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The force-sensing cantilever in a noncontact atomic force microscope is a continuous system with
infinite number of eigenmodes. Although the frequently used point mass model was found sufficient
in many cases, its conditions for validity and the insights on how higher eigen-modes could affect
the selection of operation parameters were not established. In this letter, we formulate the cantilever
motion using modal response analysis, a powerful means enabling an efficient numerical solution
and a first order analytical solution. The origins and impacts of the higher eigenfrequency oscillation
are then investigated, which sheds lights on achieving optimal imaging conditions. © 2005
American Institute of Physics. [DOI: 10.1063/1.2123391]

A frequency modulation version of the dynamic atomic
force rnicroscope,l the so called noncontact atomic force mi-
croscope (nc-AFM), has been proven to be a powerful tool in
producing atomic resolution images on various surfaces in-
cluding conducting, nonconducting, and even reactive ones.
However, the search for the true atomic resolution had not
been straightforward. Most times, the microscope design and
operating parameters for achieving optimal imaging condi-
tions were identified empirically. It was not well understood
why some parameters yielded good images while others did
not. To understand the imaging mechanism, some important
modeling work has been done. Among them, the frequency
shift has been calculated with perturbation theory,” " varia-
tional methods,s’6 or numerical integration of Newtonian
equation of motion.>* All these studies assumed that the mul-
tiple degrees of freedom (DOF) cantilever could be suffi-
ciently represented by a single DOF point mass and the
higher eigenmodes of the continuous system were neglected.
Although such point mass assumption was found consistent
with experimental results in many cases, the conditions for
validity of the model is not clear and the insights on how
these higher eigenfrequencies could affect the cantilever mo-
tion and operation parameter selection were not established.
In other studies’™" on the dynamic AFM, continuous canti-
lever model was used. However they either focused only on
the tapping mode scenario where tip-surface interaction is
relatively strong, or treated the tip-surface interaction as a
nonlinear boundary condition, which made an efficient direct
modal analysis inapplicable. In this letter, we formulate the
motion of the cantilever using modal response analysis,
which turns out to be powerful in accounting higher eigen-
modes, dealing with weak perturbation, and deriving analyti-
cal solutions.

Modeling the cantilever as an Euler-Bernoulli beam, its
motion can be described by
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and the boundary conditions are y(0,1)=0, y'(0,1)=0,
y'(L,t)=0, and y"'(L,t)=0, where L is the length of the can-
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tilever whose left end is fixed at the origin. I(x) and m(x) are
the moment of inertia and mass density. In general, the term
f(x,1) is a time dependent distributed force, representing the
tip surface interaction, the damping force, and the controlled
feedback driving force. For an nc-AFM operating in an
UHY, the latter two components are very small and tend to
cancel each other, thus neglected.4 The tip-surface interaction
force distributed locally at the ri%ht end of the cantilever can
be treated as an excitation'* instead of boundary
condition™® in order to directly apply modal analysis. Such
treatment is justified by writing

f,t)=F()6(x-L"),

where F(7) is the “concentrated” tip-surface interaction force
and 8(x) Dirac’s delta function. Position L~ approaches the
free end of the cantilever L from the left side.'* The motion
of the linear system (cantilever) can then be transformed into
modal coordinates in which the generalized force is given by

L
0.(1)= f F()8x = L), (x)dx = F() (L")
0

=F()y,(L),

where #,(x) is the rth eigenfunction. The deflection at x=L
can be found from
1 w’
)+ =y, () = F(1).
Y(L) Y(L)

The effective mass and effective stiffness of the rth
mode can thus be defined as M,=1/ gbf(L), k,=w%/¢/f(L). Ap-
plying time response equations, ~ we obtain the displacement
of the cantilever at x=L,

y(1) = 2 l %(L)f sin w,(t — F(7)d7+ y,(0)cos w,t
r=0 r 0

w

W,

+ )ﬂ sin wrt] . (2)

The convolution term in the equation, also written as
Ay(z) is the deviation due to the weak perturbation F(7),
which is the only term that needs to be numerically calcu-
lated since the responses due to the initial conditions are
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FIG. 1. First order approximation of cantilever motion y(7) within one pe-
riod illustrates the deviation of the actual motion from the unperturbed mo-
tion yy(#) and the origin of the frequency shift.

readily given in analytical forms. Such separation of re-
sponses is important in establishing an efficient and robust
numerical simulation, especially in the case of nc-AFM
where the response due to the tip-surface interaction is much
smaller than that originated from the initial free oscillation.

For a first order analytical solution, neglecting the terms
of r>0 and calculating the deviation term in Eq. (2) at T,
(the free oscillation period) yield

ONE

Wy Jo

Ay(T,) =- F(7)sin wy7- dT, (3)

where the tip-surface interaction force is deflection (thus
time) dependent. For a free oscillation subjected to the initial
conditions yy(0)=A, and y,(0)=0, the displacement is y,
=dy+Ag+A cos wyT as illustrated in Fig. 1. In the presence
of a weak interaction force, if the perturbation Hamiltonian
is much smaller than the unperturbed Hamiltonian, we could
assume that the perturbed displacement remains approxi-
mately harmonic but with slightly changed amplitude and
frequency:zf4 y=dy+2Ay—A+A cos w7, where A and w are
unknown. Expand F(7)=F[y(7)] with respect to A and w at
vo, and neglect higher order terms, we have

JF (yo)

0

F(y) = F(y,) + (—Agsin 6y7)7- Aw
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o

On the right-hand side, the first and the third terms are
symmetric about t=T7,/2, thus vanish in the convolution of
Eq. (3). As a result

AgR(L)Af f o 9F (y,)
fo 0 M

+ (cos woT—1) - AA.

