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An atomic structure-based model for high-temperature lattice conductivity is developed for both
compact crystals and cage-bridge crystals. For compact crystals, where long-range acoustic phonons
dominate, the Debye temperature TD and Grüneisen parameter � are estimated using interatomic
potentials to arrive at the lattice conductivity relation. Under the assumption of homogeneous
deformation, TD is estimated according to a simplified force constant matrix and a
phenomenological combinative rule for force constants, which is applicable to an arbitrary pair of
interacting atoms. Also, � is estimated from a general Lennard-Jones potential form and the
combination of the bonds. The results predicted by the model are in close agreement with the
experimental results. For cage-bridge crystals, where both short-range acoustic phonons and optical
phonons may be important, a simple mean-free path model is proposed: The phonon mean-free path
of such a crystal at high temperatures is essentially limited by its structure and is equal to the cage
size. This model also shows good agreement with the results of experiments and molecular
dynamics simulations. Based on this atomic-level model, the structural metrics of crystals with low
or high lattice conductivity are discussed, and some strategies for thermal design and management
are suggested. © 2006 American Institute of Physics. �DOI: 10.1063/1.2396794�

I. INTRODUCTION

The lattice thermal conductivities of crystals are of prac-
tical and theoretical importance. They are essential for the
reliability and performance of energy conversion systems,
thermal insulators and conductors, microdevices, and micro-
electronic systems. For industrial applications, lattice con-
ductivity is often obtained by the measurements of bulk crys-
tals. But some crystals, such as zeolites, cannot be grown
large enough for a direct measurement, and their thermal
conductivities are often extracted from indirect measure-
ments with large uncertainty.1 Furthermore, to synthesize a
new material with the desired thermal properties, or to im-
prove the performance of an existing material, a fundamental
understanding of thermal transport in the crystals and its re-
lation to the atomic structure is needed. An approach that can
readily estimate the thermal behavior of a crystal with ac-
ceptable accuracy is especially useful.

The common approaches for predicting the lattice con-
ductivity of a crystal fall into two categories, both of which
are based on the Fourier law. One is to use an atomistic
technique, such as molecular dynamics �MD� simulations.
MD requires only the inputs of the configuration of atoms
and suitable interatomic potentials. It is in principle a very
fundamental method and often used as a tool for understand-
ing thermal transport, in some cases with good agreement
with experiments �at relatively high temperatures�.2–4 How-
ever, accurate potentials are vital for MD, and the potentials
used in MD are often obtained by fitting to ab initio calcu-
lations or experimental results, which is often very difficult,
especially for complex polyatomic crystals.5 Also, MD is
often very cumbersome and time-consuming, and the nu-
merical results cannot provide much explicit information for

the structure design and optimization. The other strategy for
predicting the thermal conductivity is to use the continuum
transport theory and the kinetic theory, such as the Boltz-
mann transport equation �BTE� approach of Callaway6 and
Holland.7 These approaches use the relaxation time approxi-
mation and can be used to calculate lattice conductivities
quickly, but they require a good understanding of the under-
lying phonon scattering processes. Many such approaches
have some parameters that must be obtained empirically,
e.g., by fitting to the experimental or MD results,6–8 and are,
therefore, not suitable for the prediction or design of new
materials.

Starting from the derivation by Julian,9 in which the
variational principle is used to obtain an analytical relaxation
time for the rare-gas solids, Slack proposed that when heat is
mainly carried by acoustic phonons scattered via the three-
phonon process, the thermal conductivity of crystals with
constant volume at high temperatures �normally above
1/4–1/5 of the Debye temperature� can be given by the
relation10,11

k =
3.1 � 104�M��TD,�

3

T��2�Nc
2/3 . �1�

Here �M� is the mean atomic weight of the atoms in the
primitive cell, �3 is the average volume per atom, TD,� is the
high-temperature Debye temperature, T is the temperature,
Nc is the number of atoms in a primitive cell, and ��2� is the
mode-averaged square of the Grüneisen parameter at high
temperatures. Note that TD,� used by Slack is extracted from
the phonon density of states �DOS� Dp,11 i.e.,a�Electronic mail: kaviany@umich.edu
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2 =

5h2

3kB
2

�0
� �2Dp���d�

�0
� Dp���d�

, �2�

where h is the Planck constant, kB is the Boltzmann constant,
and � is the phonon frequency. However, TD,� cannot be
conveniently determined for it requires the information of
DOS. Since the difference between TD,� and the Debye tem-
perature TD at 0 K� extracted from the elastic constant or the
measurement of heat capacity is normally small, it is custom-
ary to use TD instead of TD,� in Eq. �1�. Also ��2� is often
replaced by ���2 �later, for simplicity we use � to denote
����, which can be determined from thermal expansion data
at high temperatures.

Equation �1� is widely tested with pure nonmetallic crys-
tals and the overall agreement is good, even for complex
crystals.10,11 The Slack relation illuminates how the atomic
structure affects the thermal transport and provides a useful
guide to tailoring the thermal transport properties.

McGaughey and Kaviany2 showed that the lattice ther-
mal conductivity can be decomposed into three parts:

k = klg,A + ksh,A + kO. �3�

Here klg,A is the contribution from long-range acoustic
phonons, whose mean-free path is larger than one-half of
their wavelength; ksh,A is the contribution from short-range
acoustic phonons, whose mean-free path is minimized to
one-half of their wavelength; and kO is the contribution from
optical phonons. Our previous work,12 has pointed out that
the Slack relation corresponds to klg,A and is valid only when
the short-range acoustic or optical phonons are not impor-
tant. This condition is not always satisfied for crystals with
low thermal conductivity, such as zeolites and metal-organic
frameworks �MOFs�. To identify the relative contributions of
these different mechanisms, a critical angular frequency �c

based on Klemen’s model12 is used, which is given as12

�c �
2.37 � 10−27�M�up,g

3

3�2��2kBT
, �4�

where up,g is the average phonon group velocity. The Slack
relation is valid only when �c is comparable with the Debye
frequency �D and long-range acoustic phonons dominate the
thermal transport.

To use the Slack relation, TD and � must be known,
which is the main difficulty in the estimation of the lattice
conductivities of new materials. Since these two parameters
directly relate the atomic structure to thermal transport, the
knowledge of their relations provides more insightful infor-
mation for the thermal design, and allows for the estimation
of thermal transport properties of new materials.

In this work, we report a simple microscopic model to
estimate TD and �. A phenomenological combinative rule for
force constants is proposed, which can be used to derive the
force constant of an arbitrary pair bond from the existing
experimental data. Then a model for the phonon group ve-
locity and the Debye temperature of complex crystals is de-
rived on the basis of the dynamical matrix, in which the
effects of the lattice and bases are decomposed by the
equivalent force constant. Using a general potential form for

a bond, the Grüneisen parameters of different types of bonds
are discussed, and then a relation for the equivalent Grü-
neisen parameter of the equivalent bond is developed, which
can be applied for complex crystals. For cage-bridge struc-
tures, where the Slack relation may not be applicable, a
simple phonon mean-free path model based on the kinetic
theory is also proposed, which shows good agreement with
experiments and MD.

