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Electron wave tunneling through a rectangular heterostructural emitter barrier is considered in the
case of a homogeneous high-frequencyshfd alternating electric field directed normal to the barrier
interfaces. This hf field leads not only to the well-known increase in a stationary tunnel
current through the emitter barrier, which is proportional toEB

2 swhere EB is the electric-field
amplituded but also to a linears,EBd increase in an alternating currentsacd through this barrier
with the same frequencyv as the electric-field frequency. The ac is a sharp function of
v, which grows significantly with an increase inv stypically in the terahertz ranged. In a certain
intermediate current and frequency region, the above-mentioned increase in the ac is the
dominating effect of the alternating field. Such an effect can be used to optimize tunnel
barrier emitters for ballistic transit-time terahertz-range oscillators. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1886277g

I. INTRODUCTION

In a previous article,1 we considered several models re-
lating to a time-dependent electron tunneling through nonsta-
tionary tunnel emitter barriers. As is known,2–5 the quasi-
static approach based on the use of the static tunneling
equations becomes incorrect if a characteristic frequency
tends to the terahertz range. In particular, this range can be
realistic in the case of quasiballistic and ballistic transit-time
diode oscillators suggested and considered in Refs. 6–9fthe
so-called ballistic tunnel emission transit-timesTUNNETTd
diodesg. In such diodes, the above-mentioned nonstationary
tunnel barriers should serve as high-frequency electron emit-
ters. In the two examples considered previously,1 in s1d the
rectangular barrier with a time-dependent height and ins2d
the rectangular barrier with a time-dependentd-function per-
turbation localized in an arbitrary position inside the barrier,
a substantial increase in high-frequency current takes place
when a frequency,v=2pf, exceeds the inverse time for
tunneling2 through a static rectangular barrier. Both these
examplessdespite their clarityd are hard to attain experimen-
tally. Here, we consider one more model with many more
accessible experimental implementations. We consider the
same rectangular barrierB ssee Fig. 1d enclosed between
homogeneous regions 1 and 2. An electron current with en-
ergy« sand without transverse momentum,p'>0d, which is
incident from the left regionsregion 1d, is partially reflected
and partially transmitted to the right regionsregion 2d where
its kinetic energy is supposedly higher by a value«12

s0d. We
assume that the alternating high-frequency voltage

U = EBw cosvt s1d

biases the barrier and induces a homogeneous electric field
E=EB cosvt inside. The barrier height is modulated by the
value eUsx,td=eEBx cosvt. Since the conduction-band dis-
continuity in the interface between the barrier and region 2
does not depend on the fieldEstd, the above-introduced in-
crease in kinetic energy in region 2ssee Fig. 1d is also time
modulated:

«12std = «12
s0d − eEBw cosvt. s2d

In reality, an electric field in region 2 could not be abruptly
eliminated. A certain field should exist there: it is caused by
the continuity of a normal component of the electric induc-
tion vectorDx=kDEx in the interface of the barrier/region 2
where kD is a dielectric constant. The existence of such a
field is a substantial element of a theory of the above-
mentioned transit-time diodessincluding the ballistic TUN-
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FIG. 1. Rectangular heterostructural barrier with a homogeneous alternating
electric field.
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NETT diodes7–9d. Just an interaction of this field with an
inertial emitted electron current in region 2 is responsible for
an oscillatory regime. But the tunnel emission through a rect-
angular barrier as such depends on this field in region 2
weakly. This fact allows us to neglect it in our consideration
here. The above-mentioned region 2 is nothing but the so-
called transit space7–9 sor the drift regiond in our transit-time
diode. This space is completely depleted in the operating
conditions. There are not any electrons in this space exclud-
ing the above-considered ballistic electrons emitted from the
left. Therefore, there is not any opposite tunnel current
through the tunnel emitter barrier from the right to left.

As in the previous article,1 we consider here the simplest
quantum-mechanical problem relating to transmission and
reflection of a single-electron wave. In reality, we deal with a
multielectron current, in which electrons with different val-
ues of energy« and transverse momentumsp' participate.
But in the most interesting case of a small tunnel barrier
transparencysat «=«F, where«F is a Fermi energy in the
depth of region 1d and a low temperature of an electron gas
in the same region 1, a tunnel current is determined by elec-
trons with small values ofp' and with values of« close to
«F. Therefore, the simplest proposed consideration gives a
credible frequency behavior of a time-dependent tunnel elec-
tron current. Of course, such a consideration can serve only
as a preliminary introduction for a detailed theory.

