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We present and analyze a general method to calculate time correlation functions from molecular
dynamics on scaled potentials for complex systems for which simulation is affected by broken
ergodicity. Depending on the value of the scaling factor, correlations can be calculated for times that
can be orders of magnitude longer than those accessible to direct simulations. We show that the
exact value of the time correlation functions of the original system �i.e., with unscaled potential� can
be obtained, in principle, using an action-reweighting scheme based on a stochastic path-integral
formalism. Two tests �involving a bistable potential model and a dipeptide bond-vector orientational
relaxation� are exemplified to showcase the strengths, as well as the limitations of the approach, and
a procedure for the estimation of the time-dependent standard deviation error is outlined.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2159476�
I. INTRODUCTION

In the realm of kinetics, time correlation functions play
the same central role as partition functions do for thermody-
namics. Given the knowledge of the partition function, all
thermodynamic functions �such as the free energy, entropy,
heat capacity� can be calculated. Similarly, from the time
correlation function of select microscopic variables one can
compute, through the Green-Kubo formalism, bulk relax-
ation properties. Correlation functions therefore are instru-
mental to the theoretical description of a broad range of
time-dependent topics such as transport coefficients,1 chemi-
cal reaction kinetics,2 dynamical light scattering,3 infrared
absorption,4 Raman scattering,5 dielectric relaxation,6 NMR
line shapes,7 fluorescence depolarization,8 sound
attenuation,9 etc.

Unfortunately, time correlation functions and partition
functions not only share the limelight that makes them cen-
tral to kinetics and thermodynamics respectively, but they
also share a notorious difficulty in being computed �when the
system is large�.10 The classical equilibrium time correlation
function of a property A���t�� depending on the phase-space
vector �= �x , p� of positions x and momenta p is, by defini-
tion,

C�t� = �A���0�A���t���� =� A���0��A���t��f���d� ,

�1�

where f��� is the equilibrium probability density in phase
space. A straightforward implementation of this formula to
numerical calculations would be to generate sufficiently
many initial conditions ��0�, distributed according to f���,
from which to propagate trajectories of duration t. Because
of the large number of initial conditions needed, this is in
general a very involved calculation, so in practice a different
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strategy is used. Relying on the ergodic hypothesis, the en-
semble average in Eq. �1� is replaced by a time average over
a sufficiently long trajectory of a single system,

C�t� = lim
Ttot→�

1

Ttot
�

0

Ttot

A������A���t + ���d� . �2�

By that means, the same trajectory is used both the generate
the initial distribution and to accumulate the correlations.
This is usually the method of choice in biomolecular simu-
lations to calculate, for example, orientational correlation
functions of bond vectors describing backbone and side-
chain mobility in proteins, as measured by NMR
relaxation.11

However, the calculation of the time average in Eq. �2� is
not without problems, either. First, dynamical simulation of
biomolecular systems can access relatively short time scales
�up to only microseconds at best�, thereby limiting the cal-
culation of correlation functions to processes with relaxation
times appreciably shorter than this scale. Secondly, and most
importantly to the present study, biomolecular systems are
characterized by energy landscapes having a broad distribu-
tion of barrier heights that often trap a single-molecule tra-
jectory in energy basins. The assumption of ergodicity, which
was a requirement to go from Eq. �1� and �2�, is thus
broken.12 Additionally �and obviously�, unlike in molecular-
dynamics simulations of liquids, in simulations of a single
biomolecule one lacks the ability to average the time-
dependent properties over many molecules.

To handle broken ergodicity when calculating thermody-
namic averages, �i.e., time-independent averages over a ther-
modynamic ensemble of a conformation-dependent observ-
able A�x�,

�A� �� A�x�exp�− �V�x��dx , �3�

a subset of enhanced-sampling methods have been devised

based on a strategy of smoothing out the asperities of the
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rugged energy landscape.13 By modifying the potential-

energy surface V→ V̄ such that the barriers are effectively
lower �see Fig. 1�, these methods generate �using molecular
dynamics �MD� or Monte Carlo �MC�� samples distributed

according to exp�−�V̄� without having �in principle� a bro-
ken ergodicity problem. Because the samples so generated
do not represent the original thermodynamic ensemble, one
then retorts to importance-sampling manipulations14 to ob-
tain the average corresponding to the untransformed poten-
tial. This is done by dividing each value of the accumulated

observable A�x� by the “incorrect” weight, exp�−�V̄�x��, and
by multiplying by the “correct” one, exp�−�V�x��. While this
strategy recovers the exact thermodynamics, not the same
can be said about kinetics. This type of importance-sampling
reweighting would not work for the calculation of the time-
dependent averages of the type �A�0�A�t�� in Eq. �1�. This is
because the entire sequence of events ensuing along a phase-
space trajectory that goes from ��0� to ��t� would be, on the
modified potential surface, different from that on the original
potential. The focus of the present paper is to develop a
formalism that would allow both using a modified potential
and proper accounting for the weight of the entire trajectory
such that, in the end, the correct correlation function is re-
covered even if the computation was done on the trans-
formed potential.