Ay(Ty) = sin? 27fyr- T-dT. (4)

On the other hand, at =T, Taylor’s expansion of
y=dy+2Ay—A+Acos wt with respect to A and w to the sec-
ond order yields

A 2

Ay(Ty) = - 2772140_2- (5)

fo

Equating this equation with Eq. (4) associates the fre-

quency shift with the generalized force and gives a solution
to the frequency shift

Af=- Ygz(gfof”f" IF (yp)

sin? 2arfyr- 7~ dT. (6)
0 0
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When the gradient dF(y,)/dy, is virtually constant, for
example, in small amplitude nc-AFMs, using

47fo
W)’

k0=

2
J sin> - 0-do= 7.

0

Equation (6) is reduced to Af=—3dF(yo)/dvy-fo! 2kos
which is equivalent to the frequency change given in the first
work on frequency modulated AFM by Albrecht.' In the gen-
eral case where JF(y,)/dy, is not constant. The term
dF (yo)/ dyo in Eq. (6) can be replaced by F(y,) using inte-
gration by parts, which transforms Eq. (6) to a form identical
to that derived in previous studies using perturbation theory2
and variational methods.’®

Beyond the first order approximation, we are more inter-
ested in understanding the origins and impacts of higher
eigenmodes in an nc-AFM. Inspecting Eq. (2), we could im-
mediately see that the higher eigenfrequencies become
prominent in three conditions: (1) The ratio of zﬁf(L)/w, is
larger for r=1; (2) The higher frequency components of the
interaction force F(7) increases; (3) One or more of the
higher eigenfrequencies w, get close to an integer multipli-
cation of the interaction force frequency w, in which reso-
nance occurs.

The ratio ¢/*(L)/ w,, also written as w,/k,, the ratio of the
eigenfrequency and the corresponding effective stiffness is
proportional to the induced oscillation at that eigenfrequency.
Ideally, one would want a large w,/k, thus a large frequency
shift to increase the nc-AFM sensitivity but a small w,/k, for
r=1 to suppress the higher modes. However, in reality, it is
generally not feasible to manipulate those values indepen-
dently. Instead, they scale up and down together. That means
if no noticeable higher modes are allowed, the frequency
shift needs to be small as well. This explains why the amount
of frequency shift used in the successful nc-AFM experi-
ments cannot be large and the stiffness of cantilever must be
relatively high (compared to that of a contact mode AFM). If
the earlier frequency-stiffness ratio becomes large, higher
eigenmodes will be induced. It was reported in previous
study16 on the tapping mode AFM that these oscillations are
much smaller than the amplitude of the fundamental eigen-
frequency and thus can be ignored. Simulation in Fig. 2,
however, shows that, in a nc-AFM, it does not take a large
amplitude at higher eigenfrequency to generate significant
impact on the short range interaction force—a small one
will do.

With the minor higher eigenmode oscillations superim-
posed to that of f, the total vibration amplitude is virtually
unchanged but the lowest tip-surface distance is periodically
modified due to the phase differences between the higher
eigen-frequencies and the fundamental eigenfrequency. Al-
though the modification is small, in the tip-surface interac-
tion force field that has a short decay length, the resulted
interaction force modulation is significant, i.e., the peak in-
teraction force varies considerably. The direct consequence
of such variation is that mapping from frequency shift to
peak force becomes not very meaningful since the peak force
quickly varies. In addition, according to previous experi-
ments, the force range for obtaining good images is very
narrow. A varying interaction forces would reduce the sensi-
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FIG. 2. Simulated cantilever motion y(¢) under the tip-surface interaction F.
Four higher eigenfrequencies are included in the calculation and a uniform
cantilever with f,=161 kHz, ky=2 N/m is used. The short range interaction
is of a Lennard-Jones form with equilibrium distance =2.5 A and bonding
energy Ep,q=2 ¢eV.

tivity and prone to trigger sudden modification to the tip
structure. Giessibl® has pointed out that instable imaging
condition due to “jump to contact” (JTC) can be avoided if
koAo>—F. In Fig. 2, although kyAy(~20 nN)>—-F(~2 nN),
i.e., JTC did not occur, instable imaging conditions still exist
as stated above. Therefore, avoiding JTC does not guarantee
stable imaging conditions; it additionally requires the
frequency-stiffness ratios be low enough to suppress the
higher eigenmodes.

On the other hand, no higher eigenmodes would be in-
duced if F is free of higher eigenfrequency components. In
the frequency domain, the dominant peak of F is at the can-
tilever oscillation frequency w. However, with the decrease
of tip-surface distance, in the time domain, F gets closer to a
pulse functions F&(z,,) whose frequency content is uniformly
across all frequencies. Such increase of higher frequency
contents stimulates higher eigenmode oscillation of the can-
tilever and affects the frequency shift. Simulations based on
Eq. (2) shows that, in both attractive and repulsive regime,
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taking into account higher eigenfrequencies predicts a fre-
quency shift with smaller amplitude than the calculation
based on the point mass assumption.

The third origin, higher eigenmode resonance could oc-
cur even if the first two conditions are not met. Simulation
shows that the effect of such resonance is similar to the
modulation shown in Fig. 2 but with an extended time for the
amplitude to grow, which could trigger sudden modification
to the tip structure.

In short, higher eigenmodes when present have signifi-
cant effects in a nc-AFM, therefore, limit the design and
operating parameters. These parameters should be properly
chosen to avoid the above three origins of higher eigenmodes
in order to achieve stable imaging conditions and high
sensitivity.

The authors wish to thank N. Perkins for stimulating
discussions.
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