II. EQUATIONS AND SOLUTIONS

A. Equations

We need to solve the Schrödinger equation in both re-
gions 1 and 2 and in the barrierB, respectively,

i"
]C1

]t
= −

"2

2m1

]2C1

]x2 , s3d

i"
]C2

]t
= −

"2

2m2

]2C2

]x2 − f«12
s0d − eEBw cosvtgC2, s4d

i"
]C

]t
= −

"2

2m

]2C

]x2 + sd + eEBx cosvtdC, s5d

where C1sx,td, C2sx,td, and Csx,td are wave functions in
the above-listed areas, andm1, m2, andm are electron effec-
tive masses in the same areas. It is assumed that an electron
wave with energy« incident from the left generates, as a
result of its interaction with the time-dependent barrierB, a
transmitted wave in region 2, and a reflected wave in region
1 with the same energy«, and also “transmitted” and “re-
flected” waves with energies«±"v, «±2"v, «±3"v, etc.
The first two pairs are shown in Fig. 1. The spectrum of these
waves is restricted from the bottom by the real bottoms of
the conduction bands in regions 1 and 2. The quantities of
additional waves, which really take part in a tunnel emission,
depend on the value of the nonstationary barrier perturbation.
In our specific case, such a defining value is the amplitude
eEBw, which should be compared not only with the energy
height of the effective barrierd−«, and not only with ener-
gies« and«+«12

s0d, but also with energy"v. fLet us note that

the frequencyv is present in Eqs.s4d and s5d only in the
form cosvt.g In the simplest case of a small amplitudeeEBw,
we can consider only the wave triad with energies« and
«±"v.

B. Static case

Let us consider the solutions of Eqs.s3d–s5d in the static
case whenv=0 andE=EB. In Eq. s4d there is the only re-
placement«12

s0d→«12
s0d−eEw. Equations5d can be rewritten in

the form

d2F

dj2 − s1 + j0
−1jdF = 0, s6d

where Csx,td=Fsjdexps−i«t /"d, j=gx, g=Îmsd−«d, m
=2m/"2, and j0=gsd−«d /eE. The accurate solution of Eq.
s6d can be presented in the form

Fsjd = C1 Ai sj0
2/3 + j0

−1/3jd + S1 Bisj0
2/3 + j0

−1/3jd, s7d

where Aiszd and Biszd are the Airy functions.10 We consider
only the case of comparatively small fields when

j0 @ 1. s8d

This means thatj0
2/3@1 also. So arguments of the Airy func-

tions in Eq.s7d are large and we can use asymptotic expan-
sions of these functions:10

Fsjd > f1 + sj/j0dg−1/4hC2 expf− s2/3dj0s1 + j0
−1jd3/2g

+ S2 expfs2/3dj0s1 + j0
−1jd3/2gj

> f1 − sj/4j0dghC expf− j − s1/4dj0
−1j2g

+ Sexpfj + s1/4dj0
−1j2gj

= s1 − gxdhC expf− gxs1 + gxdg

+ Sexpfgxs1 + gxdgj, s9d

whereg=eE/4sd−«d.
In the middle lines of Eq.s9d, we have used the addi-

tional assumptiongw!j0 or eEw!d−«. The solution
Fsgxd in the barrier should be combined with analogous
static solutions of Eqs.s3d and s4d in regions 1 and 2:

F1 = expsik1xd + B exps− ik1xd s10d

and

F2 = F expfik2sEdxg, s11d

where k1=sm1«d1/2, k2sEd=hm2f«+«12
s0d−eEwgj1/2, and m1,2

=2m1,2/"2.
We equate in the boundaries of the barrierx=0 and

x=w functions F1 to F and F to F2, respectively, and
also, respectively,s1/m1dsdF1/dxd to s1/mdsdF /dxd and
s1/mdsdF /dxd to s1/m2dsdF2/dxd. As a result, we obtain the
system of equations
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1 + B − C − S= 0, il0s1 − Bd + sC − Sd = − gs1 + Bd/g,

