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We report measurements of the spatial distribution of stacking faults in colloidal crystals formed by
means of an oscillatory shear field at a particle volume fraction of 52% in a system where the pair
potential interactions are mildly repulsive. Stacking faults are directly visualized via confocal laser
scanning microscopy. Consistent with previous scattering studies, shear orders the initially
amorphous colloids into close-packed planes parallel to the shearing surface. Upon increasing the
strain amplitude, the close-packed direction of the �111� crystal plane shifts from an orientation
parallel to the vorticity direction to parallel the flow direction. The quality of the layer ordering, as
characterized by the mean stacking parameter, decreases with strain amplitude. In addition, we
directly observe the three-dimensional structure of stacking faults in sheared crystals. We observe
and quantify spatial heterogeneity in the stacking fault arrangement in both the flow-vorticity plane
and the gradient direction, particularly at high strain amplitudes ���3�. At these conditions, layer
ordering persists in the flow-vorticity plane only over scales of �5–10 particle diameters. This
heterogeneity is one component of the random layer ordering deduced from previous scattering
studies. In addition, in the gradient direction, the stacking registry shows that crystals with
intermediate global mean stacking probability are comprised of short sequences of face-centered
cubic and hexagonal close-packed layers with a stacking that includes a component that is
nonrandom and alternating in character. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2178784�
I. INTRODUCTION

Under certain conditions of interaction potential and vol-
ume fraction, colloidal particles form equilibrium phases
with three-dimensional positional order.1 Such colloidal crys-
tals are a possible route to fabricate macroscopic structures
with applications in photonics,2 sensors,3 and catalysis.4 Col-
loidal dispersions are also a fruitful model system to address
fundamental questions of statistical mechanics related to
crystallization, gelation, and the glass transition.5–7 Inherent
in the natural ordering process of colloidal crystallization is
the formation of defect structures such as stacking faults,
grain boundaries, and vacancies.8–10 By reducing the degree
of ordering, such defects compromise the periodicity that is
necessary for the functionality of these materials.11,12 The
application of external fields such as shear, gravity, or an
electric field to direct this crystallization is one avenue to
minimize defect concentration and manufacture crystals of
high quality on large scales.13,14 In addition, this deficiency
could possibly be overcome by combining postprocessing
methods such as the use of optical gradient forces that have
been shown to anneal small defect-laden regions in thin
crystals.15

While some aspects of colloidal and molecular crystalli-
zation are analogous, polydispersity, sedimentation, finite
size, and boundary effects as well as the small elastic con-
stant of colloidal crystals may contribute to a higher defect
concentration in colloidal systems.9,16,17 Moreover, the rela-
tively small free energy cost associated with the formation of
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stacking faults make these defects a common feature in col-
loidal crystals with close-packed structure.18 Computational
studies have shown that a face-centered cubic �fcc� crystal is
entropically favored at equilibrium over a hexagonally close-
packed �hcp� crystal but only by the relatively small amount
of �10−4kbT per sphere. Simulations have also probed the
correlation between neighboring crystal layers and identified
a small entropic interaction that decreases with increasing
layer separation.19 In addition to simulations, a range of
faulted structures have been experimentally observed for un-
perturbed equilibrium crystals.20–23 However, the degree of
correlation between stacking faults as well as the effect of
external forces on the number and distribution of stacking
faults24,25 are poorly understood.

Scattering studies have probed the effect of flow on the
nonequilibrium microstructure of colloidal crystals; however,
few have discussed the effect of flow on defect composition
since defect structures are poorly resolved by measurements
such as scattering which probe ensemble averaged structure.
Application of a fixed shear stress to colloidal dispersions
generates a rich sequence of microstructural transformations
as the system is increasingly perturbed from equilibrium.26,27

Oscillatory shear flow also generates metastable ordered
structures from colloidal suspensions with amorphous equi-
librium structure.28 Ackerson describes a complex succession
of two-dimensional �2D� and three-dimensional �3D� struc-
tures realized by progressive variation of the applied shear
field strength.29 A recent review of scattering studies of
shear-induced colloidal crystallization is available by Ver-
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in this succession of previously identified transitions war-
rants characterization. In this paper we focus on stacking
fault defects.

