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EXECUTIVE SUMMARY  

The need to renew America’s economy, foster its energy security, and respond to global 
climate change compels the transformation of U.S. energy policy.  Innovation and its 
commercialization must move to the center of national reform.  Not only must a broad range of 
carbon pricing and regulatory responses be adopted, but major increases in federal R&D are 
essential along with the deployment of bold new research paradigms.  To that end, the federal 
government should establish a national network of regionally based energy discovery-
innovation institutes (e-DIIs) to serve as the hubs of a distributed research network linking the 
nation’s best scientists, engineers, and facilities.  Through such a network, the nation could at 
once increase its current inadequate energy R&D effort and complement existing resources with 
a new research paradigm that would join the unique capabilities of America’s research 
universities to those of corporate R&D and federal laboratories. 
 

America’s Challenge 

Massive sustainability and security challenges plague the nation’s energy production 
and delivery system.  Transformational innovation and commercialization will be required to 
address these challenges.  However, current innovation efforts remain inadequate to ensure the 
development and deployment of clean energy technologies and processes.  States and 
localities lack the wherewithal to make the needed investments.  Additionally, numerous market 
failures prevent private firms from investing sufficiently in clean energy.  Because firms cannot 
capture all the benefits of their innovative activity, they underinvest and focus on short-term, 
low-risk research and product development. 
 

Limitations of Existing Federal Policy 

Federal energy efforts, meanwhile, suffer from two key shortcomings.  First, the federal 
government spends less than 1 percent of its R&D budget on energy—a level less than one-fifth 
of expenditures in the 1970s and 1980s—clearly insufficient in light of coming challenges.  
Beyond that, federal energy efforts are also based on an obsolete research paradigm.  Most 
federal energy research is conducted within “siloed” labs that are too far removed from the 
marketplace and too focused on their existing portfolios to support “transformational” or “use-
inspired” research targeted at new energy technologies and processes. 
 

A New Federal Approach 

The federal government should create a national network of several dozen e-DIIs.  An 
interagency process should establish the network and competitively award core federal support 
of up to $200 million per year for each major e-DII operated by university or national laboratory 
consortia, along with funding for smaller e-DIIs and distributed energy networks connected to 
the large e-DII “hubs.” Federal funding would be augmented with participation by industry, 
investors, universities, and state governments, for a total federal commitment growing to roughly 
$6 billion per year (or 25 percent of a recommended total federal energy R&D goal of $20 to $30 
billion per year). The e-DIIs would: 
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• Foster partnerships to pursue cutting-edge, applications-oriented research among 
multiple participants and disciplines  

• Develop and rapidly transfer highly innovative technologies into the marketplace 
• Build the knowledge base and human capital necessary to address the nation’s energy 

challenges 
• Encourage regional economic development by spawning clusters of nearby start-up 

firms, private research organizations, suppliers, and other complementary groups and 
businesses 
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I. INTRODUCTION 

The need to renew America’s economy, foster its energy security, and respond to global 

climate change all compel the transformation of U.S. energy policy.   

It is now largely agreed that massive technology changes will be needed to stabilize 

greenhouse gas emissions worldwide. 

Innovation and its dispersal through commercialization must therefore move to the 

center of national reform.  Not only must a broad range of pricing, regulatory, and infrastructure 

responses be adopted, but massive direct investments in the innovation process are essential.  

And yet, the scale and intensity of current energy innovation efforts in the United States 

remain inadequate to produce the needed technological progress and human capital 

development.  Both private and public sources have underinvested in energy research in the 

past and now the nation faces acute, increasingly urgent challenges as it moves to address the 

complex challenges posed by global climate change.   

In all of this, serious market and government failures in the U.S. and elsewhere have so 

far prevented the private and public sectors from making sufficient investments in energy 

innovation.  Most notably, relatively low energy prices—in the absence of national carbon-

pricing interventions and notwithstanding several oil price spikes over the past 40 years—have 

for decades reduced the incentive for companies to invest in clean and efficient energy 

technologies and processes.  Similarly, the reality of spillover benefits and other market realities 

mean that individual firms can rarely capture all of the benefits of their innovative activity, which 

also leads to underinvestment and a focus on short-term, low-risk research and product 

development.  Uncertainty and insufficient information on energy pricing, policy, and the 

features of new technology or processes may further delay innovation. Additionally, states and 

localities usually lack the wherewithal to engage systematically over the long time horizons 

needed to catalyze inventions.   

The upshot of all this is clear:  The insufficiency of private investment and the inability of 

most states and local governments to engage adequately—in the absence of a high price on 

carbon or sufficient regulatory interventions—places the responsibility for guaranteeing 

adequate levels of energy innovation largely in the lap of  the federal government.   
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Such an assignment of responsibility is appropriate, moreover, given the federal 

government’s historic responsibilities for environmental protection and economic and national 

security.  However, both the magnitude and character of federal energy innovation programs 

remain inadequate to address the development of a sustainable energy economy in America.   

Current industry and government investments in energy-sector research and 

development (R&D) are clearly too low, given the urgency of the energy challenges facing the 

nation. For its part, the energy industry lags most other major U.S. industries in the fraction of its 

revenues devoted to R&D.  For that reason, private firms should be enticed both through federal 

tax incentives and other investments to increase R&D activities to a level comparable to other 

technology-intensive industries such as electronics, defense, and health care. 

 

On the government side, meanwhile, which is dominated by the federal government’s 

activities, the federal investment in energy R&D today amounts to a bit more than $2 billion per 

year—less than one-fifth of the funding levels of the 1970s and 1980s.  Given the large size of 

the energy sector ($1.4 trillion per year) and the sheer complexity and urgency of the nation’s 

energy challenges, it would seem that the federal investment in energy R&D should be 

increased substantially to levels comparable to those associated with other compelling national 

priorities such as health care, national defense, and space exploration.  Such a prioritization 

argues for federal energy investment in the neighborhood of $20 to $30 billion per year.  

 

In response, this report proposes a significant increase in the scale of the federal 

government’s energy R&D activities.   To be specific, the pages that follow call for an order of 

magnitude growth in annual federal investments that would increase to $20 to $30 billion the 

nation’s roughly $2 billion-plus current effort on non-defense energy-related R&D.  Along these 

lines, the paper assumes that the bulk of the nation’s needed new investment would flow to the 

nation’s existing federal laboratories and associated corporate R&D centers. 

 

 However, both the complexity of America’s energy challenge argue that the nation 

should not simply spend more on the same sort of efforts in which it is already engaged.  

Instead, the multidisciplinary nature of the problem suggests that a portion of the needed growth 

in federal funding should be reserved for mobilizing additional assets (beyond the laboratories 

and corporate centers) in new ways capable of contributing to the development, 

commercialization, and deployment of energy technologies.  These assets include the nation’s 
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research universities, entrepreneurs, and investors, as well as state and regional economic 

development organizations. In this connection, the federal laboratories represent a formidable 

concentration of scientists and engineers capable of addressing scientific and technological 

challenges such as nuclear deterrence, high-energy physics, and space exploration.  However, 

the fact is that large-scale deployment of sustainable energy technologies will involve not only 

advanced scientific research and the development of new technologies, but also careful 

attention to complex market, economic, social, legal, political, behavioral, and consumer issues. 

Developing and deploying new energy technologies is, furthermore, frequently characterized by 

complex regional, national, and international dynamics. Building, operating, and maintaining a 

sustainable energy infrastructure will require, in this sense, a rather considerable expansion of 

the nation’s human capital, which will only be developed through strengthening math and 

science education at all levels and the training and intense collaborations not only of world-class 

scientists and engineers but also entrepreneurs, venture capitalists, business professionals, 

legal experts, and others capable of dealing with the myriad legal, business, behavioral, and 

environmental issues that characterize energy development. 

 

In view of all this, the pages that follow argue not just for a step-change in the amount of 

federal energy R&D spending but for the use of new paradigms for that investment—new 

paradigms that build on the current considerable R&D capabilities of the federal laboratories 

and industry but also seek to create new forums for high-intensity collaboration among multiple 

players.  

And here, one such paradigm that appears to be particularly well-suited for the purpose of 

accelerating technology development and deployment is the discovery-innovation institute 

concept developed in 2005 by the National Academy of Engineering.1 This paradigm was 

designed to link fundamental scientific discovery with use-inspired research capable of 

stimulating the innovation necessary to create, commercialize, and deploy new products, 

processes, and services.  In addition, the innovation centers were intended to stimulate 

significant regional economic activity, such as the location nearby of clusters of start-up firms, 

private research organizations, suppliers, and other complementary groups and businesses. 

More specifically, then, this paper proposes that the federal government should 

experiment with a new paradigm in energy research by establishing a national network of 

regionally based energy discovery-innovation institutes (e-DIIs) as one part of an expanded 

national energy effort.2  The e-DIIs—characterized by results-oriented partnerships among 
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multiple participants—including federal agencies, research universities, established industry, 

entrepreneurs, investors, and the states—would be charged with performing the basic research 

and technology development necessary to rapidly deploy highly innovative energy technologies 

into the marketplace.  Such institutes would enable a more comprehensive approach to the 

energy challenge that would include attention to public policy, economic, legal, and behavioral 

issues in addition to energy science and technology.  In addition, e-DIIs would focus on the 

unique assets, challenges, and opportunities for energy research, development, and 

implementation within their home regions, thereby stimulating regional economic development 

and job creation.   

In effect, the e-DIIs would stand as 21st-century successors to the highly successful 

agricultural and engineering experiment stations, and their associated extension services, 

established across the United States through the Land Grant Acts to build a modern industrial 

nation.  

And as it happens, the new discovery centers would also serve as a new stimulus to 

metropolitan prosperity—the crucial goal of the Blueprint for American Prosperity, a multi-year 

initiative of the Metropolitan Policy Program at Brookings.  U.S. metropolitan areas are already 

the leading repositories of the research, workforce, infrastructure, and capital resources that will 

be needed to drive innovation and usher in a new generation of energy technologies.  By 

situating highly collaborative, commercialization-oriented new innovation centers in metro areas, 

a concerted push to deploy a network of e-DIIs would serve as a powerful new boost to local 

and regional economic development.  In this way, the proposed national network of e-DIIs would 

at once lead the nation in responding to a series of crucial boundary-crossing problems and 

empower U.S. metropolitan areas—and so make a major contribution to the prosperity and 

sustainability of the nation. 

Thus, this report at once reviews the enormity and complexity of the nation’s energy 

challenges, surveys the limitations of current responses, and details the outlines of a new 

research approach and paradigm that would join the unique capabilities of America’s research 

universities to those of corporate R&D centers and the nation’s renowned federal laboratories.   

First, the report lays out the sustainability and security challenges posed by the nation’s current 

energy infrastructure and the need for enhanced energy research and development (R&D).  

Next, the report discusses the multiple barriers that prevent sufficient private investment in 

energy R&D and makes the case for why the government—and then specifically the federal 
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government—must take the lead in ensuring adequate energy R&D commitments.  A new 

federal energy research paradigm is then proposed and similar paradigms already in use 

internationally and at the state and regional level are examined.  Finally, a national network of e-

DIIs is proposed, followed by a discussion of the steps needed to implement the new network, 

and a look at some options for financing and organizing it. Through it all, the paper endeavors to 

supply some fresh thinking on one portion of the nation’s energy research, development, and 

deployment continuum, which is itself but one portion of several needed responses to the 

nation’s energy challenge. 

II. THE NATION FACES SERIOUS ENERGY SUSTAINABILITY AND SECURITY CHALLENGES  

Today’s energy challenges stem from an unsustainable energy infrastructure, largely 

dependent on fossil fuels, with clear implications for America’s economic and national security.  

Addressing these challenges will require substantial—and creative—investments in clean and 

efficient energy technology, much of which has yet to be developed. 

Innovation, therefore, must become the centerpiece of any successful long-term energy 

policy.   

1. Supply, security, and sustainability challenges plague the world’s energy 
production and delivery system.  

The global economy currently relies on fossil fuels (e.g., oil and other petroleum 

products, natural gas, and coal) for nearly 85 percent of its energy.3  However, the hard fact is 

that fossil-fuel dependence cannot be sustained over the long term due to supply constraints, 

security concerns, and increasingly unacceptable global climate impacts.   

