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Differential tunnel transparency of a rectangular heterostructural barrier
for the terahertz frequency range
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Electron wave tunneling through a rectangular heterostructural emitter barrier is considered in the
case of a homogeneous high-frequeficf) alternating electric field directed normal to the barrier
interfaces. This hf field leads not only to the well-known increase in a stationary tunnel
current through the emitter barrier, which is proportionalB9 (where Eg is the electric-field
amplitude but also to a lineaf~Eg) increase in an alternating curref@c through this barrier

with the same frequency as the electric-field frequency. The ac is a sharp function of
w, which grows significantly with an increase i (typically in the terahertz rangeln a certain
intermediate current and frequency region, the above-mentioned increase in the ac is the
dominating effect of the alternating field. Such an effect can be used to optimize tunnel
barrier emitters for ballistic transit-time terahertz-range oscillator2085 American Institute of
Physics[DOI: 10.1063/1.1886277

I. INTRODUCTION U = Egw coswt (1)

In a previous articlé,we considered several models re- biases the barrier and induces a homogeneous electric field
lating to a time-dependent electron tunneling through nonstaE=Eg coswt inside. The barrier height is modulated by the
tionary tunnel emitter barriers. As is knoW, the quasi- ValueeU(x,t)=eEgx coswt. Since the conduction-band dis-
static approach based on the use of the static tunne“ngontinuity in the interface between the barrier and region 2
equations becomes incorrect if a characteristic frequenc§loes not depend on the fief(t), the above-introduced in-
tends to the terahertz range. In particular, this range can dge€ase in kinetic energy in region(2ee Fig. 1is also time
realistic in the case of quasiballistic and ballistic transit-timeModulated:
diode oscillators suggested and considered in Refs.[thed
so-called ballistic tunnel emission transit-tifiIEUNNETT)
dioded. In such diodes, the above-mentioned nonstationaryn reality, an electric field in region 2 could not be abruptly
tunnel barriers should serve as high-frequency electron emiteliminated. A certain field should exist there: it is caused by
ters. In the two examples considered previodsly,(1) the  the continuity of a normal component of the electric induc-
rectangular barrier with a time-dependent height an€2jn  tion vectorD,=«pE, in the interface of the barrier/region 2
the rectangular barrier with a time-dependéiitinction per-  where kp is a dielectric constant. The existence of such a
turbation localized in an arbitrary position inside the barrier field is a substantial element of a theory of the above-
a substantial increase in high-frequency current takes plad@entioned transit-time diode&ncluding the ballistic TUN-
when a frequencyw=2xf, exceeds the inverse time for

e1o(t) = 619 - eEgw coswt. (2)

tunnelingf through a static rectangular barrier. Both these cA 2eEpw
examplegdespite their clarityare hard to attain experimen- y :::j/—
tally. Here, we consider one more model with many more 1 B 2
accessible experimental implementations. We consider the ) _2np
same rectangular barrid® (see Fig. 1 enclosed between < K »s+ho
homogeneous regions 1 and 2. An electron current with en- ""T: N ::;m
ergy e (and without transverse momentum, =0), which is

incident from the left regiorfregion 1), is partially reflected i 0 qw »x
and partially transmitted to the right regidregion 2 where BN
its kinetic energy is supposedly higher by a vah@. We --j—
assume that the alternating high-frequency voltage 2¢Es

FIG. 1. Rectangular heterostructural barrier with a homogeneous alternating
dElectronic mail: gribnikov@pa.msu.edu electric field.
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NETT diode™). Just an interaction of this field with an the frequencyw is present in Eqgs(4) and (5) only in the
inertial emitted electron current in region 2 is responsible forform coswt.] In the simplest case of a small amplituelg;w,
an oscillatory regime. But the tunnel emission through a rectwe can consider only the wave triad with energiesnd
angular barrier as such depends on this field in region 2tZw.