To explain the microstructures observed in these sheared
colloidal crystals at high volume fractions ���50% �, Ack-
erson has proposed a mechanical model that accounts for the
variation in the strain amplitude and volume fraction of the
particles.29 At low strain amplitudes, particles are translated
less than one particle diameter and thus remain in their re-
spective interstitial sites during shearing. In this scenario,
oscillating twinned fcc crystals with particles traveling in a
zigzaglike trajectory allow for the least constrained deforma-
tion of the crystals. At large strain amplitudes, particles are
driven more than one particle diameter. Subsequent particle
interactions lead to a reorganization of the microstructure
into a randomly stacked sliding layer configuration. At inter-
mediate strain amplitudes a mixture of both microstructures
and deformation mechanisms is possible. At progressively
higher strain amplitudes and shear rates a number of differ-
ent microstructure and deformation mechanisms have been
observed, including shear melting.26,29

To date, colloidal crystallization has primarily been stud-
ied using scattering techniques.30 Such measurements, for
example, deduce the unit cell and average stacking probabil-
ity from the intensity modulation of the diffraction patterns
arising from the crystal’s periodicity. However, such analysis
is limited to evaluating the global, ensemble averaged struc-
ture. For example, although the ratio of fcc to hcp layering
can be extracted from scattering by computing the mean
stacking parameter, details regarding the spatial distribution
of stacking faults cannot. �Here the mean stacking parameter
measures the probability of observing crystal translation vec-
tors that yield a fcc or hcp layer with �=0, �=0.5, and �
=1 corresponding to complete hcp, random stacking, and
pure fcc stacking probabilities, respectively.� Moreover, layer
ordering is not uniquely determined by the mean stacking
parameter. That is, two different layer structures �each with
possibly distinct potential for successful application� can
yield the same mean stacking parameter. For example, com-
puter simulation has shown that colloidal crystals can nucle-
ate from a twinned fcc structure that has an average stacking
parameter equivalent to that for a random stacking
sequence.24 This finding suggests that studies aimed at dis-
covering the underlying mechanisms of defect formation and
persistence in colloidal crystals are needed to resolve micro-
structural features with greater detail than the average mea-
sures yielded by scattering.

Direct visualization methods such as optical and electron
microscopies complement the ensemble averaged character-
ization of scattering in this way. Confocal optical micros-
copy, in particular, can be applied to interrogate the 3D real
space structure in solvents that is typical of colloidal
crystallization.31–33 These methods, when combined with
quantitative image processing, allow the structure and dy-
namics of colloidal suspensions to be studied directly in real
space. For example, visualization of specific crystallographic

planes �110� within a colloidal crystal and the location of
stacking faults have been observed.34 Defect structures, such
as stringlike voids in colloidal suspensions sheared in
confinement,35 may also be studied.

In this paper, we investigate the effect of oscillatory flow
on the stacking registry of shear-induced colloidal crystalli-
zation. As reviewed in Ref. 30, a rich sequence of structural
transitions �including, e.g., fully crystalline layers, polycrys-
tals, randomly stacked layers, strings, and shear melted struc-
tures� have been previously observed. Among the most in-
triguing observations to date is that intermediate strain
amplitudes and strain rates lead to scattering that is consis-
tent with a random configuration of stacking registries. Here,
we explore this possibility further by means of direct visual-
ization methods. We use an oscillatory flow field so as to
independently control the strain amplitude and deformation
rate and thereby compare results with prior scattering results.
While colloidal suspensions do crystallize under equilibrium
conditions, we perform measurements at Peclet number Pe
�1 to better understand a regime of nonequilibrium crystal-
lization in which high quality crystals have previously been
reported.36 Here Pe measures the relative effect of shear to
thermal forces in the crystallization process. Our materials
are concentrated suspensions of sterically stabilized poly�m-
ethyl methacrylate� �PMMA� colloids in nonpolar organic
solvents. Due to approximate refractive index matching, at-
tractive interactions between the particles are weak. The ad-
dition of disassociating salts also allows tuning of a repulsive
component of the interaction potential into a regime that pro-
motes colloidal crystallization.37

II. EXPERIMENT

A. Colloid synthesis

Monodisperse poly�methyl methacrylate� spheres were
synthesized by adaptation of the methods of Antl et al.,
Campbell and Bartlett, and Pathmamanoharan et al.38–40 The
particle diameter characterized by scanning electron micros-
copy was 1.15 �m �standard deviation of 4.1%�. Briefly, the
synthesis is a dispersion polymerization reaction of MM
�Fluka� and methacrylic acid �Sigma�. The synthesized par-
ticles were sterically stabilized by a graft layer of poly�12-
hydroxy-stearic acid� �PHSA� that was covalently bound to
the surface through a locking step. The stabilizer was formed
in a separate reaction of glycidyl methacrylate, PHSA, and
MM in which product formation was verified by means of
acid value titration and gel permeation chromatography. The
fluorescent species, Nile red dye ��ex=525–605 nm, Sigma�,
was directly incorporated into the particles during the disper-
sion polymerization to allow for confocal fluorescence imag-
ing. This dye was selected for its thermal stability and low
rate of photobleaching. Particles were suspended in a highly
viscous, nearly refractive index matched solvent of dioctyl
phthalate �DOP� �Sigma�.41 The refractive index matching
solvent �n=1.486� ameliorates the effect of attractive van der
Waals forces on colloidal stability. The high viscosity of
DOP minimizes Brownian displacements and sedimentation
during confocal laser scanning microscopy �CLSM� image
volume acquisition. Samples were prepared by dispersing
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chloride salt.37 The volume fraction of particles was �
=0.52 and the salt concentration was 10−3M. The high vol-
ume fraction was selected to probe a regime where close-
packed ordering of the suspensions is expected.