s12ad

F − C exps− g8wd − Sexpsg8wd = − gFw, s12bd

ilF + C exps− g8wd − Sexpsg8wd = gFfilsw + wkd − g−1g,

s12cd

where g8=gs1+gwd, l=k2s0dm /gm2, l0=k1m /gm1, and wk

=2wsd−«d / f«+«12
s0dg. The electric-field corrections intro-

duced by the right-hand sides of Eqs.s12ad–s12cd lead to
corrections in the tunnel transparency having an order of
accuracy of,eEw/4sd−«d, or eE/4sd−«dg, or eEw/2f«
+«12

s0dg. We assume all these values are small and we can
neglect these corrections. The main electric-field correction
is introduced as a result of replacement ofg by g8 in the
exponents in Eqs.s12bd ands12cd. Taking into account only
this correction, we obtain from Eqs.s12ad–s12cd

F =
2s1 + ndexps− g8wd

s1 + ixdf1 + n exps− 2g8wdg
, s13d

where n=s1+ild / s1−ild, and x=f1−n exps−2g8wdg /l0f1
+n exps−2g8wdg. In the case of the thick barrier whengw
@1, we can neglect the contribution of components of
,n exps−2g8wdg. Then we obtain for the tunneling current

jsEd > s"k2/m2duFu2

> js0dexpf− 2sg8 − gdwg

= js0dexph− gwfeEw/2sd − «dgj, s14d

with js0d>f16l0
2"k2/m2s1+l2ds1+l0

2dgexps−2gwd. If gw
ø1, the correction introduced by the exponential multiplayer
on the right-hand side of Eq.s14d is as small as the other
corrections neglected above. But in the case of thick low-
transparency barriers whengw@1, this correction isgw or
evensgwd2 times larger and should be taken into account. If
gw is so large thatgwfeEw/2sd−«dg.1, we obtain an ex-
ponential decrease injsEd.

Let us assume now that in Eq.s14d E=E0+EB cosvt but
frequencyv is so low that the static formulas14d is valid. If

gwfeEBw/2sd − «dg ! 1, s15d

we have

jsEd > jsE0dh1 − fsgwdeEBw/2sd − «dgcosvtj. s16d

The second component in the curly brackets in Eq.s16d is a
quasistatic alternating current induced by the field compo-
nentEB cosvt. If condition s15d is invalid, an expansion of
exph−gwfeEBw/2sd−«dgcosvtj into a series contains nu-
merous harmonics of the basic frequencyv.

C. Substantially high-frequency case

Turning to the substantially nonstationary problem, we
assume that amplitudeEB is sufficiently small and allows us
to take into account only three values of electron energy,«
="V and «±"v="sV±vd, neglecting all the others. The
electron components with energy«="V are excited directly
by the basic wave with the amplitude 1 and, therefore, they

are much more intensive than the satellite components in-
duced by the small alternating electric field with the ampli-
tudeEB. This fact allows us to neglect this alternating field in
Eqs.s4d and s5d considering these satellites and to write the
solution of Eq.s3d in the form

C1sx,td = exps− iVtdfexpsik1xd + B exps− ik1xd

+ Bs+d exps− ik1+x + ivtd

+ Bs−d exps− ik1−x − ivtdg s17d

and the solution of Eq.s5d in the form

C2sx,td = exps− iVtdhF expfik2x − iseEBw/"vdsinvtg

+ Fs+d expsik2+x + ivtd + Fs−d expsik2−x − ivtdj.

s18d

We have new designations in Eqs.s17d and s18d: k1±
2

=m1"sV7vd=m1s«7"vd, k2±
2 =m2"sV+V127vd, and V12

=«12
s0d /". The above-mentioned condition of the small value

of the electric-field amplitude, which can be written as

A = eEBw/"v ! 1, s19d

allows us to rewrite Eq.s18d in the approximate form

C2sx,td > exps− iVtdhF expsik2xd + fFs+d expsik2+xd

− seEBw/2"vdF expsik2xdgexpsivtd

+ fFs−d expsik2−xd

+ seEBw/2"vdF expsik2xdgexps− ivtdj. s20d

At last, we obtain the functionCsx,td describing the decay-
ing tunnel wave in the barrierB and determined by Eq.s4d,
from which we can obtain

Csx,td > e−iVthCe−gx + Segx + fCs+de−g+x + Ss+deg+xgeivt

+ fCs−de−g−x + Ss−deg−xge−ivt

+ f2eEBg/ms"vd2gsCe−gx − Segxdcosvt

− sieEBx/"vdsCe−gx + Segxdsinvtj, s21d

where g±=Îmsd−«±"vd. Solution s21d in the barrier is
equivalent to solutions20d in region 2fbut in no way equiva-
lent to the more general solutions18dg. It is valid if condition
s19d is satisfied as well as the more intricate condition