By 2030, global energy use is projected to grow by 50 percent over 2005 levels.4  The 

International Energy Agency (IEA) estimates that $20.2 trillion in capital investments will be 

needed to meet this growing demand.5  Approximately half of the needed investments will be 

required in developing countries, with nearly 20 percent in China alone.  North America is 

projected to need $4.1 trillion of capital investments.  More than half of the world’s projected 

new energy investment will be needed to provide electricity.  To meet projected growth, the 

world would need to bring online every day for the next 20 years a new 1,000-megawatt-

equivalent power plant costing several billion dollars.6   
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In this regard, a sustained imbalance between oil supply and demand could occur if the 

development of new reserves and extraction technologies fail to keep production rates on pace 

with growing demand.  Currently, annual global oil and natural gas production lags 

consumption.7  With the long-term oil and gas demands of developing economies such as 

China, India, and Latin America rising, long-term supply and demand imbalances will likely drive 

up global oil and gas prices.  The American economy, meanwhile, is particularly at risk from 

high oil prices: The United States accounts for one-quarter of the world’s oil consumption 

despite producing just 10 percent of the world’s oil supply.8  Nearly 60 percent of the nation’s 

petroleum supply is imported, up from around 30 percent in the 1970s.9  With few affordable and 

scalable alternatives, periodically spiking oil prices can disrupt industrial production and reduce 

consumer purchasing power, threatening to push the nation into an economic recession, as has 

regularly occurred since World War II.10  Higher oil prices also threaten the U.S. trade balance, 

which has been running a deficit since 1992.  Nearly 50 percent of the increased trade deficit 

from 2002 to 2006 was due to higher oil prices and associated higher net import costs.11 

Furthermore, America’s economic and national security is threatened by its dependency 

on oil imports from politically unstable regions of the world.  Although Canada is currently the 

largest supplier of oil to the United States, 45 percent of the nation’s oil in June 2008 was 

imported from OPEC nations and 18 percent was imported from the Persian Gulf.12  Many oil-

exporting countries are politically volatile, including Venezuela, Nigeria, and recently Russia.13  

In addition, nearly 77 percent of the world’s oil reserves are controlled by national oil companies 

(NOCs) and only 10 percent are controlled by Western international oil companies, such as 

Exxon or BP.14  American vulnerability to oil supply decisions by oil-exporting countries and 

NOCs has led to costly military engagements in areas such as the Persian Gulf, which continue 

to pose an immediate threat to the nation’s security.15  Additional security threats arise from 

terrorist organizations (supported in part by oil wealth), piracy, and underdeveloped security 

over critical energy infrastructure within the U.S. and abroad.16   

And then there are the daunting environmental side-effects of world carbon dependency.   

To be sure, the world has substantial reserves of other fossil fuel resources, such as coal, tar 

sands, and oil shale, which could offset declining oil and gas supply for years to come.  

Unfortunately, though, the mining, processing, and burning of these fossil fuels with current 

technologies remains expensive and is characterized by increasingly unacceptable 

environmental impacts in light of climate change concerns and intensive land and water 

utilization.   
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Already the use of fossil fuels in energy production is contributing to global climate 

change.  Evidence of global warming is nearly incontrovertible, with increasing global surface 

and air temperatures, receding glaciers and polar ice caps, rising sea levels, and increasingly 

powerful weather disruptions.  The recent Intergovernmental Panel on Climate Change (IPCC) 

report concluded that: “Global atmospheric concentrations of carbon dioxide, methane, and 

nitrous oxide have increased markedly as a result of human activities since 1750 and now far 

exceed pre-industrial values.  The global increases in carbon dioxide concentration are due 

primarily to fossil fuel use and land-use change.”17  The IPCC estimates that global average 

temperatures could eventually increase by 6 degrees Celsius or more if greenhouse gas 

emissions continue to grow at current rates.18   

To limit the global average temperature increase to a more manageable 2.4 degrees 

Celsius, meanwhile, the IPCC estimates that energy-related greenhouse gas emissions would 

need to decrease by 50 to 85 percent of 2005 levels.19  Such reductions, in turn, would require 

the virtual “decarbonization” of the world energy sector, with a massive and widespread shift 

toward low and zero net greenhouse gas emissions needing to occur throughout the U.S. and 

global energy system between now and 2050 at an estimated cost of $45 trillion.20   

Unfortunately, this is not the direction in which the world has been heading in recent 

years.21 As developing countries grow their economies, notwithstanding the current world 

recession, they are consuming increasing amounts of cheap, fossil fuel energy (often coal) and 

are emitting more (not less) greenhouse gas emissions.  Emissions in the developed world have 

also climbed despite reductions in countries such as Germany.  As a result, the Energy 

Information Administration “reference case” forecast has U.S. energy consumption increasing 

19 percent and carbon dioxide emissions by 16 percent by 2030 over current levels given 

existing policies and expected market trends.”22  This forecast may be adjusted given the 

current world slow-down, but the fact remains that emissions will grow, and that world-wide, the 

consumption and emissions growth figures are 55 percent and 57 percent.23 Altogether, global 

emissions have grown faster than predicted by the IPCC, accelerating climate change and 

making the upward emissions trend all the more difficult and urgent to reverse.24   

In short, the needed decarbonization of the U.S. and global energy system will be a 

huge undertaking in light of recent trends.25   
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2. Transformative innovation will be required to address fundamental energy 
challenges   

To limit global warming, the global energy system must ultimately shift away from fossil 

fuels as its primary energy source to clean, renewable energy. How will that occur? Immediate 

progress can be achieved through the adoption of existing technologies and practices that 

improve the efficiency of energy utilization, such as low energy illumination, high efficiency 

buildings, fuel-efficient automobiles, and low power computers.  Investments in efficiency will 

bring fuel savings and reduce the net costs of needed infrastructure investments.26  Past 

investments in efficiency have helped to improve the nation’s energy productivity (i.e., the 

amount of energy required per dollar GDP) by more than 1 percent per year since 1973.27  

Making global annual efficiency investments of $170 billion through 2020 could cut global 

energy demand growth by half, generate $900 billion in annual savings by 2020, and make a 

meaningful contribution to stabilizing carbon emissions at a sustainable level.28  The United 

States would need to account for a little over 20 percent of this investment (or $38 billion per 

year) to achieve the targeted global reductions.29 

However, large and sustained efficiency investments will not be enough to achieve 

frequently discussed sustainability goals such as those implied by the IPCC.  New technologies 

and practices will also be needed to mitigate the harmful impact and resource constraints of 

existing energy sources.30  Advanced technologies and practices are critical since efficiency 

gains will likely only slow the growth of global energy demand instead of cutting total emissions 

as is needed.  In technology innovation lies both the potential to reduce the baseline level of 

greenhouse gas emissions and to reduce the cost of achieving those reductions.31 Relatively 

accessible examples of such potential advances include new technologies and practices for 

reducing carbon emissions from conventional or existing energy sources in the short and 

medium term.  Among such innovations will be carbon sequestration for coal combustion, more 

efficient methods for petroleum and natural gas exploration and extraction, and advanced 

nuclear energy systems with enhanced safety and reduced radioactive waste toxicity and 

lifetime.  Some of this new technology has been developed but has not been deployed yet.32  

Much more of the new technology still needs to be developed, tested, and deployed at a large 

enough scale to drive down costs.   

Of longer term importance will be the deployment and commercialization of affordable, 

carbon-free renewable energy technologies, such as solar, wind, and biofuels.  While renewable 

energy sources are prominently featured in most “green energy” proposals, a substantial gap 
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remains with current technologies in achieving both the scale and cost structures necessary for 

major impact.33  The intermittency inherent in renewable energy sources will require massive 

development and deployment of central and distributed energy storage technologies.34  

Expansion of renewable energy use will also require investments in a more expansive and 

efficient electricity grid, such as a new direct-current transmission network.35   

Investments in efficiency and new energy technologies and work to accelerate their 

commercialization will have added benefits from creating new jobs across the occupational 

spectrum.  Conservative estimates suggest that the global renewable energy industry may 

increase to more than 20 million jobs by 2030, with most of these jobs in a handful of countries 

including the United States.36  The American Solar Energy Society optimistically projects 

renewable energy and energy efficiency jobs could grow to 40 million (from 8.5 million today) by 

2030.37   

At any rate, the challenge is clear, and is well summarized by Ted Nordhaus and 

Michael Shellenberger:  With global energy consumption heading for 50 percent or larger 

growth by 2050 even as we face the challenge of reducing greenhouse gas emissions by 50 

percent, the “[needed] transformation will not be accomplished by affixing scrubbers on 

smokestacks or catalytic converters on tailpipes—technical fixes that required little change to 

the underlying processes and technologies that they mitigated. Rather, it will require 

fundamental changes to the underlying technologies and fuel sources that power the global 

economy.”38 

Or as John Holdren, the new White House science advisor has concluded: “Without an 

accelerated transition to improved technologies, societies will find it increasingly difficult—and in 

the end probably impossible—either to limit oil imports and oil dependence overall…or to 

provide the affordable energy needed for sustainable prosperity everywhere without intolerably 

disrupting the Earth’s climate.”39 

3.    Current investments in energy innovation are inadequate 

Deployment of clean, efficient, and renewable energy technologies depends in large 

part, then, on the viability of the innovative process.  It also depends on the development of new 

practices, business models, and social and legal processes to support deployment of new 

technologies. Unfortunately, current investments in energy technology innovation are 

inadequate to address the nation’s supply, security, and sustainability challenges.   
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Box 1. A primer on innovation and U.S. R&D 

Innovation involves the application of a new idea to processes, products, or 

organizational design.  Three basic activities are often considered as part of the innovation 

process, including research and development (R&D), commercialization, and deployment.  For 

purposes of tracking R&D investments, the federal government differentiates basic research 

(building the scientific and technical knowledge base, without clear technological applications), 

applied research (initial application of basic research findings with potential to address practical 

applications), and development (early commercialization efforts where new products and 

processes are developed and demonstrated).  

Realistically, innovation is an exceedingly complex and unpredictable phenomenon, 

extending across multiple actors with differing resources, capacities, and goals.  The private 

sector is largely responsible for the nation’s innovative capacity, supporting most 

commercialization and deployment efforts and a substantial portion (two-thirds) of the nation’s 

R&D.  The federal government also plays an important, if secondary, role in U.S. innovation by 

funding 27 percent of R&D efforts.40  Three-quarters of federally financed R&D is conducted by 

industry, universities, or other nonprofit institutions.   

Total U.S. investments in R&D have steadily increased since World War II (in real terms) 

although they have in recent years seemed to plateau.41  Today’s R&D spending of $368 billion 

annually is approximately 2.7 percent of the nation’s gross domestic product (GDP), down from 

its high of 2.8 percent in 1964.42  The current U.S. share is higher than spending in many 

industrialized nations, but lags behind R&D shares of GDP in Sweden, Finland, Japan, South 

Korea, Switzerland, Iceland, and Israel.   

Despite the scale and urgency of the nation’s energy challenges, neither large industrial 

firms nor the federal government have regarded energy research as a high priority for several 

decades.  Today’s investments in energy R&D by the federal government and large industrial 

firms are only one-fifth the level of the early 1980s, and make up just 1.1 percent of the nation’s 

total R&D investment and 0.03 percent of the nation’s GDP.43  Overall, U.S. public and private 

spending on energy technology research, development, and demonstration comes to no more 

than $5–6 billion per year, significantly less than 1 percent of what the country spends for 

electricity and fuels, with less than $3.8 billion going to federal and large-corporation R&D 

despite the energy industry’s annual $1.3 trillion gross output.44  
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National energy R&D grew rapidly in the late 1970s and has since fallen below levels 
recorded in the early 1970s 

 
Sources: National Science Foundation’s Industrial Research and Development Survey (for industrial data) 
and “Research and Development in Industry” (annual series); National Science Foundation’s “Federal 
R&D Spending by Budget Function” for energy (annual). 
 
 

These R&D figures do not differ much from those of other industrialized countries (and 

they are better than those of developing countries) but they remain inadequate in relation to the 

scale of the challenge and substantially lower than those being recorded by other U.S. sectors.  

Other U.S. technology-intensive industries spend comparatively more on R&D than the energy 

sector.45  Health care, for instance, receives or dedicates the equivalent of nearly 2 percent of 

its annual sales in federal R&D spending (by a very conservative analysis), while agriculture 

allots 2.4 percent.  By contrast, the energy sector receives from the federal government or 

dedicates from its own resources just 0.3 percent of gross output to R&D.46  If the federal 

government and large industrial firms together were to invest 2 percent of the nation’s annual 

energy sales in R&D (as the health care sector does), it would be investing $25 billion in energy 

R&D—more than six times current levels. By other measures, sectors like pharmaceuticals and 

IT are reckoned to spend upwards of 10 percent of their revenue on R&D, which leads to even 

higher benchmarks for appropriate annual investment in basic and early-stage energy research.  
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The U.S. health care and agricultural sectors spend substantially more on R&D than the 
energy and transportation sectors 
Industry Gross 

Output 
(billions)

Federal 
R&D 

(billions)*

Federal 
R&D as 

share of 
output

Large 
Industrial 

R&D 
(billions)**

Federal + 
Large 

Industrial 
R&D 

(billions)

Federal + 
Large 

Industrial R&D 
as share of 

output
Health care $1,608 $31.3 1.95% $0.8 $32.1 1.99%
Energy $1,271 $1.4 0.11% $2.4 $3.8 0.30%
Transportation $823 $1.9 0.23% $0.3 $2.2 0.26%
Agriculture $347 $2.0 0.59% $6.1 $8.2 2.35%
* Federal R&D for energy budget function only; does not include expenditures on general science 
** Industrial R&D for energy reported for 2003 (latest available data); Private agricultural R&D 
reported for 1998 (latest available data).
All values reported in constant 2008 dollars.  
Sources: Bureau of Economic Analysis’ Current Industry Analysis data by NAICS code); National Science 
Foundation’s “Research and Development in Industry”; National Science Foundation’s “Federal R&D 
Spending by Budget Function” for energy; U.S. Department of Agriculture, “Agricultural Research Funding 
in the Public and Private Sectors” (annual reports). 
 

