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We investigate diffusion-limited aggregati@DLA) in a wedge geometry. Arneodo and collabora-

tors have suggested that the ensemble average of DLA cluster density should be close to the
noise-free selected Saffman-Taylor finger. We show that a different, but related, ensemble average,
that of the conformal maps associated with random clusters, yields a nontrivial shape which is also
not far from the Saffman-Taylor finger. However, we have previously demonstrated that the same
average of DLA in a channel geometryrist the Saffman-Taylor finger. This casts doubt on the
idea that the average of noisy diffusion-limited growth is governed by a simple transcription of
noise-free results. @005 American Institute of PhysidDOI: 10.1063/1.1876932

The diffusion-limited aggregation model uses aggregating simplest paradigm of noise-dominated growth limited by dif-
random walkers to form a random fractal pattern. We fusion, a common natural process.
can also use random walkers to generate a conformal This process has been studied intensively over the last
map from the exterior of the cluster to the exterior of the 23 yeargfor a review, see Ref.)5but there is still not com-
unit circle. The map contains all the information about  pjete theoretical understanding, though some recent progress
the growth probabilities for various points on the cluster.  pag heen maden describing local correlations. In this paper
V\fleihdefmefthe plattern genersteéj k;y the er;_sle(;nbltft avefrage we investigate a property of thensembleof DLA clusters
(I;L Ae Izonrg\r/rigismv?griav:easrzgwg dr?r?:tnt_hleere Fs):e(rar:g dotz) namely the generation cdverage shapesOur motivation

- [N previ . . . comes from the remarkable suggestion of Arneodo and
be an intriguing relationship between DLA in a channel collaborator&® that the (somewhat arbitrarily definaden-
and the noise-free Saffman-Taylor finger. We show here W trartly !

semble average shape of noisy DLA clusters would be the

that this relationship is much more ambiguous when we : e
apply it to DLA in a wedge geometry. This result casts pattern generated by noise-free diffusion-limited growth. We

doubt on the “averaging conjecture” which holds that the ~ Will refer to this as theaveraging conjectureThe relevant

average of noisy growth “remembers” noise-free results. ~ case OI noise-free growth is the Saffman-Taylor viscous
finger?'® i.e., the shape of the surface of an inviscid fluid

invading a viscous one, as water into oil. The work of Arne-
odo et al. showed that Saffman-Taylor fingers in a channel
The last century has abounded with examples of unexand a wedge were close to, but not exactly the same, as DLA
pected richness in the problem of brownian motion as foraverages. However, the work had a number of arbitrary pa-
mulated by Einstein in his seminal paper in 190 the  rameters and, in the wedge, there were serious ambiguities.
same year, Pearsbpictured the process asrandom walk We investigated the averaging conjecture in our Wbrk
In the past century random walks and brownian motion havgen DLA in a channel with reflecting boundaries at the walls.
become central themes of statistical physics. The problem i$here, we formulated a new definition of the average shape
particularly astonishing in that it constantly generates newy averaging theconformal maﬂ)z‘14 that generates the
ways to think about nature, and new descriptions of physicatluster—this amounts to weighting points on the surface ac-
processes. One example was the discovery by Witten angbrding to their growth probability. In that work we found
Sandet* that aggregating random walkers give rise to ran-that the average shape of DL(Asing our definitionwasnot
dom fractal patterns. This process, diffusion-limited aggregaa Saffman-Taylor viscous finger.
tion (DLA), is simple to formulate: a seed particle is putata  However, a number of authSr¥ had already questioned
point, and then a random walking particle is launched andvhether DLA and viscous fingers are actually closely related
allowed to proceed until it touches the seed; then it stopsgrowth processes; DLA does not have surface tension like
Then another walker diffuses until it touches one of the firstyiscous fingering, but rather a fixed particle size that defines
two, and so on. We study the cluster generated. This is thghe tip radius. We followed up the suggesfidhthat fluid
flow with surface tensions closely related to a variant of
JElectronic address: Isander@umich.edu DLA called the dielectric breakdown modéDBM)*" with
PElectronic address: ellak@Iorentz.leidenuniv.nl parametem;~ 1.2 (to be defined beloy In fact, the suitably
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averaged DBM clusters then turned out to fit the Saffman-
Taylor shape quite closely.
Here we look at the related problem of DLA in a wedge.
Previousl)}8 we have shown that tip-splitting in this geom-
etry gives us access to local correlations. In the present con
text of looking at average shapes, the wedge is interesting ir
several respects. This is a richer problem than that of the
channel in that the wedge angle is a free parameter, and th ! L4
shape of the fluid invasion is more comp(€x?*We pose the g DS L
question of whether the DBM shape in a wedge is also a A BT
good approximation to the Saffman-Taylor finger in a wedge. o Fod Foe
This study has a special significance in this focus issue AR o
on brownian motion. Our work here is primarily numerical. e R
The simulations arall done by random walker sampling: we Rt
generate DLA clusters, DBM clusters, and conformal maps 3§
by this single method which, as it happens, is by far the most % 3= - £
efficient method available. This century-old technique has = g £
not lost its freshness and power. e P
Il. DLA AND DBM IN A WEDGE ” o5 T
There are now available very sophisticated schemes forc. 1. A DLA cluster in a 90° wedge with reflecting boundaries. The
generating DLA clusters. The one we use is based on thgructure of the hierarchical maps is also shown.
method of hierarchical mags.In this method space is di-
vided into regions of various sizes which help keep track of
the nearest points on the cluster. Then the random walker can
make large jumps in empty regions, vastly speeding up th

