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Nonlinear spectroscopic signals in liquid solution were calculated without treating the field-matter
interaction in a perturbative manner. The calculation is based on the assumption that the
intermolecular degrees of freedom can be treated classically, while the time evolution of the
electronic state is treated quantum mechanically. The calculated overall electronic polarization is
then resolved into its directional components via the method of Seidner ef al. [J. Chem. Phys. 103,
3998 (1995)]. It is shown that the time dependence of the directional components is independent of
laser intensity in the impulsive pulse regime, which allows for flexibility in choosing the procedure
for calculating optical response functions. The utility and robustness of the nonperturbative
procedure is demonstrated in the case of a two-state chromophore solvated in a monoatomic liquid,
by calculating nonlinear time-domain signals in the strong-field, weak-field, impulsive, and
nonimpulsive regimes. © 2006 American Institute of Physics.
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I. INTRODUCTION

The development of ultrafast lasers has given rise to
many nonlinear time-domain techniques which are capable
of probing molecular dynamics on the femtosecond time
scale.'™ All of these nonlinear optical spectroscopic tech-
niques measure the laser-induced electronic and/or vibra-
tional polarization of the material system, which is affected
by the underlying molecular dynamics as well as by the laser
pulse properties, such as intensity, carrier frequency, shape,
and chirp. However, the interpretation of these experiments
is usually based on a perturbative treatment of the field-
matter interaction."*'® In this case, one employs the pertur-
bative expansion of the optical response in orders of the ex-
ternal driving field.! The even-order terms in this expansion
generally vanish in systems with inversion symmetry, such
as liquid solutions. The first-order term is generally given in
terms of a time integral over the linear optical response func-
tion (ORF), which is proportional to the quantum-
mechanical dipole autocorrelation function. The third-order
term is generally given by a sum of three-dimensional time
integrals over several nonlinear third-order ORFs, which are
given in terms of quantum-mechanical three-time dipole cor-
relation functions and so on. Within the perturbative regime,
one expects the linear-response optical signal to be signifi-
cantly larger than the nonlinear-response signal. However,
signals associated with different ORFs scatter in different
directions, which makes it possible to resolve them experi-
mentally and provides a convenient theoretical framework
for classifying them according to the direction along which
they are detected.

The exact calculation of ORFs is only possible in the
case of relatively simple models that involve harmonic po-
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tential energy surfaces. Thus, the calculation of ORFs in an-
harmonic many-body systems, such as liquid solutions, has
to rely on approximate methods that treat the nuclear
degrees of freedom (DOFs) in a classical-like
manner, 1124137923 e using the perturbative ap-
proach it is also commonly assumed that the pulses can be
treated as nonoverlapping and impulsive, i.e., short com-
pared to the time scale of the nuclear motion. This assump-
tion amounts to treating the pulses as delta functions and
therefore makes it possible to avoid the rather computation-
ally costly calculation of multidimensional time integrals
over the ORFs mentioned above.

A nonperturbative treatment of the field-matter interac-
tion in the context of ultrafast nonlinear spectroscopy was
considered in several previous studies.”*™ With the excep-
tion of Refs. 36-39, these studies were focused on the two-
pulse pump-probe technique as a tool for studying intramo-
lecular dynamics. Furthermore, with the exception of Refs.
36 and 37, previous studies were based on fully quantum-
mechanical calculations carried out on low-dimensional
model systems. Attempts to account for solvent effects were
either based on phenomenological Bloch esquations,3&39 the
semigroup approach,zﬁ’35 or the assumption that the solvent
can be described as consisting of independent harmonic
modes whose effect can be described in terms of either Red-
field theory30 or the surrogate Hamiltonian approach.3 35 A
nonperturbative study of optical response in liquid solution
that was based on explicit molecular dynamics simulations
was reported in Refs. 36 and 37. In this case, the third- and
fifth-order nonlinear Raman responses in neat liquid CS,
were calculated via nonequilibrium molecular dynamics
(MD) simulations. However, in this case the Raman signal
can be treated within a classical framework. The actual cal-
culations reported in Refs. 36 and 37 also employed weak
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and impulsive pulses, and other types of nonlinear signals
were not considered.

In the present paper we consider a general nonperturba-
tive approach for calculating nonlinear signals in liquid so-
lutions and similar anharmonic many-body systems. To this
end, we avoid treating the field-matter interaction as a small
perturbation and adopt a mixed quantum-classical approach
that deals with the intermolecular nuclear DOFs classically,
while the intramolecular electronic and/or vibrational DOFs
are treated quantum mechanically.

The remainder of this paper is organized as follows. The
basic model Hamiltonian and other general considerations
are discussed in Sec. II. The nonperturbative procedure for
calculating nonlinear spectroscopic signals is outlined in Sec.
III. A demonstrative application to liquid solutions is pre-
sented in Sec. IV. Concluding remarks are presented in Sec.
V.

Il. PRELIMINARY CONSIDERATIONS

Consider a system with the following overall quantum-
mechanical Hamiltonian:

H(r) = Hy+ W(1), (1)

where ﬁo is the molecular (field-free) Hamiltonian and W()
is the laser-matter interaction Hamiltonian. For the sake of
simplicity, we present the formalism in terms of electronic
spectroscopy and assume that the system can be described in
terms of only two electronic states, such that

Hy=H, ® |g)(g| + (hw,, + H,) ® |e)e]

= I:Ig + ﬁw€g|e><e| + lA/'|e><€| (2)

Here, |g) and |e) correspond to the ground and excited elec-
tronic states, respectively, w,, corresponds to the frequency

of the bare electronic transition, H, and I:Ie represent the
(typically multidimensional and pronouncedly anharmonic)
nuclear Hamiltonians of the ground and excited electronic
states, respectively, and U =FAIe—I:I - It should be emphasized
that this formulation will apply equally well in the case of
vibrational spectroscopy and that it can be extended to cases
involving multiple electronic and/or vibrational transitions.