The paper is organized as follows. We begin, in Sec. II,
with the theory used to design the formalism. In Sec. III we
then test and exemplify the method on a one-dimensional
model system, and apply it to the calculation of orientation
relaxation of bonds in a dipeptide, with relevance to the ex-
perimentally derived, NMR motional parameters. Sec. IV
contains a survey of related methods, and we end in Sec. V
with a concluding discussion.

II. THEORETICAL DESIGN OF THE METHOD

To describe the dynamical trajectory in conformational
space, we shall use the Langevin equation,

mẍ = − m�ẋ + F�x� + ��t� , �4�

with m the mass, x the position, F�x�=−�V the force derived

FIG. 1. Caricature depicting the smoothing paradigm. By transforming the

potential energy V to a smoother form V̄ �that ideally preserves location of
stationary points� barriers are effectively lowered, sampling is faster, and the
correct thermodynamics is recovered by importance-sampling manipula-
tions. The present work describes a formalism by which kinetics can also be
recovered. While more general transformation can be devised, in this first

paper we focus on the simple scaling V̄=�V.
from a potential V, and � white noise with zero mean and
obeying a fluctuation-dissipation relation, ���t���t���
=2kBTm���t− t��, where T is the absolute temperature and �
the friction.15

The central dynamical object we seek is the conditional
probability P�xt , t �x0 ,0� to be at xt at time t, given that the
trajectory started at x0 at time t=0. It can be obtained from
knowledge of the probability W���t�� of a particular time
sequence of random “kicks” ��t� and subsequent functional
integration over all possible realizations of ��t� that conspire
to lead to xt at time t,

P�xt,t�x0,0� =� D�W�����x�t� − xt� . �5�

�From here on, the notation convention is that we use square
brackets around the function argument of a functional.� Be-
cause of the Gaussian nature of the random term, we have
that W����exp�−	dt�2�t� /2w�, with w=2m�kBT. As such,
the conditional probability can also be written, using the
Wiener formalism of path integrals16 as

P�xt,t�x0,0� = �
�x0,0�

�xt,t�

Dx�J�x��exp
−
S�x�t��

2w
� . �6�

The functional integration in Eq. �6� is performed over all
possible paths connecting the initial and final points. The
weight of each trajectory,

W�x�t�� � exp
−
S�x�t��

2w
� , �7�

is dictated by the action functional,

S�x�t�� = �
0

t

�mẍ + m�ẋ + �V�2dt�, �8�

which is referred to as the Onsager-Machlup action17,18 �see
also Ref. 19�. The functional Jacobian �J�x�� �a determinant
in the n-dimensional case� arises from the � to x coordinate
transformation and may take different forms depending on
the convention adopted to define the path integral.16 A dis-
cretization that is particularly convenient for the scope of the
present method is given by the Ito calculus20 �a good discus-
sion is also in Ref. 21�, for which one can show16 that the
Jacobian is unity.

Let us now apply, as an enhanced-sampling strategy, a
transformation of the potential of type

V → �V . �9�

With 0	�	1, this will scale down the barriers such that, at
the same temperature T, the rate of exploration of conforma-
tional space of a system moving on the �V potential is in-
creased relative to the untransformed potential V. For the
case of the propagation on the scaled potential �V, the
weight of an entire trajectory x�t� is simply

W��x�t�� = exp
−
S��x�t��

2w
� , �10�

where S�=	�mẍ+m�ẋ+��V�2dt �cf. Eqs. �7� and �8��.
Thus, the correction functional 
traj for the relative weight of

a trajectory x�0→ t� generated on V that would have passed
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through exactly the same configurations as those correspond-
ing to a trajectory x��0→ t� generated on �V �i.e., x�t�
�x��t� for all times from 0 to t� is


traj�x�0 → t�� =
W�x�0 → t��

W��x��0 → t��
= exp
S� − S

2w
� �11�

=exp
� − 1

2kBT
�

0

t

� Vdx +
� − 1

2kB�T
�

0

t

� Vdẋ

+
�2 − 1

4kB�T
�

0

t

��V�2dt�� �12�

Because the integrals involved in Eq. �12� are not Riemann-
ian, but stochastic �i.e., performed over a trajectory that is
continuous everywhere but differentiable nowhere�, their
value can depend on the discretization definition. For ex-
ample, care must be taken as to not write 	x�0�

x�t� �Vdx=V�t�
−V�0�, unless a midpoint discretization is used in the defini-
tion of the integral. Otherwise, as observed by Ito,20 if a
discretization involving the calculation of �V at other points
in the finite step interval is applied, additional terms propor-
tional to the second derivative of V appear �see also Ref. 22�.
An interesting additional subtlety, appreciated by Zuckerman
and Woolf,23 is that, upon performing the continuum limit of
the time slicing �discretization� of the Langevin trajectory,
the integration measure Dx was shown,24 in the case of Stra-
tonovich discretization, to contain a stochastic correction
term �Jacobian� that depends on the second derivative of the
potential. The omission from the reweighting factor of this
term implies, in principle, a deviation from convergence to
the equilibrium Boltzmann distribution. However, we have
found that this deviation is not detectable in our simulation
because of the “background” numerical noise inherent to ex-
ponential averaging.