weakly. This fact allows us to neglect it in our consideration

here. The above-mentioned region 2 is nothing but the so-

cglled transﬂ spaéeg_ (or the drift region in our transit-time . B. Static case

diode. This space is completely depleted in the operating

conditions. There are not any electrons in this space exclud- Let us consider the solutions of Eq8)—(5) in the static

ing the above-considered ballistic electrons emitted from th€ase Whern()o?o a(r(lJ)dE=EB. In Eq. (4) there is the only re-

left. Therefore, there is not any opposite tunnel currenplacement,; —¢;, -eEw Equation(5) can be rewritten in
through the tunnel emitter barrier from the right to left. the form
As in the previous articléwe consider here the simplest ,
uantum-mechanical problem relating to transmission and d“®
o o o -(1+&'9P=0, (6)

reflection of a single-electron wave. In reality, we deal with a dé&?
multielectron current, in which electrons with different val-

ues of energy and transverse momenturps participate.  where W(x,t)=d(&exp—ist/h), £=gx, g=\u(d-g), u
But in the most interesting case of a small tunnel barrier=2m/#?, and £,=g(5—¢)/eE The accurate solution of Eq.

transparencyat e=¢g, whereeg is a Fermi energy in the (6) can be presented in the form

depth of region Land a low temperature of an electron gas

in the same region 1, a tunnel current is determined by elec-  ®(¢) =C, Ai (&7 + &%) + S, Bi(&2"®+ £%), (7)
trons with small values op, and with values ot close to

eg. Therefore, the simplest proposed consideration gives where Ai(z) and Bi(z) are the Airy functiong? We consider
credible frequency behavior of a time-dependent tunnel elemnly the case of comparatively small fields when

tron current. Of course, such a consideration can serve only

as a preliminary introduction for a detailed theory. &> 1. (8)

This means thag2®> 1 also. So arguments of the Airy func-
Il. EQUATIONS AND SOLUTIONS tions in Eq.(7) are large and we can use asymptotic expan-
A. Equations sions of these function’:

_ We need to sol_ve the Schrﬁdinger e_quation in both re- (&) = [1+(&&)V4C, ex - (213 &(1 + £
gions 1 and 2 and in the barri&; respectively, S o211+ £V
+S,ex E(1+&7°¢

A SR e Y

e (3) = [1 - (&4&) J{C expi- £ - (U4 &)
o 2w +Sex ¢+ (145 ]
iﬁ?2 =- ?12&722 - [¢{9 - eEaw coswt]¥,, (4) = (1 - y){C exfg- gx(1 +yx)]
+Sexdgx(1+yx)1}, 9
)
,ﬁE:_%¥+(5+ eEgx coswt) W, ) wherey=eE/4(5-¢).

In the middle lines of Eq(9), we have used the addi-
where W1 (x,1), W,(x,t), and ¥(x,t) are wave functions in  tional assumptiongw<é&, or eEw<d-¢. The solution
the above-listed areas, ang, m,, andm are electron effec-  ®(yx) in the barrier should be combined with analogous
tive masses in the same areas. It is assumed that an electrefatic solutions of Eqs(3) and (4) in regions 1 and 2:
wave with energys incident from the left generates, as a
result of its interaction with the time-dependent bariera @, = explik;x) + B exp(— ik;x) (10
transmitted wave in region 2, and a reflected wave in region
1 with the same energy, and also “transmitted” and “re- and
flected” waves with energiestfw, ¢+2hw, ¢+3hw, etc.

The first two pairs are shown in Fig. 1. The spectrum of these @, =F exdik,(E)x], (11)
waves is restricted from the bottom by the real bottoms of

the conduction bands in regions 1 and 2. The quantities ofvhere k;=(16)"2, ky(E)={ple+e0—eEW2 and u;
additional waves, which really take part in a tunnel emission=2my ,/%2.

depend on the value of the nonstationary barrier perturbation. We equate in the boundaries of the barrierO and
In our specific case, such a defining value is the amplitude=w functions ®; to ® and & to ®,, respectively, and
eEzw, which should be compared not only with the energyalso, respectively(1/u)(d®;/dx) to (1/u)(ddP/dx) and
height of the effective barrief—¢, and not only with ener-  (1/u)(dd/dx) to (1/u,)(dd,/dx). As a result, we obtain the
giese ands+s(1(2, but also with energyiw. [Let us note that system of equations
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1+B-C-S=0, iN(1-B)+(C-95=-9(1+B)/g, are much more intensive than the satellite components in-
uce the small alternating electric field with the ampli-
(124 duced by th Ilal ing electric field with th pli
tudeEg. This fact allows us to neglect this alternating field in
(12 Egs.(4) and(5) considering these satellites and to write the

