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No-cloning of nonorthogonal states does not require inner
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The no-cloning theorem says there is no quantum copy machine which can copy
any one-qubit state. Inner product preserving was always used to prove the
no-cloning of nonorthogonal states. In this paper we show that the no-cloning of
nonorthogonal states does not require inner product preserving and discuss the
minimal properties which a linear operator possesses to copy two different states at
the same device. In this paper, we obtain the following necessary and sufficient
condition. For any two different states |¢/)=a|0)+b|1) and |@)=c|0)+d|1), assume
that a linear operator L can copy them, that is, L(|¢,0))=|i,4) and L(|¢,0))
=|¢, @). Then the two states are orthogonal if and only if L(|0,0)) and L(|1,0)) are
unit length states. Thus we only need linearity and that L(|0,0)) and L(|1,0)) are
unit length states to prove the no-cloning of nonorthogonal states. It implies that
inner product preserving is not necessary for the no-cloning of nonorthogonal
states. © 2005 American Institute of Physics. [DOI: 10.1063/1.1996327]

I. INTRODUCTION

The no-cloning theorem from the work of Wootters and Zurek said there is no quantum copy
machine which can copy any quantum state.'™ The authors in Refs. 1 and 4 demonstrated if a
quantum copy machine can copy two basis states, then it cannot copy their suppositions. Another
version of the no-cloning theorem was stated in Ref. 5. The authors in Refs. 6—8 used inner
product preserving to show that nonorthogonal states cannot be cloned by a unitary operator. The
no-cloning theorem was extended to mixed states by Barnum et al.’> Some authors presented
approximate copies of qubits.4’8 Mor suggested a type of the no-cloning principle and discussed
various cases in which orthogonal states cannot be cloned in principle.9

Let |0) and |1) be the basis states of a one-qubit system and [0,0), [0,1), [1,0) and |1, 1) be
the basis states of a two-qubit system.

Let |)=al0)+b|1), where a and b are complex and

la +1B[[* = 1. (1)

Let |@)=c|0)+d|1), where ¢ and d are complex and
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lell? + ][> = 1. (2)
$.0)=[¢,4) and

Assume that a linear operator L can copy states |¢) and |¢), that is, L(

L(|@,00)=|@,¢). By tensor product |¢,)=(al0)+b|1))® (al0)+b|1))=a?|0,0)+abl0,1)
+ab|1,0)+b?|1,1). By the linearity of L, L(|t,0))=aL(]0,0))+bL(|1,0)). So we get
aL(|0,0)) + bL(|1,0)) = a?|0,0) + ab|0, 1) + ab|1,0) + b*|1,1). (3)
From that L(|¢,0))=]|¢, ¢, similarly we get
¢L(0,0) + dL(|1,0)) = ¢2|0,0) + ¢d|0,1) + cd|1,0) + 2|1, 1). (4)
Since |¢) and |¢) are different, the determinant of the coefficient matrix
ad—bc # 0. (5)
Thus from Egs. (3) and (4) we get by Gramer’s rule the following L(|0,0)) and L(|1,0)):
L(|0,0)=(1/(ad—-bc))((a®>d-bc?)|0,0)+bd(a—c)|0, 1)+ bd(a—c)|1,0)+bd(b—d)|1,1)), L(|1,0))
=(1/(ad=-bc))(ac(c=a)|0,0)+ac(d-b)|0, 1) +ac(d—-b)|1,0)+(ad*~b3c)|1,1)).
In this paper ||x|| denotes the norm of |x) or a complex number x. Let |a)=L(|0,0)) and |B)

=L(|1,0)), P=|a’d-bc?|?+2|bd(a—c)|?+|bd(b-d)|> and Q=|ac(c—a))|?+2|ac(d-b)|?+|ad?
—b?c|]*>. Then

la* = P/|[(ad - be)|? (6)

and

18I = @/l(ad - be)|P. (7

Il. LEMMA 1

Assume that a linear operator L can copy different states |¢/) and |¢). If |} and |¢@) are
orthonormal, then L(|0,0)) and L(|1,0)) are orthonormal.

Proof: First let us prove that L(|0,0)) and L(|1,0)) are unit length states. Since |} and |¢) are
orthonormal, (| ¢)=0, i.e.,

ac+bd=0 (8)

where ¢ and d are complex conjugates of ¢ and d, respectively. From Eq. (8) we obtain that
lalPlel*=[Ip[]*. By using Egs. (1) and (2) [lal[lcl*=(1~]a[*)(1~[le]?). Tt follows that ||al*
+||c|?=1. We can as well get ||b]>+|d|*=1.