In the numerical implementation, we accumulate the in-
tegrands �along each trajectory�; as long as S and S� are
calculated with the same discretization rule, a reweighting
formula �see Eq. �16� and discussion below� should recover
the correct average in Eq. �1�, corresponding to V, over the
simulated realizations of the stochastic trajectories on �V.
We use

xj+1 = xj + c1� j�t − c2���V� j��t�2 + �xR, �13�

� j+1 = c0� j − c1���V� j�t + ��R, �14�

where the index j counts the time step, and �xR ,�vR are
random variables with an analytical bivariate distribution19

�see also Ref. 10 for details of the algorithm�. The numerical
coefficients in the above equations are

c0 = exp�− ��t�, c1 = ���t�−1�1 − c0�, c2 = ���t�−1�1 − c1� .

�15�

The above algorithm assumes that the systematic force
−��V�x�t�� remains approximately constant over each time
interval �t. This ensures an Ito-type discretization and there-
fore dispenses with the need to compute the Jacobian.

To calculate the time correlation function of any observ-

able A�t� during a hypothetical propagation on the V poten-
tial from an actual evolution on the �V potential, all that is
needed is the difference between S� and S so that one can
apply a reweighting formula of the type

C�t� =

i

Ai�0�Ai�t�
traj�x�0 → t��


i

traj�x�0 → t��

, �16�

where the summation index i labels trajectories originating
from canonically distributed phase points corresponding to
the untransformed potential. In effect, Eq. �16� is, for kinet-
ics, the functional equivalent of the usual reweighting
scheme employed in umbrella-sampling methods14 for ther-
modynamic averaging. Here, instead of reweighting the con-
formational point, one reweights the entire functional time
dependence of the conformational flow, i.e., the entire trajec-
tory. When the time-average formula for the correlation
function, Eq. �2�, is to be used, besides this action-functional
reweighting, we need an additional factor 
eq to correct for
the equilibrium distribution f��� of phase-space points,


eq�x� =
f���
f����

= exp
 �� − 1�V0

kBT
� . �17�

This yields the central formula of our method,

C�t� =
1

Ttot − t

�

�
0

Ttot−t

A���A�t + ��
traj�x�� → � + t��
eq�x����d�

�
0

Ttot−t


traj�x�� → � + t��
eq�x����d�

,

�18�

where the summation extends over time frames of a very
long trajectory �i.e., one assumed to be ergodic� of duration
Ttot� t.

III. MODEL SYSTEM EXAMPLES

In this section, we study two models, of increasing com-
plexity, to test the validity of the method proposed herein,
analyze the origins of the errors �numerical noise� inherent to
the approach, and provide two strategies for noise reduction.

A. Bistable oscillator system

A property that is of central interest in many instances
involving biomolecular conformational transitions is energy
barrier crossing. In calculating correlation functions for com-
plex biomolecules, one feature that poses problems is the
fact that, in the simulation, phase points get trapped due to
the existence of barriers exceeding thermal energy. A real test
of the method should therefore start with model systems with
barriers. Consider the Langevin dynamics of a unit-mass par-
ticle in a quadratic bistable potential,

V�x� = ax2 + bx4, �19�

with a frictional coefficient �=10 �in arbitrary units�. With

a=−3.4 and b=1.4, the two wells of this model potential are
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separated by a barrier height of approximately two energy
units �see Fig. 2�.

For a temperature corresponding to a kinetic energy of 2,
comparable to the potential barrier, Fig. 3 shows the
position-position time autocorrelation functions C�t�
= �x�0�x�t�� on the unscaled potential in Eq. �19�, as well as
on potentials scaled by factors of �=1/2 and �=1/4, respec-
tively �followed, in the last two cases, by the application of
the reweighting formula in Eq. �18��. All curves were calcu-
lated for trajectories of duration 104 time units. As expected
for this high-temperature limit, because the kinetic energy is
sufficient to induce barrier crossing, all calculated correla-
tions match each other.

For connections to more realistic systems, a more strin-
gent test is, undoubtedly, that for which the barrier in the
reaction coordinate �i.e., the activation energy� is of signifi-
cant height compared to kBT. In such instances, it takes
longer than the typical crossing time to obtain a converged
correlation function because one needs to sample enough
transitions over the barrier. The gist of the proposed method
is to increase the rate of rare events by propagating the tra-
jectory after scaling down the potential. With a lower barrier
on the scaled-potential, conformational transitions occur

FIG. 2. Bistable potential V�x�: unscaled �continuous line�, scaled by
�=1/4 �dotted line�, and modified �dashed line� according to formula in Eq.
�20� �i.e., with only the barrier region scaled by 1/4 �see text��.