F-Cexp(-g'w) =~ Sexpg'w) = = yFw, solution of Eq.(3) in the form

iNF + C exp(— g'w) — Sexp(g'w) = yF[iN(w+w) —g™], W (x,t) = exp(— iQt)[explik,x) + B exp(— ikyX)
(120 +B™ exp(— ik + i ot)
where g’ =g(1+yw), N=Ky(0) /g, No=kqu/guq, andw + B exp(— ikyx —iwt)] (17)

=2w(5-¢)/[s+s2]. The electric-field corrections intro-

duced by the right-hand sides of Eq42a—(12¢) lead to  and the solution of Eq(5) in the form

corrections in the tunnel transparency having an order of _ . oo -
accuracy of~eEw4(S-¢), or eE/4(5-¢)g, or eEW2[e Wax0) = exp= 1OD{F exilikox ~ i(eBgw/hw)sin wf]
+¢\%]. We assume all these values are small and we can + F explikox + i wt) + F expliko X~ iwt)}
neglect these corrections. The main electric-field correction (18)
is introduced as a result of replacementgoby g’ in the

exponents in Eqg12b) and(129). Taking into account only We have new designations in Eqél7) and (18): ki,
this correction, we obtain from Eq&l2a—(120) = (O F 0)= (e 7 ho), Ko,=uf(Q+Q4,F 0), andQy,

20+ vexpi- g'w) :s(loz)/ﬁ. The above-mentioned condition of the small value
C(L+iy[l+vexpd-29'w)]’

(13)  of the electric-field amplitude, which can be written as
where v=(1+iN)/(1-=iN), and y=[1-vexp(-2g'w)]/\[1

+vexp(-2g'w)]. In the case of the thick barrier whegw  allows us to rewrite Eq(18) in the approximate form

>1, we can neglect the contribution of components of - . . ) .

~vexp(-2g’w)]. Then we obtain for the tunneling current W2, = exp(=10{F explikzx) + [F7 explikz.x)
- (eEgW/2Ah w)F explik x) lexp(i wt)

J(E) = (fiky/my)[F[?
+[F) explik,-x)

=j(0)exd-2(g' -gw] _ ,

= | (0)expi- gW[eEW2(S— )]}, (14) + (eEgW/2h w)F explikoX) lexp(—iwt)}.  (20)
with j(0) =[16\3hk,/ my(1+A2)(1+73)]exp(—2gw). If gw
=<1, the correction introduced by the exponential multiplaye
on the right-hand side of Eq14) is as small as the other
corrections neglected above. But in the case of thick low-  W(x,t) = e Ce %+ S& + [CHe 90X + SHedx]dot
transparency barriers whegw> 1, this correction iggw or — g X amiat
even(gw)? times larger and should be taken into account. If +[CTe X+ STet e
gw is so large thagw{eEw/2(5—¢)]>1, we obtain an ex- +[2eEg/u(fhw)?](Ce - Sé)coswt
ponential decrease if{E). o g% .

Let us assume now that in EL4) E=Ey+Eg coswt but (ieEgxfiw)(Ce ¥+ Ssin at}, 2D

frequencyw is so low that the static formuld4) is valid. If  \yhere 0.=\u(6-e+hw). Solution (21) in the barrier is

A=eEwWiho <1, (19)

At last, we obtain the functio(x,t) describing the decay-
'jng tunnel wave in the barrid8 and determined by Ed4),
from which we can obtain

gwWeEsw/2(5-¢)] <1, (15)  equivalent to solutiori20) in region 2[but in no way equiva-
lent to the more general solutigh8)]. It is valid if condition
we have (19) is satisfied as well as the more intricate condition
J(E) = J(Eg){1 - [(gW)eEgW/2(5 - &) Jcos wt}. (16) 28= 2eEag/ulhw)? < 1. (22)