The pair potential U�r� plotted in Fig. 1 was measured to
assess the particle pair interactions. Briefly, we measured
g�r� at a number of dilute volume fractions and then applied
the extrapolation

U�r�
kT

= lim
�→0

− �ln g�r�� �1�

to obtain the colloid pair potential interaction U�r�. Measure-
ments of the pair correlation function were taken at volume
fractions ranging from 0.5% to 2%. Results shown are the
average of five experiments with the standard error of the
mean reported as the error bars. Figure 1 shows a slight
deviation from hard sphere behavior towards a mildly repul-
sive particle pair interaction of the order �1.3d where d is
the particle diameter. In addition, a weak attraction is also
present �order �0.5kbT� consistent with the conclusions of
other work on PMMA-PHSA colloids in organic solvents.42

The precision is estimated to be �±10%. This estimate of
the pair potential range is based on the precision of 3D image
processing algorithms and the effect of the polydispersity of
the colloids.43,44

B. Shear flow

An illustration of the shear flow cell used is in Fig. 2.

FIG. 1. Extrapolated dilute pair interaction potential. The inset is a dilute
pair correlation function at several varying volume fractions.

FIG. 2. Shear cell illustrations. �a� Schematic of shearing surfaces. �b� 3D

rendering of shear cell components. �c� Table of dimensions.
Figure 2�a� provides an enlargement of the shearing surfaces
with appropriate dimensions listed in Table I. Figure 2�b� is a
3D rendering which shows how the various components of
the shear cell are integrated into the setup. The flow cell
utilizes a parallel plate geometry with one surface a glass
coverslip �Corning, PA� and the other a glass slide �Kineop-
tics, LA� to generate a homogeneous shear flow. Specimens
are viewed from below through the glass coverslip �thickness
of No. 1.5�. Two tilt goniometers �gon40, Newport, CA� are
aligned to achieve parallelism of ±10 �m over the coverslip
area �24�50 mm2�. The alignment is performed by measur-
ing the height of PMMA particles fused to the outer edge of
the coverslip. The shear apparatus is mounted on a manual
x-y translational stage for variable positioning of the sample
relative to the microscope objective. An oscillatory, plane
Couette flow with a sinusoidal wave form is produced with a
linear stepper motor �Labmotion, Coherent, CA�. Sample
volumes of �400 �l were well mixed by vigorous vortex
stirring and then placed between the glass surfaces by mi-
cropipetting. A linear micrometer �model 433, Newport, CA�
was used to precisely adjust the gap height to 150 �m. By
varying the strain amplitude and frequency �hertz�, a range of
shear rate magnitudes �s−1�, strain amplitudes, and Peclet
numbers are accessible �0.01	�̇	100, 0.05	�	23, and
0.1	Pe	50, here Pe is computed from the free particle
diffusivity�. Strain amplitudes, shear rate magnitudes, and
Peclet numbers realized during this study were 1	�	4,
0.25	�̇	4, and 6.5	Pe	19.5. Constant shear rate magni-
tude experiments ��̇=4 s−1� were conducted by varying the
strain amplitude with 1	�	4 with a proportional change in
the frequency range of 4	Freq�Hz�	1. In order to expose
samples sheared at different strain amplitudes and frequen-
cies to an equivalent number of oscillations, the duration of
shearing was adjusted accordingly with 10	 t�min�	40
with higher strain amplitude experiments lasting longer
times. Constant frequency experiments were accomplished
by varying the strain amplitude ��=1 and 3� with a fixed
frequency of 3 Hz and total deformation time of 5 min. Both
methods to manipulate the shear rate magnitude have been
used in the literature.29 The images in Fig. 3 �collected
�50 �m above the coverslip� illustrate the effect that the
duration of shearing has on the ordering process for a �
=0.48 sample sheared at �=1 and frequency of 5 Hz.

In Fig. 3, the images from left to right represent an un-
shared sample, a sample sheared for 2 min, and a sample
sheared for a total of 5 min. The insets are 2D fast Fourier

TABLE I. List of primary shear cell dimensions. Definition of terms: e
, e�,
and ev represent vorticity, gradient, and velocity directions, respectively.

