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ABSTRACT 

Our objective is to elucidate the relationships among interparticle forces, 
microstructure, and rheological properties for concentrated colloidal 
dispersions and associative polymer solutions. Here we address stable 
dispersions of spheres bearing grafted polymer chains and solutions of 
polymer with water soluble backbones modified by the addition of 
terminal hydrophobes. Non-equilibrium statistical mechanics, combined 
with treatments of micelles and brushes from the polymer physics 
literature, offers a means for confirming in detail the mechanisms 
suggested by recent experiments. 

REVIEW OF NON-EQUILIBRIUM THEORY 

Our description of a monodispersion of spheres addresses events on the 
diffusion time scale through a Smoluchowski equation that governs the distribution 
function for the configuration of all N particles in the system I;~. Integration of the 
conservation equation for the N-particle distribution function PN over the positions of 
N-2 particles yields 

~e2 + v. P2(V, -v2)2 -- o (l) 
Ot 
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D = DII +/)22 -012 -/)21 P2 (F1)2 = -P2V10 -fV3OP3dx 3 , 

r = x 1 - x 2, V = V I - V 2 ,  and the no-flux boundary condition at contact. The relative 
velocity U1 -U2 arises from interparticle, Brownian, and hydrodynamic forces that 
depend on the positions of all particles through the hydrodynamic tensors C and Dij, 
the total interparticle potential q'ij, and PN. We have decoupled conditional averages by 
expanding the diffusion tensor as the conditionally averaged pair diffusivity (D)2 plus 

deviations due to direct hydrodynamic interactions with a third particle, which are 
neglected. Explicit three-body couplings are retained only in the conditionally averaged 
total interparticle force (F1) 2 . Therefore, the equations incorporate many-body 

hydrodynamic interactions in a mean field sense and require an explicit closure for the 
three-body thermodynamic couplings. 

For Brownian particles suspended in a viscous fluid straightforward extension of 
pair interaction theories 4, plus the decoupling approximation employed above for the 
hydrodynamic functions, leads to 

,~= 2rlnE +~f{(l_(A)2)rVq~_kT(W)2rr/r2}P2dr (3) 

The first term represents the hydrodynamic contribution, while the integral captures the 
effect of the pair potential and Brownian forces. The two scalar hydrodynamic 
functions, A and W, characterize the component of C along line of centers and its 
divergence, respectively. 

Weak flows, having a small ratio of convection to diffusion such that Pe = 
aZ[E]/Do << 1 with Do the Stokes-Einstein diffusion coefficient, only slightly perturb 
the equilibrium structure as 

P2=n2g(r;~ 1- a r ' E ' r e i ~ f ( r ;  ~ (4) 
2D o r 2 

such that 

$ =  2p.Ee,O~ { ~ -  9 ~2f[(l_ A{ d q~ ] ] [ G___] • ' )2 )S .~s .~ . f_(W)2j fgs2ds f .21r l ._ i~Eei~(5)  

In the zero frequency or low shear limit, the perturbation is in phase with the rate of 
strain andfis real. The interparticle and Brownian forces then generate viscous stresses 
that add to the hydrodynamic component r/~and determine the low shear viscosity r/o. 
In the high frequency limit f is imaginary; so the interparticle and Brownian forces 
produce an elastic stress characterized by the shear modulus G'o~ and the hydrodynamic 
contribution solely determines the high frequency limiting dynamic viscosity 7".  
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We approximate the effect of a third particle on the total interparticle force 
through a closure derived by Scherwinski 5, who defined a "direct correlation force" (?2 
by 

n2C2(r12) = -P2Vl@12 + n3h(r12)fC2(r13)h(r23)dx3 (6) 

with h=p-I andp=P2/n 2 and coupled it to the total interparticle force through 

P2(F1)2 + nP2fV3@13P(rl3)dx3 .. n2C2(r12) + n3fC2(r13)h(r23)dx3, (7) 

to obtain an approximation that reduces to the familiar hypernetted chain closure at 
equilibrium. 