We assume that a, b, ¢, and d are all real. It is not hard to extend the results in this paper to
complex a, b, ¢, and d. Thus we obtain that

a?+c*=1, 9)

P=(a’d-bc?)*+2(bd(a-c))*+(bd(b-d))* and Q=(ac(c—a))*+2(ac(d-b))*+(ad*~b*c)*>. In P
and Q, simultaneously replacing b* by (1-a?) [see Eq. (1)] and 4 by (1-c?) [see Eq. (2)],
respectively, P and Q are reduced into the following forms:

P =2 +2bda’* + 2bdc? — a* — ¢* = 4a>c?db + 4ac® + 4a’c — 4a>c® — dac - 2bd, (10)

0 =-4a’c® - 4a*c?db + a® = 2ac + 2ac> + 2a’c + 2. (11)

Let us compute P and Q when |#) and | @) are orthogonal. Replacing bd by —ac [see Eq. (8)]
and using Eq. (9) in Egs. (10) and (11), respectively, we obtain that P=(a*+c?)?*=1 and Q=(1
+2ac)(a*+c*)-2ac=1.
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Next let us compute the determinant of the coefficient matrix in Eq. (5) when |#) and |¢) are
orthogonal. Simultaneously replacing b by (1-a?) [see Eq. (1)] and d* by (1-c?) [see Eq. (2)]
and bd by —ac [see Eq. (8)] and using Eq. (9), we derive that |lad—bc|*=(a*+c*)=1.

From Egs. (6) and (7) and the above it is easy to get ||al|=1 and ||8]|=1. That is, L(
1,0)) are unit length states.

Second, we show that L(|0,0)) and L(|1,0)) are orthogonal. After omitting the factor the inner
product of L(]0,0)) and L(|1,0)) is (a*d-bc?)ac(c—a)+2bd(a—c)ac(d—b)+bd(b—-d)(ad*-b*c)
(replacing b* by (1—a?) [see Eq. (1)] and d” by (1-c?) [see Eq. (2)])

0,0)) and
L(

=—(a-c)(d’cd - bd’ac + b*dac — ac’*b — b*d + bd?)

(using a*+b*=1 and >+d*=1)

=—(a-c)(d-b)lac+bd).

Equation (8) implies that L(|0,0)) and L(|1,0)) are orthogonal.
Examples: The following combinations of a, b, ¢, and d satisfy ac+bd=0, that is,
are orthogonal. It is easy to verify that ||o]*=1=| 8]

) and |@)

1. a= \Q/z, b=\2/2, c=7\2/2. d=—2/2.
2. a=\3/2,b=1/2, c=1/2, d=—3/2.
3. a=3/5, b=4/5, c=4/5, d=-3/5.

0,0)) and L(|1,0)) are orthogonal cannot guarantee that |¢) and | )
are orthogonal. For example, |#)=a|0)+b|1) and |@)=al0)—b|1), where a*+b?>=1 and a # +b.
Though L(]0,0)) and L(|1,0)) are orthogonal, (/| ) # 0, namely, |) and |¢) are not orthogonal.
Corollary: For any two orthogonal states, there is a unitary operator which can copy them.
Proof: Let |¢)=al0)+b|1) and |@)=c|0)+d|1) be orthogonal states. Let the truth table be the
following matrix L.

Remark: However, that L(

0,0) 0,1) 1,0) 1.1)
0,0) ad-bc? bd(a—c) bd(a—c) bd(b—d)
ad—bc ad:bc ad-bc ad-bc
0,1) 0 —\2/2 V272 0
1,0) ac(c—a) ac(d-b) ac(d-b) ad®>-b*c
ad—bc ad—bc ad—bc ad—bc
1,1) 0 —\2/2 V272 0

It is easy to verify that L is unitary by Lemma 1 and not hard to show that L(|¢,0)) =], )
and L(|¢,0))=[¢, ¢).

lll. LEMMA 2

Assume that a linear operator L can copy two different states |¢) and |¢). If L(|0,0)) and
L(|1,0)) are unit length states, then |¢) and |¢) are orthogonal.

Proof: Since ||a]|=1, from Eq. (6) we obtain that P=|lad—bc|]*, and since ||8]|=1, from Eq. (7)
we get that Q=|lad—bc|[>. Thus P—Q=0. Using Eqs. (10) and (11), equation P—Q=0 is reduced

into the following one:

2+ 2bda® + 2bdc® - 24> = 2¢% + 2ac® + 2a’c = 2ac - 2bd = 2(a® + ¢ = 1)(ac + bd - 1) = 0.

There are two cases. Case I: a*>+c*=1 and case 2: ac+bd=1. We shall show that in case 1 |#) and
|@) are orthogonal and case 2 does not occur.
Case 1 in which a*+c*=1: By simultaneously replacing 5> by (1-a?) [see Eq. (1)] and d° by
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(1=c?) [see Eq. (2)], it is reduced that (ac)?*—(bd)*=(ac)*~(1-a?)(1-c?)=—1+c*+a*=0. Hence
(ac)*=(bd)*=(ac—bd)(ac+bd)=0. There are two subcases.