H 150 ��m�

L1 50 �mm�
L2 10 �cm�
L3 13 �cm�
W1 24 �mm�
W2 3 �cm�
W3 7 �cm�
transforms that show the evolution of distinct Bragg peaks in
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the ordered samples. The 3D renderings at the bottom of the
figure show the spatial degree of ordering for the entire im-
age volume. These data document flow-induced ordering of
the initially amorphous specimens and are consistent with
the earlier scattering studies of Ackerson and Pusey and
Ackerson.28,29

C. Confocal laser scanning microscopy

The shear cell apparatus is mounted to the confocal laser
scanning microscope �DM IRE2, Leica, Germany�. An oil
immersion of 100� objective �numerical aperture NA=1.4�
was used to acquire stacks of the 2D images of the objective
plane �x-y plane� at 512�512 pixel2 resolution. These im-
ages were collected in the flow-vorticity plane of the flow.
By actuating the height of the objective plane relative to the
coverslip so as to traverse the gradient direction of the flow,
an image volume was built up at a rate of
�0.6 frames per second. �The acquisition rate limits the im-
age collection to after the cessation of flow.� Because of the
time required to collect an image volume, the acquisition
was performed immediately after the cessation of flow. Pa-
nine et al. have reported sharp jumps in crystallization im-
mediately after the cessation of flow;45 however, the time
series of 2D images here acquired immediately before and
after cessation of flow did not record behavior of this kind,
perhaps due to the slow dynamics in the high viscosity sol-
vent used. Typically �300 2D images comprise the image
volume. Image volumes of approximately 30�30
�20 �m3 were obtained in about 8–9 min with both xy and
z pixel resolutions of 61 nm. Figures 4�a� and 4�b� show
three-dimensional reconstructions of an image volume con-
sisting of a stack of 2D images. The 3D reconstructions show
the qualitative structure of a quiescent, amorphous and
sheared, ordered structure ��=1, Freq=3, t=5 min�, respec-
tively.

Images were collected after the flow was stopped at zero
strain amplitude. Sample loading was observed to result in
crystallization near the coverslip at distances below 30 �m
�data not shown�. Thus, to exclude wall effects, images were

FIG. 3. 2D micrographs with FFT insets and 3D renderings illustrating the
effect of time on the degree of crystallization for �=0.48, �=1, and Freq
=3 Hz. �a� Quiescent �24 h�, �b� t=2 min, and �c� t=5 min.
collected above this height. A time series showed the
samples had reached a steady state with negligible particle
displacements in the high viscosity medium during the qui-
escent acquisition period.

To identify particle locations, we use 3D image process-
ing algorithms adapted from Crocker and Grier.46 The 3D
algorithms consist of subroutines that perform the following
functions: First, convolution of the image with a Gaussian
filter reduces high frequency noise. Second, particle centers
are identified from the processed images by means of a local
maximum criterion. Third, particle positions are refined to
subpixel accuracy �±20 nm x-y, ±30 nm z�,44 by means of
moments of the local intensity distribution. Once particle lo-
cations were found to suitable accuracy, bond orientational
parameters were computed to differentiate particles with
crystal-like and amorphous orientations.45 These calculations
include the evaluation of local, bond order parameters de-
rived from spherical harmonics,

q̄jm�i� =
� j=1

Nb�i�Ylm��ij,�ij�
Nb�i�

. �2�

Here the subscript j designates a neighboring particle within
a given radius of particle i, Nb is the total number of neigh-
boring particles, and Ylm��ij ,�ij� are spherical harmonics
evaluated at the specified polar and azimuthal angles.47 The
radius for the coordinate shell of neighboring particles was
chosen near the first minimum of the 3D pair correlation
function. Crystalline particles were identified as having eight
or more neighboring particles where the coherence between
bonds measured by the dot product of q6�i� and q6�j� ex-
ceeded 0.5.48 Here, the mth component of q6�i� is

q̃6m�i� =
q̄6m�i�

��m=−6
6 �q̄6m�i��2�1/2 , �3�

and the dot product is

q6�i� · q6�j� = �
m=−6

6

q̃6m�i�q̃6m�j�*, �4�

where * denotes the complex conjugate. Figure 4�c� reports
the distribution of the number of crystalline bonds per par-

FIG. 4. Crystalline particle distribution for representative 3D amorphous
and ordered image volumes. �b� Amorphous ��=0.52, quiescent, t=24 h�.
�c� Ordered ��=0.52, �=1, Freq=3, t=5 min�.
ticle for the representative, quiescent, and sheared image vol-
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umes shown in Figs. 4�a� and 4�b�. The figure confirms that
the ten Wolde et al. criterion for local crystallinity can dis-
tinguish between quiescent and crystalline samples in our
experimental system.