In the far field, the conditionally averaged pair diffusivity reduces to (D)2 = 

2Ds o, where Ds ° is the short-time self-diffusion coefficient, since the spheres move 
independently in a mean field of other particles. The near field limit follows from the 
lubrication force between two particles in a quiescent fluid. We simply interpolate 
between these limits, either discontinuously for hard particles with weak interactions, 

(D)2=2D°[H(r-2a)~+(t~-rr-~)]'r (8) 

or with a piecewise continuous representation for other systems 3. For the relative 
velocity in a shear flow, characterized by IC)2, a similar treatment works. The short- 

time self-diffusion coefficient Ds o and high frequency dynamic viscosity r/'~ appearing 
here and in the stress are measurable quantities that depend only on the equilibdttrn 
structure. Quality data, as well as results from simulations, exist for disordered 
dispersions of hard spheres. 

To test these closure approximations we calculated the linear viscoelastic 
responses for the hard sphere, Yukawa, and inverse power (r "n) potentials without 
hydrodynamic interactions 2 and hard spheres with hydrodynamic interactions 2. 
Comparison with results from computer simulations imposing no hydrodynamic 
interactions indicates the closure (6-7) to be qualitatively correct but reveals 
quantitative discrepancies akin to those observed for the hypernetted chain closure at 
equilibrium. Apparently the closure exaggerates the forces opposing deformation and, 
hence, predicts too small a perturbation from equilibrium. Nonetheless the predictions 
are quite robust to variations in the interparticle potential and volume fraction. 

Comparison of calculations for hard spheres with hydrodynamic interactions 
against experimental data reveals the following3'6: 
(1) G'(¢) in at least qualitative agreement with the data (Figure 1); 
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(2) zirlB"trlo-rlo~]//a that conforms within 20-30% with the older body of data and 
captures qualitatively the divergence as ¢-> 0.64, but errs by 100% relative to more 
recent data ffigure 2); 
(3) long-time self-diffusion coefficients, Ds/Do,  that conform to the data for ¢<0.45 
and capture qualitatively the zero as ¢-> 0.64; 
(4) non-equilibrium static structure factors for weak steady shear that exhibit the proper 
dependence on wave number but too small a magnitude; and 
(5) stress-optical coefficients in the low shear limit with the proper dependence on 
volume fraction and roughly the fight magnitude. 
The qualitative agreement, but quantitative shortcomings, for the optical measures of 
structure, the low shear viscosities, and long-time self diffusion coefficients reinforce 
the assessment of the thermodynamic closure. Earlier results for the high frequency 
modulus indicate the hydrodynamic models to be quite satisfactory. Thus the theory is 
imperfect but robust and should suffice for mechanistic studies. With the exception of 
the light scattering measurements, a similar claim can be made for the formulation b y 
Brady 7, which totally ignores the thermodynamic effect of the third particle and 
produces similar stresses but quite different non-equilibrium structures. 

SPHERES WITH GRAFFED POLYMER LAYERS 

For spheres bearing grafted polymer layers we estimate the pair potential 
through the Alexander-de Gennes approximation, which views the polymer layers as 
chains of N segments of length t and excluded volume v grafted at density o. 
Minimizing a mean field form for the free energy yields the layer thickness as 
L=(vd6 £ )Ir3N£ 3 for highly stretched chains in good solvents, as opposed to An/El for 
Gaussian coils. The increased free energy upon compressing two layers to separations 
less than 2L comprises the interaction potential, which the Derjaguin approximation 
converts to spheres bearing thin polymer layers. Monte Carlo simulations then 
determine the equilibrium pair distribution function. 