II. COMBINATIVE RULE FOR FORCE CONSTANTS
OF AN ARBITRARY PAIR-BOND

The vibration energy is transferred in a crystal through
interactions among the atoms, which can be theoretically cal-
culated by quantum mechanical methods. However, a quan-
tum mechanical method deals with the electron clouds of the
atoms, and is very cumbersome for a system involving many
particles. Based on the Born-Oppenheimer approximation,5

the force field method uses empirical potentials �fitted to
experiments or quantum mechanic calculations�, such as
Lennard-Jones and Buckingham potentials, to describe the
interactions in the system. In most solids, when the tempera-
ture is well below the melting point, the particles only
slightly oscillate around their equilibrium positions and
many of their behaviors �including the elastic behavior� can
be well described in the framework of the harmonic
approximation.13 In this approximation, the energy of the
system can normally be decomposed into four terms corre-
sponding to the bond stretching, bending, torsion, and the
nonbonded interactions,5 i.e.,

E = 	
i

Ki

2
��ri�2 + 	

j

K	,j

2
��	 j�2 + 	

l

K
,l

2
��
l�2

+ 	
n

Km,n

2
��rm,n�2, �5�

where K, K	, K
, and Km,n are the force constants of the bond
length r, bond angle 	, torsion angle 
, and the distance
between molecules rm. Normally, the stretching interaction is
much stronger than the other interactions �by a factor of
more than 10�, so for a rigid structure, the elastic character-
istics are mainly determined by the stretching force con-
stants. The bending and torsion interactions are also impor-
tant for structure stability and deformation.

Since atomic interaction is determined by the electronic
structure, potentials and force constants are expected to be
transferable if the bond type and surroundings are similar.14

Here we present a phenomenological combinative rule for
the stretching and the van der Waals force constants.

The general form of two-body potentials can be written
as


AB�r� = �AB,rep�r� − �AB,att�r� , �6�

where �AB is the potential energy of the bond A-B, and the
subscripts rep and att represent the repulsive and the attrac-
tive terms. The repulsive term is due to the Pauli exclusion
principle or the electrostatic interactions. It has been shown
that the exchange repulsive term for two different atoms can
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be given as the geometric mean of the corresponding terms
for two pairs of equivalent atoms,15 i.e.,

�AB,rep�r� = ��AA,rep�r��BB,rep�r��1/2. �7�

The attractive term is due to the interactions of dipoles, elec-
trostatics, or a combination of them. The exchangeability of
the dipolar and electrostatic interactions is apparent, thus a
similar combinative rule is suggested for the attractive term,
i.e.,

�AB,att�r� = ��AA,att�r��BB,att�r��1/2. �8�

The potential near the equilibrium position can be described
by the general Lennard-Jones �LJ� potential model

��r� =
�

rm −


rn , �9�

where m and n depends on the interaction type, and their
values will be discussed in Sec. IV. The force constant K and
the bond length r0 at the equilibrium position are given as

K = −
mn�o

ro
2 =

m�m − n��
ro

�m+2� = n�m − n�
 n

�m
��n+2�/�m-n�

,

ro = 
�m

n
�1/�m−n�

, �10�

where −�o is the potential energy at the equilibrium position.
Equation �10� shows that the force constant at the equilib-
rium position is proportional to �o, when the bond type and
the bond length are similar. Note that at the equilibrium po-
sition, the ratio of the magnitudes of the contributions from
the repulsive term and the attractive term is �m+1� / �n+1�.
Therefore, for m�n �e.g., for ionic bond�, the force constant
is mainly determined by the repulsive term.

From Eqs. �7�, �8�, and �10�, if KAA is defined as the
force constant of the potential function �AA�r�=�AA,rep�r�
−�AA,att�r�, the force constant of A-B bond KAB and its equi-
librium bond length ro,AB can be given as

KAB = �KAAKBB�1/2, ro,AB = �ro,AAro,BB�1/2. �11�

Note that for ions, the A-A bond may not actually exist.
However, due to the similarity of the electronic configuration
of the ions in different compounds, we may assign a virtual
potential �AA to the ions, e.g., keeping the interaction due to
Pauli exclusion principle as the repulsive term and setting the
attractive term as �AA,att=q2 /r, where q is the ionic charge.
The properties of the virtual potential �e.g., KAA� can be ex-
tracted from the compounds. In this way, the combinative
rule �Eqs. �7� and �8�� is still valid. Similar relations like Eq.
�11� have been derived by Feranchuk et al.16 using 12-6 LJ
potential, but they did not consider the effects of bond order
and the long-range electrostatic interactions. In addition, it is
not appropriate to describe ionic bonds or covalent bonds
using 12-6 LJ potential, as will be discussed later.

Note that this combinative rule is only applicable for the
bonds with the same bond type �m and n are close� and bond
order. In real compounds, a bond with the same atom con-
figuration can have different bond orders. For example, C

=O has the bond order of 2, and C-O has the bond order of
1. It is observed that the force constant is approximately
proportional to the bond order,17 that is

KAB,s = sKAB,1, �12�

where KAB,s is the force constant of the bond between A and
B with the bond order of s. Thus Eq. �12� can be rewritten as

KAB,s = s�KAA,1KBB,1�1/2. �13�

Consequently, we have

KAC,s = s
�KAB,1KBC,1�1/2

KBB,1
. �14�

According to Eq. �12�, the potential energy � can be as-
sumed proportional to s, and re is expected to be independent
of s. For ionic bonds, when this assumption is used, the
resulting combinative rule for ionic bond length agrees well
with the experiments �the error is less than 3%�.16 However,
this assumption is only moderately accurate for covalent
bonds, because the LJ potential does not accurately describe
the changes of electron clouds and the energy in the entire
range of atomic distance. Generally, for covalent bonds, re

will decreases slightly when s increases. Paolini18 developed
an empirical bond order-bond length relationship for cova-
lent bonds

re,s = re,1 − 0.78�s0.33 − 1� , �15�

where re,s is the equilibrium bond length �in Angstrom� with
the bond order of s. Equation �15� shows good agreements
with the experimental results for many bonds18 and can be
used for the estimation of the bond length.