D. Stacking fault analysis

We seek to investigate the spatial distribution of stacking
faults in the 3D image volumes acquired. In wall-bounded
flows, scattering indicates that colloidal crystals organize
into layers of close-packed planes oriented perpendicular to
the wall normal direction.30 The interlayer ordering of these
close-packed structures is specified by one of two possible
lattice vectors. Thus, the layer registry parallel to the wall
normal direction �the gradient direction� is specified by one
of three possible configurations, typically denoted as A, B, or
C. hcp structures consist of an “ABABAB” stacking registry.
fcc crystals have an “ABCABC” stacking. The mean stacking
parameter � has a value of 1 and 0 for perfect fcc and hcp
crystals, respectively, and all possible stacking registries
have intermediate stacking parameter values. Faulted crystal
structures of this kind have a distinctive appearance along
the �110� crystal plane. In particular, a sequence repeating
every other layer �a hcp crystal� would be recognized in the
�110� plane by kinks that change the close-packed direction.
Figure 5 shows the distinct appearance associated with the
presence of kinks in the �110� plane. The arrow highlights
the location of a kink. Elliot et al. showed that the stacking
parameter � can be computed by calculating the number of
kinks for a given number of layers and applying the follow-
ing expression:

� = 1 −
k

N − 2
, �5�

where k is the number of kinks and N is the total number of
layers.34 We use Eq. �4� to extract the stacking parameter of
the sheared crystals. This approach involved extracting eight
evenly spaced cross sections from the image volumes that
correspond to the �110� plane and by visual inspection, de-
termining the number of kinks from eight different locations
across each image. Each point can be characterized by a
value of �, here denoted by ��x ,y� where �x ,y� denotes the
location of the particular stacking sequence analyzed. By av-
eraging over the 64 locations, a spatially averaged value of
the global, stacking parameter ��	 for the entire image vol-
ume may be computed. We report the variation among the 64
points as the standard deviation in Table II. Furthermore, to
assess the interplanar variation in the stacking registry, the
layer averaged stacking parameter ���z�	L is also determined
by averaging the 64 values of ��x ,y� collected in each crys-
tal layer via the kink analysis method.

For comparison, the mean stacking parameter is also
computed by a second automated method that involves direct
measurement of the translational vector between different
planes. For example, if a particle has a hcp �ABAB� configu-
ration, then another particle can be found at a translational
vector equivalent to twice the interlayer spacing �
�2/3�d� of
the crystal where d is the effective colloid diameter deter-

mined from Fig. 1. To account for the deviations from a
perfect lattice due to Brownian motion, a particle was la-
beled hcp if another was found two layers below and within
a radius of 
�3� /2d that extends halfway between the next
interstitial �fcc� site. fcc particles were found in a similar
fashion by searching for particles within a radius from the
translational vector of r= �i+1/ 
�3�j+ 
�2/3�k�d.

To summarize, in the scattering literature, because the
ensemble averaged structure is interrogated, a single mean

TABLE II. Summary of shear experiments. Definition of terms: � �strain
amplitude� and �̇ �shear rate magnitude�.

� Freq �̇ Pe ��	 % crystal ��	

1 4 4 8.7 0.96±0.07 77 –
3 1.33 4 8.7 0.80±0.09 71 0.83
4 1 4 8.7 0.56±0.08 67 1.15
1 3 3 6.5 0.98±0.05 82 –
3 3 9 19.5 0.44±0.08 83 1.25

FIG. 5. �110� plane identification of kinks in a sheared colloidal crystal at
�=0.52, �=3, Freq=3.
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stacking parameter � is typically reported. Here, because our
aim is to characterize heterogeneity in the crystal structure,
the stacking parameter concept must be extended to accom-
modate the spatial resolution of the CLSM method. Thus, we
have ��x ,y�, the result of a kink analysis of the layer se-
quence at the coordinate �x ,y�, �a�z�	L, the relative ratio of
hcp and fcc structures in a particular layer a distance z from
the shear surface, as well as ��	, the global average of the
mean stacking parameter in an image volume. Note that ��	
is the equivalent of the result that would be extracted from a
scattering experiment and thus is directly comparable to ear-
lier studies.28,29

E. Degree of randomness

In previous studies, the mean stacking parameter was the
primary quantity used to characterize the stacking sequence
in colloidal crystals; however, as discussed previously, this
measure alone is not sufficient to determine whether the dis-
tribution of stacking faults in a colloidal crystal truly dis-
plays random statistics. However, single-parameter charac-
terizations of randomness appear in other areas of physical
chemistry, particularly in the classification of copolymer se-
quences. Here we adopt the measure � used in that field.49–51

Recast in terms of quantities relevant to the stacking se-
quence of colloidal crystals � is defined as

� =
�fcc/hcp�
�fcc��hcp�

, �6�

where �fcc/hcp� is the probability of finding a fcc layer fol-
lowed by a hcp layer and �fcc� and �hcp� are the probabilities
of finding fcc and hcp layers. This random parameter takes
values between zero and two, with 0, 1, and 2 corresponding
to block structure, random statistics, and alternating struc-
ture, respectively.

