
Lack of IL-7 and IL-15 signaling affects interferon-c
production by, more than survival of, small intestinal
intraepithelial memory CD81 T cells

Dmitry Isakov1, Amiran Dzutsev1, Jay A. Berzofsky1

and Igor M. Belyakov1,2

1 Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer

Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
2 Department of Internal Medicine, University of Michigan, School of Medicine, Ann Arbor, MI,

USA

Survival of antigen-specific CD81 T cells in peripheral lymphoid organs during viral

infection is known to be dependent predominantly on IL-7 and IL-15. However, little is

known about a possible influence of tissue environmental factors on this process. To

address this question, we studied survival of memory antigen-specific CD81 T cells in the

small intestine. Here, we show that 2 months after vaccinia virus infection, B8R20–27/H2-Kb

tetramer1 CD81 T cells in the small intestinal intraepithelial (SI-IEL) layer are found in

mice deficient in IL-15 expression. Moreover, SI-IEL and lamina propria lymphocytes do

not express the receptor for IL-7 (IL-7Ra/CD127). In addition, after in vitro stimulation with

B8R20–27 peptide, SI-IEL cells do not produce high amounts of IFN-c neither at 5 days nor at

2 months postinfection (p.i.). Importantly, the lack of IL-15 was found to shape the func-

tional activity of antigen-specific CD81 T cells, by narrowing the CTL avidity repertoire.

Taken together, these results reveal that survival factors, as well as the functional activity,

of antigen-specific CD81 T cells in the SI-IEL compartments may markedly differ from

their counterparts in peripheral lymphoid tissues.

Introduction

Gastrointestinal mucosa represents a major site of entry as well as

initial replication for many viral and bacterial pathogens

(including HIV). Massive depletion of CD41CCR51 memory

T cells occurs in the mucosal tissues within the first 2 weeks of

HIV-1 infection [1, 2]. In connection with this, vaccines providing

protection against gastrointestinal infectious diseases must be

able to induce long-term mucosal immune responses [3–9].

Previously, we demonstrated that long-lasting protection against

mucosal viral transmission could be accomplished by CD81 CTLs

that must be present at the mucosal site of antigen exposure,

although some mucosal memory CTLs may be induced even after

systemic vaccination [10–16]. This protective effect was ablated

when CD81 cells were depleted in vivo, and required that CTLs

were present in the gut mucosa, whereas splenic CTLs alone were

unable to protect against mucosal viral challenge [10]. Thus,

unless Abs are able to completely prevent viral entry, induction of

local long-lasting mucosal CD81 CTLs in the gut should be

considered essential to design a protective mucosal vaccine.

The maintenance of antigen-specific CD81 T cells, their

homeostatic proliferation and survival during the memory phase of

immune responses are known to be predominantly dependent on

IL-15 and IL-7, respectively [17–26]. Other cytokines elicited by

infectious (or tumor) antigens may work during the primary

response as endogenous adjuvants, and could contribute to the

survival of long-lived memory CD81 T cells [27–30]. Based on

proliferative potential, cytokine production, and surface pheno-

type, memory CD81 T cells can be divided into effector memory

(EM) and central memory (CM) cells [31, 32]. One approach to
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discriminate between these two subsets is based on the detection

of surface IL-7Ra/CD127 and CD62L; EM cells have CD1271

CD62L� phenotype, whereas CM cells should be CD1271CD62L1.

In peripheral lymphoid tissues, both CD81 T-cell memory subsets

may be found, but in the case of nonlymphoid tissues, EM CD81 T

cells are expected to be more prevalent due to the differences in

migratory pathways used [33]. Mechanisms of CD81 CTL survival

in mucosal tissues, in particular, in the small intestinal intra-

epithelial (SI-IEL) and lamina propria (SI-LP) are not well

understood yet [33–35]. Here, we addressed a role that IL-15 and

IL-7 play for the survival of memory IEL CD81 T cells in the SI in

mice that were mucosally vaccinated with modified vaccinia

ankara (MVA). We found that 2 months after MVA was intrarec-

tally (i.r.) administered, virus-specific B8R20–27/H2-Kb tetramer

(B8R tetramer)1 CD81 T cells were present in the SI-IEL.

Surprisingly, these cells in WT mice were mainly CD127�CD62L�,

in sharp contrast to the B8R tetramer1 CD81 T cells found in the

spleens of the same animals (EM and CM). Additionally, B8R20–27-

specific CTLs isolated from the SI-LP were CD127–CD62L– as well.

Moreover, such long-living CD127� CD81 T cells were found in

the SI-IEL isolated from IL-15 KO mice, indicating that some CD81

T-cell subpopulation is able to survive within the gut epithelial

layer in the absence of both IL-7 and IL-15 signaling. To find out

which surface markers could be associated with residual survival of

memory CD81 CTLs in the gut, cells from WT and IL-15 KO mice

were analyzed by flow cytometry for surface expression of CD11a,

CD11c, NKG2D, and CD8aa homodimer. We found that none of

these markers was expressed by the majority of the gut memory

CD81 CTLs.

Thus, we may conclude that the antigen-specific memory

CD81 CTLs residing in the SI-IEL compartment may be main-

tained for a long-term independently of signaling via IL-7 and

IL-15. Their survival may be dependent on soluble and/or cell

contact signals which substitute for cytokines specific predomi-

nantly for lymphoid tissues. Identifying these tissue-specific

prosurvival mechanisms may be crucial for the development of

new strategies for mucosal vaccination.