FIG. 3. Position-position time correlation function for bistable potential in
Eq. �19�, Langevin dynamics simulation with parameters such that the ki-
netic energy is of the order of the barrier height. Dynamics with scaling
factors of �=1/2 and 1/4, after applying trajectory reweighting, yields

same correlation function as that of original system.
more rapidly. Correct correlation functions can then be ob-
tained by reweighting using Eq. �18�. The present application
to the bistable potential will exemplify the main features of
our scaling-reweighting scheme. For the low-temperature
limit, we used a kinetic energy of 0.5, which renders the
transitions relatively scarce. We again obtained the correla-
tion functions using scaling factors of �=1/2 and 1/4. The
results are shown in Fig. 4.

We used the time average in Eq. �2� over a trajectory
long enough that sufficiently many transitions are experi-
enced. We found that a trajectory of length 106 time units
was sufficient to reproduce the ensemble average �calculated
separately over multiple trajectories of incresing number un-
til convergence, which occured at 106 independent starting
conditions�. Figure 5 shows the time-dependent position on
unscaled and scaled potentials. Together with the line-dotted
curve in Fig. 4, one can conclude that a total length of t
=104 trajectory is not long enough for convergence to a cor-
rect correlation function. Along the short trajectory of 104

time units, fewer transitions are experienced on the unscaled
potential, while many more transitions occur on the scaled
potential. Using the short trajectory on the scaled potential
and applying the reweighting formula in Eq. �18�, one can
recover, in principle, the original, exact C�t�. Figure 4 sum-
marizes the results. For this system, we were thus able to
reduce by two orders of magnitude the time needed for the
positional correlation function. The negative aspect of the
correlation function as calculated using the reweighting for-
mula and as plotted in Fig. 4 is that, in spite of the fact that
the theory is exact, numerical error accumulates for large t.
This clearly affects the accuracy of the long-time tail calcu-
lation, and is rooted in the necessity for overlap of the two
types of instantons �see Fig. 5�. One deals here with the
functional equivalent of the overlap condition required in
equilibrium umbrella sampling: if the distribution of states
on the original and modified potentials do not overlap sig-
nificantly, averages pertaining to the original system are not
calculated accurately. We return to this important issue first

FIG. 4. The low-temperature limit, Langevin trajectory on bistable potential.
Shown is the position-position correlation function; parameters such that
barrier height is four times larger than thermal energy. As a result, a rela-
tively long trajectory �106 time units� is needed to sample both wells and
obtain a correlation function that includes interwell excursions. On the other
hand, scaling V→�V �with two chosen � values labeled in the legend�
accelerates interwell hopping so that only 104 time units are needed for a
nearly-exact calculation. For �=1/4 the imprecision of the calculation in-
creases for larger times t.
in the next section, where we provide a modified scaling
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procedure that addresses this aspect, and then in Sec. III C,
where we present an analytical derivation of the expected
error bounds and propose a time-dependent fitting procedure
for noise elimination.

Although of secondary importance when compared to
the two orders of magnitude reduction described above, an-
other relative advantage coming from the properties of
scaled potential �not used in the present example, though� is
that the time step used in the discretization scheme can be
larger. The reason for this lies in the fact that the potential is
softer, so the fastest time scales �which dictate the maximum
size of the time step� will become slower, extending their
period by a factor of 1 /��.

There are, conceivably, several strategies to distort po-
tentials in a meaningful way such that kinetics is faster. In
this first study we have explored the simplest modification:
linear scaling. The shifting and scaling procedure �i.e., scal-
ing only in the barrier region� was a modification needed to
improve on overall scaling. In future work it will be of in-
terest to explore the relative efficiency of other types of po-
tential scaling, such as logarithmic scaling,13 employed by us
previously for enhanced equilibrium calculations. An addi-
tional point to be made is that, while scaling the potential by
� has, roughly, the same effect as raising the temperature, it
is important to note that potential scaling provides more flex-
ibility by allowing the scaling of select additive potential-
energy terms �say, the nonbonded or the dihedral terms
only�. Moreover, scaling functions of increasing sophistica-
tion can be conceived, e.g., spatially dependent scaling only
along select directions promoting large-scale motion in con-
figuration space25,26�.

For general applications, an optimal compromise be-
tween the degree �or the procedure� of smoothing �i.e., in our
case, �� and the growth of the third, error-causing term in the
correction factor Eq. �12� will have to be found by prelimi-

FIG. 5. Two distinct time-dependent position distribution �“instantons”� on
bistable potential �left, �=1� and scaled bistable potential �right, �=1/4�.
Only a portion �t here in units of time steps� of the low-temperature trajec-
tories used for Fig. 4 is plotted. Although on scaled-potential interwell tran-
sitions are more frequent, a broader range of x values is sampled; long-t
errors, as evident in Fig. 4, are expected to accrue if enough x overlap
between instantons is lacking.
nary testing.
B. Fine-tuning: A modified, barrier-scaling method

Figure 4 makes apparent that the reweighting formula,
while working well for short-time correlations �up to about
t=25�, accumulates significant noise afterwards. Inspecting
Eq. �12� and the simulation, we find that one of the reasons
for noise accumulation is that the trajectory spends �unnec-
essary� time at positions far from the barrier region. At those
positions, the potential is steep �its derivative is increasingly
large� and therefore the positive-definite third term in the
argument of the exponential in Eq. �12� �involving the square
of the force� keeps growing. This weakens the performance
of sample averaging, because exponentially large values oc-
cur in the reweighting procedure both in the numerator and
denominator. Figure 5 also compares the position distribu-
tion in the transformed and untransformed potentials. We can
see that the positions on the transformed potential spread
more widely in conformation space. The most dynamically
interesting part of the energy landscape is the barrier region
on a given potential. Positions distributed up in the confining
portions of the potential are of less significance to kinetics.
To alleviate the noise problem, we propose a modified scal-
ing strategy, which only changes the barrier region of the
potential. This approach is akin to the transformation in-
volved in Voter’s hyperdynamics27 �and in related methods, a
discusion of which is postponed until Sec. IV�.