III. RESULTS

A. Correspondence with previous scattering studies

Qualitatively, we observe that execution of oscillatory
shear results in the organization of initially amorphous
samples into close-packed layers oriented parallel to the
shear surface �Fig. 3�. We find that the orientation of the
close-packed layers depends on the amplitude of the applied
strain. The global, mean stacking probability ��	 decreases
with the strain amplitude. These observations are in accord
with previous light and neutron scattering studies.29

By means of image processing, we extract quantitative
information about the parallel layers of hexagonal close-
packed ��111� plane� arrays formed by shear. Figure 6 reports
the wall normal �gradient direction� number density of par-
ticles at a volume fraction �=0.52 and frequency of 3 Hz as
a function of strain amplitude. As the strain amplitude is
increased the fluctuations in number density with axial posi-
tion increase. The existence of a characteristic scale for
the fluctuations is apparent in the inset of the figure, where
the fast Fourier transform �FFT� of the data is plotted. The
maximum in the FFT power spectrum agrees well with the

lattice vector expected for the close-packed layer spacing
�Freq=1/
2/3d� where d is the effective colloid diameter.
For this comparison, the characteristic particle separation d is
extracted from the pair potential in Fig. 1.

The variation in crystal orientation with strain amplitude
can also be directly observed in the imaging plane as re-
ported in Figs. 7�a� and 7�b�. The images on the left and right
are for samples sheared at �=1 and �=3, respectively. Both
images were collected �50 �m above the coverslip and are
for �=0.52 sample sheared at a frequency of 3 Hz. The in-
sets include 2D FFTs that also show Bragg peaks consistent
with the ordered structure and the shift in orientation be-
tween the two samples. The arrows highlight the particle
close-packed direction. At low strain amplitudes, �=1, the
close-packed direction of the �111� layers is aligned prima-
rily in the vorticity direction. Upon increasing the strain am-
plitude, ��1, a shift in the crystal orientation that corre-
sponds with a particle close-packed direction parallel to the
flow direction occurred. The effect of strain amplitude on
orientation is quantified in Fig. 7�c�. The oscillations in near-
est neighbor positions in the 2D layers differ in phase by 90°
for the two strain amplitudes.

As described earlier, our methods allow the extraction of
the global, mean stacking parameter ��	 from the acquired
image volumes and this quantity is directly comparable to

FIG. 6. Vertical number density distribution for various strain amplitudes
for �=0.52, Freq=3. The inset is the Fourier transform of data.

FIG. 7. Variation in crystal orientation with strain amplitude with 2D FFT
insets. �a� �=1, �b� �=3, and �c� plot of angular distribution of first six

nearest neighbors.
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previous scattering measurements. Table II summarizes the
results of studies in which the strain amplitude was varied at
constant shear rate magnitude and at constant Peclet number.
To benchmark the data, note that the quiescent samples were
only 2% crystalline. Increasing the strain amplitude causes
��	 to decrease. The decrease from 0.97 at low strain to 0.46
at high strain is consistent with a transition from an approxi-
mately fault-free fcc crystal ���1� to a structure of ran-
domly stacked layers ���0.5�. This average analysis sug-
gests that the number of stacking faults in the sample
increases with strain amplitude.

Quantitative measurements of the degree of crystallinity
were performed by differentiating between particles with
crystalline and amorphous orientations per the method of
Sec. II C. Table II reports the degree of crystallinity of the
sheared colloidal crystals at the conditions studied. A de-
crease in the degree of crystallinity is observed with an in-
crease in the strain amplitude for the constant shear rate mag-
nitude experiments. The constant frequency experiments
yield samples with nearly equal values in the degree of crys-
tallization at the different strain amplitudes.