Assuming that the laser electric field can be described as
a classical time-dependent driving force and that the electric
dipole approximation is valid, the field-matter interaction
Hamiltonian is given by

W(0) = - plle)e] + lXel] - S €(o)cos(wy—k; ). (3)
J

Here, we have assumed that the incident laser field can be
expressed as a sum of several phase-locked transform-
limited pulses, such that €(7), ;, and k; are the envelope,
leading frequency, and wave vector of the jth pulse, respec-
tively, and [ |e){g|+|g){e|] is the molecular dipole moment
operator. For the sake of simplicity, we will restrict ourselves
to cases where the leading frequency is the same for all
pulses, w;=w, and where the Condon and rotating wave ap-
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proximations are valid. Under these conditions, one may put

W(#) in the following form: "’

. % 4 .
W() =- 52 (x;(Ne'|g)e| + x; (e “|e)gl). (4)
J

where fx;(1) = po- €,()e™ ",

We denote the density operator of the overall system at
time ¢ by p(¢). The time evolution of p(z) is dictated by the
following equation of motion:

d [ A
2P0 == LA0.5(0)]. (5)

If hw,,/kgT>1, where T is the absolute temperature, then
one may assume that the initial state of the overall system is
given by

p(r=0) = pg'lg)gl, (6)

where p3=e P/ Try(ePs) (B=1/kgT and Try is the trace
with respect to the nuclear DOF).

Equation (5) is given in terms of the Schrodinger picture.
An alternative representation in terms of the rotating frame
(with respect to the electronic DOFs) and interaction picture
(with respect to the nuclear DOFs) will prove more conve-
nient for our purposes. The density operator of the overall
system in this new representation is given by

p(1) = expli(H, +fiwle)e|)t/A1p(1)

Xexp[— i(H, + hole)e|)t/h]. (7)

It can be easily shown that the equation of motion for p(z) is
given by17

d i~

2P0 ==~ [H@),p0], ()
where

- A h "

H(t) = (A + U@)]eXel - 7 2 (x(0lg)el + x;(le)g])-

9)

Here, U(t)=¢s""Ue s’ and A=w,,~w is the detuning.
For the sake of simplicity, we will restrict ourselves from this
point on to resonance conditions, namely, to A=0.

lll. CALCULATION OF NONLINEAR SPECTROSCOPIC
SIGNALS

Within the framework of the dipole and Condon approxi-
mations, the electronic polarization P(z) is proportional to
the real part of the expectation value of the electronic coher-
ence operator |e)(g|:

P(1) o Re(Tr|e)g|p(r)])
=Re((g|Try[p(1)]le))
=Re((g|d(1)e))
=Re(0,(1))
=Re(e''G,,(1)). (10)
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Here, Tr is the trace over nuclear and electronic DOFs,
(1)=Try[p(2)] is the reduced density operator that describes
the state of the electronic DOF in the Schrodinger picture,
and (1) =1l g(f)eieleXel ig its counterpart in the rotating
frame representation. Within the th1n sample approximation
and homodyne-detection scheme,"? the measurable signal at
time ¢, denoted by S(), is proportional to |P(¢)|> averaged
over the period of the driving field, which implies that

(1) o< |7, ()] (11)

The coupled equations of motion for the four elements
of the density matrix &(z) are given by

dé,, (dé, X;(0)
—Ztg-=(%g> =iU(1)& e(t)/ﬁ+2 T(Uee o)
(12)
o, doy, < (0. - ix )
e 2( L6, 0= 2025,0 | (13)

J

It should be noted that we have assumed that U(¢) can be
replaced by its classical counterpart, U(). The latter can be
computed by monitoring the energy gap between the ground
and excited electronic states during a classical equilibrium
MD simulation on the ground state potential. The signal can
then be calculated by averaging &,,(¢), as obtained by nu-
merically solving Egs. (12) and (13), over a sufficiently large
number of trajectories traced by U(r). The assumption that
U(r) can be treated classically is motivated by our desire to
focus on the signature of solvation dynamics on nonlinear
optical signals. We can therefore assume that the fluctuations
of U(r) reflect translational and rotational dynamics of the
solvent molecules (rather than intramolecular vibrational dy-
namics of the chromophore), which can usually be described
in classical terms.

It should be noted that the mixed quantum-classical
scheme underlying Eqgs. (12) and (13) is dictated by the spe-
cific partitioning of the Hamiltonian in Eq. (2), which in turn
dictates the choice of interaction picture in Eq. (7). This
scheme is convenient in practice, since U(f) can be calcu-
lated via equilibrium MD simulations on the ground state
potential surface. However, the partitioning of the Hamil-
tonian in Eq. (2) is not unique, and other partition schemes
are known to lead to different mixed quantum classical
schemes where the time evolution of U(z) is dictated by a
potential energy surface that corresponds to an average of the
ground and excited electronic surfaces.'”™"” A more detailed
discussion of this point is provided in Appendix A.

A. The impulsive regime

Many previous studies of nonlinear optical spectroscopy
have been based on the assumption that the pulses are impul-
sive. In this case, one assumes that the pulses are very short,
such that U can be assumed to be fixed on the time scale of
the jth pulse width 7;. The fact that the pulses are very short
also implies that one can ignore their overlap and therefore
treat the effect of each pulse separately from that of the other
pulses. It is also convenient to assume that the pulses have a
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square envelope, such that x;(1)=x; when t;<t<t;+7; and
zero otherwise. Under these conditions, it is stra1ghtforward
to show that the time evolution during an impulsive pulse is
given by

a(t;+ ) = Wia(t) W, ', (14)

where
0\~ .. [6:\ .
W;= {cos<—21>1 —i s1n<—21)[s1n(77j)(|e><€| —[gXsD)

+cos(7)(e"]g)el + 6'i"’-f|6><g|)]},

Wi = {cos(%) [+i sin(%>[sin(n,)(le><el —[gXgl)

+ cos(7;)(e'%i[g)e| + e’i¢f|e><g|)]} : (15)

Here, 1 is the identity operator, 0j=\/[U(tj)q/ﬁ]2+[|xj|7'j]2,
=|x/le'%, and tan(z)=-U(1;) /1] x|

A treatment based on Eq. (15) will be referred to below
as corresponding to the weak impulsive regime. It should be
noted that in this case, the time evolution during the pulse is
explicitly dependent on the value of U at the time of the
pulse. Adding the assumption that the field is strong, in the
sense that |y,;|>U(s;)/h, would imply that ¢,=|x,|7; and

J
~0, which would in turn simplify W; and W as follows:

W;= cos(Hj/Z)l +i sin(Gj/Z)[e’¢f|g>(e| +ei%

(16)

W' =cos(6/2)1 - i sin(6/2)[e'i|g)e| + ]

where x;7j=6,¢'%. A treatment which is based on Eq. (16)
will be referred to below as corresponding to the strong im-
pulsive regime.