Table I lists the force constant KAA,1, electronegativity �,
and equilibrium bond length re,1. KAA,1 is extracted from the
experimental spectra of diatomic molecules19 according to
Eqs. �13� and �14� �the ionic KAA,1 of elements, e.g., O and S,
is an average of the values extracted from their compounds�.
re,1 is extracted from the bond lengths of the diatomic
molecules.19 Table I shows that KAA,1 of ionic bonds for the
elements with high electronegativity � �e.g., O and Cl� are
normally twice that of the corresponding covalent bond. This
indicates that the virtual potential of ions is steeper than the
covalent potential of the corresponding atoms near the equi-
librium position. The electronegativity � can be used to de-
termine the bond type. Bonds between atoms with a large
electronegativity difference ��1.7�, are usually considered to
be ionic, while values between 1.7 and 0.4 are considered
polar covalent, and values below 0.4 are considered nonpolar
covalent bonds.20 For metallic elements, even though �� is
small, their electron structures are similar to those in the
ionic crystals, for the conduction electrons can move about.21

Figure 1�a� shows that generally the ionic KAA,1 in-
creases as the electronegativity increases. The alkali metals
have the lowest KAA,1, while the halogen elements have the
highest KAA,1. When 1.0���2.5, most transition metal ele-
ments and semiconducting elements have a KAA,1 around
50 N /m, which is a relatively low value. In general, KAA,1
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decreases while the atomic radius increases. However, Fig.
1�b� shows for covalent bonds KAA,1 seems to relate to the
ratio of � /N �N is the atomic number� rather than �. Nitro-
gen has the highest covalent KAA,1.

Figure 2 compares the experimental results of some
bonds in diatomic molecules along with the calculated val-
ues. The mean square error is less than 8%, and the overall
agreement is good.

Note that the above force constants and equilibrium
bond lengths are derived from the data of gaseous diatomic
molecules, where the intermolecular effects are negligible.
For crystal bonds, long-range interactions �mainly electro-
static interactions� from the surroundings may significantly
affect the equilibrium bond length and force constant. For
example, Na-Cl in a NaCl molecule has a force constant of
110 N/m and a bond length 2.36 Å,19 while the distance
between the nearest Na and Cl ions in a NaCl crystal at T
=300 K is 2.83 Å, and the effective force constant of each
Na-Cl pair derived from the bulk modulus is only 20 N/m.22

Thus, a relation between the force constant of a bond in a
gaseous diatomic molecule and that in a crystal must be de-
veloped to account for the effects of long-range interactions.
Here, only the effect of electrostatic interactions is consid-
ered. Our approach is to include long-range interactions in an
effective bond potential of the nearest neighboring atoms. A
bond �in a diatomic molecule� with a form in Eq. �9� is
considered. Since the repulsive term is a very short-range
interaction, we assume only the long-range attractive term is
affected by the surroundings. This effective bond in a crystal
can then be represented as

����r� =
�

rm − �


rn , �16�

where � is the correction factor due to the long-range inter-
actions �in simple ionic structures, it is related to the Made-
lung constant�. However, � is difficult to determine for com-
plex crystal structures. In practice, according to this
assumption and Eq. �10�, the force constant of the bond in
the crystal KAB� can be simply calculated as

KAB� = KAB
 ro

ro�
��m+2�

, �17�

where KAB is the force constant of the bond in the diatomic
molecule AB, and ro� is the equilibrium bond length in the
crystal. For example, for NaCl, by setting m=6.3 �using the
approximation method Eq. �36��, and using the above bond
length data, we have KNaCl� =110� �2.36/2.83��6.3+2�

=24 N/m, which is very close to 20 N/m derived from the
bulk modulus.22 For ionic bonds, m is large, and Eq. �17�
indicates that KAB� is very sensitive to the values of ro and ro�,
so the experimental values of ro and ro� will be preferred.
When the experimental value of ro is unavailable, the com-
binative rule �Eq. �11�� can be used.

III. EVALUATION OF SOUND VELOCITY AND DEBYE
TEMPERATURE

If the force constants between atoms are known, the dy-
namical matrix can be readily constructed to determine the
sound velocity. However, for complex polyatomic crystals,
the calculation is still very cumbersome, and it is difficult to
explicitly relate the numerical results to the complex struc-
ture. For the purpose of estimation and design, a simple

TABLE I. Electronegativity, equilibrium bond length, and force constant of elements with the bond order of 1. The data are extracted from Ref. 19. The
symbols C and V represent covalent and van der Waals interactions, and the unlabeled are the values for ionic interactions.

Atom � re,1 K Atom � re,1 K Atom � re,1 K Atom � re,1 K
�Å� �N/m� �Å� �N/m� �Å� �N/m� �Å� �N/m�

H 2.20 0.74 �C� 575.67 �C� Ar – 3.76 �V� 0.80 �V� Br 2.96 2.28 �C� 250.83�C�, La 1.10 2.83 53.41
539.78

He – 1.04 �C� 411.74 �C� K 0.82 3.90 9.84 Kr 3.00 4.03 �V� 1.43 �V� Ce 1.12 2.74 169.30
Li 0.98 2.67 25.48 Ca 1.00 4.28 34.61 Rb 0.82 3.79 8.25 Pr 1.13 – 48.25
Be 1.57 1.39 120.62 Sc 1.36 2.40 77.60 Sr 0.95 3.05 26.57 Eu 1.20 – 31.11
B 2.04 1.76 �C� 354.90 �C� Ti 1.54 2.17 107.71 Y 1.22 - 70.05 Tb 1.10 – 72.63
C 2.55 1.54 �C� 610.5 �C� V 1.63 2.09 103.03 Zr 1.33 8.41 141.43 Ho 1.23 3.11 77.21
N 3.04 1.46 �C� 771.20 �C� Cr 1.66 2.17 87.18 Nb 1.60 2.36 108.25 Yb 1.10 2.89 33.74
O 3.44 1.46 �C� 593.57 �C� Mn 1.55 2.59 46.40 Ru 1.02 2.17 56.53 Lu 1.27 2.63 78.69

1305
F 3.98 1.41 �C� 473.82 �C� Fe 1.83 2.04 62.53 Ag 1.93 2.59 59.09 Hf 1.30 2.44 103.98

1960
Ne – 3.10 �V� 0.12 �V� Co 1.88 3.20 116.61 Cd 1.69 4.28 44.93 Ta 1.50 2.36 179.07
Na 0.93 3.08 17.28 Ni 1.91 2.96 130.00 In 1.78 2.86 34.41 W 2.36 - 202.54
Mg 1.31 3.89 41.60 Cu 1.90 2.22 65.82 Sn 1.96 2.80 58.34 Ir 2.20 2.36 110.01
Al 1.61 2.47 49.15 Zn 1.65 3.41 81.15 Sb 2.05 2.82 �C� 70.64 �C� Au 2.54 2.47 106.80
Si 1.90 2.34 �C� 109.04 �C� Ga 1.81 2.43 99.38 Te 2.10 2.74 �C� 119.46 �C� Hg 2.00 3.30 32.61
P 2.19 2.20 �C� 201.50 �C� Ge 2.01 2.16 121.79 I 2.66 2.66 �C� 172.73 �C�343.06 Tl 1.62 3.07 31.60
S 2.58 2.08 �C� 250.65 �C� As 2.18 2.42 120.48 Xe 2.60 4.36 �V� 1.74 �V� Pb 2.33 3.03 39.91

536.92
Cl 3.16 1.98 �C� 330.42 �C� Se 2.55 2.34 �C� 108.54 �C� Cs 0.79 4.47 6.97 Bi 2.02 3.07 49.08

705.81
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model that can directly relate the sound velocity and the
Debye temperature to the crystal structure is needed.