By comparing the original and modified scaling strate-
gies �cf. Fig. 2�, it is apparent that the modified scaling po-
tential has the same effect in the barrier region, but avoids
the negative impact of spreading out in the confining regions.
The reweighting formula is still Eq. �18� for the barrier re-
gion, and no reweighting is needed when the trajectory is
propagated on the original potential. The only modification
involves the correction for the initial distribution for the bar-
rier region, which becomes

f��� = f����exp
 �� − 1��V0 + K�
kBT

� , �20�

where K is a vertical displacement of the transformed poten-
tial, needed for a continuous switch between the scaled and
original potentials. Absent the wandering about positions far
from the barrier region, one is able to calculate the correla-
tion function more efficiently. The modified approach shows,
for the low-temperature case, a significant improvement in
the long-time region t�25, as shown in Fig. 6.

C. Bond-vector orientational correlation of alanine
dipeptide

To test the practical utility of the scaling method for
biomolecular kinetics, we applied it to alanine dipeptide,
N-acetylalanyl-N-methylamide �see Fig. 7�, a model system
used extensively in theoretical studies of dynamics and con-
formational equilibria in proteins. On the one hand, the pep-
tide is small enough to be amenable to kinetical,28

thermodynamical,29 as well as quantum-mechanical
calculations,30 and, on the other hand, its backbone configu-
rations are prototypical for the polypeptide backbone of pro-

teins.
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As a correlation function to study, we focus on bond-
orientation time correlation functions. They have recently be-
come of renewed interest in gauging the dynamical aspect of
the thermodynamics and kinetics of proteins31 due to devel-
opments in solution NMR spectroscopy.32,33 Backbone34 and
side-chain dynamics35 can be probed using 15N, 13C, or 2H
relaxation experiments that measure the motion of specific
bond vectors in the molecule. The dynamical information
from these experiments are often extracted using the Lipari-
Szabo model-free formalism,36 which yields so-called S2 or-
der parameters, one per bond vector u, quantifying that
bond’s amplitude of rotational motion, together with the cor-
responding relaxation times, �. The order parameters range
from 0 �maximum, isotropic motion� to 1 �frozen motion�,
and are the long-time limit, S2=limt→�C�t�, of the autocor-
relation function,

C�t� = �P2�u�0�u�t��� =� � P2�u · u��w�2��u,u�;t�dudu�,

�21�

where P2�x� is the second-order Legendre polynomial and
w�2� is the joint probability of observing the unit bond vector
at two positions u and u� at a time separation t. The abun-
dance of reports of such motional descriptors for biologically
important complexes reveals a rich dynamical behavior on
both the subnanosecond as well as the micro-to-millisecod
time scales. It has even led to speculations that the functional
role of protein dynamics may be encoded in the amino-acid
sequence.37 Molecular-dynamics simulation is an important
tool to complement the measurements because there are sev-
eral limitations in the relaxation experiments and in their
interpretation.

All previous studies comparing experimentally observed
to computationally obtained S2 parameters38–44 employed
molecular-dynamics simulation, that, by devise, accurately
follows the actual flow in the phase space of the respective
biomolecule. However, because for certain motional probes
the resulting trajectory was not ergodic, the orientational cor-
relation functions were in some instances shown to have not
converged45 �particularly for the more mobile bonds�. The
following simplified example points to the cause of such
behavior. Imagine that a particular bond vector samples two

FIG. 6. Correlation function for bistable potential, low-temperature limit,
improves accuracy if scaling modified method �according to formula in Eq.
�20�, see also Fig. 2� is used.
states with largely distinct degrees of motion �i.e., with dif-
ferent S2 and ��, and that the two states are conformational
macrostates separated by an energy barrier larger than kT. A
simulation started �and remaining trapped� in one of the mac-
rostates will converge to a �S2 ,�� pair of values quite differ-
ent from that observed in a corresponding ensemble experi-
ment.