The dynamics between the jth and (j+ 1)th pulses is ob-
tained by setting x;=0 in Egs. (12) and (13), so that

3 (t141) = G(11,1,1) F1) G (111,1), (17)

where

Ljv1 i
Glt01,1) = exp{— ile)el f dt' Ut
4 ]

(18)

Tiv1
g‘l(tjﬂ,tj) = exp{i|e)(e|f dr'Uu(t')/h
/j

It should be noted that we assumed that L+Ti=t, since im-
pulsive pulses are presumably very short.

Let us next consider the commonly encountered case
where the system is subject to three consecutive pulses in the
strong impulsive regime. We label the pulses a, b, and c. It is
convenient to define the time origin so that it coincides with
pulse a, i.e., t,=0. We also denote the time intervals between
the first and second pulses and between the second and third
pulses by #; and t,, respectively, so that t,=¢,; and t.=t,+1,.
The polarization a time interval ¢ after the third pulse is
proportional to &,,(t,1,,7), which is given by
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Foolt1,12,1) = Trype glG(t, + 1y + 1,1, + 1) where Tryp - -} should be interpreted as a classical average
over the equilibrium distribution of initial solvent configura-
XW Gty + 1, 1)V, G(11,00 W, | g)g tions.
X WG (0, 0OWS'G (1 + 1ru1y) .Calculating Tty ,.tz,t) explicitly is rather tedi.ous, but
straightforward otherwise. The final result can be written as a
XWGT Nt + 1, + 1,1+ 1)e)}, (19)  linear combination of nine terms:

Goolt1st0,1) ={a el (ty + 1y + 1) + aze Ity + 1) + aze'J (1) + b1 P29 (1,15 + 1) + bre’ 22K (1, + 1,1)

+ by IR (1, 1) + €1/ P EH I (1), 10,1) + 2" TLH LI, (1), 15,1) + de" P2 I 2N (1, 1,1)} (20)
[
The linear combination in Eq. (20) involves the following (" [Tt
four ORFs. M(r, 7, 1) =\ exp|i| U(r)h—i u(r')/h
0 ul

¢ The linear ORF,

i J Tl+Tz+TU(T’)/ﬁ)> . (24)
J(T)=<exp<i J dT'U(T’)/ﬁ)> , @1) " ¢
0

g
The coefficients {a,,a,,as,b,,b,,b5,c,,c,,d} depend

where (), =Try[pgl--]. on {6;=|x;|7;} and are explicitly given by
 The two-pulse echo (2PE) OREF,

n a,=1icos’ b cos? Oy cos? b -—tan L7
K(r,7)= exp(—if dr' U(7')/h = 2 2 2 /1 2/

0
Tl+T _
+i d7U(7)Ih , 22 0, 0 0. 0,
ﬁ (7) ) 22) a,=1i cos2<—>cosz(—b>cosz(—> 1 —tanz(—>
! § 2 2 2 /1 2
where 7 is the time interval between the two pulses and «| tan( @)
7 is the time interval between the second pulse and ’
detection.
 The three-pulse echo (3PE) ORFs, P P P
— il Za 2| Zb 2| Ze 2| Za
a3—lcos< )cos( )cos( )[l—tan<2>]

|74l
L.(7,7,7) = exp(iif d7 U(7)/h 0,
0 x| 1 —tan2<3)

|7 [+mp+7
+ iJ d7U(7)/h , (23)
71|+ g

0, 0 0. 0, 0
by =i cosz<—>cos2(—b>cosz<—>tan<—)tan2<—b),
where || is the time interval between the first and sec- 2 2 2 2 2

ond pulses, 7, is the time interval between the second
and third pulses, and 7 is the time interval between the
third pulse and detection. It should be noted that one by=i cosz<&>cos2(@>cosz(&>tan<&)taﬁ(&),
can define a single 3PE ORF L(,, 75, 7), which is equal 2 2 2 2

to L,(1,7,7), if 7,<0, and to L_(7, 7, 7), if 7 =0.'8

Thus, L_(7y,7,7) and L.(7,7,,7) correspond to the

3PE signal measured with 7,>0 (i.e., pulse a precedes by=i c052<&>c0s2(@>cosz(&>

pulse b) or 7,<0 (i.e., pulse b precedes pulse a), re- 2 2

spectively. i
x| 1- tanz( —“)
¢ The fifth-order ORF, 2
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0, 0, (7
ci=cy=2i cosz<—“>cosz(—b>cosz<—c>
2 2 2
Xtan| — |tan| — |tan| — |,
2 2 2

[7) (7 (7
d=i cosz<—a)cos2(—b>cosz<—c>
2 2 2
0, [7) [7)
X {— tan(—a”tanz(—b)tanz(—c).
2 2 2

It is important to note that, regardless of the pulse inten-
sities, the overall polarization in the strong impulsive limit is
given by a mixture of the same four ORFs. In fact, the ulti-
mate goal of the experiment is to measure one or more of
these ORFs. Furthermore, the individual ORFs can be ex-

(25)

GgO(W/Z)(IIJZJ) 1 1 i 1

e
~0(7/2) (/2
Ugiﬂ- ) Nt1,1.1) 1 i i

~07r( /2
a.g;T(W )(tbtz’t) 1

&;Z/Z)O(”/ W) i1 i

&(gZ/Z)(W/Z)(ﬂ/Z)(II9l23t) _

~(1/2 /2 .
0.507767' y(m )(tl’t2$t) l
~70 (/2

o-ge(ﬁ )(tl’t29t)
~ar(7/2)(7/2

U';Téw (1, 1.0)

~ /2
O-;ZT(W )(t17t2’t)

[u—
~
~
[u—y
—_— = e~
~

Here, Eé‘f’g‘b”‘z’f(tl ,1,,1) is the value of the overall polarization,
G (t1,15,1), obtained following three pulses with phases ¢,,
¢, and ¢.. The individual ORFs can then be obtained from
these nine overall polarizations by inverting the matrix in Eq.
(26) [cf. Eq. (B1) in Appendix B].