A real crystal structure can always be considered as an
underlying lattice, together with a basis describing the ar-
rangement of the atoms, ions, and molecules within a primi-
tive cell.13 The acoustic branches of the phonon dispersion

correspond to the motion of the mass centers of the primitive
cells.13 Therefore, both the monatomic and polyatomic crys-
tal structures can be modeled as a lattice with rigid bases
connected by equivalent bonds with an equivalent force con-
stant, as shown in Fig. 3.

A. Equivalent force constants

The elastic response of a solid can be divided into two
parts, namely, �i� atomic vibrations at fixed volume, and �ii�
unit cell volume fluctuations for a fixed atomic configuration
�homogeneous deformation�. The first part corresponds to the
inhomogeneous deformation, in which the bending potentials
and the torsion potentials may be important, especially in a
flexible structure. The bending potential can also be con-
verted into an equivalent stretching potential between the
atoms at the two ends. Since the force constant of the bend-
ing potentials and the torsion potentials are normally small,
the equivalent force constant will be much reduced by the
inhomogeneous deformation. It is difficult to obtain a general
simple analytical solution for such an inhomogeneous defor-
mation, and a numerical calculation using full dynamical ma-
trix �including the bending potentials� is preferred for obtain-
ing the equivalent force constant. However, for many solids,
the crystallographic symmetries and the stability of a given
phase with respect to small lattice deformations result in the
diminishing effects from the first part,23 and the elastic be-
havior can be described using the equivalent force constants
of the stretching potentials. In these cases, the bending po-
tential and the torsion potential may contribute to the stabil-
ity of the structure, but their contribution to the elastic re-
sponse is negligible.

When only considering the bond stretching, it is appar-
ent that only the transport of stretching along the transla-
tional unit vector a can contribute to the energy transport in
this direction. Thus we define the force constant of a bond
along a given unit vector a as24

K��,a =
�2���

�xa
2 =

�2���

�r��
2 
 xa

r��

�2

= �a · n���2K��, �18�

where xa is the projection of the bond length r along a, and
n�� is the unit vector pointing from the particle � to the
particle �. Equation �18� shows that the projection of the
force constant along a has a factor of �a ·n���2.

FIG. 1. �a� Variation of calculated ionic force constant KAA,1 with respect to
the electronegativity. �b� Variation of the calculated covalent force constant
KAA,1 with respect to the ratio of the electronegativity and atomic number.
The data are extracted from the spectra of diatomic molecules �Ref. 19�. The
lines are used to guide the eyes.

FIG. 2. Comparison of calculated force constants and the corresponding
values from the experimental spectra, for some atomic pairs �Ref. 19�.

FIG. 3. Decomposition of a complex crystal into lattice and bases, with
equivalent bonds.
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The total deformation of the primitive cell is affected by
all the bonds in it. Using Eq. �18�, we may treat the bonds in
a primitive cell as springs with the same K��,a, and then
convert the crystal primitive cell into a network composed of
springs. This spring network can be simplified to obtain the
equivalent force constant between two bases according to the
following rules �we denote the force constants of two bonds
as K1 and K2, and that of the equivalent bond of these two
bonds as Keq�:

�i� When the two bonds are in series,

Keq
−1 = K1

−1 + K2
−1; �19�

�ii� when the two bonds are parallel,

Keq = K1 + K2. �20�

For a monatomic crystal, the primitive cell only includes one
atom, and the equivalent force constant is just the force con-
stant of the bond between the atoms.

B. Sound velocity and Debye temperature model

From the lattice dynamics, the sound velocities of acous-
tic branches at the long-wavelength limit are the square roots
of the eigenvalues of the matrix13

−
1

2M
	
R

�s� · R�2D�R�,Di,j�R� =
�2�

�ui
0 � uj

R , �21�

where s� is the unit wave vector, D�R� is the force matrix, R
is the position vector of the neighbor, u is the displacement
of the mass center of the primitive cell from the equilibrium
position �0 represents the origin�, and M is the mass of the
primitive cell.

Using the above simplified model for crystal structures,
if only the stretching energy is considered, Eq. �5� can be
rewritten as


 = 	
R

KR

2
�nR · �uR − u0�2, nR =

R

�R�
, �22�

where KR is the equivalent force constant between the two
bases. Thus Di,j�R�=�i,jKR. Note that R is a linear function
of the lattice constants, so the sound velocity will have the
form

up,g,i = d�sk,i,�ai�
�i

M
�1/2

, �i = 	
R

���R,sk,i�KR� , �23�

where �ai is the set of the translational vectors of the lattice.
Note that Eq. �23� has the same form as the formula for the
one-dimensional chain.24 It is instructive to consider a plane
wave traveling in a crystal, wherein the lattice is consisted of
parallel planes perpendicular to the wave vector and the at-
oms in a plane will move in phase. The transportation along
the wave vector is essentially one dimensional. From the
comparison with the formula of the one-dimensional chain,24

d is indeed the equivalent distance between the planes and
normally is the linear function of the lattice constants. The
effective force constant � is the summation of the projections
of the equivalent force constant in the polarization s�,i, that
is, ��R ,s�,i�= �nR ·s�,i�2.

The average sound velocity up,g,A can be calculated as

up,g,A = 
	
i=1

3
1

3up,g,i
3 �−1/3

. �24�

For cubic structures, the average sound velocity can be given
as

up,g,A =
1

31/2a
 K

M
�1/2

, �25�

where a is the lattice constant.
From the longitudinal and transversal sound velocity, we

can obtain the polarization-dependent Debye temperature
TD,i and the average Debye temperature TD,13

TD,i = up,g,i
�

kB
�6�2na�1/3 =

di

Vc
1/3
�i

M
�1/2 �

kB
�6�2Nc�1/3,

TD = up,g,A
�

kB
�6�2na�1/3 = 
	

i=1

3
1

3TD,i
3 �−1/3

, �26�

where na is the number density of atoms, Nc is the number of
atoms in a primitive cell, and Vc is the volume of a primitive
cell. Here di /Vc

1/3 is only a function of the ratio of lattice
constants and the polarization, and the Debye temperature
relates to the ratio of the lattice constants rather than their
absolute values. It is apparent that if the lattice constant and
other parameters are the same except the lattice type, the
order of magnitude of TD is TD�FCC��TD�BCC��TD�SC�.