Results

Absence of IL-15 affects the antigen-specific CD81

T-cell response in mucosally vaccinated mice

In order to estimate quantitative and qualitative effect of IL-15 of

the antigen-specific CD81 T-cell response, WT and IL-15 KO mice

were i.r. inoculated with MVA. As a readout, we assessed MVA-

specific CTL expansion and contraction as well as their functional

activity during acute (day 5) and memory (2 months) phases

postinfection (p.i.), respectively. To enhance sensitivity of our

model, especially in IL-15 KO animals, we measured immune

response against the immunodominant vaccinia virus B8R20–27

epitope [36]. By flow cytometry, in WT mice during the acute

phase (5 days) of infection, a robust immune response was found,

with high relative percentages of B8R tetramer1 CD81 T cells in

the spleen as well as in the SI-IEL (Fig. 1 and Table 1). By day 13,

their frequencies both in the SI-IEL and spleen decreased

approximately two-fold compared with their level at day 5, and

contracted to as low as 1–2% by 2 months after immunization. In

sharp contrast, in IL-15 KO mice, the presence of B8R tetramer1

CD81 T cells was substantially lower compared with WT mice,

throughout the experiment (compare WT vs IL-15 KO: spleen, 5

days – 20.6271.12 vs 9.9772.03, p 5 0.0101; 13 days –

10.7070.78 vs 1.4770.15, p 5 0.0003; 2 months – 1.7370.12

vs 1.5370.09, p40.05; SI-IEL, 5 days – 23.8371.58 vs

3.3470.29, p 5 0.0002; 13 days – 13.3970.68 vs 3.2070.75,

p 5 0.0006; 2 months – 1.5970.17 vs 1.1970.36, p40.05).

Difference in kinetics between WT and IL-15 KO mice was more

evident when we estimated the absolute numbers of B8R

tetramer1 CD81 T cells in the spleen and the SI-IEL (Fig. 1;

compare WT vs IL-15 KO: spleen, 5 days – 1.4970.09 (�106) vs

0.1570.03 (� 106), p 5 0.0002; 13 days – 0.6470.03 (� 106) vs

0.1170.03 (� 106), p 5 0.0003; 2 months – 0.0970.01(� 106)

vs 0.0370.01(�106), p 5 0.0017; SI-IEL, 5 days –

1.7670.07(� 106) vs 0.0870.02 (� 106), po0.0001; 13 days –

0.7770.04 (� 106) vs 0.1570.01(�106), po0.0001; 2 months –

0.4370.02 (� 106) vs 0.0570.01(� 106), p 5 0.0001).

It is well known that IL-15 is a crucial cytokine necessary not

only for the survival of memory CD81 T cells, but also for their

functional activity. To ascertain functional avidity, we quanti-

tated IFN-g production by splenocytes and SI-IEL cells (by

ELISpot assay). We found that splenocytes from WT animals (Fig.

2A, upper panel; Fig. 2B and C show normalized and net IFN-g
response as percentage of max. and total response, respectively)

showed IFN-g production in response to titrated amounts of

B8R20–27 peptide. This response was at peak during acute phase

(5 days) after immunization, and declined with time. In contrast,

in IL-15 KO mice the magnitude of response to the highest dosage

of B8R20–27 peptide (1mM; characterizes total responders to

peptide epitope) was significantly lower (compare WT vs IL-15

KO: 5 days – 1358.677311.10 vs 430.007164.62, p 5 0.0577).

Furthermore, the immune response in IL-15 KO mice decreased

with time more abruptly, as it was already markedly diminished

at 13 days after vaccination (WT vs IL-15 KO: 506.677116.09 vs

35.3375.24, p 5 0.0072). Importantly, in IL-15 KO mice we

detected almost complete lack of CD81 T cells having high

functional avidity (recognizing 1 pM of B8R20–27 peptide), which

was already evident during the acute phase (compare WT vs

IL-15 KO: 5 days – 110.3376.06 vs 43.3375.81, p 5 0.0624; 13

days – 61.3373.53 vs 21.0072.65, p 5 0.0059; 2 months –

41.0072.31 vs 10.0070.58, p 5 0.0002). Thus, IL-15 was found

to be important not only for the maintenance of antigen-specific

CD81 T cells during the memory phase (2 months p.i.), but also

for the generation of cells with full functional capacity (high

functional avidity).

In contrast to that which was found in the spleen, IFN-g
production in the SI-IEL compartment from the WT animals was

barely detectable 2 months after immunization (Fig. 2, lower

panel; compare 5 days vs 2 months 1 mM: 666.677370.33 vs

18.3373.18). Also, this response was characterized by skewing
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to the presence of cells recognizing high and middle concentra-

tions of B8R20–27 peptide (1mM and 100 pM) that further

distinguishes them from the splenic counterparts (compare

spleen vs SI-IEL, 5 days: 1 mM – 1358.677311.10 vs

666.677370.33; 100 pM – 506.677116.09 vs 421.337239.88;

1 pM – 41.0074.00 vs 0.9070.17). Strikingly, although B8R

tetramer1 CD81 T cells can be detected in SI-IEL in IL-15 KO

animals, these cells had almost completely lost capacity to

produce IFN-g even at the peak of infection (Fig. 2; compare 5

days vs 13 days: 1mM – 7.9074.55 vs 6.5373.31, p40.05).

Physical avidity and TCR expression disparate with
functional avidity of CTLs from intestinal tissues

Based on the ELISpot data, we reasoned that physical avidity of

TCR B8R tetramer1 CD81 T cells might affect their functional

capacity. To check this possibility, we assessed by flow cytometry

the level of TCR expression on B8R tetramer1 CD81 T cells

(Fig. 3A shows staining of naı̈ve splenoctes and SI-IEL cells and

Fig. 3B shows the strategy for gating cells as exemplified on WT

cells 5 days p.i.). We found that two uneven populations with

high and low TCR expression were present both in the spleen and

in the SI-IEL (Fig. 3C). Interestingly, during the acute and

memory phases, B8R tetramer1 CD81 T cells in the spleen from

both WT and IL-15 KO animals had comparable percentage of

cells with high TCR expression (WT vs IL-15 KO: 72 and 65% and

70 and 66%, respectively). In contrast, a different pattern was

found in the SI-IEL, whereas at the acute-phase CTLs in both

mouse strains highly expressed TCR at comparable, but still lower

frequency compared with the spleen (WT vs IL-15 KO: 55 and

50%, respectively); however, during the memory phase the cells

from WT but not IL-15 KO expressed the TCR at the same or even

higher level (WT vs IL-15 KO: 72 vs 32%, respectively). In fact,

among memory CTLs in the SI-IEL of the IL-15 KO animals, the

majority of B8R tetramer1 CD81 T cells expressed TCR at low

levels (compare day 5 vs 2 months: 49 vs 67%, respectively).