It should be noted that the above scheme treats the laser-
matter interaction in a nonperturbative manner. The strength
of the laser-matter interaction is hidden in 6;=|y;|7; and
therefore affects the values of the coefficients
{ay,ay,a5,b,,by,bs,c;,cy,d}. For example, in the limit of
weak laser-matter interaction, one assumes that all pulses are
of similar strength, i.e., 0;~ 0, and expands the above men-
tioned coefficients to leading order in powers of 6

ay,ay,dz — — l0/2,
by,by,bs,c1/2,c9/2 — i(6/2)3,

d——i(62)°. (27)
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tracted from the overall polarization by taking advantage of
the fact that they are associated with different phase factors.”’
Experimentally, these phases reflect the fact that different
signals correspond to different wave vectors and therefore
scatter in different directions. Computationally, the phase
factors e'%a, ei%v eidc ei(_¢a+2¢b), ei(_¢u+2¢(-), ei(—¢b+2¢c)’
(P drtde) pil-batdprde) and ei(¢a24#260 can be though as
coefficients in the linear combination of ORFs [cf. Eq. (20)].
Thus, following Seidner et al.,29 one may obtain different
independent linear combinations of the ORFs by changing
the relative phases of the pulses. The corresponding set of
linear coupled algebraic equations can then be solved for the
individual ORFs.

For example, assigning the following phases for the first
and second pulses {¢,,$,=0,7/2,7} while holding the
phase of the third pulse fixed at ¢.=/2 yields the following
set of nine coupled linear equations:

alJ(t;+t,+1)
a)J(ty +1)
asJ(t)
bK(t,t+1)
b,K(t, + t5,1)
b3K(15,1)
ci1L(t,t5,1)
oL (ty,t,1)
dM(t,,1,,t)

—i
-1 1
(26)

-1
-1 1

This is obviously also the origin for the classification of the
ORFs as linear, third order, or fifth order.

However, it should be noted that although weak laser-
matter interaction may faithfully represent experimental re-
ality in many cases of practical interest, the computational
procedure outlined above is in no way restricted to the weak-
field limit. In other words, employing unrealistically intense
pulses in the calculation would still lead to the very same
OREFs. For example, consider the case of intense laser pulses
such that 6,=6,=6,=m/2. This choice immediately elimi-
nates three out of the nine components of the overall polar-
ization, namely, a,=a3;=b;=0. However, it should be noted
that no information is lost. This is because J(¢,+f,+1) con-
tains the same information as J(z,+1) and J(r), while K(,,1)
contains the same information as K(¢;,7,+1) and K(t;+1,,1).
The remaining six nonvanishing components can now be re-
solved by assigning the values {0, 77/2} and {0, 7/2, 7} to ¢,
and ¢, respectively, while holding the phase of the third
pulse fixed at ¢.=/2. This yields the following set of six
coupled linear equations:
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N1y, 15,1) 11 -1 20 2
O_ggﬂ'/Z)(W/Z (Il,tz,t) 1 -1 -1 2 )

For 1, 1.,0) -1 1 -1 =2i

5_(77/2)0(77/2)(t 1 l)

afgj”“”” 21, 1,1) -0 0P 20 2i
&;Z/Z)W(ﬂ/z (t],tz,t) - l - l l 2 - 2

The individual ORFs can then be obtained by inverting the
matrix in Eq. (28) [cf. Eq. (B2) in Appendix B].

The procedure can be further simplified if one is particu-
larly interested in resolving specific components. For ex-
ample, resolving the 3PE ORFs can be achieved by assigning
the values {0, 7/2} and {0, =} for ¢, and ¢, respectively,
while holding the phase of the third pulse fixed at ¢.=0. The
resulting four linear coupled equations are given by

~°°°(t1,tz,t) -1 1 2 2
ge ™(t,,15,1) il-1 1 =2 =2
Gty |8 —i i 20 —2i
555/2”0(”,;2,;) —i =i =2 2i
J(t; + 1y + 1) + M(ty,1,,1)
« K(ty,ty+ 1) + K(t, + t5,1)
L,(t),15,1)
L_(t),t5,1)

(29)

As before, the individual ORFs can be obtained by inverting
the matrix in Eq. (29) [cf. Eq. (B3) in Appendix B].

Extending the analysis described above to the weak im-
pulsive regime requires that we substitute WV; and )/ijl from
Eq. (15) into Eq. (19). The resulting overall polarization will
still consist of nine terms, with the exact same phase factors.
Thus, the above procedure for resolving the overall polariza-
tion into its directional coefficients will still be valid. How-
ever, the analogous expressions for the coefficients
{a,,ay,a5,b,,by,bs,c;,cy,d} can no longer be taken outside
of the average (:--), because 6, and 7; are explicitly depen-
dent on the values of U at the time of the pulses. For ex-
ample,

N
CzL_(tl,tz,t) = C2<exp(— IJ dt,U(t,)/fL
0

1 +ty+t
i f di' U(t')/h)),
t

1712
in Eq. (20) will now be replaced by
(e,[U(0),U(t)),U(t; +1,)]

t+p+t

g
Xexp(— ij dr'u(t')/h + ij dt’U(t')/ﬁ))g,
0

ty+iy

where

-2i
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1 J(t + 1, +1)
-1 K(t),t,+1)
1 K(t, +t5,1) (28)
[ L, (t,15,1)
—i L_(t,t5,1)
i M(t,,5,1)

co[U(0),U(t)), U(t, + 1,)]

is the expression that replaces ¢, when going from the strong
to the weak impulsive regime. Thus, at least in principle,
L_(t,,t,,1) can no longer be extracted in a straightforward
manner. However, in many cases it would be reasonable to
assume that (c,[U(0),U(r)),U(t,+1,)]exp(—ifdt' U(t') /T
+if132dr U(t) 1)), = (o[ U(0), U(t)), U(ty +1,) ) {exp(
—if} ds’ u(t' )/ﬁ+zf§‘1ﬁ2+’dt U(1')/1)),. Thus, the directional
signal can still be propomonal to L_(t,,1,,1), as long as the
dependence of (c,[U(0),U(t;),U(t;+1,)]), on t; and 1, is
relatively weak.