As a prototype for such an example, we have calculated,
for alanine dipeptide, the vectorial form of the reweight for-
mula in Eq. �18�, as it pertained to a Langevin trajectory
generated using the CHARMM simulation package.46 The fric-
tion coefficient was 50 ps−1, a time step of 1 fs was em-
ployed, and the temperature was set to 300 K. To eliminate
the six degrees of freedom corresponding to overall tumbling
and translation, two atoms �the C-terminal atoms N and
CH3� were fixed in place. We have used the CHARMM force
field with the united-atom, polar-hydrogen parameter set 19
in vacuum. Alanine dipeptide simulations have shown47 that
rotations around the 
 backbone dihedral angle are hindered
by a high-energy barrier that traps the trajectory on the nano-
second time scale in the positive �
+� and negative �
−�
regions with respect to the values of 
. We analyze the mo-
tional details of the first NH bond vector from the N termi-
nus; this bond is part of the dihedral 
 �see Fig. 7�. For the
purpose of illustrating the instances when the method is ex-
pected to yield benefits �i.e., the instances when regular mo-
lecular dynamics is expected to fail�, we wished to accentu-
ate the stiffness of the bond motion in 
+. To this end, we
added an additional smooth �dihedral-dependent� harmonic
term of force constant 500 kcal/mol/ rad2 to each angle that
had this particular NH as one side. This procedure yielded
two motional states for the chosen NH bond vector. When
the trajectory is trapped in 
+, the NH bond is rigid and
converges to S2=0.82. When the trajectory is trapped in 
−,
the vector is mobile and yields an S2 value below 0.5. While
the angle stiffening modification alters the dynamic and en-
ergetic properties of a real alanine dipeptide molecule, it
serves, as a model, the purpose of differentiating the order
parameters, for our chosen NH bond, in a manner that is
similar to the different order parameters of real proteins: S2

values that converge rapidly are often in the 0.8–0.9 range,
while those that do not are typically lower.45

Figures 8 and 9 illustrate the calculation of the NH bond
P2 correlation function defined in Eq. �21�, for various scal-
ing parameters and two trajectory durations. The correlation
curves were obtained using the time-average variant of Eq.
�21�. Two salient features, one favorable and the other less

FIG. 7. Chemical structure of alanine dipeptide, with the flexible backbone
dihedral angle indicated by the circular arrows. Rotation around 
 encoun-
ters the largest barrier and traps trajectories in two regions, of positive and
negative 
 values, on the nanosecond time scale. N–H bond vector studied
labeled with straight arrow; its orientational time correlation function, which
depends on the correct exploration of both ��� and ��� 
 regions.
so, are apparent in the plots. Encouragingly, a valid correla-



034110-7 Time correlation by potential scaling J. Chem. Phys. 124, 034110 �2006�
tion function �i.e., one that matches that from an ergodic
trajectory� is obtained by carrying out the scaling-
reweighting scheme on a time scale on which regular Lange-
vin MD is non ergodic and converges to an incorrect func-
tion. However, as was for the bistable oscillator, error
accumulation is again significant for large values of t. Simi-
larly to that one-dimensional case, it increases with t. We
address the cause behind this issue and propose approaches
to filter out the error based on an estimate of the time-
dependent standard deviation of C�t� in the next section. For
the particular case at hand, bond-vector relaxation for inter-
nal dynamics occuring on two-time scales can be described
by an extended Lipari-Szabo formalism,48

FIG. 8. Dependence on the scaling factor � for the orientational correlation
function C�t�= �P2�u�0�u�t��� of an N–H bond in alanine dipeptide, T
=300 K for original and scaled-potential trajectories of the same duration:
100 ps �upper panel� and 200 ps �lower panel�. The “exact” result on the
unscaled potential is shown �thick line, �=1� based on 50 ns trajectory.

FIG. 9. Fit of extended Lipari-Szabo formalism to orientational correlation
function C�t�= �P2�u�0�u�t��� of N–H bond in alanine dipeptide, T=300 K
for a scaled-potential trajectory of 100 ps with �. The noise-reduced curve
�see legend� is obtained by fitting to Eq. �22� of the generalized order pa-
rameter formalism �see text�; obtained motional parameters are S2=0.42,
Sf

2=0.85, � f =50 fs, and �s=2.0 ps. Using the fit of the reweighted correla-
tion propagated on scaled potential, one can obtain, more than two orders of
magnitude faster, nearly the same correlation function as that obtained in the
50 ns needed for convergence by regular Langevin molecular dynamics. If
regular dynamics is started in the 
+ region and propagates for only 100 ps,

it remains trapped and an erroneous correlation �dotted line� is obtained.
C�t� = S2 + �1 − Sf
2�e−t/�f + �Sf

2 − S2�e−t/�s, �22�

where � f and �s are two independent time constants for the
fast and slow internal motions, respectively, and Sf

2 and Ss
2

are corresponding order parameters, with the generalized or-
der parameter being S2=Sf

2Ss
2. The result of fitting to Eq. �22�

the noisy correlation obtained by the scaling method is pre-
sented in Fig. 9. As seen, the result of applying the scale-
and-reweight strategy on a trajectory of merely 100 ps is a
good approximation for the “exact” correlation function cal-
culated by extensive sampling over 50 ns.