computation. With this method the time to createNupar- %ave introduced a method of growing DBM clusters by ran-

ticle cluster is proportional tol° with p~1.1. dom walker sampling. The key to this method is to define the

We need to make DLA clusters in a wedge with reflect-29€: @1, 0f @ growth site. This is the number of random
ing boundary conditions. We do this by means of a trick. ifwalkers that have landed anywhere on the cluster since the

there is a wall at some position, every time we deposit 42St particle grew at the site. We can also defigethe num-
walker, we deposit an image walker reflected in the wall.per of walkers that have landed since tktt most recent
Suppose we are interested in 90° wedges. Then we have twRsrticle grew there.

perpendicular walls, and four walkers are deposited at once. Since the frequency of landing of random walkers is
Using this method we can use a radial DLA code to producdroportional toy, it is clear that 14;,2/a,,... at asite are
wedges of opening angles 180f,h=1,2,.... Inthis paper estimates ofu at that site. We have shofhthat this esti-
we will concentrate on 90° and 60° wedges. An example of anate is adequate to allow us to grow DBM clusters. In our
90° wedge is shown in Fig. 1. work here we us@s to estimate the probability.

In the following we will see that we need to consider The method of growth is as follows: if a particle lands at
DBM clusters. These are defined as follows: we imagine thaa site with low probability, we arrange to have it add little to
the cluster is a grounded conductor with unit charge. Outsidéhe cluster and, at high probability sites, add a good deal.
the cluster define a potentiah, so that This is accomplished by adding a mage=Au”tcal ™.

V=0, =0 (1) (The power isp—1 because we already have a probability

A for the walker to land at the sifeln practice, when a particle
This defines an “electric field” on the surfages/on,. Then is added at a site, it is moved onto the existing particle so
the dielectric breakdown model takes the growth velocity orthat a portion proportional ta&"’ contributes to new growth.

the surface of the cluster to be We also change the prefactéy, as we go along to make an
6] efficient code. For details, see Ref. 24. Examples of this are
Uy {—} . (2) shown in Fig. 2.
an Js The computations we discuss below are averages over an

We interpret this equation probabilistically; is taken as the ~€nsemble of off-lattice DLA and DBM clusters grown in this
density Of the growth probabmty on the Surfaqe’ In prac- Way. Our DLA C|USterS had 1 000 000 partiCIeS in the Wedge
tice, add a particle at a point on the cluster with probabilityand we averaged over an ensemble of 400 realizations. For
proportional tov,,. It is known that at large scales DBM the DBM clusters we had 500 000 particles in the 60° wedge,

clusters with»=1 have the same scaling as DLA. 1 000 000 particles in the 90° wedge, and also 400 realiza-
The original methotl to grow DBM clusters was to tions. Our motivation for going to these large sizes is the fact

solve Eq.(1) by relaxation. This algorithm is very slow and that DLA suffers slow crossoverd?® If we use small clus-

is not practical for generating large clusters. Recéhtiye  ters, we are not seeing the asymptotic behavior.
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FIG. 2. A portion of DBM clusters for two different
values of 7. For =2 the overlapping of particles and
the enhanced growth at the tips is easy to see.