Today’s low level of investment in energy R&D, at any rate, leaves the nation 

underprepared to meet the energy challenges of the 21st century.  For one thing, R&D 

investment levels closely track with patents, a key indicator of innovative activity.  This close 

association persists at the national level and specifically for energy, as well as for particular 

energy technologies such as fossil fuels and renewable energy.47  Thus, with low national 

spending on energy R&D and commercialization, the economy cannot expect to see the 

innovative activity necessary to develop new technology, accelerate demonstration and 

deployment, create new jobs, boost economic growth, and reduce greenhouse gas emissions.   

In addition, today’s investments in energy R&D are critical given the long lead times 

needed to research and develop new technology for commercialization and deployment.  

Development times for energy technologies are difficult to anticipate and may prove longer than 

for either software or medical technologies, both of which can often be brought to market within 

five to 10 years.48  Some energy technologies have been under development for nearly 50 years 

and are only now seeing widespread improvements, such as with thin-film photovoltaic 

technology.  Other technologies, such as controlled thermonuclear fusion, have been under 

development for more than 50 years and still remain decades away from possible deployment.  

The potential benefits of these new technologies are large enough, however, to keep 

investigation and development going. 

* 
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In summary, today’s energy challenges stem from the continued dominance of an 

unsustainable energy infrastructure, largely dependent on fossil fuels, that has clear implications 

for economic and national security.  Stabilizing world and national carbon emissions will require 

a staggeringly large-scale and broad shift of the current energy system to energy technologies 

and practices with low to zero net greenhouse gas emissions.  Massive investments are needed 

both to clean up existing energy infrastructure in light of climate change concerns and to meet 

coming demand.  Addressing the sustainability and security challenges posed by the world’s 

energy needs, moreover, will ultimately require substantial investment both to commercialize 

and scale up the deployment of existing clean and efficient energy technology and to pursue the 

critical innovation needed to develop and deploy new energy technologies and practices as yet 

un-invented.49  Unfortunately, such commitments have yet to be made. 

III.  MULTIPLE BARRIERS PREVENT SUFFICIENT PRIVATE INVESTMENT IN ENERGY 
TECHNOLOGY 

Past transitions in energy utilization, such as those that took society from wood to coal to 

oil to electricity, have been driven primarily by the private sector.  These transitions have 

occurred over timescales of generations or even centuries, and involved gradual changes in 

energy technologies and utilization that allowed producers, consumers, and markets time to 

adjust.  Unfortunately, the consequences of past failures to respond to the sustainability and 

security impacts of our current carbon-based energy economy now require more immediate and 

widespread action than the private sector appears prepared to provide.  Several market failures 

and other barriers account for the insufficiency of private engagement in energy technology 

development and deployment despite the clear societal benefits of such research and 

innovation.50 

1. Price signals are not sufficient to ensure adequate development and deployment 
of sustainable and secure energy technologies   

The first substantial market problem that had led to extremely low investment in energy 

research and innovation is the historically low cost of oil and gas that has prevailed in the 

absence of pricing and regulatory policies that factor in the full environmental and social costs of 

using fossil fuels.51 Firms will naturally invest in energy R&D and technology deployment if they 

can realize a profit from it.  Many already do this, as evidenced by the more than $1 billion spent 

by large industrial firms on energy R&D each year.  However, in the absence of national 

interventions that price in the environmental “externality” of global climate change and 
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notwithstanding several oil price spikes over the past 40 years, energy prices have remained 

generally low enough that there has been little incentive for producers or consumers to invest in 

radically new technology.52   

To be sure, rising energy prices over the past few years naturally led to an increase in 

energy R&D by the federal government and large industrial firms.  Venture capital (VC) firms, 

such as Kleiner Perkins Caufield & Byers, are also investing more in “clean tech” or “green tech” 

development than they have in the past.53  Venture capital investments for energy and other 

industrial technologies (including transportation, agricultural, and environmental technologies) 

have been on the rise lately, with the second quarter of 2008 reaching investment levels almost 

as high as in the fourth quarter of 1999—the peak quarter for venture capital investment since 

tracking began in 1995.54  Before this fall’s financial crisis hit and oil prices tumbled below pre-

spike levels ($60 per barrel), energy and industrial VC for 2008 looked on track to set new 

records.   

However, with oil prices again low and the nation and the global economy in a recession, 

prospects for upcoming energy R&D and VC funding are uncertain.  While many analysts 

anticipate prices will rebound and stay higher, today’s low prices combined with uncertainty 

about future prices have already discouraged firms from making the investments needed to 

seed the nation’s energy transformation.55 And the same goes for much discussed proposals for 

carbon pricing mechanisms such as a carbon tax or a “cap-and-trade” pricing scheme.  At the 

price thresholds under discussion it is doubtful that price mechanisms by themselves will 

produce the needed breakthrough technologies or lead to their necessary scaling.56   

2. Social benefits from R&D and new technology adoption often outweigh private 
benefits, leading to underinvestment 

The second market problem that will continue to depress R&D and innovation 

investment has to do with the fact that technological innovation remains a public good, the gains 

of which are broadly shared rather than fully captured by those achieving it. 

In this respect, direct emissions policies such as carbon caps and carbon taxes can 

“price in” the cost of climate-related externalities to society but they cannot deal with firms’ 

inability to capture all of the returns of their R&D and innovation efforts. 57 

The problem is fundamental.  Much of the rationale for investment in energy research 

and new technology lies in the substantial public benefits generated by such activities.58  Yet the 
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presence of public benefits leads the private sector to conduct less R&D than would be socially 

desirable.  First, social benefits accrue from the knowledge created by innovative activity, which 

is added to the public domain once created and is hard for firms to control.  Other firms may 

make use of this knowledge and reap the rewards, encouraging free-riding behavior where firms 

fail to invest and wait for other firms to finance the knowledge base.  In addition, the competitive 

nature of technology often requires a firm to sell its product for less than its total development 

cost, discouraging expensive investments.59  Policy mechanisms, such as IP protection (as 

through the patenting system) and R&D tax credits, have been developed to help with this 

problem but can only go so far in protecting a firm’s investment in R&D.60  Public benefits also 

accrue over long periods from improvements in energy efficiency and reductions in pollution and 

greenhouse gas emissions.  These benefits are difficult for firms to capture in any meaningful 

way due to the lack of market rewards for such investments.  Altogether, the social benefits from 

innovation have been estimated as substantially larger than private benefits.61   

And there are other issues.  To begin with, firms adopting—as opposed to inventing—

new technologies create similar social benefits, known as dynamic increasing returns.62  Early 

technology adopters generate knowledge and ultimately help the public learn about the 

feasibility and effectiveness of new technologies in differing environments outside the 

development laboratory.  Innovative firms can make use of this public knowledge to modify 

technology, thus co-opting some of the knowledge benefits for themselves.  The benefits of 

“learning by doing” efforts also accrue to technology manufacturers, which help to bring down 

the cost of new technology and benefits society at the expense of technology developers.63  But 

in general there will be too little of this effort. 

Likewise, a number of “lock in” issues discourage private investment.64  For one thing, 

questions are raised by firms regarding the difficulty of delivering alternative energy to the 

marketplace, which is in many circumstances problematic, most notably because national 

electricity grids are tailored for large, centralized plants.  In this case, energy companies and 

investors are often reluctant to expend their revenue on risky, innovative, and costly ventures 

without government regulation or other measures designed to reduce their risks.  Such issues 

are, for example, holding back the delivery of some renewable electricity sources, where rich 

wind or solar fields may lie far from transmission lines. By contrast, massive existing 

infrastructure already supports the oil, coal, and gas economy.  
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A growing body of opinion doubts that carbon pricing responses by themselves will be 

enough to overcome these barriers and market failures and sufficiently reduce emissions and 

drive technology change. For example, the watershed U.K. Stern Review concluded: “The 

presence of a range of market failures and barriers means that carbon pricing alone is not 

sufficient” to lead businesses and individuals to invest sufficiently in low-carbon alternatives to 

high-carbon goods and services.”65    

3. Financial considerations encourage the private sector to focus on applied 
research and technology development 

The current corporate financial environment—with its emphasis on shorter-term rates of 

return—has also served to depress investments in R&D and innovation.  Private markets, in this 

respect, frequently fail to generate sufficient investments in energy innovation when its benefits 

are poorly known and risks may be high.  Such a situation often occurs during the early phases 

of research into new technologies, and currently affects the search for new technology to 

address global climate change (such as carbon sequestration).66   

In years past, large industrial R&D laboratories (such as Bell Laboratories, IBM 

Research Laboratory, Ford Scientific Laboratory, and DuPont Research Laboratory) were 

involved with higher-risk, pre-commercialization R&D.  However, the ratcheting up in recent 

decades of investor emphasis on near-term bottom line results has shifted most industrial R&D 

activity away from basic research and toward technology development, which captures 76 

percent of industrial R&D today.67  The dominance of industrial funding for U.S. R&D combined 

with its funding priorities help to explain why 60 percent of the nation’s total R&D expenditures 

are spent today on development, with only 22 percent for applied research and 18 percent for 

basic research.68  The private sector’s funding priorities are also evident in the funding 

proclivities of venture capital, which favor later-stage development.69   

These general funding preferences for technology development are also evident in the 

energy sector.  Whereas large industrial firms used to conduct basic energy technology 

research, industrial energy R&D today tends to focus on “short-term research and technology 

commercialization,” leaving governments to conduct “long-term, higher risk R&D.”70  The 

possibility of innovation exploitation by competing firms adds to investment risk and encourages 

the focus on short-term research.71   
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Some of the financing for pre-commercialization research used to be provided by 

industry contributions to non-profit research consortia, such as the Electric Power Research 

Institute (EPRI) and the Gas Research Institute.  Government used to require contributions from 

power and gas suppliers as part of the industry’s regulatory scheme.  Deregulation of electricity 

markets and subsequent restructuring in the 1990s led to disinvestments in EPRI, with cuts in 

industrial contributions nearing 50 percent within a few years after deregulation.72   

Furthermore, industry is less able to address the broader policy issues of technology 

deployment requiring economic and behavioral sciences, legal and environmental policy, and 

regional and local impact than are, for example, universities.  Universities tend to provide these 

services, with the majority of their R&D funding from government and nonprofit sources.  Their 

educational mission also provides a highly effective technology transfer mechanism through 

large-scale deployment of graduates and through faculty involvement via joint research or short-

term consulting.  However, universities are frequently hindered by complex intellectual property 

(IP) policies that inhibit the commercialization of campus-based discoveries and constrain the 

innovation-diffusion process.   

4. Uncertainty and a lack of information delay adoption of new energy technology  

Uncertainties and ambiguities also hinder the adoption of new energy technologies.  Just 

as investors tend not to invest in basic research and early-stage technology development, 

consumers tend not to invest in new technology with uncertain features and benefits.73  This 

uncertainty helps to account for why consumers lag in adoption of proven energy-efficiency 

technology that has proven net financial benefits.74  In this regard, the adoption of energy-

efficiency technology often has high upfront costs yet may yield benefits in terms of energy 

savings over several years.  Relatedly, a quantification of the stream of expected future benefits 

associated with a new technology purchase can be difficult to achieve when the value of future 

savings varies depending on factors entirely outside the consumer’s control (such as future 

electricity prices).  There may also be a lack of information about the availability and features of 

energy efficient technology, preventing a consumer from even considering it. 

Uncertainty can also arise from a lack of sufficient information about future market and 

policy conditions.  Such a situation presently exists for firms considering adoption of new energy 

technology in light of potential federal climate policy, such as a cap-and-trade system for carbon 

emissions.75  A cap-and-trade system that limits carbon emissions and places a price on them 

would provide a financial incentive for adoption of new technologies that bring down the cost of 
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achieving required reductions.  If the effective date for achieving reductions is years away, 

however, the firm may delay investment even if new technologies could provide some energy-

saving benefits today.  Firms may also delay adoption until the financial benefits of technology 

adoption have been demonstrated in the new policy environment, such as when the price of 

pollution taxes or credits have been set.  Such delay is likely when firms are uncertain about the 

credibility and stringency of future government action.76   

While delayed adoption may benefit individual consumers in the short term, it prevents 

the social benefits of dynamic increasing returns that help to bring down production costs.  In 

addition, without the “market-demand pull” of consumers desiring new energy technology, the 

tendency of the private market to underinvest in energy R&D that addresses sustainability and 

security goals is further exacerbated.77   

5. Finally, the benefits of regionally clustering energy research and technology 
development activities have not been sufficiently realized 

And there is one more factor that has kept U.S. energy research, development, and 

deployment from reaching critical mass.  This is the spatially diffuse geography of much U.S. 

energy research which limits the emergence of dense clusters of interconnected firms and 

supporting organizations that represent such a potent source of knowledge-transfer and 

innovation in modern economies. 

The current energy R&D enterprise is conducted mostly by isolated research centers 

throughout the United States.  While this geographic diffusion of R&D activity spreads economic 

development “wealth” around, it frequently fails to generate the benefits of geographically 

clustered activity.  Firms operating in virtually any industry, but especially in knowledge-

dependent high-technology sectors, benefit by proximate locations that allow them to utilize a 

similarly trained workforce, infrastructure, research facilities, educational and training 

institutions, venture capitalists, and input suppliers.78  Clusters also accelerate knowledge 

sharing of all kinds.  The Silicon Valley in Northern California is the classic example of a highly 

productive technology, communications, internet, and computer industry cluster, as are the 

biotech clusters in Boston and Washington, DC, the financial cluster in New York, and the 

entertainment clusters in Southern California and Las Vegas.   