D. Error analysis for overdamped Langevin motion

It is illuminating to study the high-friction limit of the
Langevin equation. Because protein motion on time scales
beyond 1 ps is overdamped,49 this limit yields a good ap-
proximation for biomolecular conformational transitions.
The simplification will bring insight into the limitation of the
reweighting scheme employed herein, and will explain the
error observed in the long-time tail of the NH bond autocor-
relation function in Fig. 8. For the case of an overdamped
Langevin equation, written for convenience in one dimen-
sion,

m�ẋ = F�x� + ��t� , �23�

in numerical implementations, on V and �V, we use a propa-
gation scheme,

xj+1 = xj +
Fj�t

m�
+ �xj

R, �24�

and, respectively,

x�,j+1 = x�,j +
�Fj�t

m�
+ �x�,j

R , �25�

where, at step j, �xR and �x�
R are Gaussian random displace-

ments, i.e., distributed according to

wj��xR� =
1

�2��
exp
−

��xR�2

2�2 � . �26�

Denoting by sj =Fj�t / �m�� the systematic part of the dis-
crete, stepwise propagation, and requiring that x�,j =xj for all
j, we have that the correction factor for each step is

wj��xR�
wj��x�

R�
= exp
2�1 − ��s�x − �1 − �2�s2

2�2 � , �27�

where �x=xj+1−xj. The multiplication of the factors for all
steps j of a trajectory yields the trajectory’s total correction
factor,

W�x�
W��x��

= �
j

wj��xR�
wj��x�

R�

= exp� 1

2�2

j

�2�1 − ��s�x − �1 − �2�s2�� .

�28�
In the continuum limit, it can be shown that this converges to
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W�x�
W��x��

= exp
� − 1

2kBT
� �Vdx +

�2 − 1

4kB�T
� ��V�2dt� ,

�29�

a particular case of Eq. �12�. However, even before taking
the limit, analysis of Eq. �28� reveals a couple of interesting
features. Firstly, the term �1−�2�s2�� in the argument of the
exponential, which is the largest source of the long-time er-
ror observed in Figs. 4 and 8, can be thought of as a random
variable, since s itself can be regarded as a random variable:
sj = ��x�,j

R −�xj
R� / �1−���. In the limiting case that �xj

R and
�x�,j

R are independent random variables, the variance of their
difference is simply the sum of their variances, so the vari-
ance of s is �s

2=2�2 / �1−��2. The sum over � involved in Eq.
�28� is an increasing function of the total trajectory time �. It
now gives the dominant correction factor, exp�
 j=1

t ��. For
large t, it can cause significant overflow errors when the
reweighting formula, Eq. �16� or �18�, are used. One can
show that the average of � is exactly ���=1+� / �1−��. One
could therefore define a new variable, �=�− ���, and analyti-
cally factor out exp�t���� both in the numerator and denomi-
nator of Eq. �16� or �18�. By simplification, this will yield a
correction factor that involves the exponential of a �random�
quantity, E=
�, with average zero. However, according to
the central limit theorem, the standard deviation of E will
still grow as the �t. Therefore, a typical correction factor is
expected to lie anywhere between zero and an upper bound
that keeps growing as exp�C�t�, with C a constant. This is the
reason for the significant error inherent to the basic scaling
approach; the average of an exponential is a notoriously
noisy and biased statistic. To filter out this noise for the case
of the alanine dipeptide NH correlation in Sec. III C, we
have used fitting to a generalized model for the internal dy-
namics on two disparate time scales. For general application
where such knowledge is lacking, one can use a moving
average with an averaging window width increasing with t
�to account for the increase of the standard deviation�. In
future work, we shall explore the noise properties of more
sophisticated smoothing schemes in combination with noise
elimination based on the Wiener-Khintchine theory and re-
lated signal processing techniques.

IV. CONNECTIONS TO EXISTING TRAJECTORY
SAMPLING STRATEGIES

The Onsager-Machlup action S is central to several re-
cent developments that use multiple trajectories �or paths�
connecting two conformational states. The weight of paths
according to the action, exp�−S�, allows one, in the transition
path sampling method of Chandler and co-workers50,51 �see
also Ref. 52�, to exploit the isomorphism between the distri-
bution of paths and the canonical distribution of conforma-
tions of a polymer. This therefore is inducive to the design of
importance-sampling �Monte Carlo or related� algorithms for
kinetic calculations derived in analogy to polymer Monte
Carlo methods. Using a related approach, Geissler and
Chandler53 have used importance sampling in trajectory
space to calculate nonequilibrium solvent response functions.

Also, the transition path sampling method has been applied
with promising success to a variety of biomolecular
systems.54,55 In an equally exciting related development, the
stochastic difference equation method of Elber et al. for
long-time dynamics21 uses a minimization of a discretized
version of S with impressive speedup of the propagation of
the equations of motion for proteins, with time steps that are
two orders of magnitude longer than regular dynamics usu-
ally employs. Both of the above approaches have a diffusive-
limit method as particular case.56,57

The reweighting procedure outlined in the present paper
is related to Wagner’s approach58 to variance reduction �im-
portance sampling being a subcase of variance reduction�.
Woolf59 and Zuckerman and Woolf60 adapted Wagner’s ap-
proach and designed a dynamical importance-sampling
method for the calculation of reaction rates. Given the
knowledge of a target state, Langevin dynamics was augu-
mented with a biasing vector pointing to that target. Similar
dynamical importance sampling has been used by Mazonka
et al.61 and by Zou et al.62 While the smoothing and re-
weighting uses in principle the same strategy as dynamical
importance sampling, it differs in two aspects. It does not
require knowledge of two end points and can therefore be
used as a general method for calculating any time correlation
function whose convergence depends on visiting all relevant
basins during the course of the simulation. Secondly, it uses
a time average over a single trajectory and is therefore ame-
nable to the calculation of biomolecular time correlation
functions.