To obtain the requisite hydrodynamic functions, flow in the polymer layer 
modeled through the Brinkmann equation is coupled with Stokes flow in the gap to 
obtain the lubrication limit s. The far-field requires the high frequency viscosity or 
short-time self-diffusion coefficient, so we combine mean field and asymptotic 
approximations that offer reasonable, though still untested, estimates. The most 
important consequence is reflected by the relative velocity along lines of centers in a 
shear flow, plotted for a range of  volume fractions in Figure 3. Note that the behavior 
changes from that of hard spheres with radius a+L for $eff=0.40, due to a non-draining 
polymer layer, to hard spheres of radius a for Ceff =0.74, indicating an effectively free- 
draining polymer layer. 

Calculations of the high frequency modulus as a function of particle volume 
fraction ¢ and ratio of layer thickness to radius, L/a, reveal a couple of interesting 
features9: 
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(1) a substantial reduction in the modulus with decreasing permeability of the layer for 
(l+L/a)3<0.64 but a minimal effect above close packing of the polymer layers and 

(2) a variation in modulus with softness of the layer, i.e. L/a, that strongly resembles 
data for PMMA spheres stabilized by poly(hydroxy stearic acid) 10. 
The first arises from the transition in the hydrodynamic functions noted above and 
establishes the validity of the common practice of inverting measurements of the 
modulus to obtain the interaction potential, but only for concentrations beyond close 
packing. At these conditions the very high viscosity of the medium pushes the pair 
together and overwhelms the lubrication force controlled by the relatively low solvent 
viscosity. Similar calculations, but with the force between poly(hydroxystearic acid) 
layers on mica 9, suggest the density of adsorbed polymer chains on the particles to be 
about a factor of three lower than on the mica surfaces. Therefore, the interparticle 
potential was adjusted and calculations performed for both the high frequency modulus 
and the steady shear viscosities. 

Figures 4 (a) and (b) compare the results of these calculations for the high 
frequency modulus with the data of Mewis and coworkers l° for several different values 
of L/a and L/Co ranging from free-draining to highly non-draining. Note the qualitative 
difference in the volume fraction dependence, i.e. the curvature on this semi-log plot, for 
volume fraction below and above random close packing, i.e. Cell=0.64. The modulus is 
sensitive to the permeability of the layer below this transition, but is relatively 
insensitive above. Also the data parallels the solid curve, which neglects hydrodynamic 
interactions for Ceff >0.64. Thus, the conclusion above still stands, though the softer 
potential permits spheres to approach to smaller separations and, therefore, requires a 
somewhat larger volume fraction to suppress the effect of hydrodynamic interactions. 
As the data still lies consistently below the predictions, one might conclude that the 
potential employed in the calculations is still a bit too strong. 

The low shear viscosities in Figures 5 derive from setting j(r,¢)= j(r,0), i.e. 
neglecting entirely the higher order terms in the equation governing the non-equilibrium 
structure. The data and the calculations are plotted against the core volume fraction and 
virtually all correspond to ¢~ff <0.64. Consequently, the predictions are insensitive to 
the softness of the potential or the permeability of the layer, primarily sensing the 
range, associated with the thickness of the polymer layer. The permeability affects the 
viscosity, with the lower values producing a more faithful representation of the data. 

From this we conclude that the high and low frequency limits of the linear 
viscoelastic response can be predicted at least semiquantitatively from the non- 
equilibrium theory with rather simple approximations for the interparticle potential, 
hydrodynamic interactions, and many-body couplings. Knowledge of the interaction 
potential and the permeability of the layer is critical, however, and generally 
incomplete. 
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MICELLAR SOLUTIONS 

Associative polymers, in the form of hydrophobically modified water soluble 
polymers, serve as rheology modifiers in paints, adhesives, mastics, detergents, 
shampoos, agricultural sprays, asphalts, and a variety of other materials. Each 
combines soluble and insoluble components in a telechelic, comb graft, star block, or 
alternating/random copolymer architecture and can exhibit gas-liquid, percolation, and 
gelation transitions. The solutions often exhibit remarkable viscoelasticity including 
extremely high (but Newtonian) low shear viscosities, shear and extensional thickening, 
precipitous shear thinning, and large elastic recoveries u. 