Clustered activity generates positive externalities by helping to improve productivity and 

wages for all of the firms and workers within the cluster, which has spillover benefits for the 
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broader regional economy.79  The benefits of clusters are not guaranteed, however, and some 

clusters are clearly more productive than other clusters.  At any rate, the same dynamics that 

work to discourage sufficient R&D by the private sector in energy and other industries thwart 

clustering activity, absent an external coordinating mechanism.  That the U.S. alternative energy 

industry remains nascent, with significant portions of the nation’s research having been 

conducted in secure laboratory settings, has further slowed the emergence of powerful 

alternative energy clusters in America.  

 

The upshot: Clusters of related firms are not yet as common in the energy field as they 

are in such other industries as information technology or life sciences.80  As yet, the cleantech 

field lacks the emergence of the sort of large, dense regional and virtual industry clusters that 

can accelerate the knowledge-transfer so necessary to the invention and commercialization of 

new energy technologies, applications, and processes.  

 

     * 

 

In sum, a series of significant market problems continue to depress U.S. and world R&D 

levels, deployment work, and commercialization activity in the energy field.  Without aggressive 

and targeted action, private investment will remain too low. 

IV. GOVERNMENT MUST ACT TO ENSURE A SUSTAINABLE AND SECURE ENERGY 
INFRASTRUCTURE 

Given the lack of incentives for private investment and the sheer magnitude, urgency, 

and complexity of the energy crisis facing America, public investment in energy innovation will 

be critical.  Without stepped-up public engagement, the transition to a sustainable energy 

system will not occur fast enough or broadly enough.  

As to the nature of the public intervention, several principles—corresponding to the 

market failures outlined above—should guide policymaking.   

First, the government should encourage stronger price signals by placing a price on 

greenhouse gas emissions, such as through a carbon tax or carbon cap-and-trade.  Carbon 

pricing can help to account for the sustainability and security costs of our current, fossil fuel-

dependent energy infrastructure.  By increasing the costs of fossil fuel-based energy, it will spur 
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innovation into low-carbon and carbon-free energy alternatives, rather than simply in non-

conventional fossil-fuel technologies.81  Admittedly, the political will appears lacking to impose 

carbon prices at a high-enough level to spur needed energy transformations, making public 

investments an important complement to a carbon pricing effort.82 However, emissions pricing 

remains even now an important mechanism at minimum for financing future R&D investments 

and in theory for establishing a demand-driven, profit-based incentive for the private sector to 

invest in developing new, lower-cost climate-friendly innovations. 

A second principle of potential government engagement is that the government should 

subsidize energy R&D generally, and more specifically, should subsidize particular sorts of 

research that are currently neglected by private firms: longer-term, higher-risk investigation; 

strategic basic research inspired by critical needs arising from the goal of developing clean new 

technology; and in some cases first-of-a-kind technology demonstration projects, so long as the 

purpose is the generation of substantial new knowledge.83  The government should also focus 

on translational research that links scientific and technical R&D with commercial technology 

development—the stage where many promising innovations fail to receive enough funding to 

advance, known as the “valley of death.”84  In this regard, the high social rates of return for 

energy R&D (estimated at around 50 percent compared to private rates of 20 to 30 percent) 

make energy R&D a good financial investment, and one that will pay off over long periods.85  

The additional public benefits of energy R&D to the nation’s sustainability and security are also 

likely to be quite large, and include the production of new researchers and engineers with the 

skills necessary to work in the coming clean-energy economy of tomorrow—an important further 

rationale for public investment.86  In this way, energy resembles national defense, agriculture, 

and space research, which all receive public support to augment private investments in pursuit 

of national goals.   

And here it should be said that the government need not and should not rush to fill the 

entire gap between needed investment and privately provided energy R&D.  Government can 

leverage additional private investment through policy mechanisms such as the R&D tax credit or 

public-private partnerships.  Such policies are not only politically expedient, as they reduce the 

public financing requirement, but recognize the desirability of coordinated public-private action 

towards a common public goal.  In this case, the goal should be to achieve a sustainable energy 

infrastructure that dramatically reduces oil imports and environmental impact, thus improving the 

nation’s sustainability and security.   
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In addition, while the private sector may not be investing sufficiently on its own in energy 

R&D and technology deployment, it stands ready to participate in an enhanced and publicly 

funded energy research initiative.  For example, the nation’s electrical utilities have proposed 

(through the Edison Electric Institute) that revenue raised from a federal carbon tax or cap-and-

trade program be earmarked for energy research by an affiliated industry research organization, 

such as the Electric Power Research Institute.  Similarly, the Gas Research Institute has 

recommended that industry groups take the lead to conduct the nation’s energy R&D, push 

technology deployment, and develop the infrastructure needed to change the way the United 

States produces and utilizes energy. 

A third desirable priority for government action must be an effort to improve the clarity 

and accessibility of information on proven energy technologies, especially in light of possible 

future policy action on climate change.  Such information can spur technology learning and 

bring down adoption costs, providing increasing social benefits over time.  By supporting 

research on proven technologies, government can also provide assurance for the massive 

financial commitments required in the private sector to deploy these technologies (e.g., nuclear 

energy).   

And fourthly, government should support where it can the clustering of energy research 

and development activities that speeds knowledge exchange, improves productivity and wages, 

and fosters regional economic development.  A cluster approach is appealing, in this respect, as 

it promises regional economic uplift in an era of downward pressure on wages due to 

globalization.  But a cluster strategy is also important because clustering fosters innovation, and 

so has the potential to accelerate the development of clean new energy technologies and 

processes.  Government should seek to catalyze such activity. 

As to the specific locus of government engagement to accelerate the needed 

breakthroughs, all levels of government have some responsibility for affecting the nation’s 

energy transformation.   

So far, state and local governments have been taking the leadership role on energy and 

climate policy, although this situation is less than ideal.   

State governments are central players in energy policy due to their responsibilities for 

regulating energy providers and for implementing federal environmental regulations.  In some 

cases, state governments have made substantial investments in the nation’s energy 
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infrastructure and in regulating the development and use of cleaner technologies.  Many state 

governments have made meaningful strides towards a cleaner energy future by passing 

renewable energy portfolio requirements for electricity production and collaborating in regional 

energy alliances (e.g., the Northeast’s Regional Greenhouse Gas Alliance). 

Local governments also play important roles in energy policy by setting land use 

policies, building codes and energy efficiency standards, and by approving energy infrastructure 

projects, such as new power stations or transmission lines.  Hundreds of city officials have 

committed—at least in principle—to limit their energy consumption and reduce their greenhouse 

gas emissions through agreements such as the Climate Protection Agreement of the U.S. 

Conference of Mayors. 

And yet, most state and local governments have limited capacity to expand their efforts.  

Budgets were already tight before the current economic downturn, forcing energy investments 

to compete with other policy priorities, such as transportation, education, and health care.  The 

sheer scale of the nation’s energy challenges calls for a substantially larger pool of resources 

than state and local governments can devote to energy.   

Consequently, the public responsibility for driving a fundamental energy transformation 

in America falls largely to the federal government.   

Federal leadership on energy policy is appropriate in part given the federal government’s 

historic responsibilities for environmental protection and economic and national security.  But 

the case for federal involvement goes beyond simple tradition and reflects the vast scale and 

boundary-crossing complexity of the problem.  Beyond that, it reflects the fact that only national 

governments can ensure adequate provision of certain public goods that make the entire nation 

better off but might not otherwise be adequately produced.87 Basic and pre-commercial scientific 

R&D, national security, and environmental protection are all public goods that are not sufficiently 

provided by the private market and so require public attention.  Yet, state and local efforts 

towards these ends, on their own, will always be thin and uneven.  The federal government tried 

for decades to influence business practices and state policies with financial carrots before it set 

national standards to ensure environmental quality.88  Federal responsibility over energy and the 

environment has therefore grown as business increasingly shifts from the local level to the 

global level and as the external effects of commerce, including air pollution and greenhouse gas 

emissions, extend beyond the control of local and state governments. 
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In short, gaps in pricing and regulatory responses, the insufficiency of private 

investment, and the inability of most states and local governments to engage at the levels 

needed all place significant responsibility for investment in energy innovation in the lap of the 

federal government.   

V. THE CURRENT FEDERAL ROLE IN ENERGY RESEARCH IS INADEQUATE 

The time has come, then, for renewed federal investments in energy that complement 

and extend the capabilities and responsibilities of the private sector and state and local 

governments.  Research is one important area where the federal government must engage.  

Yet, both the magnitude and character of today’s federal energy R&D programs are inadequate 

to overcome the market and government failures that hinder problem solving. 

1. The magnitude of federal research efforts is inadequate 

The scale of current efforts is the first problem with federal energy research.  Quite 

simply, the volume of current federal spending on energy R&D—given market realities— 

remains far too small to ensure the development of a sustainable energy economy in America. 

In 2007, the federal government spent $2 billion on non-defense energy technology-related 

R&D, comprising just 1.7 percent of the federal R&D budget (4.2 percent of the non-defense 

portion) and 0.014 percent of the nation’s GDP.89  Estimated federal energy technology R&D 

spending for 2009 is up to $2.37 billion, higher than its 1998 low of $1.27 billion but substantially 

lower than the $10.5 billion spent at the height of federal spending in 1978 and 1979 (in real 

terms).90   

Box 2.  The federal energy research enterprise in the United States 

The lead agency for federal energy research is the U.S. Department of Energy (DOE).91  

DOE was established as a cabinet-level agency in 1977 to house all federal energy-related 

activities under one roof, including nuclear weapons development and cleanup.  The new 

agency inherited “muddled, ill-defined missions” of national defense, environmental protection, 

and domestic energy production and security.92   

Since 1978, the agency has spent approximately $300 billion on energy R&D, including both 

defense-related and non-defense projects.93  Of this $300 billion, 36 percent has been spent on 

nuclear energy, 28 percent on fossil fuels, 19 percent on renewables, and 15 percent on 
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efficiency, with the remaining for hydrogen and electricity transmission and distribution 

research.94 DOE spends approximately $1.4 billion currently on basic energy sciences research 

with a direct energy technology application.95 

The bulk of DOE’s research is conducted by its national laboratories (NL), which have 

compiled the backbone of the nation’s primary research infrastructure in physical and material 

sciences, engineering, and increasingly in the life sciences.  Since 1962, DOE researchers have 

won 800 R&D awards issued by R&D Magazine, with 30 of the 100 awards made in 2008.96  

Approximately 90 Nobel Prizes have been awarded to researchers at DOE (or its predecessor 

agencies) since 1934.97   

DOE’s national laboratories are federally funded but administered by industry, 

universities, or other nonprofit organizations.98  Industry-administered labs include the Los 

Alamos and Sandia weapons labs, plus the smaller Idaho and Savannah River NLs.  University-

administered labs include Ames Lab, Argonne NL, Lawrence Berkeley NL, Lawrence Livermore 

NL, and several physics labs.  Nonprofit-administered labs include Brookhaven NL, Oak Ridge 

NL, Pacific Northwest NL, and the National Renewable Energy Lab.   

Management of the national laboratories is split between the various DOE offices.99  

Three of the NLs are managed through DOE’s National Nuclear Security Administration (Los 

Alamos, Lawrence Livermore, and Sandia National Laboratories) and together control 

approximately one-third of DOE’s research budget.  Ten of the NLs are managed through the 

DOE Office of Science.  The Office of Fossil Energy manages the National Energy Technology 

Laboratory, the Office of Energy Efficiency and Renewable Energy manages the National 

Renewable Energy Laboratory, and the Office of Environmental Management manages the 

Savannah River Technology Center.   

Many prominent analysts, including members of the National Academies, the President’s 

Council of Advisors on Science and Technology, and the American Association for the 

Advancement of Science, conclude that today’s investments in energy R&D and technology 

development are insufficient to address the nation’s sustainability and security challenges.100  

Commenting mostly on the scale of U.S. energy innovation efforts, Holdren has called U.S. R&D 

efforts “woefully inadequate.”101  Calls naturally follow for a substantial increase in federal 

energy R&D efforts.  For instance, a high-level task force created by the Secretary of Energy’s 

Advisory Board (SEAB) stated in the strongest possible terms:  
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America cannot retain its freedom, way of life, or standard of living in the 21st 

century without secure, sustainable, clean, and affordable sources of energy.  

America can meet its energy needs if and only if the nation commits to a strong 

and sustained investment in research in physical science, engineering, and 

applicable areas of life science, and if we translate advancing scientific 

knowledge into practice.  The nation must embark on a major research initiative 

to address the grand challenge associated with the production, storage, 

distribution, and conservation of energy as both an element of its primary mission 

and an urgent priority of the United States.102  

Similar calls for a new national energy research initiative are widespread.103  Conservative 

estimates call for a doubling of federal energy R&D investments within the next several years.104  

Some have called for ramping up federal energy R&D investments to 10 times current levels, or 

around $20–30 billion per year.  Many call for investments in line with what the nation spent on 

major initiatives like the Manhattan Project for nuclear weapons development ($21 billion over 5 

years) or the Apollo program for space travel ($96 billion over 14 years).105  The major challenge 

will be in translating larger funding streams for energy into achieving the sometimes conflicting 

goals of sustainability and security, while working with the private sector to ensure that new 

energy technologies pass market tests and can be rapidly deployed. 