IIl. CONFORMAL MAPS the conformal map, to construct the map itself by analytic
3 continuation.
In recent years a number of grodps® have looked at For our purposes here we use the information in a sim-

DLA in an entirely new way. The cluster shape is consideredp|er way. We constructed the map to the unit circle using

to be a grounded conductor, as above, and the complex pe-100 000 for each cluster that we grew. For each member of
tential, ¢, is sought, as in Eqd). The technique introduced the ensemble there is a pointg) whose image is a point on
was to define a conformal map from the exterior of the clusthe unit circle ate’’. Our definition of the ensemble average
ter to the exterior of the unit circle. The Laplace equation,shape generated by the DLA or DBM proc&sts the en-

Eg. (1), can be solved easily outside the circle, and the solugemple average of(6), i.e., the centroid of those pointsee

tion mapped back to the cluster. Of course, the solution fokig 3) we sample points on the unit circle with sufficient
d¢p/én is uniform on the circle. Thus the image of two parts reso|ution to define the average shape. Since points at the
of the cluster perimeter with the same growth probablllty|e‘—jlding tips of the clusters grow with high probability, they

will map to parts of the unit circle with the same length. Putyouid be oversampled if we chose points on the unit circle
another way, the inverse images of uniformly spaced points

on the unit circle are distributed on the cluster with density
M.

In order to construct the map Hastings and Levifov
invented an iterative technique which grows a cluster and
calculates the map at the same time. This is a practica
method, but slow. In Ref. 14 we constructed an alternative
method which is much faster. We grow a cluster by the con-
ventional fast scheme using random walkers. Then we freez:
the cluster at the desired size, launtlmandom walkers as
probes, and record where they land. Then the values of the
map on the unit circle are found as follows. We choose one
of landing positions as a starting point, say alongxfrais,
and the number the walkers around the perimeter of the clus-
ter. By the observation above, if we are at walker we FIG. 3. Schematic of the averaging procedure. For different realizations of
know that we have turned an angl%:277m/n+(’)(n‘1’2) the cluster,. the' same point on the unit cirégay squargis mapped to

. . . . different points in space on the different clusters that make up the ensemble.
from the image of thec axis on the unit circle. In Ref. 14 we gy gefinition of the ensemble average map points to the geometric center
used this information, which samples the boundary values off those pointgbold arrow.
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0.6 ' ' T ' ' the invasion of a viscous fluid by an inviscid one is one of
051 ] the most famous of all pattern formation problet8 The
o4l b general result is that the inviscid fluid forms a finger, the
L _ Saffman-Taylor finger, which fills a fractiom,, of the chan-
03 N nel. For each\ in [0, 1] there is a solution to the fluid-flow
o2l i equations without surface tension. For small surface tension,

- 1 the pattern is very close to that with zero surface tension and
0.1 — DLA . 1 ooy .

-- DBM, n=1.2 _ A=3. This is called the selected value. The finger elongates

0F — analytic solution — in time and is of constant shape in a moving reference frame.
01F -~ wedge walls 4 The theory of this sort of flow is remarkably well devel-

- ] oped. A few basic notions are necessary here: the fluid ve-
02 ] locity, v, is derivable from a potential in this case and is
031 . governed by D’Arcy’s law. The upshot of these two facts is
04l ] that
0.5+ " —

06— L1 a0, ] V.v=0=V2¢p;, v, [&_(b] . (3)

0 0.2 0.4 0.6 0.8 1 1.2 an |

FIG. 4. The averaged profile of DLA and DBM clusters wigk 1.2 ina90°  That is, fluid flow obeys the same equations as DB#M Eq.
wedge. Also shown is the analytic solution for a Saffman-Taylor finger with (2)] with 7= 1,26 so that the Saffman-Taylor finger has a
the selected. from Refs. 19 and 20. good deal in common with DLA. The bubble of inviscid

iformlv. Instead dapti d il th fluid plays the role of the aggregate. However, there are two
uniformly. Instead, we use an adaptive procedure Until e ;01 gifferences: DLA does not have surface tension but,

average shape is well defined. In Figs. 4 and 5 we show thFather, a finite size cutoff, and DLA is dominated by noise,

average shapes in 90° and 60° wedges. whereas the Saffman-Taylor finger is a stable, noise-free pat-