To generate multiple trajectories for the study of the rate
of activated processes �i.e., using the ensemble average in
Eq. �16��, action reweighting was also used by Chen et al.,63

who have recently presented an intriguing method that re-
solves conformational changes by dividing a rare-transition
event, taking place from an initial time 0 to a final time tf,
into two parts: an activation half-path, from time 0 to an
intermediate time tM, which is governed by a Langevin equa-
tion with negative friction ��	0�, followed by a deactiva-
tion path during �tM , tf� governed by the regular, positive
friction.

In the context of altering the energy surface to obtain
kinetic properties faster, the smoothing suggested in the
present paper is related to the hyperdynamics method of
Voter,27,64 who calculates transition-state-theory rate con-
stants, using importance-sampling manipulations, after add-
ing a boost potential that is zero at the transiton state. The
work of Hamelberg et al.65 is along the same line. While it
dispenses with the need to calculate eigenvalues of the Hes-
sian, it requires an extrapolation to zero boost, from several
simulations, to obtain kinetic data. Because both approaches

involve, in effect, an energy-smoothing transformation V̄

= V̄�x� �i.e., a function of coordinates only�, a generalization
of the reweighting factor, Eq. �12�, for the case of the sys-

tematic force -�V̄ should be straightforward. It would enable
one to calculate directly entire correlation functions, and
thereby to relate them to the kinetics that hyperdynamics is
computing. Reference 66 contains a good review of these
and other accelerated dynamics methods. While the idea of

modifying potentials to compute more efectively time corre-
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lation functions is newly introduced in the present work,
modifying the Hamiltonian to sample different trajectories is
fundamental to all the accelerated dynamical strategies de-
scribed above, as well to several other related approaches
�that construct reactive pathways using ad hoc probability
functionals67–72�. These methods are covered in the reviews
of Dellago et al.,73 Elber et al., and 74 Elber75.

In future work, it would also be of interest to explore the
application of potential scaling to sampling an ensemble of
transition trajectories. For example, in the case of the sto-
chastic difference equation method, scaling would allow tak-
ing even larger time steps. In another example, for transition
path sampling, scaling the potential could induce enhanced
conformational sampling in path space. With the energy
landscape replaced by the action landscape, large barriers �or
ridges76� of action can cause broken ergodicity in trajectory
space, and it has been realized that a straightforward integra-
tion over all significant trajectories can become challenging.
It should also be worthwhile to use scaling-reweighting ap-
proaches in combination with parallel-replica dynamical
methods of the type developed by Voter77 and further refined
by Shirts and Pande,78 who have extended dynamical simu-
lations of protein folding in the microsecond range. As the
effect of applying the two methods �scaling and parallel rep-
lica dynamics� in concert is expected to be multiplicative,
this may make feasible the calculation of submillisecond cor-
relations that are descriptive of the large-amplitude, collec-
tive motions of biomolecular systems.

While correlations for local conformational dynamics
currently within the range of regular simulations decay on
the 100 ps time scales, experiments both for proteins79 and
DNA80 reveal complex dynamics on multiple time scales that
extend beyond the nanosecond time scale. Moreover, novel
experiments based on residual dipolar couplings extend to
even longer the time scale of relaxation probed by NMR.81

Novel dynamical algorithms of the type presented here
should be useful therefore if one wishes to simulate such
slow conformational kinetics.

V. CONCLUSIONS

We have presented and analyzed a method of general
applicability to the efficient calculation of correlation func-
tions dominated by long-time conformational transitions.
The method generates a Langevin trajectory on a potential
that is scaled �such that barriers are effectively lowered� and
then applies to the trajectory, a functional reweighting
scheme based on stochastic path-integral theory. Accord-
ingly, one recovers, in principle, the exact correlation func-
tion corresponding to the original system �i.e., with unscaled
potential�. Because exploration on the scaled potential is
faster, one can calculate efficiently, and with general appli-
cability, time correlation functions of any conformational
property. We have considered two applications, a bistable
oscillator and a model peptide. They have exemplified the
strenghts and weaknesses expected of the approach when
applied to models of molecular conformational transitions.
The advantage of a modified scaling strategy that scales the

barrier regions only was also addressed. We have also ana-
lyzed the errors associated with the method, have provided
an estimate of their time-dependent standard deviation, and
have employed a two-time-scale relaxation mechanism to fit
time correlation functions for bond-vector orientations. Us-
ing the protein model system, we have showed that time
correlations for peptide bond motions can be calculated more
than two orders of magnitude faster than regular molecular
dynamics.
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