In short, there is now nearly universal consensus that the nation spends too little on catalyzing 

new technology approaches to stabilize greenhouse has emissions. 

2. The character and format of federal energy research remain inadequate  
 

The character and format of federal energy efforts is also holding back innovation and 

rapid deployment of clean energy technology.  In this connection, today’s federal energy 

research program lacks the mission, capacity, and organizational structure to equip the nation to 

meet the full run of its challenges. 

To begin with, the mission and capacity of the federal energy laboratories—which 

anchor the nation’s present efforts—remain limited in two important ways. 

 First, the national laboratories do not for the most part have the mission or the capacity 

to build and maintain the nation’s energy infrastructure.  This responsibility lies largely with 

industry.  Most of the nation’s energy resource extraction, production, and transmission facilities 
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are privately owned and operated.  Therefore, new energy technologies and processes 

developed by the nation’s energy research enterprise must pass strict market tests, which 

discourage adoption except where cost-competitive with existing technologies.  This is one 

reason why the Manhattan Project and Apollo Program pose impractical models for a new 

energy initiative.106  In both of these cases, the government was the consumer of new 

technology and could effectively develop needed technology without needing to subject it to the 

rigors of market tests.   

Second, the national labs do not play a prominent role in producing the human capital 

necessary to develop, build, and manage the nation’s energy infrastructure, which is most 

properly the role of the nation’s universities.  Most DOE activities are relatively isolated from 

education (aside from limited campus-based research programs sponsored by the DOE Office 

of Science).  Furthermore, the nation’s complex energy challenges extend beyond science and 

engineering into the social and behavioral sciences, professional programs in business 

administration, law, medicine, and public and environmental policy—all areas where national 

laboratory expertise is limited.  

But beyond the inherent mission and capacity of the lab system, today’s federal energy 

research efforts remain in many cases fragmented and insular.  As the DOE’s SEAB Task Force 

warns, “The Department of Energy (DOE) has a historically poor reputation as being badly 

managed, excessively fragmented, and politically unresponsive.  The current organization of the 

Department is not appropriate to the magnitude and centrality of scientific and advanced 

technological research required by our energy challenges.”107  

Several problems exist with the current federal energy research paradigm.  For one, the 

DOE R&D offices and programs are organized around fuel sources (e.g., coal, oil, gas, nuclear, 

and renewable), and are all too often characterized by an “energy technology of the year” 

approach and internal competition that disrupts longer-term strategic efforts.108 This 

fragmentation leads to stovepipe organizations that focus on incremental or discrete 

technologies as opposed to systems that integrate R&D on the supply, distribution, and end-use 

needs for the set of energy sources and associated infrastructures required to supply the nation 

with reliable, affordable, and sustainable energy.109  This can result in energy policies that 

seriously underestimate threats and consequences and are all too frequently risk-averse and 

parochial, tending to seriously misjudge the potential for new high-risk, high-payoff, 

technologically-enabled opportunities and threats. 
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Beyond that, the DOE SEAB Task Force raised concerns about the culture of some units 

of the laboratory enterprise, which it deemed insular given its descent from the security 

constraints of their earlier and ongoing work in nuclear weapons development.  This and other 

reports concluded that the national energy labs are too far removed from the marketplace and 

too focused on existing portfolios to support “transformational” research targeted at new energy 

technologies.  Others observe that some DOE programs have been “developed and 

implemented individually with too little regard for technological and economic reality and too 

much regard for regional and industry special interests.”110  Along these lines, some early efforts 

in developing new technologies capable of transforming energy infrastructure by the national 

laboratories have had limited success in the marketplace (e.g., synfuels, Freedom Car, the 

hydrogen economy, nuclear power, and FutureGen).  Similarly, the organizational separation of 

DOE’s basic and applied energy research programs makes the migration of basic research 

findings to applied research solutions difficult and undisciplined, with those successes that do 

emerge often simply serendipitous.   

Finally, few DOE labs are staffed to conduct the market analysis and public policy 

research required for large-scale deployment of renewable energy sources, for significant gains 

in energy efficiency, and for reduction in fossil fuel consumption.  Diffusing technology through 

our social system in a rational and planned way will be as critical to a rapid transformation of our 

energy systems as the technology itself.  Poorly planned introduction of technology has resulted 

in a history of unintended consequences that often do more to damage the growth of that 

technology than to help it.  With the clock ticking, a major challenge involves developing 

systematic approaches to technology diffusion that avoid the obvious mistakes.  A new 

approach to technology development and deployment is badly needed to avoid costly false 

starts that the nation can ill afford.  

* 

In sum, major innovation in research paradigms, policy, and management will be 

necessary to bring about the needed acceleration of energy technology innovation. 

As the DOE SEAB Task Force concluded, “The federal government alone cannot meet 

the nation’s energy related R&D needs.  The DOE must collaborate with universities, industry, 

and other federal agencies.  It should seek the best balance of national laboratory, university, 



 

 32 Brookings · February 2009 
 

and industrial research, and form partnerships with industry and academia to drive innovation in 

its mission areas.”111   

To address the nation’s energy needs adequately, then, the capabilities of DOE mission-

focused divisions and national laboratories must be augmented by other research organizations 

and programs. These augmentations should seek to: 

• Provide the scale, continuity, and coordination of effort in energy R&D and demonstration 

needed to bring an appropriate portfolio of improved options for the timely 

commercialization of breakthroughs 

 

• Tap the nation’s top scientific and engineering talent and facilities, which are currently 

distributed throughout the nation’s research universities, corporate R&D centers, and 

federal laboratories 

 

• Address adequately the unusually broad spectrum of issues involved in building a 

sustainable energy infrastructure, including—in addition to science and technology 

issues—attention to complex social, economic, legal, political, behavioral, consumer, and 

market issues 

 

• Build strong partnerships among multiple players, including federal agencies; research 

universities; established industry; entrepreneurs and investors; regional business 

associations; and federal, state, and local government 

 

• Launch robust efforts capable of producing the human capital and public understanding 

required by the emerging energy sector at all education levels 

VI.    DISCOVERY-INNOVATION INSTITUTES OFFER A NEW MODEL FOR ENERGY RESEARCH 

So how should America respond?  To be sure, a wide continuum of national, state, local, 

and private-sector responses will be needed to address the full scale and complexity of 

America’s energy challenges, ranging from carbon pricing interventions and regulation to 

promote clean-energy to the scaling up of smart-energy infrastructure.  But for all that, the 

federal government should place the search for breakthrough technologies and their 

commercialization at the center of its energy efforts and move to exploit in an integrated way the 



 

 33 Brookings · February 2009 
 

entire national research enterprise: research universities, corporate R&D laboratories, and 

federal laboratories. 

To that end, the federal government must necessarily augment both the scale of U.S. 

energy research efforts and the range of formats within which it is pursued.   

To begin with, the nation should first commit itself to increasing federal investments in 

energy R&D to a level appropriate to address the dangerous and complex economic, 

environmental, and national security challenges presented by the nation’s currently 

unsustainable energy infrastructure. Comparisons with federal R&D investments addressing 

other national priorities such as public health, national defense, and space exploration suggest 

an investment in federal energy R&D an order of magnitude greater than current levels, 
growing to perhaps $20 to $30 billion per year, with most of this flowing to existing research 

players and programs (e.g., national laboratories and industry). 

But that responds only to the scale portion of America’s research challenge.  Equally  

important, the nation must experiment with new energy research paradigms, and so a significant 

fraction of the projected investment increase should be directed toward a new research 
paradigm consisting of a national network of regionally-based, commercialization-
oriented energy discovery-innovation institutes (e-DIIs) that would serve as hubs in a 
distributed research network linked through “spoke” relationships to other 
concentrations of the nation’s best scientists, engineers, and facilities. The DII concept, 

developed by the National Academy of Engineering (NAE), is characterized by institutional 

partnerships, interdisciplinary research, technology commercialization, education, and outreach.  

Such discovery-innovation institutes are designed to link fundamental scientific discoveries with 

technological innovation through translational research and development to create the products, 

processes, and services needed by society, working closely with industry and the investment 

community to demonstrate commercial viability and assist in market deployment. The e-DII 

concept would also be supportive of and complementary to similar proposals for innovative 

energy technology programs such as the Advanced Research Projects Agency-Energy (ARPA-

E), DOE’s Frontier Energy Research Centers, a possible National Energy Research Initiative, or 

an eventual National Energy Institute. In this sense, the e-DII paradigm would place a very high 

priority on connection and collaboration, rather than competition, to achieve deeper engagement 

of the nation’s scientific, technology, business, and policy resources in an effort to achieve a 

sustainable energy infrastructure for America. 
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Along these lines, the DII paradigm represents a contemporary adaptation of the 

research paradigm created through the sequence of land-grant acts passed by the U.S. 

Congress in the 19th century.  Then, revenue from the sale of federal lands was used to create a 

network of university-based agricultural and engineering experiment stations on university 

campuses, augmented with extension services capable of interacting directly with the 

commercial marketplace.  The program was instrumental in developing and deploying the 

agricultural and industrial technologies necessary to build a modern industrial nation for the 20th 

century while stimulating local economic growth.  Today, the nation needs a similarly bold 

campaign to enlist America’s universities and national laboratories in solving one of the most 

complex problems the nation has ever encountered.   

As envisioned here, therefore, the proposed e-DIIs would do the following: 

1. Organize around a theme 

Today’s energy challenges are complex, involving interdependent systems of natural 

resources, production and distribution facilities, technology development and innovation, capital 

markets, and environmental systems, such as the global climate.  A systems-approach for 

technology development is needed to deal with this complexity and to transcend the current 

“siloed” approach common at DOE and its national laboratories.  One way to proceed is to 

organize each e-DII around a particular theme, such as renewable energy technologies, 

advanced petroleum extraction, carbon sequestration, biofuels, transportation energy, carbon-

free electrical power generation and distribution, or energy efficiency.  Each DII would then be 

charged with addressing the scientific, technical, economic, policy, business, and social 

challenges required to diffuse innovative energy technologies of their theme area into society 

successfully.   

2. Foster partnerships to pursue cutting-edge, applications-oriented research among 
multiple participants and disciplines   

The e-DIIs would be profoundly multidisciplinary and collaborative.  In this connection, a 

new research culture is needed to drive the nation’s energy transformation, based on the 

nonlinear flow of knowledge and activity among scientific discovery, technological innovation, 

entrepreneurial business development, and economic, legal, social, and political imperatives.  

To this end, e-DIIs should tap the resources and capabilities of multiple players, including 

companies, entrepreneurs, and investors as well as government agencies (federal, state,and 

local) and research universities.  In a sense, e-DIIs would create an “R&D commons,” where 
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strong, symbiotic partnerships could be created and sustained among partners with different 

missions and cultures. To keep the focus on commercialization, private-sector and 

commercialization specialists would be kept in contact with researchers and play lead roles. And 

because building a sustainable energy infrastructure depends as much on socioeconomic, 

political, and policy issues as upon science and technology, the e-DIIs would encompass 

disciplines such as the social and behavioral sciences, business administration, law, and 

environmental and public policy, in addition to science and engineering.   

How might this play out? Federal research organizations such as the national 

laboratories could commit talent and infrastructure to fulfill their missions of conducting long-

term research to convert basic scientific discoveries into innovative products, processes, 

services, and systems.  States and localities could contribute land, capital facilities, and other 

infrastructure.  Research universities could commit faculty and staff time and encourage the 

engagement of students. They could also provide a policy framework (e.g., transparent and 

efficient IP policies, flexible faculty appointments, responsible financial management, etc.), 

educational opportunities (e.g., integrated curricula, multifaceted student interaction), knowledge 

and technology transfer (e.g., publications, industrial outreach), and additional investments 

(e.g., in physical facilities and cyberinfrastructure).  Industry, meanwhile, might lead in providing 

challenging research problems, technology development, systems integration, and real-life 

market knowledge, as well as staff who could work with university faculty and students in the 

institutes.  Entrepreneurs could facilitate rapid commercialization, new business formation, and 

job creation.  Finally, the investment community could provide expertise in licensing and in 

creating new companies and could provide support for technology commercialization.   

The challenge of building a sustainable energy infrastructure also depends as much on 

socioeconomic, political, and policy issues as upon science and technology.  The failure of most 

current national laboratory and industrial R&D activities to commercialize and deploy new 

energy technology can be attributed, in part, to their narrow focus on technical and economic 

issues that fail to address the broader social, behavioral, legal, and political nature of energy 

challenges.  For this reason, the e-DIIs—wherever they are situated—should encompass non-

technical as well as technical disciplines, such as the social and behavioral sciences, business 

administration, law, and environmental and public policy.  In all, each discovery institute would 

serve as a focus of intense interaction among diverse players and between multiple disciplines. 
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3. Act as the hubs of a distributed network of campus-based, industry-based, and 
lab-based scientists and engineers 

 
Each institute would also serve as a node in a far-reaching network of researchers and 

inventors working in universities, laboratories, and research centers, consistent with the 

fundamental purpose of the DII model for coupling fundamental scientific research and 

discovery with translational research, technology development, and commercial deployment. 