This definition has a number of advantages: it is unams. . ihat is observed for slow flows in a channel.

blguotl)JsI, n ﬁo_ntrast to defm't'ﬁ.ni paseq ?1? gebnsny rl;rotl;[lles There is another problem related to the channel problem
'(tseeth ?9\’)" IS an averalge w r'f |st;/]ve|g ec yt'pro ?tlh_ which also admits an exact solution, that of viscous fingering
'y, that 1s, we are sampling where the growing tips ot th€;, wedge. In this case, for short times there is also a se-

cluster are located. It might be accessible to theoretical in[ected shape in experiments, at least for a finite ffnEu

vestigation since the growth process is the defining property .4 Ben Ama®22 worked out the theory in this case and

of DLA. showed that there is a self-similar shape that is selected. It is
IV. THE AVERAGING CONJECTURE a nontrivial pattern whose form is given by a differential
AND MEAN-FIELD THEORY equation that needs to be solved numerically. Associated

with the problem is a selected angle, defined as the opening
angle at the base of the wed(see Figs. 4 and)5The ratio
The investigation of Hele-Shaw flow in a channel is anof the opening angle of the finger to that of the wedge is also
old subject and a good deal is known about it. In particularcalled\. With nosurface tension there is a solution forxll
but, once more, there is a selected value which depends on
06— 71— T T T the wedge angle. There is a complication in the fluid-flow

A. Saffman-Taylor fingers

05 |__ B]éllé/l,nﬂ.z problem. If the inviscid fluid is pumped at a constant pres-
04l |— analytic solution sure, as time goes on there will always come a point when
) e wedge walls the pattern is unstable against tip-splitting.

0.3

0.2

o1 B. Averaging

0

Arneodo and collaboratof& exploited the resemblance
between DLA growth and viscous fingering in the following
way: they speculated that the average of many DLA clusters
would, in some sense, remove the noise and recover the
noise-free pattern. Since DLA has no surface tension, but
rather a fixed particle sizéplaying, roughly, the role of the