B. The nonimpulsive regime

In the case of nonimpulsive pulses, one has to account
for the time evolution of U(r) during the pulse, which is
particularly important in cases where U(r) is comparable to
or larger than #|y(f)|. Another new aspect that needs to be
accounted for in this case is the possibility that the pulses
overlap in time.

The time evolution of a two-state system with a Hamil-
tonian  F(1)=U(1)|eXel ~AZ,Lx;(0]g)el +x; (D]eXgl)/2 can
be simulated by propagating the system in small time steps
during which U(#) and #x;(t) can be assumed to be quasi-
constant. Thus propagation by a small time step ot from time
t; to time t;,, during a period of time where one or more
pulses are on, is given by

5 (tys1) = Wid (W' (30)

where

O\ (C]
wWemcos| )1 sinl - JrsinCe exel - )l

+ cos(Wp) (e Hg)e| + e PHe)(g])],

Q)
w!'= cos( k)l +i s1n< )[Sln(‘I’k)(|€><€| lgXel)

+ cos(W) (e Hg)e| + e PHle)g))]. (31)

Here, 0,=\[U(t)ai/hP+[IE(orP, Ex=2x,(00=|E e,
and tan(W)=-U(t,)/h|E,].
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IV. APPLICATION: A TWO-STATE CHROMOPHORE
IN A MONOATOMIC LIQUID

A. Model and simulation techniques

In this section, we will test the procedures developed in
Sec. III in the case of a two-state chromophore solvated in a
monoatomic liquid. The potential energy surfaces of the
ground and excited electronic states are assumed to be pair-
wise additive, such that

Va = 2 va(rk) + 2 vs(rkj)- (32)
k

k<j

Here, r, is the distance between the chromophore and the kth
solvent atom, Tij is the distance between the kth and jth
solvent atoms, and a=g,e. It should be noted that the
chromophore-solvent interactions in the excited state are as-
sumed to be different from those in the ground state, whereas
the solvent-solvent interactions in both states are assumed to
be the same.

The actual pair potentials v,(r), v (r) and v,(r) were
adopted from Refs. 15 and 18, where they were assumed to
take the form of the Lennard-Jones (LJ) potentials:

12 6
vj(r)=4ej[(frl> —(grl) } (33)

We also assume that v,(r)=v(r), with LJ parameters that
correspond to liquid argon (e/kz=119.8 K, 0=0.3405 nm).
v,(r) differs from v,(r) in the value of the LJ parameter o,
such that ,=(1+\)o,, with A=0.06.">"® We also assume
that the chromophore mass is the same as that of the solvent
atoms and equal to the mass of an argon atom.

J. Chem. Phys. 125, 214501 (2006)
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(Color) The homodyne-
detected integrated overall polariza-
tions, [gdt|@0e? (1,15, 1), follow-
ing a sequence of three impulsive
pulses with the indicated nine different
phase combinations (¢,,d,,d,) [cf.
Eq. (26)], under weak-field conditions
(|Xa|Ta=‘Xb|7b=|Xc|Te=0'O]7T/2)~
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We note that the linear and 3PE ORFs for this model
have already been reported and analyzed in Refs. 15 and 18,
where they have been calculated directly based on the per-
turbative treatment and assuming strong impulsive pulses.
However, our goal here is to demonstrate and test the non-
perturbative and nonimpulsive procedure proposed above for
calculating the nonlinear spectroscopic signals. Nevertheless,
the results obtained via our procedure are consistent with the
corresponding results from Refs. 15 and 18 in the weak-field
and strong impulsive regimes (see below).

MD simulations were carried out on the ground state
potential energy surface at temperature 7=128.2 K and den-
sity p=17.98 nm™3 (the corresponding reduced LJ tempera-
ture and density are given by T =kzT/€,=1.07 and p"
=po’;’ =0.71, respectively). Simulations were preformed with
108 atoms in a cubical simulation box with standard periodic
boundary conditions (minimum image convention). Time
propagation was carried out by the velocity Verlet method.*
The system was equilibrated over 10° time steps, each of
length 1.0 fs, by the velocity rescaling method.*’ Converged
results were obtained by averaging over 4000 trajectories,
each of length 700—-840 fs.

Once the trajectory traced by U(r) is extracted from the
equilibrium MD simulations outlined above, it is used in
order to calculate the signals that correspond to different
combinations of {t,,t,,7} and {¢,, ¢,,d.}. The results re-
ported below were obtained by varying ¢, in steps of 4 fs, 1,
in steps of 10 fs and ¢ is steps of 1.0 fs on a 10X 10X 700
three-dimensional (3D) grid. Integration over ¢ was based on
the trapezoidal rule.
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The signal of a time-resolved heterodyne-detected three-
pulse experiment is a complex function of the three time
intervals t,, t,, and . However, in many cases, a homodyne-
detection scheme is employed and the signal is integrated
over ¢, such that the results can be presented as a real func-
tion of ¢, and #,:

1(t),1) = f diS(t),1.1) f di| (11,120 (34)
0 0

Since this procedure is convenient for plotting the various
signals, we will adopt it below when we report the results
obtained from our calculations. However, it is important to
note that the procedure outlined above requires the complex
and t-resolved overall polarization as input in order to com-
pute the various ORFs.