Figure 4 compares the calculated and experimental De-
bye temperatures11 �determined from elastic constants or spe-
cific heat capacity measurements� of some crystals. The
force constants used in the calculation are from the combi-
native rule and Table I. The overall agreement is good. The
force constant for metals are calculated according to Eq.
�17�. It is found that m=8 gives good agreement with experi-
mental values. Again, it is found that for metallic crystals,

FIG. 4. Comparison of the predicted and measured Debye temperature for
some crystals. The force constants for metallic crystals are calculated ac-
cording to Eq. �17� �m is set to 8�. The experimental values are from Ref. 11.
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the force constant can be reduced significantly by the long-
range electrostatic interaction �by a factor of about 5�, which
results in a low Debye temperature.

IV. THERMAL EXPANSION AND GRÜNEISEN
PARAMETER

The Grüneisen parameter has been used to represent the
volume dependence of the normal mode frequencies. The
overall Grüneisen parameter � is defined as13

� =
	�,���,�cv����

	�,�cv����
, ��,� = −

� ln ��,�

� ln V
, �27�

where the subscript � denotes the branch of a normal mode,
cv is the heat capacity per normal mode, and V is the volume.
In the Debye approximation, all the normal-mode frequen-
cies scale linearly with the Debye temperature TD and,
therefore,13

� = ��,� = −
� ln �D

� ln V
. �28�

That is, � represents the relative shift of the Debye angular
frequency with respect to the volume.

We consider a crystal containing only one bond type.
According to Eqs. �23� and �28�, since the Debye frequency
�D�K1/2 and the volume V�re

3, we have

� = −
d ln K

6 d ln re
. �29�

Note that � only relates to the bond. Zallen25 defined a
“bonding-scaling parameter” �� as

�i� = −
d ln Ki

6 d ln ri�
, �30�

where Ki� and ri� are the force constant and the equilibrium
length of the bond i. For the crystals containing only one
bond type, the Grüneisen parameter � is equal to the
bonding-scaling parameter ��.

We can rewrite Eq. �30� in terms of a small relative
deviation fraction �:

Ki���� � Ko��1 − 6���� , �31�

where Ki� is the initial equivalent force constant. It is appar-
ent that �� represents the intrinsic anharmonicity of a bond,
i.e., the relative shift of the force constant with respect to the
bond length. It seems reasonable that the �� of each bond is
independent of other bonds.

We again consider the crystal containing one bond type
to obtain the bond-scaling parameter ��. Ruffa26 developed a
thermodynamic description of Morse oscillators using a sta-
tistical treatment. Here a similar approach is applied for the
Lennard-Jones oscillators representing the interatomic poten-
tials. Consider an assembly of independent oscillators with
the interatomic potential of Eq. �9�, of which the natural
angular frequency �= �K /��1/2 �� is the reduced mass of the
oscillator�. If Eq. �9� is expanded in a Taylor series, the vi-
brational energy El and the mean atomic separation �rl� of
the motion with the principle quantum number l of this os-
cillator can be expressed as27

El = ��
l +
1

2
� − Ce�

2�2
l +
1

2
�2

, Ce =
5�m + n + 3�2

48�omn
,

�rl� = ro + Crro��
l +
1

2
�, Cr =

3�m + n + 3�
2�omn

. �32�

Then, we have �see the derivation in the Appendix�

�� � �o��1 + CekBT
f1�xD�
f�xD� �, �o� =

m + n + 3

6
,

f�xD� = �
0

xD x3dx

ex − 1
, xD = TD/T ,

f1�xD� = �
0

xD x4�1 + ex�dx

�ex − 1�2 . �33�

Typically, the vibration energy is much smaller than the dis-
sociation energy and CekBT is small, so the temperature de-
pendence of �� is weak. At high temperatures, �� will reach
�o�. It is very interesting to note that �o� only depends on m
and n, or the bond type.

�i� Ideal ionic bonds. The attractive potential is domi-
nated by the electrostatic potential, and the lattice summation
of the long-range electrostatic interactions does not change n
�the Madelung term�, thus n=1. The repulsive term arises
from the full-filled shells and the Pauli exclusion principle.
The measurements for typical ionic bonds show m=6−10.13

The midpoint m=8 is a reasonable choice for the estimation,
therefore, �o�=2.0. In fact, �o�=2.0 agrees well with the high
temperature � values of many typical ionic crystals with one
bond type.11,24

�ii� van der Waals interactions. The attractive term arises
from the interaction between dipoles and varies as 1 /r6, that
is, n=6. The widely-used 12-6 Lennard-Jones potential
chooses m=12 for the repulsive term. However, it is found
that m=12 makes the repulsive term very steep.5 m=12 gives
�o�=3.5, a much higher value than the measured results. For
example, at high temperatures, � of Ne, Ar, Kr, and Xe are
2.76, 2.73, 2.84, 2.65,11 respectively. Considering the repul-
sive term of van der Waals interaction arises from the same
mechanism �i.e., the filled outer shell� as in an ionic bond, it
is reasonable to choose the same value 8 for m. This choice
gives �o�=2.83, which agrees much better with the above
experimental results.

�iii� Nonpolarized covalent bonds. The attractive term is
due to the electrostatic interaction, therefore, n=1. For m, the
case is more complicated, because the distribution of valence
electrons differs substantially from that in isolated atoms or
ions. The repulsive term includes the electrostatic term and
the term due to the Pauli exclusion principle. In fact, the
covalent bond is more appropriately described by the Morse
potential5

� = �o�e−2ao�r−ro� − 2e−ao�r−ro�� . �34�

Ruffa26 suggested an empirical relation: aoro= �m+4� /5. For
typical covalent bonds, aoro�1.0−1.2, thus m�1−2. Since
m�n, we choose m=2 and obtain �o�=1.0. This value is also
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in accord with the relation Kr6=const for covalent bonds, as
suggested by Herzberg.14

The covalent bond between atoms with different elec-
tronegativities is partially polarized �ionic bonds can also be
considered highly polarized covalent bonds�. Using the rela-
tion of the percent of the ionic character c proposed by
Pauling,20 �� of a polarized bond can be given as

�� = �AB� = �1 − c��cov� + c�ion� , c = 1 − e−��A − �B�2/4, �35�

where �cov� and �ion� represent the bond-scaling parameters of
a non-polarized covalent bond and the ideal ionic bond, re-
spectively. Equation �35� together with Eq. �33� can also be
used for the rough estimation of m in an interatomic poten-
tial:

m � 8 − 6e−��A − �B�2/4. �36�

�iv� Metallic bonds. Though metallic crystals also in-
clude ions, they are very different from ionic crystals. The
metals can be treated as ions immersed in a sea of free
electrons.13 Thus, the interactions between ions can be
treated as the summation of the bare interactions between
ions and the electron-ion interactions. Both the repulsive
term and attractive term include the long-range electrostatic
interactions. However, due to the screening effects of free
electrons, the interaction between ions decays faster than the
pure coulomb interactions, thus, m�1 and n�1 �due to the
attractions of ions to free electrons, repulsive term decays
faster than the attractive term�. The derivation of �� for me-
tallic bonds is complicated. To compare it with experimental
results, one also needs to include the contribution from the
free electrons �it may be small at high temperatures�. How-
ever, since the screening effects increase with the increasing
electron number density,13 we would expect that in the met-
als with high electron number density, m�8 and 1�n�6.
For simplicity, in this work we set m=8 and n=1 �the same
values for ionic bonds�. The resulting �=2.0 is close to the
experimental results of many metals �the alkali metals have a
� close to 1.2, due to the poor screening effects�.