B. Spatial heterogeneity of stacking faults

The stacking faults that lead to the variation in global
parameter ��	, reported in Table II are qualitatively apparent
in the CLSM image volumes, as shown in the representative
images of Fig. 8. Connecting particle centroids by line seg-
ments, as shown in Fig. 9�a�, clearly displays the complex
fault structure. In this section, we seek to understand the
spatial distribution of such stacking faults. As shown in Fig.
8, 3D renderings of the image volumes demonstrate that spa-
tial heterogeneity is significant at large strain amplitude ��
=3�. Interestingly, the heterogeneity in the flow-vorticity
plane is clearly apparent �also shown with Fig. 9�b��. This
observation is at odds with one-dimensional models com-
monly used to extract the mean stacking parameter from
scattering.52,53 That is, in such models, interlayer registry is

FIG. 8. 2D cross sections of �110� plane and 3D renderings of image vol-
umes showing spatial heterogeneity of stacking registry in flow-vorticity
plane and gradient direction. �a� �=1 and �b� �=3. Blue, gray, and red
particles are fcc, hcp, and noncrystalline particles, respectively.
assumed to be uniform in the flow-vorticity plane. Figures 8
and 9 suggest that the one-dimensional �1D� assumption is
too restrictive to model the behavior of close-packed colloi-
dal crystallization.

To assess the degree to which flow-vorticity plane varia-
tions in stacking faults contribute to the variations in ��	
reported in Table II, we analyzed the spatial heterogeneity by
a number of methods. First, in Fig. 10, we report the axial
variation in the stacking of each layer ���z�	L. Here, a uni-
formly fcc layer at a distance z from the coverslip would
have ���z�	L=1. Independent of z, a uniformly hcp layer
would have ���z�	L=0. Independent of z, ���z�	L=0.5 indi-
cates that half the particles in that particular �x ,y� layer are
part of a fcc structure, while half the particles are part of a
hcp structure. If the assumptions of a fully one-dimensional
model of stacking registry �such as Loose and Ackerson or
Guinier52,53� were valid, then the only possible values of
points on Fig. 10 would be zero and one. For the sample
subjected to the strain of one, this assumption is nearly cor-
rect as we observe many defect-free fcc layers with ���z�	L

=1.
At high strain amplitude, the layer structure is clearly

laterally inhomogeneous since ���z�	L often takes values be-
tween zero and one. We observe a number of planes where

FIG. 9. �a� 2D cross section of �110� plane. �b� Contour map of ��x ,y�
values computed via kink analysis for the sample sheared at �=3 and
Freq=3 Hz illustrating the spatial heterogeneity in the flow-vorticity plane
and gradient direction. Dashed red line corresponds to location of cross
section in �a�.

FIG. 10. Axial variation in stacking registry of �=0.52 sheared crystals at
various strain amplitudes and frequencies. Dashed lines are the mean value

���z�	L averaged over all layers.
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���z�	L is nearly zero. Such stacking faults extend laterally
across the entire image volume. These faulted hcp layers are
interspersed among polycrystalline layers that consist of a
mixture of hcp and fcc regions which leads to an intermedi-
ate value of ���z�	L for that particular plane. The sample
subjected to �=4 displays the largest variation in ���z�	L.
Figure 10 shows that the samples subjected to strain ampli-
tudes of 3 and 4 have comparable stacking parameters val-
ues; however, significant variations in the arrangement of
stacking faults are observed. The deviations from ���z�	L at a
number of points are then due to a number of hcp areas.
However, these layers, since ���z�	L	1, do not extend lat-
erally throughout the whole specimen.

As previously mentioned, the quantitative analysis of the
stacking registry above is represented qualitatively in Fig. 8
with 2D images of the �110� plane and 3D renderings for
samples from the constant frequency experiments �details in
Table II�. The volumes show qualitative variations in the
stacking registry in both the flow gradient and flow-vorticity
experiments. The images at the top correspond to �=1 and
image on the bottom to �=3. hcp, fcc �Figs. 8�c� and 8�d��,
and amorphous �Figs. 8�e� and 8�f�� particles are identified as
gray, blue, and red, respectively. For the sample subjected to
�=1, the variation in the stacking registry consists mainly of
small faulted regions. The rendering for �=3 illustrates the
presence of polycrystalline layers in the flow-vorticity plane,
in good correspondence with the results of Fig. 10.

To further identify the degree of spatial heterogeneity of
stacking faults, we selected 64 points in the flow-vorticity
plane �xy� and performed a kink analysis �in the axial, gra-
dient direction� at those points. Typically, sequences of crys-
talline particles completely extend through the imaged vol-
ume of the colloidal crystal �approximately 18 layers�. Kinks
define each layer as fcc or hcp, as per Eq. �1�, and from this
analysis we computed ��x ,y� for the �=3 sample, as re-
ported in the contour map of Fig. 9�b�. The spatial variation
in ��x ,y� is striking: Although ��	 for this sample is 0.46, we
see that over the 31�31 �m2 surface area of the colloidal
crystal ��x ,y� varies from 0.31 to 0.5. From Fig. 9�b�, we
estimate the scale of lateral inhomogeneity to be �5–10
particle diameters for these conditions ��=3�.