Thus, MVA-specific SI-IEL cells from the IL-15 KO mice but not

from WT animals had selective tissue-specific decline in the

frequency of B8R tetramer1 cells that expressed TCR at high

level, which was progressing from the acute to the memory

phase. The extensive and sustained TCR downregulation in the

absence of IL-15 may be linked to a higher activation status of

these cells and may be associated with a lower production of

IFN-g in IL-15KO animals. Additionally, by using B8R20–27/H-2Kb

tetramer, we measured mean fluorescence intensity (MFI) of

Figure 1. Kinetics of B8R20–27/H2-Kb tetramer1 CD81 T cells in the spleen and SI-IEL of C57BL/6 and IL-15 KO mice. (A) Relative percentages and
(B) absolute numbers of B8R tetramer1 CD81 T cells recovered from the spleen and SI-IEL of WT and IL-15 KO mice are presented. Lymphocytes
were isolated 5 days, 13 days, and 2 months after i.r. immunization with MVA 107 pfu/mouse. Cells were stained with PE-conjugated B8R20–27/H2-Kb

tetramer together with anti-CD8a (spleen) or anti-CD8b (SI-IEL) mAbs. Data shown are the mean1SD of three animals per group. Experiments were
performed twice with comparable results. Data were analyzed by unpaired Student’s t-test. �po0.05, ��po0.01, ���po0.0001, ns: not significant.
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vaccinia virus-specific CTLs stained with different concentrations

of tetramer, which reflects the relative physical TCR avidity [37,

38]. For this, we isolated tissues from the WT animals 5 days after

i.r. infection with MVA. Comparison of the curves for CD81

T cells from the SI-IEL vs spleen (Fig. 4, left panel) revealed that

the MVA-specific CTLs expressed TCR with rather high physical

avidity for B8R20–27. Interestingly, the LP cells, which are

anatomically adjacent to the intraepithelial lymphocyte (IEL),

had slightly lower TCR avidity, but still it was much higher

compared with the spleen. Similar results were obtained when we

depicted the same data as a % of max. MFI level, determining an

average tetramer dilution factor giving 50% max. MFI (Fig. 4,

right panel): spleen – 1:60, SI-LP – 1:80, and SI-IEL – 1:200.

Altogether, we may conclude that data on functional and

physical avidity of MVA-specific CTLs isolated from spleen

(lymphoid tissue) correspond to each other, whereas in the SI-IEL

and SI-LP (nonlymphoid tissues) they do not. It may imply that

not only cell-intrinsic features (physical avidity) may shape CTL

functional activity, but cell-extrinsic parameters as well, espe-

cially in case of nonlymphoid tissues (cytokine milieu, costimu-

latory molecules). Our data on MFI of tetramer1 cells in IEL and

LP compared with spleen in the memory phase cannot answer

this question.

Memory antigen-specific CD81 T cells in SI-IEL and SI-
LP from IL-15 KO mice lack IL-7Ra/CD127 expression

It is known that both IL-7 and IL-15 are of crucial importance for

homeostatic proliferation of memory CD81 T cells [17, 24, 39]. In

particular, IL-15 signals are considered to be more important for

homeostatic proliferation of memory CD81 T cells, whereas IL-7

signals are responsible for their survival [31]. However, what

defines prosurvival conditions for memory CD81 T cells in different

nonlymphoid tissues, including the gut, is not well understood. At

least for the cells from the SI-LP, it was shown that they may

survive due to signals provided by nonhematopoietic cells via CD70

[40]. As was recently demonstrated by Jiang et al. [41], the

residual c-Myc-deficient CD8aa TCRab IEL cells display reduced

proliferation and increased apoptosis, which correlate with

significantly decreased expression of IL-15 receptor subunits and

lower levels of the antiapoptotic protein Bcl-2 [41]. Thus, c-Myc

controls the development of CD8aa TCRab IEL cells from thymic

precursors apparently by regulating IL-15 receptor expression and

consequently Bcl-2-dependent survival [41]. It is well accepted that

IEL lymphocytes are slower proliferating cells compared with other

lymphoid cells. In many experimental systems, IEL lymphocytes

alone did not show activation-induced proliferation, but they

Table 1. Phenotype of memory B8R20–27-specific CD81 T cells in the SI-IEL and spleen from WT and IL-15 KO micea)

Tissue Marker Time after infection

5 Days 2 Months

WT IL-15 KO WT IL-15 KO

SI-IEL CD1271CD62L� 1.6270.16 2.2370.38 ND ND

CD1271CD62L1 ND 1.1770.64 ND 2.9371.13

CD11c1CD11a� 1.1170.48 11.2770.71] 17.9071.99 12.7071.46

CD11c1CD11a1 7.9070.49 17.5071.04]] 3.3370.52 3.1270.19

CD11c–CD11a1 71.0073.51 37.6371.45� ND ND

NKG2D1 1.4070.21 8.4070.70�� 11.3770.45 10.4072.45

SI-LP CD1271CD62L� 0.0770.07 0.0770.03 ND NEC

CD1271CD62L1 ND ND ND NEC

CD11c1CD11a� 0.4770.15 NEC 14.7070.85 NEC

CD11c1CD11a1 24.6071.70 NEC ND NEC

CD11c–CD11a1 61.0072.08 NEC ND NEC

NKG2D1 0.3270.08 21.0071.91 20.7371.69 NEC

Spleen CD1271CD62L� 1.7370.07 1.5370.05 73.3373.28 66.9073.77

CD1271CD62L1 2.2070.30 1.6370.08 15.0072.52 19.6771.45

CD11c1CD11a� 6.5870.36 2.5670.59 1.0370.09 0.2370.15

CD11c1CD11a1 71.7773.26 67.4072.91 42.3372.03 43.2371.75

CD11c�CD11a1 15.7370.94 16.0770.55 40.5371.81 42.7771.97

NKG2D1 70.9772.00 61.1373.21 80.3071.31 72.4373.35

a) Lymphocytes from WT and IL-15 KO animals were isolated at 5 days and 2 months after i.r. immunization with MVA 107 pfu/mouse. Four-color
flow cytometry was performed. Cells from tissues were stained with PE-conjugated B8R20-27/H2-Kb tetramer together with CD8a mAbs. Then,
cells were gated on tetramer1 CD81 T cells, and further analyzed for the expression of CD127, CD62L, CD11a, CD11c, and NKG2D markers
expression. Data shown are the mean percent of gated cells and SEM of three animals per interval and are one representative experiment of two
experiments performed with comparable results. ND, not detected; NEC, not enough cells: due to the paucity of the total isolated LP cells as well
as recovered B8R20–27/H2-Kb tetramer1 CTLs; ]p 5 0.00057; ]]p 5 0.00434; �p 5 0.00487; ��p 5 0.00623. Text shaded in grey denotes the data with
significant differences in percentages of different surface markers between WT vs. IL-15 KO animals.
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significantly inhibited the proliferation of activated lymph node

T cells in a cell number-dependent manner [42].