2b = 2eEBg/ms"vd2 ø 1. s22d

The constantB, C, S, andF in solutionss17d, s20d, ands21d
are the same as in Eqs.s10d, s11d, and s9d. They should be
calculated from Eqs.s12ad–s12cd for g=0 sE0=0d. The
analogous boundary conditions, which allow us to calculate
the constantsBs±d, Cs±d, Ss±d, andFs±d, take into account the
appearance of components that are proportional to exps±ivtd
on the right sides of Eqs.s20d ands21d. fIn Eq. s21d we need
to remember that cosvt=seivt+e−ivtd /2 and sinvt=−iseivt

−e−ivtd /2.g To calculate the alternating current in region 2 we
need constantsFs±d, which are

Fs±d = DF
s±d/Ds±d, s23d

where
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DF
s±d = f4eEBg/ms"vd2s1 + ixds1 + nā2dgfsg2 + g±

2d

3s1 + nā2d/2gg± − il0
±s1 − nā2d − sg2 + g±

2d

3s1 + ndāscoshg±w − il0
± sinhg±wd/2gg±

− s1 − ndāssinhg±w − il0
± coshg±wdg,

ā=exps−gwd=a−1, l0
±=k1±m /g±m1, and l±=k2±m /g±m2.

Knowing F andFs±d, we can find the desired current

j = s"k2/m2duFu2 + s"/2m2dhfsk2 + k2+dFFs+ d*

+ sk2 + k2−dF*Fs−dgeisk2−k2+dx−ivt + c.c.j s24d

where c.c. means the complex-conjugate component.
To simplify our formula, we turn to the really interesting

case of thickslow-transparencyd barrierssā!1d and com-
paratively low frequenciess"v!d−« ,«+«12d. The latter al-
lows us to approximately equate not onlyk2±>k2 but also
g± >g everywhere excluding exponents. Using such simpli-
fications, we obtain

D± > − a±s1 − ilds1 − il0d, DF
± > − 4ibl0s1 − a±ād,

s25d

where a±=expsg±wd. As a result of substitution of expres-
sionss25d in Eq. s23d, we obtain

Fs±d = − bFsā±a − 1d, s26d

with ā±=exps−g±wd and F>−4il0ā / s1−il0ds1−ild. At
last, we obtain from Eq.s24d

j > s"k2/m2duFu2f1 − 2bsā+a + ā−a − 2dcossvt − qxdg

= js0df1 − 4bscoshQw− 1dcossv − qxdg, s27d

where js0d is the same as in Eq.s14d, Qw=sgw/2df"v / sd
−«dg, andq=k2v /2sV+V12d. It is not difficult to verify that

b = A/Qw, s28d

whereA is introduced by Eq.s19d. Therefore, Eq.s27d can be
rewritten in the form

j = js0dF1 − 8A
sinh2sQw/2d

Qw
cossvt − qxdG . s29d

If the argumentQw of the hyperbolic cosine in Eq.s27d is
small in comparison to 1, we obtain from Eq.s27d

j = js0df1 − 2bQ2w2 cossvt − qxdg

= js0df1 − 2AQwcossvt − qxdg. s30d

This resultsfor x=0d coincides with Eq.s16d sfor E0=0d. But
for Qwù1 when Eq.s30d is invalid and we need to use Eq.
s27d, there is a substantial difference: the high-frequency al-
ternating current drastically increases with an increase inv.

III. DISCUSSION

Let us clarify the limits of the significant increase in the
alternating current amplitude with an increase in frequencyv
sfor invariable other parameters of the problem including all
the rectangular barrier parameters and the electric-field am-
plituded. In deriving Eq. s27d for s29dg we have used the
conditions of the small value of the electric-field amplitude

in the formA!1 fEq. s19dg and 2b=2A/Qw!1 fEq. s22dg.
But these conditions do not really restrict any increase in the
current because the latter is connected with an increase in
sexpQwd /Qw when frequencyv increasessat invariableA
!1d.