But the “hub-and-spoke” network architecture would go further by enabling the core and related 

basic research group spokes to interact and collaborate among themselves through exchanges 

of participants, regularly scheduled meetings, and cyberinfrastructure. In this way the direct 

interaction of the basic research groups would facilitate and greatly intensify collaboration and 

research progress, creating a basic energy research community greater than the sum of its 

parts and possessed of sufficient flexibility and robustness to enable the participation of leading 

scientists and engineers to address the unusual complexity of the nation’s energy challenges. 

Energy discovery-innovation institutes would draw from a diverse support network, 
conduct widespread activities, and be oriented towards achieving important social goals 

 
 

 

 
4. Execute an effective strategy for energy technology development, 

commercialization, and deployment 
 

Commercialization, meanwhile, should be the crucial objective of the e-DII network, 

which would in every instance work closely with industry, entrepreneurs, and the investment 

community to accelerate the conversion of scientific breakthroughs into commercial deployment.  

In this connection, each institute would rely heavily on the private sector to help it shape and 
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execute a program of “use-inspired” basic research aimed at developing technologies and 

processes directly relevant to the goal of reducing the costs of carbon mitigation. “Problem 

determination” would often flow from the private sector. And then the success of the e-DII 

should be measured by results, with results rewarded. Suggestive here are the experiences of 

other successful paradigms for technology transfer, including that of the major academic 

medical centers (which have played a critical role in commercializing translational biomedical 

research through business startups).  Also relevant are the successes of the agricultural and 

industrial extension services, and federal initiatives such as the Small Business Innovation 

Research program (SBIR). 

 
5. Develop and rapidly transfer highly innovative technologies into the marketplace. 
 

To facilitate large-scale commercialization, meanwhile, the rapid transfer of new 

technologies into the private sector must become a central activity of the e-DIIs.   

Such transfer—at wholesale volumes—is crucial if a massive transformation of the 

nation’s energy infrastructure is to be rapidly achieved, so it is equally essential that publicly 

funded energy research become easily and quickly available to industry, which will in most 

cases be the crucial disseminator of new technologies and processes.  To that end, the new 

innovation centers should become major forums for the development of swift, efficient, and 

predictable practices for the transfer of breakthroughs to the marketplace.  In all cases, 

technology transfer should be structured to maximize the volume, speed, and positive societal 

impact of commercialization—and the innovation centers should be held accountable for that.  
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Key here will be the innovative treatment of IP, which in too many cases has become 

subject to over-management by centralized university technology transfer offices (TTOs) or 

similar lab-side controls that have at times hindered commercialization.112 Frequently this over-

management has been characterized by a revenue-maximization model that has created 

incentives for the TTOs and similar bureaucratic units to become gate-keepers and filters rather 

than facilitators of commercialization as they search (on the university side) for “home-runs.”113 

And so the e-DIIs should operate differently.  As much as possible, the new centers should 

provide a safe zone where patenting and licensing rights and other IP issues can be worked out 

in advance to speed knowledge transfer and facilitate the establishment of the fastest, most 

appropriate pathways to commercialization.  

In this regard, a growing number of successful industry-university, industry-laboratory, 

and industry-university-laboratory research partnerships—such as those of the Energy 

Biosciences Institute (EBI), which consists of a partnership among energy giant BP, the 

University of California at Berkeley (UC), the University of Illinois at Urbana-Champaign (UI), 

and the Lawrence Berkeley National Laboratory—point the way toward new and effective IP 

solutions.   At that institute, collaborating researchers and industry leaders have piloted several 

new approaches at the industry-university-laboratory interface that have sought to maximize the 

social impact of research by facilitating vigorous development by BP or others.  In this case, one 

innovative agreement found the consortium agreeing on governance and IP management in 

advance and extending to BP not only a non-exclusive, royalty-free license to inventions, but a 

90-day option for exclusive, royalty-bearing licenses.   This had the effect of making IP 

predictable at the outset as well as maximizing the likelihood of diligent commercialization as 

well as maximized social benefits.114  

And other models exist.  Regional alliances or consortia of universities and other 

organizations (like the Wisconsin Alumni Research Foundation) have in some cases begun to 

experiment with coming together to standardize their technology transfer activities with an eye 

to maximizing the volume of transfer.115  In other instances, commercialization and technology 

transfer has been sought through the creation of distinct units tightly connected to universities or 

laboratories but not directly within their governance structure, allowing commercialization work 

to be more tightly linked to private capital markets and the regional and global business 

community.116   Relatedly, web-based approaches show promise of effectively matching those 

with advances and ideas to those who might want to implement them, and are inherently 

oriented toward maximizing volume and accelerating transfer.117 An example of this approach is 
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www.bridgenetwork.com, a web-based platform launched in January 2007 on which 

participating universities post information about their innovations and nonexclusive licensed 

technologies directly on the site with an eye to faster dissemination. 

6. Stimulate regional economic development 

Stimulating regional economic development, particularly in concert with growing local 

alternative energy industry clusters, should also be a high concern of the e-DII network. 

Such a network would be inherently local and metropolitan in its decentralized structure 

since it would ramp up cutting-edge, applications-oriented research in the universities and 

federal laboratories within dozens of U.S. metropolitan areas.  But the innovation hubs would 

naturally also augment (by virtue of their profligate transfer activity) the development of local 

clusters of start-up firms, private research organizations, suppliers, and other players—the true 

seedbed of innovation. 

Yet this desirable natural “spillover” of innovation exchange should not be viewed as 

simply a happy potential byproduct of the institutes but an important objective. And the 

possibilities are compelling.  With the participation of many scientific disciplines and professions 

as well as various economic sectors, the e-DIIs will be similar in character and scale to 

academic medical centers and agricultural experiment stations that combine research, 

education, and professional practice and drive transformative change.  This organizational form, 

meanwhile, has been successful at generating jobs and stimulating local and regional economic 

activity, by the nearby location of clusters of start-up firms, private research organizations, 

suppliers, and other complementary groups and businesses.   

As with agricultural stations, the e-DIIs should focus, at least in part, on the unique 

energy needs and opportunities characterizing their home regions.  This regional character 

would help to stimulate local cluster development and ensure that new technologies respond to 

local challenges and thus could be rapidly deployed.  The regional e-DII focus would also be 

instrumental in creating in the United States a globally competitive industry in advanced energy 

technologies with jobs that would be difficult to offshore because of their strong dependence on 

the local capabilities of the e-DIIs for R&D and workforce development. Once again, the past is 

prologue: Part of the great success of the land-grant established agricultural and engineering 

experiment stations in regional economic development was the creation of an affiliated network 

of agricultural and industrial extension services. This model should be explored as a possible 
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component of the e-DII networks, since such extension activities could play an important role 

both in achieving the social behavior necessary for energy conservation and efficiency as well 

as in “green” job creation through small energy business startups.  

Box 3.  How the e-DIIs’ regional focus might work 

The Great Lakes states are home to the nation’s largest concentration of energy-

intensive industries—manufacturing, agriculture, and transportation—clustered around large 

urban populations and heavily dependent upon fossil fuel energy sources.  Over one million 

jobs, directly or indirectly, depend upon energy and related industries in the Great Lakes.  

Migrating the region’s economy to new, clean technologies while creating a culture of innovation 

in the region to solve energy challenges in the United States offers a significant economic 

opportunity. 

Two potential themes seem important for e-DIIs in the Great Lakes region to pursue.  

First, the industries and residents of the Great Lakes region utilize 38 percent of the nation’s 

electricity, produced primarily from coal-fired plants.  Should electrical power generation from 

fossil fuels be sharply curtailed or should prices skyrocket through regulatory requirements for 

carbon sequestration or through market geopolitical instabilities, the region’s industrial capacity 

is unlikely to remain competitive in global markets.  The e-DIIs in the Great Lakes could focus 

on carbon sequestration or low-carbon technologies that could be rapidly deployed to replace 

the region’s coal-fired electricity. 

Second, a future new spiking of gasoline prices to Asian and European levels would 

likely obliterate what remains of the American automobile industry based in the Great Lakes 

region.  Domestic companies are unlikely to shift rapidly to the small, fuel-efficient cars 

produced by Asian manufacturers or adept enough to exploit hybrid, electric, or hydrogen fuel 

technologies on a short timescale.  The e-DIIs in the Great Lakes region could therefore work 

with the auto industry to develop new technologies and upgrade existing ones, such as biofuels, 

advanced battery technology, hydrogen fuel cycles, or other low carbon propulsion systems.   

The challenges and opportunities characterizing the Intermountain West states suggest 

an alternative focus for e-DIIs.  The western and intermountain states comprise the nation’s 

fastest growing region, both demographically and economically.  Given its massive projected 

future development, the region will contend with challenging questions of energy intensity and 

economic sustainability and will struggle with some of the nation’s most extreme needs for clean 
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and affordable energy.  The intermountain states have significant primary energy sources (oil, 

gas, oil shale, and hydropower) and an unusually strong potential for solar and wind energy.  

The e-DIIs in this region could take advantage of its national laboratories with research 

capability in renewable energy technologies, energy distribution, and carbon mitigation and 

sequestration. 

The energy needs and capabilities of the Northeast, Southeast, and Midwest states 

similarly provide strong rationale for the e-DIIs.  In the Northeast, large urban populations with 

intensive energy needs, the relative absence of national laboratories, and the presence of many 

of the world’s strongest research universities will dictate the design of the region’s e-DIIs.  The 

priorities of the Southeast cluster are growing populations and economies, a strong agricultural 

and manufacturing base, and sophisticated national laboratories and nuclear utilities.  In the 

Midwestern states, priorities will be shaped by the presence of primary energy sources, a 

rapidly changing economic base, and significant environment challenges—not the least of which 

is from weather disruptions.   

Finally, the e-DIIs could help better align or nucleate—within metropolitan regions—the 

multiple, often disparate, energy-related activities of federal and state government, academia, 

large and small business, and the investment community, marking the beginning of a knowledge 

revolution that would contribute greatly to the economic base of the nation.  Such regional 

concentration would surely help move the federal government toward more progressive energy 

policies and new research paradigms that would lead to an integrated effort to address the 

nation’s challenges for sustainable energy production and associated distribution infrastructure.   

7. Build the knowledge base and human capital necessary to address the nation’s 
energy challenges 

The e-DIIs are also envisioned as the foci for long-term, applications-driven research 

aimed at building the knowledge base necessary to address the nation’s highest priorities.  

Working together with industry and government, the e-DIIs would—amid their other activities— 

lead the development of educational programs and distributed educational networks that could  

educate not only the scientists, engineers, innovators, and entrepreneurs of the future, but 

learners of all ages, about the challenge and excitement of changing the U.S. energy paradigm. 

In this fashion, the e-DIIs would take on a fundamental educational mission through the 

involvement of their scientists and engineers in sharing educational best practices and 
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developing new educational programs in collaboration with K–12 schools, community colleges, 

regional universities, and workplace training organizations.   

The training of researchers and engineers with the skills necessary to work in either the 

public or private sectors to produce breakthrough innovations should be viewed as more than 

an ancillary benefit of the innovation centers and instead seen as a key objective.  By 

supporting science, technology, engineering, and mathematics (STEM) education, graduate and 

postdoctoral students, and other human capital development, the e-DII network will expand the 

economy’s future capacity to invent and staff the next economy.118 

8. Expand the scope of possible energy activities 

Finally, the e-DIIs would add one more major activity to their repertoire: They would 

expand the range of possible energy innovation activities.  The partnership character of the e-

DII network—involving a consortium of universities, national laboratories, industry, investors, 

and state and federal government—coupled with its regional focus would give the network the 

capacity to launch projects that are well beyond the capability of the national laboratory system, 

higher-education, or industry alone. In this connection, the capability of e-DIIs to span all three 

sectors—federal government, industry, and higher education—could prove to be of immense 

value. For example, the effort to stimulate a renaissance in the utilization of sustainable nuclear 

power in the United States will likely involve a coordinated effort among the DOE laboratories 

that would lead the R&D effort to develop Generation IV nuclear power technologies; industry 

that would develop the engineering, management, and financial ability to create the necessary 

infrastructure; and universities, which would be responsible for educating the necessary 

scientists, engineers, technicians, managers, and other workforce elements. The Apollo 

program of the 1960s was just such a coordinated effort involving federal laboratories, industry, 

and universities.   

VII. OTHER PARADIGMS HAVE BEEN PROPOSED BUT LACK THE SCALE AND 
COMPREHENSIVENESS NEEDED FOR TRANSFORMATIVE ENERGY RESEARCH 

It bears noting that a growing perception of need in recent years has led to the 

exploration of several relevant research and technology development proposals and 

experiments besides DIIs, including SEMATECH for the electronics industry, the Advanced 

Technology Program of the National Institute of Standards and Technology, the SBIR grant 

programs, the Intelligence Advanced Research Projects Activity (IARPA) and In-Q-Tel (IQT) 
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efforts within the intelligence community, and ARPA-E and Energy Frontier Research Centers 

(EFRCs) for energy research.  ARPA-E, IQT, and EFRCs provide important models for energy 

but individually fall short of responding adequately to the scale, complexity, and urgency of the 

energy research needs of the nation.  Additional models are needed that would complement—

not replace—these efforts. 

