role in the differences.
Figure 4�a� shows the behavior of u and uN as a function

of time after necrotic core formation compared to experimen-
tal data,40 while Fig. 4�b� extrapolates the data to examine
the steady-state behavior. As expected, we observe that the
necrotic core volume initially lags the overall volume of the
tumor and both reach their steady states simultaneously.

FIG. 4. Numerical solution of u�t� and uN�t� after necrotic core formation,
where the top curve represents u�t� and the bottom curve uN�t� �a� over the
range of experimental data �see Ref. 40� and �b� extrapolating to behavior at
the final steady state.
These universal curves open up many options of study. For
instance, although the relationship between u and uN is based
on specific concentrations of oxygen and glucose, �* also
depends on the diffusion coefficient, nutrient consumption
rate, and cell concentration; therefore, one could vary �* and
observe the ensuing changes in u and uN to obtain further
insight into necrotic core formation and development.

Figure 5�a� shows the glucose concentration as a func-
tion of position within the tumor when R=�n. Note that C
grows monotonically from Cn at u=0 to 1 at un. Figure 5�b�
shows the glucose concentration in the viable rim once the
final steady state is reached. Note that C=Cn inside the ne-
crotic core and at the necrotic core boundary and rises to 1 at
the tumor boundary, as required by the BC. As in the case of
prenecrotic core behavior, C rises monotonically. Note that
the behavior of nutrient concentration in the viable rim is
similar to that in the tumor once the necrotic core starts to
form.

IV. CONCLUDING REMARKS

We have extended the simple first-principles approach to
modeling tumor size30,31 to account for spatial effects, in-
cluding the development of the necrotic radius, by making
four primary assumptions: �1� B and � depend on nutrient
concentration by a C / �F+C� ratio. �2� Nutrient concentra-
tion can be modeled by a reaction-diffusion equation. �3� RN

varies linearly with R from empirical evidence. �4� uN varies
with C0 from empirical evidence.

Although our model is not based completely on first
principles, the final results can be interpreted based on actual
physiological parameters of the cell from the initial conser-
vation of energy relationship.30,35 Unlike traditional allomet-
ric equations, the parameters that we obtain from a weighted
least-squares algorithm can be related to B, �, and �, which
have physical meanings with regard to energy input and en-
ergy usage in the cell. The increase in b observed after ne-
crotic core formation indicates a change in � and/or � that is

FIG. 5. �a� Nondimensional glucose concentration as a function of position
at core formation �i.e., R=�n�. �b� Nondimensional glucose concentration as
a function of position in the viable rim after necrotic core formation. Note
that C�Cn for R�RN and that RN=0.975 and R=1.127 in this figure.
consistent with the tumor redirecting its available energy for
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cell creation to metabolic processes. The relative invariance
of a is consistent with observations of West et al. and sug-
gests that the total ratio of metabolic energy to the energy
necessary to create a cell is relatively constant. Another point
in this model is that it is additionally possible for changes in
nutrient consumption rate, diffusion coefficient, and cell con-
centration to alter A�, which effects the final steady-state
volume of the tumor. We have shown that the values we have
obtained for a and b for 0.28 mM oxygen and 16.5 mM
glucose are physically realistic and lead to a final steady-
state volume �6.25�10−3 cm3� that is lower than that esti-
mated by Freyer and Sutherland40 �4.4�10−2 cm3� and on
the same order of magnitude as that estimated by Delsanto et
al.31 �4.4�10−3 cm3�.

The primary motivation for this study is the current re-
search in using PEFs in cancer treatment, including the cou-
pling of traditional electroporation pulses with chemotherapy
drugs in electrochemotherapy2,16,17 and the application of
nsPEFs directly to tumors.9–11,15 In both cases, it appears that
the treatments target the tumors’ vascular supply to some
degree, leading to antiangiogenesis and a loss of vascular
supply to the tumors. Although the mechanism is currently
unknown, especially in the preliminary studies of nsPEFs, it
appears that the antitumor effectiveness of electrochemo-
therapy arises due to a combination of increased cytotoxicity
of cisplatin due to tumor cell electroporation and the antivas-
cular effect of electrochemotherapy.16 One possible explana-
tion of the antivascular effect is that the PEFs damage the
endothelial cells, causing blood flow obstruction and is-
chemic death.16 In the case of nsPEFs, experimental results
indicate that the capillaries supplying the tumors become im-
mediately leaky,15 suggesting that antivascularization is an
important mechanism in this treatment modality.

The physiological effects following external stimulus are
quite complicated and the model in its current state cannot
account for the dynamic changes in the various parameters. It
is interesting to note that this simplified model predicts that
the initial size of the avascular tumor could be an important
variable for successful treatment, particularly near the final
steady-state value, agreeing with experimental observations
by Freyer and Sutherland40 and Freyer.63

This model could be extended in several ways. First,
more realistic behavior with regards to nutrient effects on �
and B could be introduced. Recent models developed for
oxygen and glucose mass transport and metabolism64 and
drug transport in MTS and monolayer cultures65 may provide
some insight on extending these relationships. Moreover, dy-
namical changes in cell density and diffusion properties
would definitely impact this simple model and would be re-
quired for modeling situations where they may rapidly
change, such as during tumor treatment. Work on extending
the modeling of necrotic cell death, represented by 
2, could
provide insight into the development of the necrotic core and
the progression of tumor development. Being able to account
for treatment effects on 
2, as well as the corresponding sig-
nals and chemicals related to cell death induction, could also
permit predicting the effects of different treatment modalities
and possibly relate physical and physiological functions to

tumor growth or shrinkage. For instance, it might be possible
to directly include the effect of PEFs on the tumor within this
sort of universal growth model. While current modeling in
electrochemotherapy has been limited to using Gompertzian
models of tumor growth,66 it is possible that the current
model could be modified to study nsPEF treatment of tumor
growth once data is available.15 In the long term, it is also
possible that this model could be used in conjunction with
models considering nsPEF-induced cellular and subcellular
effects, such as those by Joshi and co-workers67–69 to eluci-
date the mechanisms on both the macroscopic and micro-
scopic scales.
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