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On the existence of Einstein oscillators and thermal conductivity
in bulk metallic glass
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Low-temperature specific heat and thermal conductivity of bulk metallic glasses are measured to
identify the primary vibrational modes associated with their unique structures. An Einstein-type
localized vibrational mode with an Einstein temperature of 112 K is found in bulk metallic glass
Ni59.5Nb33.6Sn6.9. This localized vibrational mode causes resonant scattering of phonons and results
in the localization of phonons which leaves the phonon hopping conduction the limiting mechanism
of thermal transport in bulk metallic glass Ni59.5Nb33.6Sn6.9 at high temperature. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2234281�
The low-temperature specific heat and thermal conduc-
tivity of rapidly quenched metallic glasses had been the sub-
jects of experimental investigations.1–3 Recently, bulk metal-
lic glasses �BMGs� with a thickness of 1 mm or larger have
been found in a number of alloy systems which usually con-
tains three or more elements with large atomic size
difference.4,5 BMGs differ from the rapidly quenched metal-
lic glasses in the fact that a significantly slower cooling rate
is required to get bulk glassy alloys. This is usually due to
their strong viscosity-temperature dependence and the for-
mation of polytetrahedral short range ordering �SRO� in un-
dercooled alloy melts during cooling.6 As a result, the pho-
non specific heat Cphonon of metallic glass may not be
described by the Debye model only and additional vibra-
tional modes which are related with their unique SRO struc-
tures can exist. It is important to clarify the nature of these
additional vibration modes since they not only modify the
overall vibrational mode distribution but also influence the
phonon thermal conductivity �L of BMG. �L is determined
by the vibrational excitations and their mutual interactions.
In this letter, we report on the existence of Einstein-type
oscillators in a typical BMG and their influence on the pho-
non thermal conductivity.

The metallic glass samples used in this study have the
composition Ni59.5Nb33.6Sn6.9. Their synthesis and structural
characterization were similar to those reported by Choi-Yim
et al.7 The specific heat measurements were carried out be-
tween 1.8 and 154 K with the heat capacity option of the
physical property measurement system �PPMS� from Quan-
tum Design. The relative error is estimated to be within 2%
based on the instrument specifications. The electrical resis-
tivity ��� and thermal conductivity ��� were measured from
5 to 300 K in a cryostat equipped with a copper radiation
shield. We employed a longitudinal steady-state method and
used Au-0.07 at. % Fe-Chromel thermocouples. The abso-
lute accuracy of the � measurement is limited to about ±5%
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by the uncertainty in the thermocouple junction separation.
Magnetization measurements show that BMG

Ni59.5Nb33.6Sn6.9 is paramagnetic from 300 to 1.8 K with the
susceptibility of 1.28�10−6 emu/ �g Oe�. There is no mag-
netic contribution to CP at zero magnetic field. Therefore, CP
is the sum of two terms: electronic specific heat Celectron and
phonon specific heat Cphonon. In the temperature range of
33.4�T2�413.2 K2, we fit the measured CP to an expres-
sion CP�T�=�T+�T3 where the first term represents Celectron

and the second term stands for Cphonon based on Debye
model. The fitting parameters are �=1.77 mJ mol−1 K−2 and
�=88.0 �J mol−1 K−4. Cphonon is determined by subtracting
Celectron from the measured CP. Figure 1 shows the phonon
specific heat Cphonon as well as Cphonon/T3 plotted as a func-
tion of temperature in the range of 1.8�T�154 K. The
solid lines in Fig. 1 are obtained by fitting the phonon spe-
cific heat with the aid of the Debye model in the form of

Cphonon�T�
3R

= FD��D

T
� , �1�

where R is the gas constant, �D is the Debye temperature,
and FD��D /T� is the Debye function defined as

FD�x� = 3�1

x
�3�

0

x ezz4

�ez − 1�2dz . �2�

FIG. 1. �Color online� Temperature dependent phonon specific heat of BMG
Ni59.5Nb33.6Sn6.9. The solid line is a fitting of the specific heat data based on

Debye model.

© 2006 American Institute of Physics4-1

http://dx.doi.org/10.1063/1.2234281
http://dx.doi.org/10.1063/1.2234281
http://dx.doi.org/10.1063/1.2234281


031924-2 Zhou et al. Appl. Phys. Lett. 89, 031924 �2006�
The fitting gives the Debye temperature �D=325 K. On
the Cphonon/T3�T plot in Fig. 1, we also note an excess of
phonon specific heat over that predicted by the Debye T3

model between 5 and 50 K. These results indicate that the
Debye model itself cannot explain the experimental phonon
specific heat data.