To determine whether the cells from the SI-IEL comply to the

same prosurvival strategy, we first assessed by flow cytometry

whether the B8R tetramer1 CD81 T cells express CD127

(IL-7Ra). Memory CD81 T cells in the spleens in both mouse

strains developed toward EM (CD1271CD62L�) and CM (CD1271

CD62L1) subsets at comparable frequencies (Fig. 5 and Table 1).

Surprisingly, however, very few memory B8R tetramer1 CD81

T cells from the SI-IEL both in WT and in IL-15 KO mice (Fig. 5

and Table 1) expressed CD127. The same was true for the gut cells

analyzed during the acute phase as well. In addition, SI-LP

lymphocytes from WT mice were also negative for CD127

expression during the entire experiment, and in IL-15 KO animals

it was proved at least at the acute phase (Fig. 5 and Table 1).

Thus, memory B8R-specific CD127lo/–CD81 T cells residing in the

SI-IEL compartment can be found not only in WT mice but also in

the IL-15 KO.

To evaluate whether residual IL-7Ra/CD1271 lymphocytes in

the SI-IEL were still able to transduce signals from IL-7, we

isolated SI-IEL lymphocytes, and treated them in vitro with

recombinant murine IL-7 cytokine (rmIL-7; 200 ng/mL, 20 min at

371C), followed by subsequent staining for intracellular phos-

phorylated STAT5 protein. As CTLs from naı̈ve and antigen-

experienced mice contain comparable low frequency of CD1271

cells (our unpublished data) and due to the paucity of antigen-

specific CD81 CTLs recoverable from SI-IEL compartment espe-

cially at the memory stage, we used SI-IEL cells from naı̈ve mice.

As a control, we used splenocytes. As shown in Fig. 6A and B, a

much smaller proportion of total SI-IEL lymphocytes was able to

mediate IL-7-dependent STAT5 phosphorylation compared with

total splenocytes (solid black and grey lines, respectively). The

relative percentage of IL-7Ra/CD1271 cells almost completely

corresponded to the frequency of IL-7-treated STAT5 (Y694)1

cells both in the SI-IEL (570.8 and 4.570.3, respectively) and in

the spleen (16.070.7 and 20.171.3, respectively). Thus, these

results confirm that the cells from the spleen as well as SI-IEL

express functional receptor for IL-7, but the proportion of TCRab1

CD8ab1 SI-IEL cells that express functional IL-7Ra/CD127 is

miniscule and much smaller than in the spleen (Fig. 6B).

Expression of CD11a, CD11c NKG2D, and CD8aa
homodimer on gut memory CD81 T cells requires IL-15

The prevalence during both acute and memory phases after

immunization of MVA-specific CTLs lacking IL-7 receptor in the

SI-IEL from both WT and even IL-15 KO animals suggested that

during the memory phase, SI-IEL lymphocytes might survive by

using alternative pathways without IL-7 or IL-15 signaling. Until

Figure 2. Functional avidity of B8R-specific CD81 T cells for IFN-g
production in the spleen and SI-IEL of C57BL/6 and IL-15 KO mice. (A–C)
Splenic (upper panels) and SI-IEL (lower panels) populations were
isolated from WT and IL-15 KO animals 5 days, 13 days, and 2 months
after infection, and treated with B8R20–27 peptide to perform ELISpot for
IFN-g production. B8R20–27 peptide (1 mM, 100 pM, and 1 pM) was added
directly to the tissue leukocyte populations, which were placed in
triplicates (Materials and methods). (A) Absolute numbers of responders/
106 total leucocytes to different peptide concentrations are shown. (B)
Normalized data calculated against the response to 1 mM of peptide are
shown. Dotted line corresponds to 50%max.response (max.respon-
se 5 1 mM peptide concentration). (C) Percentage of responders out of
total response is shown [53]. Data are the mean1SD of three animals
per group. Experiments were performed twice with comparable results.
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recently, several attempts have been taken to phenotype memory

CD81 T cells in the SI-IEL in WT as well as TCR transgenic mice

[34, 43]. Based on these reports, we decided to study the

expression of plausible candidates (b2-integrins CD11a and

CD11c, and NKG2D) that could be associated with the gut

specific survival of memory CTLs.

At 5 days after immunization, B8R tetramer1 CD81 T cells in

the SI-IEL from WT and, to a lesser extent, in IL-15 KO animals,

abundantly expressed CD11a integrin (Fig. 7, upper panel;

Table 1), and a few of them were CD11a1CD11c1 (7.9070.49 vs

17.5071.04 for WT vs IL-15 KO, p 5 0.00434; whereas the

majority were CD11a1CD11c–: 71.0073.51 vs 37.6371.45,

p 5 0.00487). The same pattern was observed for the MVA-

specific CTLs from the LP (Table 1 and data not shown). In sharp

contrast, B8R tetramer1 CD81 T cells from the spleen in both

mouse strains revealed an inverse pattern of expression, where

the CD11a1CD11c1 subset was dominant, and CD11a1 CD11c�

was subdominant. It is interesting that 2 months after immuni-

zation, the majority of B8R tetramer1 CD81 T cells in the SI-IEL

lost surface CD11a expression, and few of them were positive for

CD11c both in WT and in IL-15 KO mice (Fig. 7 and Table 1). In

contrast, in the spleen the vast majority of these cells

was expressing CD11a1 (>80%) being either single-positive

(CD11a1) or double-positive (CD11a1, CD11c1) (Table 1). Thus,

although at early stages both CD11a and CD11c may be induced

on the SI-IEL population, during the memory phase they were

downregulated irrespective of the presence or absence of IL-15 in

vivo, and thus these markers could not be associated with their

survival.