Thus from Figs. 8–10, we learned that the spatial hetero-
geneity of stacking faults is prevalent in the flow-vorticity
plane and this is one source of ��	�0.5 in the high strain
amplitude region. We now address the complementary ques-
tion of the distribution of stacking faults in the gradient di-
rection. �For example, a crystal with ��	=0.5 could equally
well be comprised of a hcp crystal stacked on top of a fcc
crystal or alternating thin layers of the two structures�. In
Fig. 11�a�, we plot the number of fcc to hcp transitions in the
18 crystal layers and in Fig. 11�b� we plot the number of hcp
to fcc transitions.

First, to compare our results with random layer ordering,
we build random layer sequences by randomly selecting one
of the two possible lattice vectors possible for close-packed
layers. In a way that was exactly analogous to the experi-
ments we produce 64 such random sequences each of 18

layers. The sequence of random lattice vector translations
was converted to the traditional indexing for close-packed
layers �ABCBA¯ � and data analysis performed as in the
experiments. Results are plotted in Figs. 11�a� and 11�b�. In
Fig. 11, we observe that the distributions for both types of
transitions are peaked at a value of 4 �that is, within the 18
layers the most probable number of transitions is 4�. For the
eighteen layer sequences observed, this magnitude of transi-
tions indicates a structure with fcc and hcp layers inter-
spersed together and having relatively short sequences of
each layer. Interestingly, we also observe differences in the
width and magnitude of the distributions for the experimen-
tally observed microstructures from that of the randomly
generated case. In the next section, we address the random-
ness of these distributions.

C. Randomness

Although ��	 �Table II� of the high amplitude sheared
colloidal crystals is consistent with the random sliding layer
model of Ackerson and co-workers, the probability distribu-
tions of Fig. 11 suggest the possibility of nonrandom stack-
ing of fcc and hcp layers since the experimental distributions
vary from the randomly generated case. We address this
point in Fig. 12 by computing the randomness parameter �
defined in Sec. II E. We also compute the value of the ran-
domness parameter � for each randomly generated series and
plot the distribution of chi values for the 64 series. The re-
sults are reported in Fig. 12 and indicate that the distribution

FIG. 11. The number of layer transitions in vertical stacking sequence for
samples with comparable mean stacking parameter.

FIG. 12. Randomness parameter distributions and illustrations of various

stacking sequences.
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of hcp and fcc layers does not agree with that extracted for
the corresponding random process. In this context, a random
process should yield a distribution of fcc and hcp layer thick-
nesses with the peak centered at a value of �=1 as evidenced
by the random layer simulations. Here the thickness of the
colloidal crystals structures we analyze are thin ��18 layers,
as would be typical of applications3�.

A truly random layering will yield a distribution with
mean �=1. As the number of layers analyzed increases, the
width of the distribution decreases toward a limit of a
strongly peaked distribution centered around 1. For the 18
layers characteristic of the experiments, we see from Fig. 12
that the theoretical random � distribution is broad: extending
from about 0.5	�	1.5. On the other hand, the behavior of
the measurements is different. First, as previously reported in
Table II and shown as well in Fig. 12, for the samples with
��	�0.5, the mean value of � is shifted to values signifi-
cantly greater than one. Interestingly, this shift indicates that
these samples have a preference toward alternating structure
relative to random structure. This shift is a principal finding
of this study.

IV. CONCLUSIONS

We have characterized the 3D stacking fault structure of
colloidal crystals formed with the application of an oscilla-
tory flow field. To complement the extensive understanding
of sheared crystals obtained from prior scattering studies, we
have used the direct visualization of the stacking registry via
CLSM to obtain measurements of the spatial heterogeneity
of the stacking fault structure in both the gradient direction
and flow-vorticity plane. These results demonstrate crystals
sheared at large strain amplitudes ���3� that would be pre-
dicted by the assumption of random transitions between the
close-packed that lattice vectors have in fact a stacking struc-
ture consisting of nonrandom, short alternating layers of fcc
and hcp crystal planes that persist of order �5–10 particle
diameters in the lateral direction. The heterogeneous and
nonrandom microstructures seen in this study are significant
in that they suggest that theories describing the deformation
of shear-induced crystals at large strain amplitudes may need
to be more detailed than the one-dimensional sliding layer
mechanisms originally proposed.50,51

Finally, the microstructure of shear-induced colloidal
crystals in this study is also of technological interest because
recent studies have proposed the application of shear to as-
semble colloidal crystals for photonic applications.14,54 The
short, alternating stacking sequences formed are thus rel-
evant to the ultimate optical properties of crystals that might
be fabricated from these materials.12
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