B. The impulsive regime

We start the discussion with a set of results obtained in
the strong impulsive regime [cf. Eq. (16)], under weak-field
conditions (|x,|7,=|x,|7,=|x.|7.=0.017/2). Figure 1 shows
the integrated homodyne-detected overall polarizations ob-
tained in this case, following a sequence of three pulses with
the nine phase combinations indicated in Eq. (26). Substitut-
ing these overall polarizations into Eq. (B1l) resolves the
overall polarization into its directional components: a,J(z;
+i+1), a)(t,+1), a3J(t), b K(t,,6,+1), DbyK(t;+1,,1),
b3K(15,1), ¢ L(t;,t5,1), c,L_(t;,1,1), and dM(t;,t,,1). The
ORFs J(t;+1,+1), J(t,+1), J(t), K(t|,t,+1), K(t;+1,,1),
K(ty,1), L,(t;,t5,1), L_(t,t,,1), and M(t,,t,,t) can be ob-
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J':|K (t,,0)|dt

FIG. 2. (Color) The nine homodyne-
detected integrated ORFs as obtained
via Eq. (B1), using as input the nine
overall polarizations from Fig. 1.
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tained by simply dividing by the corresponding coefficients
[cf. Eq. (25)]. The modulus squares of these ORFs, inte-
grated over f, which correspond to the signals measured
along different directions within the homodyne time-
integrated measurement scheme, are presented in Fig. 2.

Three of the nine functions correspond to linear response
to the first pulse [J(t,+t,+1)], second pulse [J(t,+1)], and
third pulse [J(7)]. Indeed, these three functions coincide with
the linear ORF J(7) when plotted as a functions of #;+1,+1,
t,+1, and 1, respectively (not shown). It should also be noted
that the rapid decay of J(7) for the system considered here is
dominated by inhomogeneous broadening (i.e., the equilib-
rium distribution of U) and therefore does not contain infor-
mation on the time scale on which U(¢) fluctuates.'”®

Another set of three functions corresponds to the 2PE
response to pulses a and b [K(t;,t,+1)], pulses a and ¢
[K(t,+1,,1)], and pulses b and ¢ [K(t,,t)]. These three func-
tions indeed also coincide with K(7;,7) when plotted as
functions of the appropriate time variables (not shown). Two
of the remaining three functions correspond to the 3PE re-
sponse to pulses a, b, and ¢ when t; >0, i.e., when pulse a
precedes pulse b [L_(t;,t,,1)] and when t, <0, i.e., when
pulse b precedes pulse a [L,(t,,,t)]. The last function,
M(t,,1,,1), corresponds to a fifth-order response to the three
pulses. Unlike the linear ORF, the decay of these nonlinear
ORFs is strongly influenced by fluctuations in U(z) and
therefore conveys information on the time scale of solvation
dynamics.ls’18

Comparing Figs. 1 and 2, it is clear that the signals in
Fig. 1 are dominated by the linear ORFs J(r,+1,+1), J(t,
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FIG. 3. (Color) The homodyne-detected integrated overall polarizations,
[5di| (1,15, 1)|%, following a sequence of three impulsive pulses with the
indicated six different phase combinations (¢,, ¢y, ¢.) [cf. Eq. (28)], under
strong-field conditions (|x,|7,=|x,|7=|x.|7.= 7/2).

+1), and J(¢) (cf. the upper three panels in Fig. 2). This is to
be expected under weak-field conditions, where the contribu-
tion of higher order ORFs is much smaller in comparison to
that of the linear ORFs [cf. Eq. (27)]. Accordingly, the am-
plitude of the linear ORF that results from Eq. (B1) is much
larger than that of the higher order ORFs (prior to dividing
by the corresponding field-dependent coefficients). The pro-
cedure outlined in Egs. (26) and (B1) was nevertheless able
to extract these much smaller contributions in an accurate
manner, as can be seen from Fig. 2. This is surprising at first
sight, since the nonlinear signals in Fig. 2 correspond to very
small numbers extracted by taking the difference between
very large numbers and could be expected to be very sensi-
tive to noise. However, this is not the case due to the phase
sensitivity of the signals, which makes this procedure prac-
tically noise-free (similarly to experiment).

We next consider another set of results obtained in the
strong impulsive pulse regime, under strong-field conditions
(IXalT2=|X5| To=|X.| 7.=7/2). Figure 3 shows the integrated
homodyne-detected overall polarizations following a se-
quence of three impulsive pulses with the six phase combi-
nations indicated in Eq. (28). Substituting these overall po-
larizations into Eq. (B2) yields the following six functions:
J(t,+6,+1), K(t),tp+1), K(t,+1,,1), L.(t;,15,1), L_(t;,1,,0),
and M(t,,1,,t). The modulus squares of these functions inte-
grated over ¢ are presented in Fig. 4 and clearly coincide with
the same ORFs that were calculated under weak-field condi-
tions (cf. Fig. 2). Comparison of Figs. 3 and 4 also shows

J. Chem. Phys. 125, 214501 (2006)
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FIG. 4. (Color) The six homodyne-detected integrated ORFs as obtained via
Eq. (B2), using as input the six overall polarizations from Fig. 3.

that the signals in Fig. 3 are no longer dominated by the
linear ORF, which is to be expected under strong-field con-
ditions.

Another set of results that was generated in the strong
impulsive regime and under strong-field conditions (|x,|7,
=|xs|7=|x.|7.=7/2) is shown in Figs. 5 and 6. Figure 5
shows the integrated homodyne-detected overall polariza-
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FIG. 5. (Color) The homodyne-detected integrated overall polarizations,
J5di| G, (1,15, following a sequence of three impulsive pulses with the
indicated four different phase combinations (¢, @, ¢.) [cf. Eq. (29)], under
strong-field conditions (|x,|7,=|x,|7,=|x.|7.= 7/2).
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FIG. 6. (Color) The four homodyne-detected integrated ORFs as obtained
via Eq. (B3), using as input the four overall polarizations from Fig. 5.

tions following a sequence of three impulsive pulses with the
four phase combinations indicated in Eq. (29). Substituting
these overall polarizations into Eq. (B3) yields the two 3PE
ORFs, L.(t),t,,t), and L_(t;,t,,1), as well as mixtures of
J(t,+t,+1) with M(t,,1,,t) and of K(t;,1,+1) with K(z,
+1,,t). The modulus squares of these functions integrated
over t are presented in Fig. 6. The ones for L,(¢;,t,,t) and
L_(t;,1,,1) clearly coincide with these in Figs. 2 and 4.