�v� Other interactions. Some other interactions, e.g., ion-
dipole interaction, may exist in some crystals. These interac-
tion may be considered as the cross terms of the above in-
teractions. Using the combinative rule for potentials �Eqs. �8�
and �7��, we can have

m =
�m1 + m2�

2
, n =

�n1 + n2�
2

, �� =
��1� + �2��

2
, �37�

where the subscripts 1 and 2 denote the individual interac-
tions.

It can be seen that the order of magnitude of �� for
bonds is �� �van der Waals bond� ��� �ionic bond� ���
�polarized covalent bond� ��� �nonpolarized covalent
bond�. Figure 5 compares the calculated high-temperature
Grüneisen parameters of crystals containing only one bond
type with the experimental results �at the Debye
temperature�,11 and the overall agreement is good. Note that
for ionic crystals, Grüneisen parameters are slightly overes-
timated. One reason is that the temperature at which the mea-
surements are performed is not high enough. For example, �

of NaCl at the Debye temperature is 1.57, but at 800 K, its
value is 1.76,28 compared to 1.71 given by Eq. �35�. Another
possible reason is that c in Eq. �35� determined by Pauling is
not very accurate.

Note that Eq. �30� is valid for the equivalent force con-
stant K, so the Grüneisen parameter � of a crystal can be
obtained by evaluating the equivalent �� of the equivalent
bond.

For two parallel bonds, Eqs. �20� and �31� lead to

�� =
K10

K10 + K20
�1� +

K20

K10 + K20
�2�, �38�

where K10 and K20 represent the equilibrium force constants
of bond 1 and 2. That is, the equivalent �� of the parallel
bonds is the summation of the �i� of the bonds weighted by
the fraction of force constants.

Similarly, for two bonds in series, the equilibrium re-
quirement gives

�1 =
K20�r1 + r2�

�K10 + K20�r1
�, �2 =

K10�r1 + r2�
�K10 + K20�r2

� , �39�

and Eqs. �19� and �31� lead to

�� = 
 K20

K10 + K20
�2r1 + r2

r1
�1� + 
 K10

K20 + K10
�2r1 + r2

r2
�2�.

�40�

Equation �40� shows the equivalent �� is related not only to
the force constants and �i�, but also to the bond lengths. Note
when �1=�2=� �homogeneous deformation�, Eq. �40� can be
reduced to

�� = 
 K20

K10 + K20
��1� + 
 K10

K20 + K10
��2�, �41�

which does not relate to the bond lengths.
Assuming r1�r2 and �2� is the smaller one, the depen-

dence of �� /�2� on the ratio of force constants K10/K20 is
plotted in Fig. 6.

FIG. 5. Comparison of predicted high temperature Grüneisen parameters
with the experimental results at the Debye temperatures, for some crystals
�Ref. 11�.
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Figure 6 shows that, the equivalent �� of both the paral-
lel and serial arrangement is always higher than �2�. For the
parallel arrangement, �2������1�, the stronger bond contrib-
utes more to the equivalent ��; when �1� /�2�=1, the equiva-
lent �� is independent on K10/K20. For serial configuration,
�2�����2�1�, the weaker bond contributes more to ��. For
equivalent ��, according to Eq. �40�, the lowest value
2�1��2� / ��1�+�2�� is achieved when K10�1�=K20�2�, and the mis-
match of Ki�i� of neighboring bonds causes an increase in the
anharmonicity. To increase anharmonicity and reduce the
sound velocity, the serial arrangement is preferred.

V. PREDICTION OF THERMAL CONDUCTIVITY

Using the relations for �, � and TD, when �c is compa-
rable with �D, the thermal conductivity can be readily calcu-
lated using the Slack relation. The predicted thermal conduc-
tivities of some crystals at high temperatures are listed in
Table II and shown in Fig. 7�a�, and the measured values and
the values calculated by Slack11 are also given. Note Slack
used TD,� calculated from the phonon density of states Dp,
which is different from the measured TD listed in Table II.
Table II shows that the thermal conductivities and the Debye
temperatures estimated by our model agree well with the
experimental results and the Slack results, but the Grüneisen
parameters are normally overestimated in our model, as dis-
cussed in Sec. IV. The average mean square error between
the estimated values and the experimental results is about
20%. Slack used TD,� along with the experimental � �but 0.7
was used for Ge, Si, and SiC and for better agreement with
the experiments11�, both of which are normally slightly lower
than the values estimated in our model. Note that we also
predict the lattice thermal conductivity of Al and Pt, by only
considering the phonon-phonon scattering. The crystalline
metals normally have a low lattice thermal conductivity, not
only due to the strong scattering of phonons by free elec-
trons, but also due to their large Grüneisen parameters and
small force constants �caused by long-range electrostatic in-
teractions�.

When �c��D, the thermal transport is dominated by
the short-range acoustic phonons and optical phonons. While

the acoustic contribution can be calculated using a relation
similar to the Cahill-Pohl relation,12,29 the optical part is dif-
ficult to determine and it is comparable to the acoustic
contribution.2,12 However, for some special atomic struc-
tures, the phonon mean-free path is limited by the crystal
structure, and the thermal conductivities of such crystals of-
ten exhibit temperature-independence above the Debye tem-
perature. According to the kinetic relation13 k=nacvup,g� /3
�cv is the heat capacity per atom�, if the phonon mean-free
path � can be determined from the characteristics of the
structure, the thermal conductivity can also be easily calcu-
lated.

There exist many special structures that can limit the
phonon mean-free path at high temperature. For example, in
the filled skutterudite structures,30 the fillers act as scatterers
and limit the phonon mean-free path to be the distance be-
tween the scatterers. Here we discuss the cage-bridge struc-
ture, which is common for nanoporous crystals, e.g., zeolites,
MOFs, and many molecular crystals.