The ;ecqnd compo.nent in the gurly brackets in ‘1_1@) Sa  The constanB, C, S, andF in solutions(17), (20), and(21)
quasistatic alternating current induced by the field COMPO,, " the same as in E €0), (11), and(9). They should be
nentEg coswt. If condition (15) is invalid, an expansion of 4=, . ’ Y

exp{—gwW eEgw/2(5—¢)]coswt} into a series contains nu- calculated  from Eqs.(lza_—_(12c) for_ ¥=0 (B=0). The
. . analogous boundary conditions, which allow us to calculate
merous harmonics of the basic frequengy

the constant®8®, C*, S* andF®, take into account the
. . appearance of components that are proportional téeep)
C. Substantially high-frequency case on the right sides of Eq$20) and(21). [In Eq. (21) we need

. . . — (Aot ~iot H — _i(alot
Turning to the substantially nonstationary problem, wel© _rie{nember that cost=(e'+e™)/2 and sinwt=-i(¢
assume that amplitudg; is sufficiently small and allows us ~€“)/2.]To ca(lgulatg the alternating current in region 2 we
to take into account only three values of electron enesgy, N€ed constants™, which are
=7 and exhiw=%(Q+w), neglecting all the others. The F(i):ASZi)/A(i), (23)
electron components with energy7() are excited directly
by the basic wave with the amplitude 1 and, therefore, thewhere
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AP =[4eBsg/ u(fw)2(1 +ix) (1 + vad)[(g? + &2)
X (1 +va?)I2gg, —iNG(1 - va?) - (g° + &)
X (1 + v)a(coshg.w — i\j sinhg.w)/2gg.
- (1 - v)a(sinhg,w — ixj coshg,w)],

azexp-gw)=a!, Ag=kyeu/gipy, and N*=Kowulgepo.

Knowing F andF®), we can find the desired current
j = (ikaImy) [F[2 + (h/2mp){[ (K + ke )FFC

+ (kg + ko ) F'FO g lehexlot 4 ¢ ¢} (24)

where c.c. means the complex-conjugate component.

To simplify our formula, we turn to the really interesting

case of thick(low-transparencybarriers(a<1) and com-
paratively low frequencie§iw < 6—¢,e+¢&,,). The latter al-
lows us to approximately equate not oy, =k, but also

0. =g everywhere excluding exponents. Using such simpli-

fications, we obtain
f=—a*(1-iN(1-iNg), AfF=-4iB\(1-a"a),

(25)

where a*=exp(g.w). As a result of substitution of expres-

sions(25) in Eq. (23), we obtain
F® =-gF(a*a-1), (26)

with o*=exp(-g,w) and F=-4i\ga/(1-i\g)(1-iN). At
last, we obtain from Eq(24)

j = (hko/my)|F|A1-2B(a"a+ o a - 2)cogwt — qx)]
=j(0)[1 - 4B(coshQw- 1)cogw — gx)], (27)

where j(0) is the same as in Eq14), Qw=(gw/2)[/w/(5
-¢g)], andq=kyw/2(Q+Q4,). It is not difficult to verify that

B=AQw, (28)

whereA is introduced by Eq(19). Therefore, Eq(27) can be
rewritten in the form

sinfA(Qw/2)
Qw

If the argumentQw of the hyperbolic cosine in Eq27) is
small in comparison to 1, we obtain from EQ7)

j =i (0)[1 - 28Q°W cod wt — gX)]
=j(0)[1-2AQwcogwt - gx)]. (30
This result(for x=0) coincides with Eq(16) (for E;=0). But

j=j0)]1-8A coqwt-qgx) |. (29
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in the formA<1 [Eq. (19)] and 28=2A/Qw<1 [Eq. (22)].

But these conditions do not really restrict any increase in the
current because the latter is connected with an increase in
(expQw)/Qw when frequencyw increasegat invariableA

<1).

We have also used the strong inequalit€d <F to
derive Eq.(24) since in the latter all the components of the
order of |[F®|? and [F*"F)| are not taken into account.
Such neglect requires the additional condition

4B3(coshQw— 1) = 4A sinF/(Qw/2)/Qw = 1. (31)

At last, we have considered only the triad of the electron
waves with energies ande +% w but we have not taken into
account the waves with energiex2hw, etc. Such an as-
sumption is valid for much weaker limitations than Eg1).