We now turn to the weak impulsive regime [cf. Eq.
(15)]. The difference between the strong and weak impulsive
limits has to do with whether one does or does not ignore U
during the pulse. The typical amplitude of the fluctuation in
U/h around its average value can be estimated in terms of its
standard deviation, which is ~0.04 fs~'. For the model em-
ployed here, the width of an impulsive pulse coincides, by
definition, with the MD simulation time step, i.e., 7=1.0 fs.
Thus, for an impulsive pulse, |U|7/%~0.0257/2. Thus, un-
der weak-field conditions (|x|7~0.017r/2), one cannot as-
sume that 7|y|>|U|, which implies that, strictly speaking,
the strong impulsive limit is not valid. Nevertheless, we have
found that the nine ORFs calculated in the weak impulsive
regime and under weak-field conditions (|x,|7,=|xs|7,
=|x.|7.=0.0171/2) were practically indistinguishable from
those obtained in the strong impulsive limit (cf. Figs. 1 and
2). This implies that, at least for the model considered here,
accounting for the effect of U during an impulsive pulse does
not change the predicted optical response of the system in a
noticeable way. The same result was seen to hold for even
weaker fields (|x.|7.=|xsl7=|x|7.=0.0017/2), as well as
under strong-field conditions (not shown).

C. The nonimpulsive regime

Finally, we consider an example in the nonimpulsive re-
gime. For the sake of convenience, we still assume that the
pulses are square but increase their width from 1.0 to 10 fs
while lowering their amplitude by a factor of 10 so that the
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pulse area remains the same as in the impulsive limit. We use
the same procedure for extracting the various ORFs as in the
impulsive regime, in parallel with the common practice of
analyzing experimental signals obtained using nonimpulsive
pulses within a theoretical framework that assumes impul-
sive pulses. We also note that #; was defined as the time
interval between the end of pulse a and the end of pulse b, 1,
as the time interval between the end of pulse b and the end of
pulse ¢, and ¢ as the time interval between the end of pulse c,
and detection.

The ORFs calculated in the nonimpulsive regime under
weak-field conditions (|x,|7,=|xs/7=|x.|7.=0.017/2) and
strong-field conditions (| x,|7,=|xs|Th=|x.|T.=7/2) are
shown in Figs. 7 and 8, respectively. As can be expected,
comparison with the corresponding results obtained in the
impulsive regime (cf. Figs. 2 and 4, respectively) reveals
many quantitative and qualitative differences, particularly at
t;,t,<10 fs (i.e., when there is significant overlap between
pulses). Furthermore, unlike in the impulsive regime, the
OREFs extracted under strong-field conditions are noticeably
different from those extracted under weak-field conditions.
However, many of the gross features remain similar in both
cases. For example, a comparison of the 3PE OREF,
L_(t;,t,,1), in the impulsive and nonimpulsive regimes re-
veals that the decay of the signal as a function of #, occurs on
similar time scales, while the maximum as a function of ¢, is
shifted to a value of #; which is about 10 fs longer than in the
nonimpulsive case.

V. CONCLUDING REMARKS

In this paper, we presented and demonstrated a nonper-
turbative procedure for calculating nonlinear optical signals
in liquid solution. It should be noted that although the pre-
sentation was made in the context of electronic spectroscopy,
the same procedure will apply equally well in the case of
vibrational spectroscopy. It should also be emphasized that
the procedure can be easily extended to cases involving mul-
tiple electronic and/or vibrational transitions. Being nonper-
turbative, the proposed procedure is clearly advantageous in
the strong-field regime. However, it also appears to provide a
convenient alternative to the perturbative treatment in the
weak-field regime.

The nonperturbative approach is particularly advanta-
geous in the nonimpulsive regime. Although we have only
considered the effect of using square pulses of finite width,
one could employ the very same scheme in order to under-
stand the effect of using nonimpulsive laser pulses of more
complex shapes. For example, a nonperturbative approach of
the type described here would be very useful in exploring the
prospects of using shaped laser pulses to control molecular
dynamics in liquid solution.*'=%

In calculating the overall polarization and only then re-
solving it into its directional components, the nonperturba-
tive approach follows a procedure which is similar to the
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FIG. 7. (Color) The nine homodyne-
detected integrated ORFs calculated
via Eq. (B1), using as input the overall
polarizations following a sequence of
three nonimpulsive 10 fs wide square
pulses with the nine different phase
combinations (¢,,p,,d,) specified in
Eq. (28), under weak-field conditions
(|Xa|Ta= ‘Xb|7b=|X£|Tc=0'0177/2)-
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experimental one. The nonperturbative approach also high-
lights the fact that, in the impulsive regime, the overall po-
larization is given by a linear combination of the same ORFs,
regardless of the field strength. As a result, choosing between
the strong-field and the weak-field regimes becomes a matter
of convenience. In fact, the strong-field route to the ORFs
turns out to be somewhat more convenient in practice.

In resolving the overall polarization into its directional
components in the nonimpulsive case, we assumed that it
consists of the same nine directional components, as in the
impulsive case. Our goal in pursuing this calculation was to
critically examine the quality of the results obtained by ana-
lyzing experimental signals obtained using nonimpulsive
pulses within a theoretical framework that assumes impul-
sive pulses. It should be emphasized, however, that the actual
overall polarization measured in a nonimpulsive three-pulse
experiment involves additional components. Thus, in gen-
eral, the overall polarization will include components asso-
ciated with phase factors of the following form: exp[i(n,¢,
+n,¢p+n.¢.)], with n,,n,,n.=0,%1,+2,%3,... (although
the corresponding components for some phase combinations
may Vanish).29 Within the weak-field regime, higher values
of (n,,n;,n,) are associated with higher order with respect to
the field, which would simplify the interpretation of nonlin-
ear signals.