Apart from the b2-integrins, the NKG2D molecule is also

known to transduce costimulatory and/or prosurvival signals

after binding to a number of its ligands expressed by the gut

epithelial cells. At the acute stage, few B8R tetramer1 CD81

T cells in the SI-IEL and SI-LP from the WT mice expressed

NKG2D, whereas in IL-15 KO mice this frequency was modestly

increased (Fig. 8, upper panel; Table 1, compare WT vs IL-15 KO:

1.4070.21 vs 8.4070.70, p 5 0.00623). In contrast, in the spleen

from both mouse strains, most antigen-specific CD81 T cells were

positive for NKG2D (Table 1), although in IL-15 KO mice their

frequency was slightly lower. When the cells were checked during

the memory phase, we saw that in all tissues (SI-IEL, spleen,

and SI-LP) from WT mice, especially in the gut, the relative

percentage of NKG2D1 tetramer1 CD81 T cells had increased

compared with the acute phase (Fig. 8, lower panel; Table 1) but

was still much smaller than that found in the spleen. In contrast,

in IL-15 KO animals, the percentage of NKG2D1 cells did not

change with time.

Along with that, previously it was shown that some of the

memory CTLs may express CD8aa homodimer, which may ligate

an MHC-class I-like molecule, thymus leukemia (TL) antigen,

known to be abundantly expressed on the basolateral membrane

of mouse intestinal epithelium [44, 45]. When we checked

appearance of CD8aa homodimer within the B8R tetramer1

CD81 T cells from the SI-IEL, we found that whereas 5 days after

infection SI-IEL cells expressed CD8aa homodimer in both mouse

Figure 3. TCR expression level on B8R-specific CTLs from SI-IEL and
spleen isolated during acute and memory phase after i.r. MVA-
immunization. Cells from WT and IL-15 KO mice were isolated during
acute and memory phases as described in the Materials and methods,
and stained with PE-conjugated B8R20–27/H2-Kb tetramer. Both splenic
and SI-IEL cells were costained with anti-CD8a and CD8b (spleen)
mAbs. Then, B8R tetramer1 CD8b1-gated CTLs were plotted against
CD8a. The level of B8R tetramer staining is shown. (A) The control
staining of lymphocytes from naı̈ve animals was performed and a very
low background was detected. (B) Originally, cells were gated on B8R
tetramer1 CD8b1 T cells as exemplified on WT cells, day 5 p.i. (C) TCR
level expression on B8R tetramer1 CTLs from spleen and SI-IEL is
shown on density plots and presented as percentage out of total B8R
tetramer1 CTLs. Data from a representative staining are shown.
Comparable results were found in three mice studied.
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strains (Fig. 9, upper panel), spleen cells did not express it at all.

Interestingly, the frequency of CD8aa homodimer-positive cells in

IL-15 KO mice was approximately three-fold higher compared

with WT animals. During the memory phase, no changes in

relative percentage of CD8aa1 cells were seen in either mouse

strains when compared with day 5, nor were positive cells found

in the spleens.

Thus, memory B8R tetramer1 CD81 T cells residing in the

SI-IEL compartment in both WT and IL-15 KO animals modestly

express CD127, CD11c, and NKG2D, but not CD11a. The relative

frequency of CD8aa homodimer-positive cells in the SI-IEL did

not change with time, and has mouse-strain-specific features. In

contrast, in both WT and IL-15 KO mice, the vast majority of

memory B8R tetramer1 CD81 T cells from the spleen expressed

CD11a and NKG2D, and some of them were positive for CD11c.

CD103 may also be involved in the maintenance of memory

cells at mucosal sites. However, a study by Masopust et al.

concluded that memory CTL from the IEL are positive for CCR9,

and less so for CD103 [46].

Altogether, the data obtained allow us to conclude that

although memory CTLs can be found in the SI-IEL, which factors

contribute to their survival in the absence of signaling via IL-7,

IL-15, CD11a and/or CD11c integrins, NKG2D, and CD8aa
homodimer remains unknown.

Discussion

The development of protective immunity is intrinsically

connected to the route of infection [46–50]. However, generation

and survival of antigen-specific CD81 T cells after i.r. immuniza-

tion is not well understood [10, 51, 52]. In this study, we

continued to characterize: (i) the kinetics of CD81 T-cell

responses in the gut after i.r. immunization, (2) the dependency

of functional activity and survival of antigen-specific CD81 T cells

from the SI-IEL compartment on IL-7 and IL-15 signals.

We found that the immune response in the spleen and SI-IEL

compartment from WT mice was characterized by induction of

B8R tetramer1 CD81 T cells that paralleled each other during

both expansion and contraction phases (Fig. 1). Response against

the immunodominant vaccinia virus B8R20–27 epitope (also

present in the MVA), may elicit as high as 12% total splenic CTLs

or up to 10�106 vaccinia-virus-specific CTLs [36]. These data

perfectly fit to our results (Fig. 1). However, we saw that the

number of IFN-g-producing cells (Fig. 2) was much lower for the

SI-IEL compartment despite the substantial presence of B8R

tetramer1 CD81 T cells. As was shown here and in our recent

study [53], memory B8R20–27-specific CD81 T cells in the SI-IEL

compartment modestly produced IFN-g, but with low avidity,

whereas in the spleen they were characterized by populations with

low-, middle-, and high-functional avidity. In addition, B8R20–27-

specific CD81 T cells from the LP were previously shown to be

uniquely enriched in the high-avidity cells [53]. Thus, after

mucosal immunization, CD81 T cells with different functional

avidity were distributed unequally in different mucosal and

systemic sites. As shown in the current study, even greater changes

in functional activity were found in IL-15 KO mice, in which T cells

tended to quickly loose their IFN-g-producing capacity. Strikingly,

in the SI-IEL compartment from IL-15 KO animals even at the peak

of immune response a very modest response was detected (Fig. 2,

day 5).