Let us write the expression fgr keeping all the triad
components neglected befdia Egs.(27) and (29)]:

j = (fiko/my) (|F|? +|F™) - AF|2+ [F©) + AFJ?
+{[FF*) + F RO oot 4 ¢ c)
+{[F®) = AF[FO) + AF]e?@ab) 4 ¢ c})
= j(0){1 + 4A%[coshQw(coshQw — 1)/(Qw)?
+1/2 — sinhQw/Qw] — 4A[ (coshQw - 1)/Qw]
X cogwt — qx) — 4A7 (coshQw - 1)/(Qw)? + 1/2

+ sinhQW/Qw]coq 2wt — 2gx)}. (32

We can conclude from Eq.32) that while A<1 the last
component in the outsize parentheses, which describes the
2w harmonic of the alternating current, is always much
smaller than each of the other components. We can also con-
clude that the alternating currefdc) component is always
smaller than the dc component but there exists the frequency
interval, in which this small ac component grows with an
increase inw much faster than the dc current. Such a behav-
ior takes place just when inequalit@l) is satisfied. But if
instead of Eq(31) the opposite strong inequality occurs:

A coshQw/(Qw) > 1 (33

(and A<1 as beforg we can observe a drastic increase in
the dc component in comparison to the ac since the former is
proportional to[A coshQw/(Qw)]%. We can hope that the

for Qw=1 when Eq.(30) is invalid and we need to use Eq. OPtimal working regime for the high-frequency tunnel emit-
(27), there is a substantial difference: the high-frequency alfers can be realized ifA/2QwexpQw~1 or [eEg(d

ternating current drastically increases with an increase.in

Ill. DISCUSSION

—-g)lghwlexdiogw/2(5-¢)]=1. Around such frequencies
the portion of the alternating current with frequeneyis
maximal in comparison to the full current, and it is possible
to reach the maximal efficiency for the oscillators based on

Let us clarify the limits of the significant increase in the such emitters.

alternating current amplitude with an increase in frequancy

The analogous conclusion can be obtained on the basis

(for invariable other parameters of the problem including allof the simpler model considered befdrén the case of the
the rectangular barrier parameters and the electric-field anrectangular barrier with a time-dependent height=¢,
plitude). In deriving Eq.(27) [or (29)] we have used the +&® coswt, the formula, which is analogous to E(B2),
conditions of the small value of the electric-field amplitude appears as
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j = j(0)[1 + 4a? coshQw(coshQw - 1)
- 4a sinhQw coq wt — gx)

+ 40(coshQw - 1)cos Awt — gx)], (34)
wherea=¢Y/2w is analogous td introduced by Eq(19)
and Q is the frequency parameter of a rectangular tunne
barrier introduced in Eq(27) here [and by Eq.(40) in
Ref. 1].

IV. CONCLUSION

We have derived formulas describing a one-electron tun
nel current through a rectangular heterostructural emitter ba
rier containing a high-frequency homogeneous electric fiel
with the amplitudeEg inside. We have assumed that this
amplitude is sufficiently smalleEgw<<6-¢,¢,Aiw. In the
thin-barrier caségw= 1), the quasistatic approach is always
satisfactory. But in the thick-barrier casgw>1), the

known dynamic effects take place. These effects can be de

scribed with the help of two parametes=eEsw/2hiw<<1
and Qw=Awgw/2(5-¢). The latter can be varied in the ar-
bitrary limits. ForQw<1 the results of the quasistatic ap-

proach are suitable as before: neither a tunnel dc nor an aH,ZE'

amplitude depends on the frequency. Epv=1 the quasi-
static approach becomes unsuitable: the ac amplitude exp
riences a fast growth with an increase in the frequency fo
the invariable amplitudé&g and invariable rectangular bar-
rier parameters. IQw=>>1 the relation of the ac amplitude to
the tunnel dc is approximately equal to

r_

a/a

J. Appl. Phys. 97, 093705 (2005)

2A expQwW/ (Qw)
1+[AexpQw/(Qw)*’

that is forA expQw/(Qw) =1 the ac amplitude nears the dc.
Implementation of such a regime in the ballistic transit-time
oscillators could provide a noticeable advantage since it al-
|ows one to reach a comparatively high oscillatory power by
using comparatively weak alternating fields in the emitter
barrier and the depleted transit spdaad to exceed an effi-
ciency of the ballistic transit-time oscillators with the tunnel
electron emission

Ja(!jdc:
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