-0.1
-0.2

~~~~~

-0.3

0.4 capillary length, they assumed that the limit of small surface
05 tension was the appropriate one. This is what we refer to as
] N E R R the averaging conjecture.

0 0.2 0.4 0.6 0.8 1 12 They tested the conjecture by generating on-lattice DLA

FIG. 5. The averaged profile of DLA and DBM clusters wij 1.2 in a 60° clusters in a channel and averaging the denSIty’ point by

.7 . . .
wedge. Also shown is the analytic solution for a Saffman-Taylor finger with POINt.” The density average(r), is a function th.at goes to
the selectedk from Refs. 19 and 20. zero at the edge of the channel and has a maximuyy, at
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the center. One of the level sets of this functiog,{p(r¢) finger in the 90° wedge is flatter than it should be. However,
:%pmax} traced out a Saffman-Taylor finger with:%. for 60° the fit is reasonably good.

However, closer scrutiny made the picture more com-
plex. Lattice effects are known to distort DLA clusters andE. Average conformal maps for DBM in a wedge
are irrelevant to the kind of physics being considered. There-
fore, they returned to the probl&rand generatedff-lattice
DLA clusters. They found that the level set %ﬁmax filled
56% of the channel rather than 50%, or, alternatively, th
level set that was needed to ma)ke% was at 0.0,,ax

For the same problem in wedges of various openin

In our channel work we tried to salvage the averaging
conjecture in the following way. There is a theoretical
suggestiof‘llethat the correct analogy between fluid flow and
eilow with surface tension was not with DLA. According to
this theory, if we consider DBM models with a short scale
Sutoff rule where the tip radii are limited bg=|d¢/an|™,

angles, on-lattice DLA density averages once more gave reg e el e oo equivalent models in them)

markable agreement with selected fing7en30wever, off- arameter space. The equivalence is based on the same be-
lattice the situation was different: tip-splitting made the front P& pace. the eq . .
Qawor of leading tips in the models with different param-

of the fingers too flat, though there was qualitative agreemeneters' In this framework the Hele-Shaw flow, where the tip

with the opening angle of the average density. And, it was_ . L g _1
necessary to choose a level set somewhat arbitrarily. In fatc{ad.Ius obeys th? rel_atloﬁu. —con_st, corresponds m_Z’
hile for DLA with fixed size particlesn=0. According to

since the overall density decreased as the length of the finger . . .
y g g e equivalence, flow with surface tension cut6ﬂ=1,m

increased, it was necessary to define the opening angle 6_1) corresponds to the model with fixd (i.e.. m=0) but

taking a fraction of the maximum density at that distance™ ; .
from the apex of the wedge. n~1.2. We were very encouraged in th_e chz_innel _by this
analogy because the average of DBM with thiglid fit a
Saffman-Taylor finger With\:% rather well.
In the wedge, as Figs. 4 and 5 show, the DBM finghys
Inspired by the averaging conjecture, Levine, Tu, andnot fit the analytic shapélhey tend to be too narrow. This is
collaboratoré”*revised the mean-field theory of Witten and exactly the opposite of the situation in the channel. Once
Sandet to attempt to write a proposed set of equations formore, there are no adjustable parameters available to us to fit
the mean density of a cluster. They found qualitative agreethe shape.
ment with Ref. 7. In Ref. 8 the theory was extended, and
other work has followed this up more recerﬁ?y. V. SUMMARY AND DISCUSSION
The salient results of this theory are that a level set,

defined as above, more-or-less fits the channel finger, but that When we began this study we were confident that we
the wedge-based fingers are too flat. would be able to put the averaging conjecture on a firm foot-

ing, based on our experience with the channel geometry. Our
expectations were not at all fulfilled. It is possible to main-
tain that we have, in fact, eliminated the averaging conjec-
The numerical underpinnings of the averaging conjecture altogether. Perhaps this strong conclusion is premature,
ture are troublesome in several ways. At the most simpldut, certainly, the situation is not very clear. To summarize:
level, the number of particles in the clusters studied was veryn a channel, averaged DBM using the mapping of Refs. 6
small, of order 18-10". We have already remarked that and 16 gives a Saffman-Taylor finger with the corrediut
DLA in that regime is far from asymptotic. More signifi- averaged DLA does not. In the wedge, averaged DLA gives
cantly, there are far too many fitting parameters in the disthe correct finger opening angle for both wedges that we
cussion. The level set is chosen arbitrarily, and, for many ofooked at, but averaged DBM does not.
the discussionsy is chosen to fit the pattern. We might be tempted to say that our proposal for aver-
We returned to this problem with our new definition of aging based on conformal maps should simply be discarded.
the ensemble average pattern, described above. In a chanfielwe do that, we are reduced to using density averages
we were able to shott that the average shape does not fitwhich do not fit the analytic fingers any bettéworse, in
any Saffman-Taylor finger. The finger width of the patternfact) and are ambiguous to boot.
corresponded ta = 0.6, just as in Ref. 8, despite the differ- In passing, we should comment on the situation with
ent definitions of the average. With the resolution that wetip-splitting. We do not agree that DLA averages in a wedge
had available, we were able to show definitively that theshould tip-split for any opening angle0. We base this on
finger we generated did not fit the Saffman-Taylor pattern forour work in the wedge geomet}@.ln that paper we used not
any A. reflecting boundary conditions, but periodic boundaries for
Here we return to the problem for growth in a wedge.the wedge. We looked at angular correlations of the density
Using the techniques described above, we have grown DLAor DLA clusters and found that for small wedge angles there
clusters and averaged for wedge angles of 90° and 60°. Theas a minimum in the correlation function half-way between
results are shown in Figs. 4 and 5 along with the analytidhe branch and its image. We interpreted this by saying that
solutions for the selected finger shape. Now, quite remarkfor small angles there was one major branch. For large
ably, the opening angle of the finger does fit rather well toangles,=144° we found a secondary maximum in the cor-
the selected\. Note that there are no adjustable parameterselation function, i.e., more than one major branch. These
in this fit other than an overall scale factor. The tip of theresults do not directly carry over to the present case, but,

C. Mean-field theory

D. Average conformal maps for DLA in a wedge
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qualitatively, we think that tip-splitting in the sense just de-tial support by NSF Grant No. DMS-0244419. ES would like
scribed is not at all clearly present in this case. There is & thank the University of Michigan for hospitality, and the
numerical result of Ref. 8 for a 60° wedge which seems tcPHYNECS training network of the European Commission
contradict this, but we are confident that our statistics werdor financial supportContract No. HPRN-CT-2002-0031.2
much better.
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