ARPA-E is the DOE’s analog to the highly successful Defense Advanced Research 

Projects Agency (DARPA).  DARPA is used for narrowly focused applied technology research to 

support specific defense priorities.  Specifically, DARPA sponsors “revolutionary, high-payoff 

research that ‘bridges the gap between fundamental discoveries and their military use.’”119  The 

ARPA-E model would sponsor high-risk energy research with potential technology applications 

and speed the development of promising technology, which used to be pursued by the 

Advanced Energy Projects program in DOE, terminated in fiscal year (FY) 2000.  The ARPA-E 

concept was detailed by the National Academies of Sciences in a 2005 report on science and 

technology R&D and American competitiveness.120  Congress authorized the formation of a new 

ARPA-E organization within DOE as part of the America COMPETES Act of 2007 (P.L. 110-69), 

with initial authorized funding of $300 million for FY 2008.  The President’s FY 2008 and FY 

2009 budgets did not include funding for ARPA-E, and no funds have yet been congressionally 

appropriated for it.   

The ARPA-E model, by itself, lacks the scale and intellectual breadth to address the 

nation’s energy challenges.  For one, funding at $300 million per year necessarily limits the 

scale and effect of the ARPA-E initiative.  ARPA-E proponents envision funding at $1 billion per 

year, closer to DARPA’s $3 billion per year budget.121  In addition, the domain of ARPA-E is by 

design limited in scope to nimble, high-risk projects that would not otherwise fit into the DOE 

organizational structure.  In this way, fundamental basic research on important energy issues is 

outside the domain of ARPA-E and must be funded through other mechanisms.   

IQT is the venture capital arm of the Central Intelligence Agency to fund technology 

development with intelligence applications.122  It is not subject to the bureaucratic constraints 

most federal agencies face in hiring and funding projects and acquisitions.  It also has similar 

flexibility to commercial venture capital funds in making deals, but focuses more on products or 

services rather than return on equity or assets.  A similar approach could be utilized to fund 

energy technology development, although critics note that many new energy technologies are 
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not sufficiently developed yet to compete for venture capital (which typically funds late-stage 

development).123   

To further develop the knowledge base for transformational innovation in the energy 

arena, the president and DOE have proposed creating EFRCs.124  EFRCs would conduct basic 

energy research in high priority areas identified by the DOE’s Basic Energy Sciences Advisory 

Committee in 2001.  EFRCs would be competitively awarded and managed by DOE and be 

staffed by multiple researchers from firms, universities, national laboratories, or nonprofit 

organizations.  The EFRCs would receive five-year funding of $2 to $5 million per year per 

center, totaling $100 million for the EFRC initiative.  A request for proposals was issued by DOE 

in 2008 and initial funding for the EFRCs may be appropriated in the final FY 2009 budgets.125  

While basic energy research is critically important, DOE’s management of EFRCs would likely 

make them subject to many of the same problems facing other DOE initiatives, including 

fragmentation and insularity.  New research paradigms are still needed to span all areas of 

energy R&D, including basic and applied research, and technology development and 

deployment, with a focus on translational research and commercialization. 

In sum, the suggested e-DIIs network would fulfill functions not likely to be fulfilled by 

other innovative energy research initiatives currently being contemplated even as it 

complemented them. 

VIII. OTHER NATIONS ARE PURSUING DII-TYPE PARTNERSHIPS 

Other nations, meanwhile, are actively experimenting with new research and innovation 

paradigms.  In fact, the basic DII model of partnership between government, university, and 

private industry is a popular tool in the innovation strategies and economic competitiveness 

plans of a number of other countries.  Though not always targeted on energy, these other 

countries’ efforts are similar to those projected by the DII concept in that they represent funding 

and catalyzing initiatives to better connect research to commercialization and deployment to 

enhance the development of particular regional industry clusters. 

One of the most established models of this sort is in Finland.  The “triple helix model” of 

linking government assets, university resources, and business enterprise is at the core of 

Finland’s Centers of Expertise (COE) program—a national network of regional innovation 

systems that draws in professionals and experts from each of the three different sectors to 
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leverage the strengths of various regions to boost their economic competitiveness.  Between 

1999 and 2002, 22 centers across Finland (focused on high-tech and low-tech) connected 1,110 

experts, 3,075 firms, and 460 research and training units to produce 1,400 innovations 

(including new products, services, and processes) and 5,700 new jobs.126  Norway and Sweden 

have similar Centers of Expertise programs.  In Sweden, the country’s network of centers is 

administered through its major universities.  By contrast, Finland’s centers are often housed in 

industrial parks. 

Science Foundation Ireland (SFI) represents another important antecedent.  Founded in 

2003, SFI employs a three-pronged strategy aimed at improving the country’s science and 

engineering efforts through the development of human capital, support of research and 

innovation, and the fostering of partnerships among agencies, research institutions, and 

industry.  Utilizing a competitive, peer-reviewed process, SFI’s Centers for Science, 

Engineering, and Technology (CSET) Campus-Industry Partnership program provides $1.3 to 

$6.5 million (€1 million to €5 million) annually over five- to 10-years terms to university-based 

centers that bring together private firms, research institutions, government labs, and other 

entities to conduct science and engineering research—particularly in fields that support the 

country’s strong biotechnology and information and communications technology industries.  One 

such CSET is underway at Trinity College Dublin.  The Center for Research in Adaptive 

Nanostructures and Nanodevices (CRANN) connects Trinity with Intel, Hewlett-Packard, and 

other industry partners, creating a powerhouse of cutting-edge material physics and chemistry 

research at the nanoscale.  With 10 “industry researchers-in-residence,” CRANN’s 

commercialization efforts are informed by the presence of researchers who possess  an intimate 

knowledge of industry needs.  Among the technologies CRANN is working on: materials and 

devices structures for next-generation semiconductors; transparent electrodes for use in 

emerging applications like “e-paper;” and new clinical diagnostic tools that utilize magnetic 

nanowires.127  

Japan also has a successful national program to drive government-university-industry 

collaboration focused on technology and knowledge-intensive fields in key economic regions.  In 

Japan’s Industrial Cluster Program, government ministries actively work to promote networking 

among economic actors with complementary technology capacity and needs and advance 

collaborative R&D.  The program connects 5,800 small and medium sized firms to over 200 

participating universities and 500 government officials across 19 regional clusters.  Between 
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2001 and 2005, nearly 40 percent of the program’s firms started new collaborative projects, 60 

percent launched new business lines, and participating universities produced 133 spin-offs.128     

Other countries are also experimenting with this type of partnership model.  In Canada, 

for example, the government of Quebec recently brought together eminent scientists from the 

biotechnology industry, university, government laboratory, and hospital circles to launch the 

Quebec Consortium for Drug Discovery in June 2008.  The first of its kind in Canada, the 

consortium’s goal is to maintain and sharpen the Quebec region’s competitive edge in 

pharmaceutical research by fostering synergies between academic, corporate, and institutional 

research.129  Similarly, Canada’s National Research Council (NRC) developed a cluster initiative 

in the late 1990s focused on the Vancouver area’s strength in the fuel cell and hydrogen 

industries.  About 35 companies, two industry associations, and three universities are involved 

in the initiative.  These entities, along with the recently opened NRC Institute for Fuel Cell 

Innovation, work together to accelerate the commercialization and deployment of alternative 

transportation technologies and fuels.130   

In the United Kingdom, the “Science City” initiative has helped to strengthen and 

formalize partnerships between universities, government, and industry in the six cities chosen to 

participate in this program to boost science and technology R&D and job growth.131  

Additionally, the UK recently created a Technology Strategy Board (TSB) to engage in 

innovation activities that join up R&D and the private sector.  Focused on six high-tech domains, 

including biotech, nanotech, advanced materials, and high value manufacturing, the TSB 

promotes commercialization of market-demanded breakthroughs through two patallel initiatives.  

One of these programs—Knowledge Transfer Networks—brings together networks of academic 

researchers, businesses, and other institutions to collaborate on solving important problems and 

speeding up market development of technologies in fields such as photonics, digital 

communications, bioscience, and aerospace.  The other program—Knowledge Transfer 

Partnerships—funds academic researchers and scientists to work in a private firm for a number 

of years on specific applied research problems with the aim of improving knowledge transfer 

and innovation among academia and industry.132  

Developing countries are also looking to the government-university-industry partnership 

model.  The Chinese government, for example, set up four industry-research strategic alliances 

in June 2007 concerning steel, coal, chemistry, and agricultural equipment.  The initiative 

encompasses 26 leading enterprises, 18 leading universities, and nine key research institutions 
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with the goal of strengthening the technological competency and the diffusion of innovation in 

these fields.133 

In short, the experience offered by Finland, Ireland, Japan, and other countries in 

accelerating commecriailzation through the encouragement of stronger university-government-

industry partnerships can and should offer guidance in program design and implementation as 

American moves to develop an e-DII network. 

IX. THE DII CONCEPT HAS ALSO EMERGED AT THE STATE, REGIONAL, AND LOCAL LEVEL 

At the same time, states, localities, and disparate individual consortia of interests are 

experimenting with the development of partnerships among government, universities, and the 

private sector to spur the commercialization of scientific breakthroughs.   

At the state level, New York, Oregon, and Georgia offer helpful models that any new 

federal effort in the energy area must carefully consider, respect, and complement. 

Much like Norway and Sweden’s Centers of Expertise programs, New York State has 

established Centers of Excellence at major state universities to support high-tech research and 

speed up the commercialization of promising breakthroughs.  These centers—focused on 

technologies from bioinformatics to nanoelectronics—smartly leverage existing innovation 

assets that cluster within certain regions of the state, providing workspace and capital to foster 

synergistic relationships between industries, research organizations, and government.134 

For instance, the Rochester, NY area—known for Kodak and Xerox along with several 

research universities—is home to the state’s Center of Excellence in Photonics and 

Microsystems.  Housed in the Infotonics Technology Center, the Center of Excellence fosters 

collaboration among New York’s universities, dozens of area firms, the Rochester Regional 

Photonics Cluster, and Brookhaven National Lab in supporting rapid commercialization of 

microelectronics and miniature systems breakthroughs for communications, biomedical, 

security, and defense/aerospace applications.135 

The Center of Excellence in Environmental and Energy Innovations in Syracuse, NY 

brings together a network of industrial firms, economic development agencies, and research 

organizations to develop innovative products focused around renewable energy, indoor 

environmental quality, and water resources.136  The Hauptman Woodward Medical Research 
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Institute, the Roswell Park Cancer Institute, and the University of Buffalo’s Center for 

Computational Research provide the anchors for the Bioinformatics and Life Sciences Center of 

Excellence in Buffalo, NY.  The center organizes a network of research institutions and private 

life science companies all focused on developing tools, interventions, and treatments that 

improve human health.137  Other Centers of Excellence include those focused on 

nanoelectronics (Albany), information technology (Long Island), and small-scale systems 

integration and packaging (Binghamton). 

Oregon is also developing networks of public-private partnerships to accelerate 

commercialization of high-tech discoveries in the fields of nanoscience, pharmaceuticals, and 

renewable energy and materials through the state’s three Signature Research Centers (SRC).  

The Oregon Nanoscience and Microtechnologies Institute (ONAMI) is the state’s senior SRC, 

bringing together federal government agencies (including the National Science Foundation 

(NSF) and the Departments of Commerce, Defense, and Energy), the state, research 

institutions, and industry to support research and quickly bring innovative breakthroughs to the 

marketplace.  The center benefits from key innovation assets, including the state’s three public 

research universities, the Pacific Northwest National Laboratory, and the deep “Silicon Forest” 

high-tech industry cluster.138 

The Oregon Translational Research and Drug Development Institute (OTRADI), run by 

the Oregon Economic and Community Development Department, supports a network of state 

universities and biotech companies focused on study and treatment of infectious disease.  

OTRADI helps Oregon universities and firms further develop their IP prior to partnering with 

larger firms in hopes of increasing the value of homegrown innovations, leading to more local 

investment, human capital attraction, and stronger tech-based economic development.139 

Oregon’s newest Signature Research Center—the Built Environment and Sustainable 

Technologies (BEST) Center—is anchored by Oregon State University, the University of 

Oregon, and the Oregon Institute of Technology.  The center aims to leverage the state’s R&D 

assets in renewable energy, bio-products, and green building in developing innovative solutions 

that can be marketed through BEST’s public-private partnerships.  BEST partners include 

universities, local businesses, and state agencies, with initial funding from the Oregon Board of 

Higher Education, the state legislatures, and the Meyer Memorial Trust.140   
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For its part, Georgia’s Advanced Technology Development Center (ATDC) has for over 

two decades been strengthening the state’s innovation economy by nurturing high-tech 

companies from the startup stage to success in the marketplace, with ATDC firms producing 

revenues over $12.7 billion and profits exceeding $100 million since 1987.  While the center is 

headquartered at Georgia Tech, most of its member companies are not affiliated with the 

university.  However, part of ATDC’s success in developing profitable companies stems from 

the access member firms have to Georgia Tech’s high quality research facilities and human 

capital.  Development and commercialization of breakthroughs is also facilitated through 

partnerships with local, state, and national organizations, including the Atlanta CEO Council, the 

Georgia Research Alliance, and the National Business Incubation Association.  These 

organizations—and several others—provide consulting services, funding assistance, business 

plan development, and networking opportunities to ATDC member companies.  