1.1 Subcase 1.1: ac+bd=0, that is,
1.2 Subcase 1.2: ac—bd=0, that is,

) and | @) are orthogonal.

ac=bhd. (12)

We shall show that in subcase 1.2 |¢) and |@) are also orthogonal. Let us first compute the
determinant of the coefficient matrix (5). Simultaneously replacing b> by (1-a?) [see Eq. (1)], d°
by (1-c?) [see Eq. (2)] and bd by ac [see Eq. (12)], we derive that (ad—bc)*=a’d*>~2achd
+b’c?=a*(1-c*) -2ac(ac)+(1-a?)c*=a*-4a’*c*+c*. Using a’+c*=1, it follows that (ad—bc)?
=1-4a’c®>=(1-2ac)(1+2ac). By requirement for the determinant of the coefficient matrix in Eq.
(3), (ad=bc)*=(1-2ac)(1+2ac) #0.

Next let us compute P in Eq. (10) and Q in Eq. (11) by replacing bd by ac [see Eq. (12)] and
using a’+c?*=1. We get that P=1-8a’c’=(1-2ac)(4a*c®>+2ac+1) and |af?=(4a*c*+2ac
+1)/(1+2ac); Q=1-8a’c*=(1-2ac)(4a*c*+2ac+1) and |B|I’=(4a*c*+2ac+1)/(1+2ac). Let
lal?=|BlI’=1. Then ac=0. From ac=hbd, we obtain ac+bd=0. In other words, |) and |¢) are also
orthogonal for subcase 1.2.

Consequently when a?+c*=1, we derive that ac+bd=0, namely, |) and |) are orthogonal.

Case 2 in which ac+bd=1: We shall show that case 2 does not occur. If ac+bd=1, then
(ac+bd)>—1=a’c>+2acbd+b*d>—1=0. Simultaneously replacing b* by (1-a?) [see Eq. (1)], d>
by (1-c?) [see Eq. (2)] and bd by (1-ac), we infer that a*c*+2ac(1-ac)+(1-a*)(1-c*) -1
=—(a—c)*=0. It follows that a=c.

Next let us compute the determinant of the coefficient matrix (5) in the case ac+bd=1.
Simultaneously replacing b? by (1-a?) [see Eq. (1)], d*> by (1-c?) [see Eq. (2)], and bd by (1
—ac), we derive that (ad-bc)*=ad*-2adbc+b*c*=a*(1-c?)=2ac(1-ac)+(1-a?)c*=(a—c)?.
By the requirement for the determinant of the coefficient matrix in Eq. (5) ad—bc # 0, it follows
that a # c.

Therefore this case contradicts our hypothesis for the determinant of the coefficient matrix
ad—bc #0 in Eq. (5). In other words, case 2 does not happen.

IV. THE NO-CLONING OF NONORTHOGONAL STATES DOES NOT REQUIRE INNER
PRODUCT PRESERVING

The authors always used inner product preserving to prove the no-cloning of nonorthogonal
states.”® From Lemma 2, it is easy to see that we only need linearity and that L(|0,0)) and
L(|1,0)) are unit length states to prove the no-cloning of nonorthogonal states. It shows that inner
product preserving is not necessary for the no-cloning of nonorthogonal states.

The following examples show when |¢) and |¢) are not orthogonal, L(|0,0)) and L(|1,0)) are
not unit length states. When a=3/5, b=4/5, ¢=3/5. and d=-4/5, |o|*=18/25 and ||
=337/225; when a=\3/2, b=1/2,c=\3/2, and d=-1/2, |a>=5/6, ||B]*=3/2.

V. CLONING LEADS TO INFINITY OF PROBABILITY AMPLITUDE

Let |y)=c|0)+d|1), where ||c|*+||d
states |1) and |7), that is, L(]1,0))=|1,1) and L(
product, it is easy to derive that L(|0,0))=c|0,0)+d|0, 1)+d|1,0)+|((d>*~d)/c)|1,1). Let d<0.
Then d tends to —1 as c¢ approaches O since ||c|[>+||d||*=1. Therefore the norm of probability
amplitude ((d>~d)/c) of state |1,1) tends to plus infinity as ¢ approaches 0. For example, when
c=3/5 and d=-4/5, |(d*~d)/c|=12/5. 1t contradicts that the norm of probability amplitude
should be 1 or less than 1.

Let |¢)=L(|0,0)). Then the norm of |¢) is ||p|>=||c|[>+|d|>+|d|*+|(d*~d)/c|]* and clearly
[#]> 1. Notice that the norm of [0,0) is 1. It says again that cloning contradicts the norm
preserving. For example, when ¢=3/5 and d=—4/5, ||¢||=\77/45> 1.

2=1 and ¢ #0. Assume that a linear operator L can copy
v,0))=|v, 7). By the linearity of L and tensor
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VI. CONCLUSION

As is well known, the no-cloning theorem has far-reaching consequences for quantum infor-
mation and quantum computing. Nielsen thought “what if we allow cloning devices that are not
unitary?” is a good question which has been the subject of much investigation. See page 532 in
Ref. 10.

In this paper we demonstrate that it only needs linearity and that L(|0,0)) and L(|1,0)) are unit
length states to prove the no-cloning of nonorthogonal states. Clearly we do not require norm
preservation for any state. It means that we do not make any use of unitarity. In theory, it is
possible to derive a deeper result than the no-cloning principle by using the unitarity. Intuitively it
seems that it is easier to implement the operator required in this paper than a unitary operator.
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