The cage-bridge structure includes complex multiatomic
cages connecting by relatively simple bridges �see Fig. 7�b��
�sometimes the cages may also be joined directly without
bridges�. In such a structure, the atoms in the cage are nor-
mally much more than the atoms acting as connectors. Zeo-
lites and MOFs are good examples of such structures. Some
siliceous zeolites, e.g., LTA, FAU and SOD, contain the
complex sodalite cage built from SiO4 tetrahedra.2 MOF-5,
the smallest cubic MOF structure, is comprised of Zn4O
clusters linked by 1,4-benzenedicarboxylate �BDC�.12

FIG. 6. �Color online� Variation of ratio of the equivalent bond-scaling
parameter to the smaller bond-scaling parameter of the bonds �� /�2� with
respect to the ratio of the force constants K10/K20. The symbols P and S
denote the parallel and serial arrangements.

TABLE II. Predicted thermal conductivities and parameters of some crystals
at given temperatures. The experimental results �Refs. 11 and 13� are shown
in the parentheses, and the calculated results by Slack are shown in the
brackets. Note that Slack used TD,� determined from the phonon density
states, which is different from the experimental TD listed here. Also Slack
used the � derived from experiments except diamond, SiC, Ge, GaAs, and
BP �he chose 0.7 for these crystals for better agreement with the experi-
ments�. The values of m used in the calculations are all estimated using Eq.
�36�, rather than from the experimental results.

Crystals T �K� TD Nc � k �W/m K�
Ar 84 94 �85� 1 2.83 �2.73� 0.5 �0.4� �3.8�
Kr 66 87 �73� 1 2.83 �2.84� 1.1 �0.5� �0.4�
Diamond 300 2183 �2230� 2 1.0 �0.9� 1292 �1350�
Ge 235 382 �360� 2 1.0 �0.76� 95 �83��89�
Si 395 584 �625� 2 1.0 �0.56� 76.7 �115� �93�
Cu 300 339 �315� 1 2.0 14.4 �10�b

Pt 300 194 �230� 1 2.0 9.1 �6b�
GaAs 220 367 �346� 2 1.01 �0.75� 72 �81� �77�
CaF2 345 453�510� 3 1.89 �1.89� 7.0 �8.5� �9.1�
MgO 600 1034 �945� 2 1.68 �1.44� 53 �25� �28�
NaCl 230 382�330� 2 1.71�1.57� 11.1 �8.6� �6.3�
c-BN 300 1614 2 1.22 733 �748�
SiC 300 1212 �1079� 2 1.11 �0.76� 463 �490��461�
BP 670 891 �982� 2 1.0 97.46 �110� �166�
PNa 300 890 2 1.16 329
CSea 300 706 2 1.0 327

aAssuming the crystal has the similar structure as BN, and the bond length is
calculated from the combinative rule.
bThe lattice conductivities are from Ref. 10. They are obtained by subtract-
ing the electrical thermal conductivity �derived from Wiedemann-Franz law�
from the total thermal conductivity.
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Many molecular crystals consist of large, complex mol-
ecules held together by weak van der Waals interactions or
hydrogen bonds. The intramolecular interactions are much
stiffer than the intermolecular interactions. They can also be
considered a special type of cage-bridge structure, and each
complex molecule can be considered a cage.

When T�TD, all the vibration modes will have the same
contribution to the total vibration energy. Since most atoms
lie in the cage, most vibration energy is located in the cage
and a fraction of the vibration energy transports to the next
cage through connectors. However, the large coordination
number difference or bond stiffness difference make the con-
nector a bottleneck for the energy transport, and most pho-
non energy is localized in the cage, or reflected at the con-
nectors. McGaughey and Kaviany2 showed that the Si-O-Si
bonds contribute to the energy localization in FAU- and
SOD-zeolites. Our work for MOF-5 �Ref. 12� also showed
the carbon connector limits the transport of phonon energy.
An indicator of this phenomena is the large difference be-
tween the phonon partial density of states �PDOS, weighted
by the concentration of atoms� of the cage and that of the
connectors �as shown in Ref. 12�. Therefore, the connectors
will act as scatterers in the structure. If the cage is relatively
rigid �phonons experience little scattering within the cage�,

the phonon mean-free path will be limited by the distance
between the connectors at the boundary of the cage, which is
often the same as the cage size w. For molecular crystals, w
is essentially the dimension of the molecule. Then we have

k =
1

3
nacvup,gw . �42�

When the temperature is higher than the Debye temperature,
cv can be simply set as 3kB.

This simple mean-free path model for the cage-bridge
structures leads to good agreement with the experimental
values or the MD results, as shown in Table III. The values
calculated by the Slack relation �kCP� are also shown, and it
is apparent that �kCP� has a lower value.

When the temperature decreases, the high frequency
phonon modes caused by the internal vibrations of the cage
will decrease much faster than the low frequency modes, and
the fraction of localized energy will decrease. When the tem-
perature is much lower than the Debye temperature, the frac-
tion of localized vibration energy will be small and the pho-
non mean-free path will no longer be limited by the cage
size.

VI. SUMMARY AND CONCLUSION

A simple atomic structure based model for the estimation
of lattice thermal conductivity of crystals at moderate and
high temperature is proposed. When the critical frequency �c

is comparable with the Debye frequency �D, the thermal
conductivity is obtained on the basis of the Debye tempera-
ture and the Grüneisen parameter calculated from the atomic
configuration of the structure.

The calculation of the Debye temperature involves three
steps: �i� estimation of the force constant of arbitrary pair of
interacting atoms on the basis of a phenomenological com-
binative rule and data listed in Table I; �ii� simplification of
the network system of bonds using analogy with a spring
system, and calculation of the equivalent bonds; �iii� calcu-
lation of the Debye temperature using the equivalent bonds
and the topology of the crystal.

The determination of the Grüneisen parameter consists
two steps: �i� Estimation of the bond-scaling parameter of

FIG. 7. �a� Comparison of the predicted lattice thermal conductivity of some
compact crystals with the experimental results. �b� Comparison of the cal-
culated thermal conductivities of some cage-bridge crystals with the experi-
mental or MD results.

TABLE III. Comparison of predicted thermal conductivities of some cage-
bridge structures calculated by Eq. �42� and the Slack relation, with the
experimental and the MD results.

k�W/m K�
Crystals T �K� up,g �m/s� w �Å� Eq. �42� kCP exp./MD

MOF-5a 300 1184 7.16 0.28 0.025 0.32
IRMOF-16 a 300 600 7.16 0.10 0.01 0.08
SOD 350 4200b 8.88 2.79 1.58 3.09c

LTA 300 3200b 8.88 1.75 0.47 1.68 c

C60 260 2000d 7.00 0.52 0.007 0.4e

aValues for MOF-5 are taken from Ref. 12. The data for IRMOF-16 is
calculated by MD using the same potentials.
bValues are derived from the bulk modulus �Ref. 23�, by setting poisson
ratio as 0.3.
cValues are taken from MD results from Ref. 2.
dValues are derived from the bulk modulus �Ref. 31�.
eValues are from Ref. 32.
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each single bond; �ii� estimation of the equivalent Grüneisen
parameter using Eqs. �38� and �40� on the basis of the con-
figuration of bonds. It is found that when K�� of the bonds
match, the equivalent Grüneisen parameter achieves its mini-
mum.