It has been known that localized harmonic vibration
modes may exist in amorphous materials.8–11 These localized
vibration modes will result in an additional Einstein-type vi-
bration, i.e., localized harmonic vibration with a specific fre-
quency. If one assumes that the phonon specific heat of the
BMG Ni59.5Nb33.6Sn6.9 sample is coming from both the
Debye-type and Einstein-type vibration modes, the following
expression can be used to model the experimental phonon
specific heat:

Cphonon

3R
= nDFD��D

T
� + nEFE��E

T
� . �3�

Here nD and nE are dimensionless Debye-type and Einstein-
type vibration strengths, respectively. �E is the Einstein tem-
perature and FE��E /T� is the Einstein function of the follow-
ing form:

FE�x� =
x2ex

�ex − 1�2 . �4�

Figure 2 shows the total phonon specific heat and the fits
according to Eq. �3� in order to determine the relative weight
of Debye and Einstein terms. The fits are very good and
return the following parameters: nD=0.873, �D=361 K, nE
=0.127, and �E=112 K. Recently, it was shown that low-
temperature specific heat indicates the existence of Einstein
oscillators with �E of 74 K in BMG
Zr46.75Ti8.25Cu7.5Ni10Be27.5 and �E of 88.2 K in Cu50Zr50 me-
tallic glass.12,13 It should be noted that these fitting param-
eters of �E are not absolute.

Figure 3�a� shows the temperature dependent � and � of
BMG Ni59.5Nb33.6Sn6.9 from 5 to 300 K. � is nearly constant
in the range of temperature of 5	T	50 K and then de-
creases linearly when the temperature increases toward
300 K, i.e., it displays a negative temperature coefficient of
resistivity. At temperatures below around 12 K, � increases
rapidly with increasing temperature. This is followed by a
weaker temperature dependence that eventually approaches a
linear dependence in temperature. The electronic thermal

FIG. 2. �Color online� Temperature dependent phonon specific heat. The
Debye term and Einstein term are plotted to show their relative weight. The
solid line is a fitting curve based on Eq. �3� with parameters described in the
text. The dot line shows the electronic specific heat which is a small per-
centage compared with Cphonon.
conductivity contribution is estimated using the experimental
electrical resistivity and the Wiedemann-Franz law with the
ideal Lorenz number, L0=2.44�10−8 W 
 /K2.

Figure 3�b� shows the temperature dependence of the
phonon thermal conductivity �L of BMG Ni59.5Nb33.6Sn6.9.
The phonon thermal conductivity was obtained by subtract-
ing the electronic thermal conductivity. The most striking
feature of �L is its near-linear dependence on temperature
above about 20 K together with the existence of a weakly
temperature dependent plateau observed between 12 and
20 K. This is in sharp contrast with simple crystalline solids
whose �L decreases as 1/T due to the dominant phonon-
phonon Umklapp processes. At lower temperatures below
12 K, �L is proportional to the temperature. Low-
temperature phonon thermal conductivity is usually deter-
mined by the scattering from localized two level systems and
shows a typical T2 relationship. The fact that we observe the
linear dependence instead of the T2 variation of �L in BMG
Ni59.5Nb33.6Sn6.9 indicates a participation of additional scat-
tering mechanisms.

Although we have here an amorphous system, the heat
transport can be described in terms of phonons14 except that
Umklapp processes are not allowed due to the lack of long-
range periodic structure.15 Our specific heat investigations
already show the existence of Einstein oscillators in BMG
Ni59.5Nb33.6Sn6.9. This kind of localized oscillators could
originate from the polytetrahedral short-range ordering in the
metallic glass system. The localized oscillators themselves
do not contribute to the heat conduction. However, they do
influence phonon transport through anharmonic interactions.
This will introduce an additional term to the total phonon
relaxation time.