As functional avidity may be directly linked to the physical

TCR avidity and high TCR expression level, we compared them

for B8R tetramer1 CTLs from the SI-IEL vs spleen. Interestingly,

we found that the modest functional activity of B8R20–27-specific

CD81 T cells from the WT SI-IELs did not correspond tightly to

the TCR expression level by the B8R tetramer1 CD81 T cells

(Fig. 3). In particular, although at the acute phase (day 5) the SI-

IEL from the WT mice had a pronounced in vitro IFN-g produc-

tion, however, only half of them were characterized by high TCR

level expression. In contrast, during the memory phase, although

they had hardly detectable functional activity, still the vast

majority of them expressed TCRs at high level that was even

increased compared with the acute phase. In sharp contrast,

although SI-IEL cells from the IL-15 KO animals had very low-

functional activity, the frequency of B8R tetramer1 CD81 T cells

with high TCR expression was comparable with that found in

the WT mice. Strikingly, during the memory-phase SI-IEL

Figure 4. Small intestinal B8R-specific IEL lymphocytes have high physical avidity for vaccinia virus B8R20–27 epitope. Cells from spleen (circles), SI-
IEL (squares), and SI-LP (triangles) were isolated from WT mice 5 days after i.r. immunization with 107 pfu MVA, and stained with anti-CD8b Abs
and B8R tetramer at the indicated dilutions. Left, mean fluorescence intensities (MFI) of CD8b1 T cells representative of three mice per tissue from
two comparable experiments are shown. Right, normalized MFI of CD8b1 T cells presented as a percentage out of max.MFI level.
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lymphocytes from IL-15 KO mice revealed an inverse proportion

of high-to-low TCR expression subsets, where the latter

comprised up to 67% compared with 27% for the WT mice.

However, due to the fact that the physical avidity of B8R tetramer
1 CTL in the SI-IEL was even higher compared with the spleen

(Fig. 4; WT mice), we may conclude that assessment of both

functional and physical avidities may be of special importance for

antigen-specific CD81 T cells residing in nonlymphoid tissues.

Altogether, IL-15 turned out to participate not only in expansion

of memory CD81 T-cell precursors (Fig. 1), but also in the

development of their full functional activity, which was evident

during the acute phase of infection (decreased number of total

and high-avidity responders). In particular, the lack of IL-15 in

vivo mostly affected functional activity/development of middle-

to-high avidity CD81 T cells and had less impact on low-avidity T

cells, consistent with our earlier finding that IL-15 promotes

induction of high-avidity CTLs [54].

A special role for IL-7 and IL-15 for survival and homeostatic

proliferation of memory CTLs has been documented in numerous

studies [18–23, 25, 35, 55, 56]. As we were able to detect

memory CTLs in the SI-IEL from the IL-15 KO animals, we deci-

ded to check if their survival was linked to CD127 expression and

IL-7 signaling. We showed by flow cytometry that during the

acute phase the vast majority of B8R tetramer1 CD81 T cells

isolated from SI-IEL both in the IL-15 KO and in the WT mice

were negative for CD127 expression (Fig. 5), consistent with the

data published elsewhere [34]. Additionally, we found that the

memory CTLs from LP were negative for CD127 as well (Fig. 5),

suggesting that some alternative prosurvival factor(s) specific to

the epithelial layer of the small intestine might exist. Such

Figure 5. Memory B8R tetramer1 CD81

T cells in SI-IEL from WT and IL-15 KO mice
express CD127 at low levels. Lymphocytes
from WT and IL-15 KO animals were
isolated at 5 days and 2 months after i.r.
immunization with MVA 107 pfu/mouse.
Four-color flow cytometry was performed.
Cells from IEL, LP, and spleen were stained
with PE-conjugated B8R tetramer together
with anti-CD8a mAbs. Then, cells were
gated on tetramer1 CD81 T cells, and
further analyzed for CD127 and CD62L
marker expression. Due to the paucity of
cells isolated from the LP of IL-15 KO mice
at 2 months p.i., these data are not
presented. One out of the two representa-
tive experiments is shown.
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assumption is substantiated by the finding that even in

naı̈ve C57BL/6 animals some nonspecific ‘‘memory-like’’ TCRb1

CD8ab1 T cells may be detected in the SI-IEL, which express

CD127/IL-7Ra at very low levels [57]. Here, we proved that

despite the low frequency of CD1271 SI-IEL cells, these few cells

were capable of transducing signals from IL-7 in vitro, thus

confirming the functionality of CD127/IL-7Ra on the gut CD8ab1

T cells from the IEL (Fig. 6). However, the vast majority of

memory CD81 T cells within intestinal epithelium were found to

survive independently of CD127 expression, thus ruling out IL-7

as a necessary survival factor in this tissue. In line with this,

previously it was shown that other cytokines, transducing signals

via the common gc-chain/CD132, may influence SI-IEL develop-

ment. In particular, the lack of signaling via IL-2, IL-4, IL-7, IL-9,

IL-15 affected only TCRab1CD8aa1 and TCRgd1CD8aa1 IEL

subsets [58–62], seemingly having no major impact on TCRab1

CD8ab1 IEL cells. On the other hand, selective overexpression of

either IL-7 [63] or IL-15 [64] by the gut epithelium did not result

in increased frequency of CD8ab1 T cells in the SI-IEL, possibly

because TCRab1 SI-IEL cells in naı̈ve mice express few if any

receptors for IL-2, IL-4, IL-7, IL-15 [65]. Similarly, splenic TCRab1

CD8ab1 T cells in naı̈ve mice do not entirely depend on the IL-15

signaling as they still contain CD44loCD122lo precursors of

‘‘conventional’’ TCRab1CD8ab1 T cells that were described in IL-

15 KO mice, thus, arguing for their IL-15-independent main-

tenance [66]. In fact, additional molecules might have had even

bigger impact on their prosurvival program (e.g. itk and IRF-1

etc.; [67, 68]). Based on this, we reasoned that in contrast to the

role for IL-7 and IL-15 documented in peripheral lymphoid

tissues, some other cytokine/cell-contact factors might be

involved in long-term maintenance of memory CD8ab1 T cells in

nonlymphoid tissues (intestinal epithelium; [69]). Although

some memory intraepithelial CD81 T cells can survive in the

small intestine in IL-15 KO mice after mucosal vaccination with

MVA, these mice will be significantly less protected against

mucosal challenge with WR virulent vaccinia virus compared

with WT mice. Some studies demonstrated already that IL-15

plays an important role in protection, especially in early activa-

tion of memory CD81 CTL after reinfection [70].