Our model associative polymers consist of 35 kg/mole poly(oxyethylene) linked 
via monoisocyanates to CI6 and Cts alkane endcaps and display somewhat surprising 
behavior. The first surprise was an entropically driven phase transition with coexistence 
between a dilute micellar "gas" and a highly associated micellar "liquid", as partially 
anticipated by Semenov and coworkers 12 for flowerlike micelles with high aggregation 
numbers in a good solvent. Characterization of the dilute (gas) phase dynamic by light 
scattering and capillary viscometry yielded the micellar diameters d=-35-40 nm and 
aggregation numbers p=20-35 from the intrinsic viscosity and the strength of the 
attraction 1/r = 10-15. 

The associated liquid phase displays the linear viscoelasticity now routinely 
expected for these telechelic/triblock copolymers and normally interpreted through the 
reversible network theory 13. However, closer comparison with our data reveals 
significant deviations from this model, which assumes a homogenous solution with all 
chains bridging between junctions (micelles) and predicts the high frequency modulus as 
G'= = nkT, i.e. increasing linearly with chain density n. Our measurements instead 
exhibit a roughly quadratic increase with effective volume fraction ~p ffi 0.4[rl]pn for 

0<¢p<l. For Cp >1 G'o~/nkT is roughly constant, but still varies withp. 
This suggests viewing the micelles as colloidal particles interacting through an 

equilibrium pair potential 4,, for which the non-equilibrium theory without 
hydrodynamic interactions predicts 

- =d= d ' ~  p (9) 

with N the number of nearest neighbors and r the center-to-center distance. The 
thermodynamics suggests N = 2~p/1: and d2~/dr  2 ~ pa/2kT/d2, indicating that the 

stress should scale as 
pa/2kT 

-- ( lO) 

This scaling successfully collapses the data for the two polymers examined (Figure 6) 
and motivates more detailed modeling. 
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To develop a quantitative model for the intermicellar potential arising from 
excluded volume interactions we extended the variational approach of Ho and Witten 17 
to compressed chains and added the attraction due to bridging chains, yielding micelle 
radii and a depth for the attractive minima that agree well with the data. The Brinkmann 
model for flow in the corona of the micelle provides hydrodynamic mobilities from the 
porous sphere solutions of Felderhof 18. With this input the Monte Carlo simulations 
and the calculations of the linear viscoelasticity are straightforward up to ~p = t. The 
results in Figure 6 fall above the data for values of the permeability consistent with the 
blob size associated with the stretched chains. The fault may lie assumption of strong 
stretching in the theory leading to the interaction potential, whereas the modest 
aggregation numbers of the micelles may fall short of that limit. The fact that the 
predictions forp=33 are closer than those for p=20 supports this hypothesis. Beyond 
~p = 1 the physics changes, since the highly stretched chains form a semi-dilute solution 
and relax somewhat due to the additional screening. This effect has not yet been 
incorporated into the theory. 

SUMMARY 

Non-equilibrium theory with approximations for the interparticle potential from 
fundamental theory and hydrodynamic interactions from a combination and mean-field 
and lubrication theories offers physically reasonably predictions for the linear response 
of dispersions and solutions interacting via polymer brushes. At this point even the 
crudest of treatments of the many-body couplings through the pair potential yields 
representations that are quantitatively consistent with experiments. 
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FIGURE 1: High frequency modulus of hard spheres as a function of volume fraction compared with data 
from hard sphere silica dispersions [6]. 
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FIGURE 2: The Brownian contribution to the low shear viscosity compared with that extracted from all 
the experiment',d data available [6]. 
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FIGURE 3: The magnitude of the relative velocity along lines of centers as a function of center-to-center 
distance for various volume fractions for alL=8 and L/~o=100 [6]. 
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FIGURE 5: Low shear viscosity as a function of core volume fraction for a/L =5, 11, and 21 (top to 
bottom) and L/~IO (---) and 100 (___) compared with data of Mewis and coworkers [6]. 
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