This simple atomic structure-based model can be used to
quickly estimate the high-temperature thermal conductivity
of crystals. On the other hand, some useful insights into the
design of materials with desired properties can be extracted.

According to Eqs. �1� and �26�, we have

k =
4.0 � 1012NlK

3/2�

�2�M�1/2Nc
7/6T

, �43�

where Nl is a constant related only to lattice type. Therefore,
to increase the thermal conductivity, one may increase the
equivalent force constant K and lattice constant a, while re-
ducing the mean atomic weight �M�, Nc, and the Grüneisen
parameter �. Here FCC is expected to achieve a high thermal
conductivity. The opposite approaches can be used to
achieve a low lattice thermal conductivity.

Evidently, molecular crystals will normally have a very
low thermal conductivity because of the small K, large �,
and Nc.

For ionic and covalent diatomic crystals, �=2
−exp�−��2 /4�, then Eq. �44� can be rewritten as

k =
4.0 � 1012Nl�K3/2

�2 − exp�− ��2/4��2�M�1/2Nc
7/6 . �44�

For compact structures, � may be set as the mean diameter of
the atoms.

Table I and Fig. 1�a� show that most metals have a low
KAA,1 around 50 N/m. Even when they bond with F �which
has the highest KAA,1�, KAB,1 is expected to be lower than
250 N/m. Also, metal elements normally have a heavy mass
and ionic bonds have a relatively high ��. In comparison,
covalent bonds may have a higher KAB,1, lower ��, and those
nonmetallic elements with a high KAA,1 have a relatively light
mass. Thus, for high thermal conductivity, covalent crystals
are preferred. Among covalent crystals, the compounds of N
and C are expected to have a high thermal conductivity, since
N and C have the highest KAA,1, moderate �, light masses,
and possibly high bond orders. In general, the sequence of
lattice conductivity for crystals is k �nonpolarized covalent
crystal� �k �polarized covalent crystal� �k �ionic crystal�
�k �molecular crystal�, as shown in Fig. 7�a�. Furthermore,
the oxidation states of the elements need to match and the
mass difference should be small to achieve a small Nc. Ma-
terials satisfying these conditions are expected to have a high
thermal conductivity, e.g., BN, AlN, BP, and SiC, further-
more, it is expected that PN and CSe would have a high
thermal conductivity if they could be synthesized �listed in
Table II�.

For thermoelectic materials or thermal insulators, lower
phonon thermal conductivity is desired. In addition to the
common strategies �e.g., using heavy atoms and making a
complex unit cell�, the following may be used as a guide:

�i� Adding flexible structures on the transport path. Flex-
ible structures with bending or torsion motion often have a

small K and high �, thus they can both reduce the sound
velocity and increasing the anharmonic scattering.

�ii� Making the bonds as perpendicular as possible to the
transport path. This can reduce the projection of the force
constant, and lower the Debye temperature.

�iii� Enlarging the mismatch of K� of the neighboring
bonds. Substituting some bonds with bonds with higher �, or
substituting some bonds to increase the mismatch of force
constant, can increase the anharmonic scattering. For ex-
ample, by replacing some covalent pairs with pairs with
charges or larger electronegativity difference, the phonon
thermal conductivity can be reduced, as observed by Cahill
et al.29

�iv� Arranging the bonds with high � in series. This will
help increase the anharmonic scattering.

For special cage-bridge structures, a simple mean-free
path model based on the kinetic theory is proposed, which
indicates that at high temperatures, the mean-free path of
cage-bridge structure is equal to the dimension of the cage.
This simple model shows good agreement with experimental
and the MD results.

The simple atomic structure model proposed in this pa-
per allows for the quick estimation of thermal transport prop-
erties, and can be used as a guide for the design of new
materials with a desired lattice conductivity.
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APPENDIX: GRÜNEISEN PARAMETER FOR LJ
OSCILLATORS

For LJ oscillators, the vibrational energy El and the
mean atomic separation �rl� of the motion with the principle
quantum number l of this oscillator can be expressed as27

El = ��
l +
1

2
� − Ce�

2�2
l +
1

2
�2

, Ce =
5�m + n + 3�2

48�omn
,

�rl� = ro + Crro��
l +
1

2
�, Cr =

3�m + n + 3�
2�omn

, �A1�

where −�o is the equilibrium potential energy.
The statistical mean vibration energy E��� and inter-

atomic separation r��� for frequency � can then be given
as26

E��� = F − T
 �F

�T
�

V

, F = − �� ln Z , �A2�

r��� =
	l=0

� �rl�e−El/kBT

	l=0
� e−El/kBT = ro +

Crro��

2
+

Crr���

e��/�� − 1
, �A3�

where Z=	l=0
� e−El/kBT, is the partition function of the oscilla-

tor. Using the Debye approximation, the total vibrational en-
ergy E can be given as
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E = �
0

�D

E���Dp���d�

� Eo + 9NkBTxD
−3f�xD� − 9CeN�kBT�2xD

−3f1�xD� ,

f�xD� = �
0

xD x3 dx

ex − 1
, xD = TD/T ,

f1�xD� = �
0

xD x4�1 + ex�dx

�ex − 1�2 , �A4�

where Dp��� is the phonon density of states, �D is the Debye
frequency, and Eo is the zero point energy.

Similarly, the mean interatomic separation re can be
written as

re =
1

3N
�

0

�D

Dp���r���d� = ro + r1 + 3kBTCrro
 T

TD
�3

f1�xD� ,

�A5�

where r1 is the deviation due to the zero-point vibration, and
r2 is related to the thermal vibration and anharmonicity of the
potential. re,o=ro+r1 is the equilibrium separation at T
=0 K.

The Mie-Grüneisen equation of state is26

p +
dU

dV
= �

Ev

V
, �A6�

where p is the pressure, U is the lattice potential energy, Ev is
the total vibration energy excluding the zero-point energy Eo,
and V is the volume.

For small perturbation

dU

dV
� Bo

V − Vo

Vo
= 3Bo

r − ro

ro
, �A7�

where Bo is the bulk modulus at zero temperature, and Vo is
the initial volume. Since Bo=Uomn / �9Vo� �Ref. 26� and �
=�� �the crystal contains only one bond type�, by setting
re,o=ro, Eqs. �A4�, �A5�, and �A7� give

�� � �o��1 + CekBT
f1�xD�
f�xD� �, �o� =

m + n + 3

6
. �A8�
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