The scheme considered here was based on several sim-
plifying assumptions such as the rotating wave approxima-
tion, the same leading frequency for all pulses, and reso-
nance. However, none of these assumptions is essential, and
they can all be avoided in principle (at the expense of addi-
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FIG. 8. (Color) The six homodyne-detected integrated ORFs calculated via
Eq. (B2), using as input the overall polarizations following a sequence of
three nonimpulsive 10 fs wide square pulses with the six different phase
combinations (¢,, ¢, ¢,) specified in Eq. (28), under strong-field conditions
(|Xa|Ta=|Xb‘Tb=|XC|Tc= 77/2)
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tional computational cost). A more significant limitation of
the proposed scheme has to do with the fact that the mixed
quantum-classical treatment that we employed, which was
dictated by the specific choice of interaction picture implied
by Eq. (7), is not unique. As is well known, adopting other
quantum-mechanically equivalent interaction pictures and
following a similar procedure would lead to different mixed
quantum-classical treatments (cf. Appendix A7 At the
same time, a previous study has shown that the nonlinear
signals are not very sensitive to the type of approximation

J. Chem. Phys. 125, 214501 (2006)

employed for describing the dynamics in the case of a non-
polar solution.” However, a more detailed study of this issue
in nonpolar as well as polar solutions would be highly desir-
able and will be the subject of future work.
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APPENDIX A: ALTERNATIVE MIXED QUANTUM-CLASSICAL SCHEMES
The mixed quantum-classical treatment that we employed is dictated by the specific partitioning of the Hamiltonian in Eq.

(2), which in turn dictates the choice of interaction picture implied by Eq. (7). Although this is a convenient choice (see
below), it is not unique. To see why, consider the following more general partitioning of the Hamiltonian in Eq. (2):

f]o = ﬁweg|e)(e| +I§7b + 0[a|e><e| -(1-a)lgXg

1. (A1)

where I:Ihzal:lg+(l —a)H, and 0< a=1. It should be noted that the partitioning in Eq. (2) is reproduced for a=1. We next
define the transformation to the rotating frame and interaction picture as follows:

(1) = expli(H, + hwle)e|)t1h1p(t)exp[ - i(H, + hawle)e|)t/h]. (A2)
It can be easily shown that the equation of motion for p() has the form of Eq. (8), with
- . h .
H(1) = hAle)(e| + Uy(t)[ ale)e| - (1 - a)|g)(g|] - 52 (x;(Dg)el + x;(D)]e)g])- (A3)
j

Here, lA]b(t)=e”:Ibt/hlA]e'”}bt/ﬁ’.

Substituting Ub(t) by its classical limit, U,(z), it can be easily shown that the coupled equations of motion for the four
elements of the density matrix (¢) are still given by Egs. (12) and (13). However, U,(¢) is different from U(r) and corresponds
to the energy gap between the ground and excited electronic states as obtained from a classical nonequilibrium MD simulation
on the averaged potential surface aV,+(1-a)V.,.

The fact that U,(¢) is explicitly dependent on « implies that equivalent forms of the quantum Hamiltonian give rise to
different mixed quantum schemes that differ with respect to the potential surface that dictates the dynamics of U b(t).lo_17 The
choice a=1, for which U,(t)=U(r), is therefore somewhat ad hoc. However, the choice of @=1 is also convenient since unlike
any other choice, it allows us to extract U(z) from equilibrium MD simulations (on the ground state potential surface). It should
also be noted that a previous study has shown that the nonlinear signals are relatively insensitive to the choice of « in the case
of the nonpolar solution model considered here.”

APPENDIX B: INVERSE TRANSFORMATIONS

The inverse of Eq. (26) is given by
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aJ(t; +1,+1) i 1+i 1 l—i —2i —1-i -1 ~—1+i i
aJ(ty +1) 1+i =2i —1+i 0 0 0 1+i =2i —1+i
aJ(t) -2i 0 =2 0 0 0 -2 0 @ -2i
b K(t),t, +1) 1 —1+i —i —1+i =2i 1+i —i 1+i -1
b,K(t, + tr,1) =% i o—1+i -1 —1-i -2i 1-i 1 1+i i
byK(ty,1) —1+i =2 14i 0 0 0 —1+i =-2i 1+i
\Ly(t),1,1) 1-i 0 =—1+i -2 0 2 1+i 0 —1-i
erL_(ty,15,1) ~1-i 0 1+i 2 0 -2 —1+i 0 1-i
dM(1,,15,1) -1 1+i -1 1+i =20 =1+i —-i —1+i 1
522<”/2)(t1,t2,t)
5(27)2”/2)(#/2)01’&,1)
52:(77/2)(11’12,0
a_g/z)o(w/z)( )
x| &7 1,0) (B1)
5';,’7;/2)77(77/2)01 J1y,1)
G 1), 1,,1)
5;£W/2)(W/2)(f1af2,f)
ng(”/z)(tl,tz,t)
The inverse of Eq. (28) is given by
Ity + 1y +1) 4 20 140 1+ 2 1-i Gty 15,1)
K(t1,1, +1) l—i 2 —1—i 1+4i -2 1-i A (NON)
K(t, + t5,1) L+i 20 —1+i —1+i =2 —1-i || &7(t).10,1)
L) || =1 0 1 i 0 —i G 1 1,0) (B2)
L_(t;,1,1) -1 0 1 -i 0 i G T ¢ 1. 1)
M(t,,t5,1) -1-i 2i 1-i —-1+i 2 -=-1-i 52:/2”(”/2)(;],;2,;)
The inverse of Eq. (29) is given by
J(ty + 1y + 1) + M(t,,1,0) 2 2 2 2 Foo (t1.12.1)
Kt +0+ Kt +0,0 | [ =20 =20 2 2 For(ty.t.t) 3)
L(t),12,1) i i -1 1 G0, 15,1)
L_(1),15,1) —i i 1 =1/ \ET™ 1,0
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