As was shown above, not only survival but also functional

activity of the gut memory CTLs was compromised in the IL-15 KO

mice. It is known that the local tissue microenvironment (cytokine,

chemokine, TLR–ligands, cell–cell contacts) can significantly influ-

ence the pathway of antigen presentation that elicits proliferation

and differentiation of CD81 T cells, affecting cytokine profile and

memory responses [71–76]. Inclusion of cytokines and other

biological adjuvants into vaccine formulas can facilitate skewing

immune responses both quantitatively and qualitatively in desirable

directions [3, 76]. As a result of such strategy, previously we found a

synergistic effect of cytokines and mucosal adjuvants for the

induction of mucosal and systemic CD81 T-cell responses together

with protective immunity against mucosal viral challenge [12, 50].

Moreover, such protection was mediated by CD81 T cells and was

associated with their presence at the mucosal site [77, 78]. Our

studies provided a better understanding of the effects that local

microenvironment (cytokines, cell contact signals) might have on

generation of memory CTL, particularly at mucosal sites. An

important factor for the development of effective memory CD81 T

cells is the presence of tissue-specific prosurvival factors. Our

current study demonstrated that the mechanisms of CTL survival in

mucosal tissues (small intestinal epithelium) may differ from those

present in peripheral lymphoid tissues.

As memory CTL which reside in the gut SI-IEL are nonmigrating

cells [46] and cannot recirculate with the pool of systemic memory

CTLs, they are unable to obtain prosurvival signals produced within

lymphoid tissues, e.g. IL-7 and IL-15. Thus, it is important to pin-

point what additional factors may contribute to their survival. Apart

from different signaling molecules involved in this process, it is also

plausible that the gut memory CTLs might merely depend on the

abundancy of nutrient factors supplied from food, in particular,

glucose. It is worth mentioning that in response to high-glucose

concentration some gut epithelial cell types are able to produce

IL-10 [79], that may also contribute to IEL-cell survival especially

when they are deprived of growth factors [80].

Figure 6. Residual CD127/IL-7Ra expression on naı̈ve CD81 T cells from
WT SI-IEL induces IL-7-specific STAT5 phosphorylation. Lymphocytes
from naı̈ve WT animals were isolated as described in the Materials and
methods. Then cells were either treated with recombinant murine IL-7
in DPBS/1%BSA (rmIL-7; 200 ng/mL, 20 min at 371C) or kept untreated.
(A) Histograms for intracellular phospho-STAT5 (Y694) expression on
total splenoctes and SI-IEL cells before and after adding rmIL-7
representative of two mice per tissue from two comparable experi-
ments are shown. (B) Relative percentages of IL-7-induced intracellular
STAT5 (Y694)1 total splenic and IEL populations from naı̈ve WT mice.
Isolated cells were treated in vitro with IL-7 (Materials and methods
section). Data show representative example from one out of the two
experiments. Error bars indicate mean1SD. Data were analyzed by
Mann–Whitney test, ����po0.0001.
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Despite the fact that currently no cytokine/cell contact

molecule(s) responsible for the survival of TCRab1CD8ab1

SI-IEL cells has been identified, still it is plausible to deduce that

somehow they may integrate signals which elicit constitutive

expression of antiapoptotic factors including cIAP-1, XIAP, bcl-xL,

and Mcl-1 as it was found in naı̈ve animals [81]. In fact, antigen-

specific memory TCRab1CD8ab1 from both spleen and SI-IEL do

express bcl-2 at high levels [34].

Besides classic surface markers that help to distinguish between

naı̈ve and memory CD81 T cells [31], little is known about the

expression of the activating NKG2D molecule on the CD81 T cells

in the SI-IEL. As a number of its ligands are expressed by the gut

epithelium, such ligation might be involved in providing prosur-

vival signals to the antigen-specific CTLs [82]. Previously, NKG2D

expression was described only on a subset of splenic memory

CD81 T cells [83], which transduces activating signals by

complexing with either DAP10, the only adaptor protein expressed

on CD81 T cells, and/or with DAP12 [83]. DAP10 under certain

circumstances is considered to transduce costimulatory signals in

CD81 T cells, whereas DAP12 has direct stimulatory activity in NK

Figure 7. Memory B8R tetramer1 CD81 T cells in the SI-IEL from WT and IL-15 KO mice express CD11a and CD11c at low levels. Lymphocytes from
WT and IL-15 KO animals were isolated at 5 days and 2 months after i.r. immunization with MVA 107 pfu/mouse. Four-color flow cytometry was
performed. Cells from IEL, LP, and spleen were stained with PE-conjugated B8R tetramer together with anti-CD8a mAbs. Then, cells were gated on
tetramer1 CD81 T cells, and further analyzed for CD11a and CD11c marker expression. Due to the paucity of isolated cells from the LP lymphocytes
of IL-15 KO mice at 5 days and 2 months p.i., these data are not presented. One out of the two representative experiments is shown.
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cells. CD81 T cells normally do not express DAP12; however,

during in vitro stimulation with IL-2, at least CD81CD44lo

T cells do express DAP12 [84]. Importantly, in naı̈ve mice neither

TCRab1 nor TCRgd1 SI-IEL cells express NKG2D, i.e. that only

cytokine-specific and/or antigen-specific activation may be

responsible for NKG2D expression [65, 83]. Thus, we speculated

that during antigen-specific stimulation, signaling via NKG2D in

CD81 SI-IEL cells might substitute for the lack of prosurvival IL-7

and IL-15. We found that the frequency of NKG2D1 cells was

increased in IEL (and LP) from IL-15 KO mice at memory phase

compared with acute phase (Fig. 8). We may suppose that at least,

in part, NKG2D expression may be associated with CTL survival

both in the SI-IEL and in the SI-LP compartments.