We have also used the strong inequalitiesFs±d!F to
derive Eq.s24d since in the latter all the components of the
order of uFs±du2 and uFs+d*Fs−du are not taken into account.
Such neglect requires the additional condition

4bscoshQw− 1d = 4A sinh2sQw/2d/Qwø 1. s31d

At last, we have considered only the triad of the electron
waves with energies« and«±"v but we have not taken into
account the waves with energies«±2"v, etc. Such an as-
sumption is valid for much weaker limitations than Eq.s31d.

Let us write the expression forj keeping all the triad
components neglected beforefin Eqs.s27d and s29dg:

j > s"k2/m2dsuFu2 + uFs+d − AFu2 + uFs−d + AFu2

+ hfFFs+ d* + F*Fs−dgeiqx−ivt + c.c.j

+ hfFs+ d* − AF*gfFs−d + AFge2isqx−vtd + c.c.jd

> js0dh1 + 4A2fcoshQwscoshQw− 1d/sQwd2

+ 1/2 − sinhQw/Qwg − 4AfscoshQw− 1d/Qwg

3cossvt − qxd − 4A2fscoshQw− 1d/sQwd2 + 1/2

+ sinhQw/Qwgcoss2vt − 2qxdj. s32d

We can conclude from Eq.s32d that while A!1 the last
component in the outsize parentheses, which describes the
2v harmonic of the alternating current, is always much
smaller than each of the other components. We can also con-
clude that the alternating currentsacd component is always
smaller than the dc component but there exists the frequency
interval, in which this small ac component grows with an
increase inv much faster than the dc current. Such a behav-
ior takes place just when inequalitys31d is satisfied. But if
instead of Eq.s31d the opposite strong inequality occurs:

A coshQw/sQwd @ 1 s33d

sand A!1 as befored, we can observe a drastic increase in
the dc component in comparison to the ac since the former is
proportional tofA coshQw/ sQwdg2. We can hope that the
optimal working regime for the high-frequency tunnel emit-
ters can be realized ifsA/2QwdexpQw<1 or feEBsd
−«d /g"vgexpf"vgw/2sd−«dg<1. Around such frequencies
the portion of the alternating current with frequencyv is
maximal in comparison to the full current, and it is possible
to reach the maximal efficiency for the oscillators based on
such emitters.

The analogous conclusion can be obtained on the basis
of the simpler model considered before.1 In the case of the
rectangular barrier with a time-dependent height«B=«0

+«s1d cosvt, the formula, which is analogous to Eq.s32d,
appears as
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j > js0df1 + 4a2 coshQwscoshQw− 1d

− 4a sinhQwcossvt − qxd

+ 4a2scoshQw− 1dcos 2svt − qxdg, s34d

wherea=«s1d /2v is analogous toA introduced by Eq.s19d
and Q is the frequency parameter of a rectangular tunnel
barrier introduced in Eq.s27d here fand by Eq. s40d in
Ref. 1g.

IV. CONCLUSION

We have derived formulas describing a one-electron tun-
nel current through a rectangular heterostructural emitter bar-
rier containing a high-frequency homogeneous electric field
with the amplitudeEB inside. We have assumed that this
amplitude is sufficiently small:eEBw!d−« ,« ,"v. In the
thin-barrier casesgwø1d, the quasistatic approach is always
satisfactory. But in the thick-barrier casesgw@1d, the
known dynamic effects take place. These effects can be de-
scribed with the help of two parameters:A=eEBw/2"v!1
andQw="vgw/2sd−«d. The latter can be varied in the ar-
bitrary limits. For Qw!1 the results of the quasistatic ap-
proach are suitable as before: neither a tunnel dc nor an ac
amplitude depends on the frequency. ForQwù1 the quasi-
static approach becomes unsuitable: the ac amplitude expe-
riences a fast growth with an increase in the frequency for
the invariable amplitudeEB and invariable rectangular bar-
rier parameters. IfQw@1 the relation of the ac amplitude to
the tunnel dc is approximately equal to

Jac/ jdc =
2A expQw/sQwd

1 + fA expQw/sQwdg2 ,

that is forA expQw/ sQwd>1 the ac amplitude nears the dc.
Implementation of such a regime in the ballistic transit-time
oscillators could provide a noticeable advantage since it al-
lows one to reach a comparatively high oscillatory power by
using comparatively weak alternating fields in the emitter
barrier and the depleted transit spacesand to exceed an effi-
ciency of the ballistic transit-time oscillators with the tunnel
electron emissiond.
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