We analyze the low-temperature phonon thermal con-
ductivity �5–80 K� of BMG Ni59.5Nb33.6Sn6.9 with the aid of
the Debye model. The phonon thermal conductivity is ex-

FIG. 3. �Color online� �a� Electrical resistivity � and total thermal conduc-
tivity �, electrical thermal conductivity �e, and �b� phonon thermal conduc-
tivity �L as a function of temperature for BMG Ni59.5Nb33.6Sn6.9. The solid
line in the inset of �b� is a fit to the low-temperature phonon thermal con-
ductivity according to Eq. �5� with relaxation time �C expressed in Eq. �6�
with parameters described in the text.
pressed in the following form:
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�L =
kB

2�2v
� kBT



�3�

0

�D/T x4ex

�C
−1�ex − 1�2dx . �5�

Here �L is the phonon thermal conductivity, x=
� /kBT is a
dimensionless quantity, � is the phonon frequency, kB is the
Boltzmann constant, 
 is the reduced Planck constant, �D is
the Debye temperature, T is the absolute temperature, v is the
velocity of sound, and �C is the total phonon scattering
relaxation time. The Debye temperature �D �361 K� is ob-
tained from the specific heat data. The velocity of sound
�3139 m/s� is estimated from the following relationship: v
= �k /
��6�2�−1/3�D�, where � is the cubic root of the atomic
volume. There are several possible phonon scattering mecha-
nisms such as external boundary scattering, Rayleigh-type
point defect scattering, resonant scattering from localized vi-
brational modes, and electron-phonon interactions. Boundary
scattering gives temperature and frequency independent re-
laxation times and results in a T3-type dependence of �L on T
at low temperatures. Rayleigh-type scattering will strongly
suppress high frequency phonons since the relaxation time is
proportional to �−4. Attempts to fit the �L with the Debye
model that includes only boundary scattering and Rayleigh-
type scattering mechanisms could not reproduce the experi-
mental �L over the interval 5 to 80 K. This suggests that
there is another phonon scattering mechanism which gives
rise to the weak temperature dependence in �L. Trying to fit
the phonon thermal conductivity with the Debye model tak-
ing into account also resonant scattering due to the interac-
tion between acoustical phonons and localized vibrators has
not improved the fit significantly. Only when the electron-
phonon interaction was taken into account was the fit to the
experimental data of the phonon thermal conductivity satis-
factory. The following processes are assumed to limit the
heat conduction of phonons: Rayleigh-type point defect scat-
tering, resonant scattering, and electron-phonon scattering.
The phonon scattering relaxation rate �C

−1 can be written as

�C
−1 = A�4 +

B�2T2

��E
2 − �2�2 + ��E

2�2 + C�2. �6�

Here A, B, and C are the fitting parameters which are related
to point defect scattering, concentration of impurities causing
the resonant scattering, and electron-phonon interaction
strength, respectively. � is the average deformation potential.
The resonant vibration frequency �E is determined by
kB�E /� where �E is the Einstein temperature of the localized
vibrational mode. The optimal fitting parameters are A
=9.53�10−41 s3, B=2.5�10−6 K−2 s−1, C=8.268�10−16 s,
and �=0.5. The fitting curve is shown as the solid line in Fig.
3�b�.

Turning attention to higher temperatures �T�20 K�,
�L increases nearly linearly with the temperature. Such be-
havior can be explained with the hopping conduction
mechanism.16–18 Figure 4 shows the phonon mean free path l
calculated based on the experimental �L and specific heat
using the kinetic theory expression: l=3�L / �CVv�. The pho-
non mean free path diminishes rapidly with increasing tem-
perature and reaches a constant value of around 0.9 nm when
T��E. It is worthwhile to note that the wavelength of pho-
non with the frequency of �E is around 1 nm if we take the
velocity of sound as 3139 m/s. It is apparent that phonons
with frequency higher than �E will not be able to participate
in phonon thermal conductivity since they will be localized.
When T��E, the already excited phonons with frequency
�	�E will give a constant contribution to �L since they are
already in the Dulong-Petit regime.16,17 On the other hand,
thermal conduction through hopping between localized
phonons can introduce an additional term to the total phonon
thermal conductivity.19,20 This hopping contribution is pro-
portional to the temperature and the total phonon thermal
conductivity will be a linear function of temperature. The
linear dependence of �L on temperature shown in Fig. 3�b�
validates this viewpoint.

In summary, based on the low-temperature specific heat
and thermal conductivity measurements we have shown the
existence of Einstein-type localized vibrational mode in bulk
metallic glass Ni59.5Nb33.6Sn6.9. This localized vibrational
mode could originate from the polytetrahedral short-range
ordering in the BMG system. It causes resonant scattering of
phonons at low-temperature and eventually result in the lo-
calization of phonons which leaves the phonon hopping con-
duction the limiting mechanism of thermal transport in bulk
metallic glass.
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FIG. 4. �Color online� Phonon mean free path as a function of temperature
of BMG Ni59.5Nb33.6Sn6.9 calculated from Cphonon and �L.