Additionally, we investigated the expression on B8R

tetramer1 CD81 T cells of CD8aa homodimer (Fig. 9), which

binds to the TL antigen, known to be abundantly expressed on

the basolateral membrane of mouse intestinal epithelium [45].

Due to the fact that the CD8aa homodimer was shown to be

transiently expressed on activated CTLs, we thought it might

contribute to the survival and differentiation of CD8 memory

Figure 8. Memory B8R tetramer1 CD81 T cells in SI-IEL from WT and IL-15 KO mice express NKG2D at low levels. Lymphocytes from WT and IL-15
KO animals were isolated at 5 days and 2 months after i.r. immunization with MVA 107 pfu/mouse. Triple-color flow cytometry was performed.
Cells from IEL, LP, and spleen were stained with PE-conjugated B8R tetramer together with anti-CD8b mAbs. Then, cells were gated on tetramer1

CD81 T cells, and further analyzed for NKG2D marker expression. Due to the paucity of isolated cells from the LP of IL-15 KO mice at 2 months p.i.,
these data are not presented. One out of the two representative experiments is shown.
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T-cell precursors. Although the interaction of CD8aa homodimer

with TL antigen may be of some importance in antigen-experi-

enced CTL, however, it was not involved in survival of nonspecific

CD8aa1 TCRab1 and CD8aa1 TCRgd1 IEL cells [85]. In our

study, we saw that during both acute and memory phases the

frequency of CD8aa1 B8R tetramer1 CTLs was increased only in

the SI-IEL from IL-15 KO but not from WT mice (Fig. 9).

Collectively, around 16 and 21% of total memory CTL in the SI-

IEL from WT and IL-15 KO mice were positive for either NKG2D

or CD8aa, which could bind to the gut epithelium-specific ligands

(Figs. 8 and 9). These results raise the possibility that somehow

memory CTL from SI-IEL compartments were shifting their

programs toward higher frequencies of NKG2D1 and CD8aa1

that might be associated with their survival in the absence of IL-7

and IL-15 signaling.

Altogether, our findings emphasize that the local tissue

environment in the intestinal mucosa is unique, and shapes and

organizes very specific populations of different protective

lymphocytes and allows CD81 T-cell survival without IL-7 or

IL-15 signaling. Furthermore, an environmental condition in the

intestinal epithelium does not promote IFN-g production by

SI-IEL cells long after vaccination, whereas in the adjacent LP

they are enriched with high avidity IFN-g-producing CD81 CTLs

[53]. What factors contribute to the development of prosurvival

conditions that facilitate the maintenance of antigen-specific

T cells in the gut mucosa and their unique pattern of functional

activity remains to be investigated.

Materials and methods

Mice

Female C57BL/6 mice were purchased from the Frederick

Cancer Research Center (Frederick, MD). IL-15 KO mice on

the H2-Kb C57BL/6 genetic background were purchased from

Jackson Laboratories.

Viruses and immunization protocol

MVA, developed by A. Mayr, University of Munich, Germany

[86], was propagated and titrated in chicken embryo fibroblast

cells. This virus was a gift of Dr. Bernard Moss, Dr. Patricia Earl,

and Dr. Linda Wyatt (NIAID). For immunization, mice were

injected i.r. with 107 pfu MVA as described previously [87].

Cell purification: Isolation of SI-IEL and LP lympho-
cytes, and lymphocytes from the spleen

Spleens were aseptically removed and single-cell suspensions

were prepared by gentle passage of the tissue through sterile

screens. SI-IEL cells and LP lymphocytes from mice were isolated

as described previously with a minor modification [52].

Flow cytometry

Flow cytometry was performed by using a FACScalibur, and data

were further analyzed with CellQuest software (BD Biosciences)

[88]. The following mAbs were used: FITC-conjugated anti-

CD62L (clone 53–5.8; obtained from BD Biosciences), Allophy-

cocyanin (APC)-conjugated anti-CD127 (clone A7R34); APC-

conjugated anti-NKG2D (clone CX5), APC-conjugated anti-CD8b
(clone CT-CD8b; all obtained from eBiosciences). Soluble

tetrameric B8R20–27/H2-Kb complex was conjugated to PE-

labeled streptavidin (made by the NIH Tetramer Core Facility).

Figure 9. Memory B8R tetramer1 CD81 T cells in SI-IEL from IL-15 KO
mice contain a higher frequency of CD8aa-homodimer1 cells than WT
mice. Splenocytes and SI-IEL cells from WT and IL-15 KO animals were
isolated at 5 days and 2 months after i.r. immunization with MVA
107 pfu/mouse. Triple-color flow cytometry was performed. Cells were
stained with PE-conjugated B8R tetramer together with anti-CD8a and
anti-CD8b mAbs. Then, cells were gated on tetramer1 CD81 T cells, and
further analyzed for the expression of CD8aa-homodimer. One out of
the two representative experiments is shown.
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IL-7 bioassay

Lymphocytes from naı̈ve WT animals were either treated with

recombinant murine IL-7 (rmIL-7; PeproTech) in DPBS/1% BSA

or kept untreated, and incubated for 20 min at 371C. To verify

rmIL-7-specific signaling, cells were stained for intracellular

phosphorylated STAT5 protein with antiphospho STAT5 (Y694)

Alexa Fluors-488 mAbs according to the manufacturer (clone 47;

BDTM PhosFlow) and studied by flow cytometry. Additionally,

cells were stained with mAbs against APC-conjugated anti-CD127

(clone A7R34; eBiosciences).

IFN-c ELISpot

IFN-g ELISpot was performed as described previously [89]. Cells

were plated in triplicates in a volume of 200 mL, 0.2� 106/well, to

which we directly added titrated the amounts of B8R20–27 peptide

(TSYKFESV), which is an immunodominant poxvirus CTL epitope

restricted by H-2Kb [36]. Spots were counted in AID ELISpot

Reader (Cell Technology). Data are presented as the mean and

SEM of three animals per interval. These experiments were

performed twice with comparable results.

Statistical analysis

Statistical comparisons were assessed by unpaired Student’s t-test

and Mann–Whitney test by using GraphPad Prism version 5.00,

GraphPad Software (San Diego, CA; www.graphpad.com).
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