Other states are getting in the university-government-industry partnership game, 

including Maryland’s Industrial Partnerships program and Oklahoma’s Technology 

Commercialization Center.141  States are also pushing forward towards sustainability and 

security goals by passing state policies such as renewable energy portfolios, which are 

providing some policy certainty to reluctant firms and encouraging investments in advanced 

energy technologies.142 

But these are only state-side efforts.  So compelling is the underlying logic implicit in the 

e-DII paradigm and related departures that local metropolitan area leaders—and particular 

alignments of businesses, universities, and federal labs—are increasingly trying to organize 

partnerships along the DII line.  

For one thing, the constituent elements of the optimal research-commercialization 

triad—businesses, universities, and the DOE—are already converging in myriad ways to create 

research hubs, networks, and combinations that foreshadow the projected e-DIIs.  

In the energy space alone, numerous universities have already formed formal 

partnerships with industry and government partners to pursue cross-disciplinary, applications-

oriented research to achieve new, commercially-viable breakthroughs in energy technology.  

For example, cross-institutional, collaborative work related to biofuels is being done by the 

University of Illinois at Chicago, Iowa State University, the University of Tennessee at Knoxville, 

and the University of Memphis.143   
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The Energy Biosciences Institute (EBI) is one of the largest of such biofuels-focused 

collaborative initiatives.   Funded by BP at $500 million over 10 years, this partnership between 

the company, the UC, UI, and the Lawrence Berkeley National Laboratory aims to create a 

vibrant, interactive, “team science” culture for conducting extraordinarily innovative basic and 

applied research around alternative fuels and other clean energy concerns.  Further, the 

institute’s pre-negotiated licensing protocols help to speed the introduction of any new 

technological breakthroughs into the marketplace.144    

Outside of biofuels, the University of Michigan has partnered with DTE Energy and GM 

through a grant from the Michigan Public Service Commission to assess the impact of 

widespread plug-in electric vehicle (PGEV) use on the state’s electrical system and the state’s 

environment, enhance Michigan’s position as a technology leader, and position Michigan to 

become the center of PHEV-related business and innovation.145  With a broader portfolio, 

Florida Solar Energy Center (FSEC) has, for over 30 years, brought together the University of 

Central Florida, the state of Florida, and federal agencies to create and support the 

commercialization of new technologies in solar cells, hydrogen energy systems, alternative 

fuels, and building technologies.  With the primary objective of developing new applications for 

use by industry, FSEC actively licenses its technological breakthroughs to firms across the 

country.146 Also geared to pursue a full roster of clean technology RD&D efforts is the Richard 

C. Lugar Center for Renewable Energy in Indianapolis, a new partnership formed in 2007 

between Indiana University at Indianapolis, Purdue University, several energy companies, 

Argonne National Laboratory, and other federal research centers.147  Similarly, the Colorado 

Renewable Energy Collaboratory brings together Colorado State University, the University of 

Colorado at Boulder, the Colorado School of Mines, and the National Renewable Energy 

Laboratory to establish joint research ventures between industry, academia, and government to 

increase the production and use of a full range of renewable energy resources.148  

 Another example of a joint endeavor between universities and a national lab is the 

Institute for Advanced Energy Solutions established by the National Energy Technology 

Laboratory (NETL) in partnership with Carnegie Mellon University, the University of Pittsburgh, 

and West Virginia University.  The institute focuses on cleaner, more efficient fossil energy 

technologies, conducting onsite R&D in those specific areas in which at least two of the 

universities and NETL already have significant research programs.  By expanding interactions 

between all four institutions, the institute aims to develop regional energy research expertise 

and promote the growth of a regional energy cluster in Pennsylvania, Ohio, and West Virginia.    
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For its part, the DOE itself has, indeed, promoted the branching out of its federal labs to 

do more joint work with different institutional partners.  In one signature program, DOE’s Office 

of Science funds three BioEnergy Research Centers in geographically distinct regions of the 

country that, all told, bring together diverse players from seven DOE national labs, 18 of the 

nation’s leading universities, a range of private companies, and some nonprofit organizations.  

Each center is an extensive partnership, funded at $25 million dollar per year for at least 5 years 

and charged with identifying and applying practical solutions to the cost-effective production of 

renewable, carbon-neutral energy from biofuels.149   Another DOE effort, the Entrepreneur in 

Residence program, has teamed up with venture capital firms to place venture-funded 

entrepreneurs in three of the national labs to directly support and expedite moving promising 

laboratory technologies to the private sector.  Selected entrepreneurs conduct technology 

assessments, evaluate market opportunities and propose business structures for potential lab 

spin-offs, which are subject to pre-negotiated licensing agreements.150  

The private sector, meanwhile, has often played a leading role in establishing new forms 

of collaboration for promoting innovation, and not just in the energy space.  In the 

communications sector, for example, 12 wireless companies formed a research consortium with 

the University of California-San Diego Engineering School to conduct applications-oriented 

research that is relevant to the technical needs of the industry.151  In manufacturing, the National 

Center for the Manufacturing Sciences (NCMS) is an extensive research network of 

approximately 50 large corporations, hundreds of small- and medium-sized firms, four federal 

agencies, and several universities that uses a collaborative model to rapidly develop and deploy 

advances in manufacturing technologies and processes.152  In real estate, Albuquerque’s Mesa 

del Sol project by the developer Forest City Enterprises relies on a very unique partnership 

between the University of New Mexico, Sandia National Laboratory, state government, and 

renewable energy firms to showcase environmentally-friendly development practices (e.g., 

smart grid deployment) and promote regional innovation and economic growth by cultivating 

clean energy and other knowledge and creative economy industries.153   

In the energy realm, one new, groundbreaking private-sector initiative is especially 

noteworthy in its bid to accelerate the development and commercialization of the next 

generation of aviation fuels.  The Sustainable Aviation Fuel Users Group is an alliance that 

currently includes aircraft manufacturer Boeing, energy technology company UOP-Honeywell, 

major airlines, key environmental nonprofits, and leading academics in an effort to make 
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commercial aviation the first major global transportation sector to voluntarily drive sustainability 

practices into its fuel supply chain.154   

Regional business and industry organizations and economic development alliances, 

finally, are also testing multi-disciplinary, applications-oriented models for promoting innovation 

as they seek to transform local economies.  NextEnergy in Detroit, for example, catalyzes 

collaboration between key industry, academic, nonprofit, government, and military stakeholders 

to expand Michigan’s capacity for research, development, and commercialization of promising 

technologies in alternative fuels and power generation.155   

Likewise, the Fund for Our Economic Future--an extensive regional philanthropic 

collaborative—actively provides grants to multi-institutional partnerships to strengthen  

innovation economy in Northeast Ohio.156  One of the fund’s investments, BioEnterprise, draws 

on the research and technology licensing activities of local hospital and university systems to 

create, attract, and accelerate life sciences businesses in the region.   Since 2002, 

BioEnterprise has created more than 70 companies and concluded over 300 technology transfer 

deals with industry partners.157  Another fund initiative supports several collaborative technology 

projects that have been identified by an alliance of technology leaders from state-funded 

research centers, hospital and university tech transfer offices, and early-stage venture funders 

as especially promising for rapidly converting research into business development opportunities 

in fuel cells, nanotechnology, biomedical sciences, and other sectors relevant for Northeast 

Ohio’s economic future.158   

Similar public, private, and university collaborations are also central to efforts by Science 

Foundation Arizona (SFAz) to support purpose-driven research and innovation in key sectors of 

that state’s economy.  Inspired by Science Foundation Ireland, SFAz committed and invested 

$33.6 million in FY 2007 and leveraged another $43.8 million from private, nonprofit, and 

government sources to fund grants advancing research and learning in information 

technologies, sustainable energy systems, and biomedical research.  A portion of these grants 

went to seeding and accelerating the development of eight start-up companies based on new 

technologies being developed at the state’s public research institutions.  In another, more recent 

effort, SFAz has partnered with the University of Arizona and several mining industry partners to 

establish a multi-million dollar institute—essentially an e-DII-- devoted to sustainable practices 

in mineral resource development. 159 
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In sum, the nature and urgency of the innovation imperative in myriad fields is impelling 

multiple players at the state and regional as well as national level to pursue all kinds of diverse 

collaborations to intensify the search for breakthrough technologies.  Now, the time has come 

for the national government to scale up this bottoms-up ferment through the creation of a vibrant 

national network of e-DIIs. 

X. THE FEDERAL GOVERNMENT SHOULD CREATE A NATIONAL NETWORK OF E-DIIS 

And so the federal government should move to accelerate the search for scalable 

breakthrough technologies that will fundamentally “change the game.”  Cognizant of the market 

and governance challenges that discourage sufficient R&D investments, the federal government 

should place the search for breakthrough technologies and practices at the center of its energy 

efforts and move to join the unique capabilities of America’s research universities to those of 

corporate R&D and the federal laboratories to drive the needed innovation.   

To this end, the federal government should create a highly coordinated national network 

of regionally based, applications-oriented energy discovery-innovation institutes to serve as the 

hubs of a distributed energy research network linking the nation’s best scientists, engineers, and 

facilities.  Through such an interconnected network, the nation could at once increase its current 

inadequate energy R&D effort and complement existing resources with a new research 

paradigm capable of delivering the radical breakthroughs needed to respond adequately to the 

nation’s energy supply, security, and sustainability challenges.   

Along these lines, the nation should seek to build a network of several dozen new 

energy institutes distributed competitively among the nation’s research universities and federal 

laboratories.  

Three sorts of institute would anchor the national network: 

• University-based e-DIIs: Those e-DIIs located adjacent to research university campuses 

would be managed by either individual universities or university consortia, with strong 

involvement of partnering institutions such as industry, entrepreneurs and investors, state 

and local government, and participating federal agencies. While most university-based e-

DIIs would focus both on research addressing national energy priorities and regional 

economic development from new energy-based industries, there would also be the 
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possibility of distributed or virtual e-DIIs (so-called “collaboratives”) that would link 

together institutions on a regional or national basis. As mentioned earlier, each e-DII 

would also act as a hub linking together investigators engaged in basic or applied energy 

research in other organizations 

 

• Federal laboratory-based e-DIIs: There should be a parallel network of e-DIIs associated 

with federal laboratories. To enable the paradigm shifts represented by the discovery-

innovation institute concept, these e-DIIs would be set up “outside the fence” to minimize 

laboratory constraints of security, administration, and overhead and driven by the bottom-

up interests of laboratory scientists. Like university-based e-DIIs, their objectives would 

be the conduct of application-driven translational research necessary to couple the 

extraordinary resources represented by the scientific capabilities of the national 

laboratories with the technology innovation, development, and entrepreneurial efforts 

necessary for the commercial deployment of innovative energy technologies in the 

commercial marketplace. A given national laboratory might create several e-DIIs of 

varying size and focus that reflect both capabilities and opportunities. There might also 

be the possibility of e-DIIs jointly created and managed by national laboratories and 

research universities 

 

• Satellite energy research centers: The large e-DIIs managed by research university 

consortia or national laboratories would anchor “hub-and-spoke” sub-networks linking 

smaller energy research centers comparable in scale to DOE’s Energy Frontier Research 

Centers or the NSF’s Engineering Research Centers, thereby enabling faculty in less 

centrally located regions or at institutions with limited capacity to manage large e-DII 

hubs to contribute to the nation’s energy R&D as an element of the e-DII network 

 

In terms of its establishment, an interagency process should create the network and 

competitively award core federal support of up to $200 million per year for each major e-DII 

operated by university or national laboratory consortia, along with funding for smaller e-DIIs and 

distributed energy networks connected to the large e-DII “hubs.” Federal funding would be 

augmented with participation by industry, investors, universities, and state governments, for a 

total federal commitment growing to roughly $6 billion per year (or 25 percent of a 

recommended total federal energy R&D goal of $20 to $30 billion per year). 



 

 55 Brookings · February 2009 
 

In keeping with the DII vision, the national network of e-DIIs should have the following 

characteristics: 

1. The e-DII network should be large enough and be funded at a sufficient level to 
cultivate the new energy research paradigm 

To achieve a critical mass of activities, implementation of the e-DIIs concept should 

entail the establishment of 20 to 30 e-DIIs.  Federal funding for the e-DIIs should vary 

depending on the scale of planned activities and other resources that could be tapped.  Smaller 

satellite e-DIIs might be funded at $10 million per year.  Larger full-scale e-DIIs might be funded 

at $50–100 million per year.  In a few cases, budgets for large, interdisciplinary e-DIIs overseen 

by university consortia, federal laboratories, or joint university-laboratory-industrial partners may 

grow, as we have seen,  to as much as $200 million per year of core federal funding.   

The proposed federal investment in e-DIIs should ideally grow to $5 to $6 billion per 

year. Although this would represent only about 20 percent of the proposed $20 to $30 billion per 

year increase in federal energy R&D—most of which would flow to the federal laboratories and 

industry—it would still represent a doubling of the total amount currently spent on energy R&D 

by the federal government and large industrial firms.  Full funding of the e-DII network would be 

expected to yield considerable impact, much as NSF’s $5 billion annual investment supports the 

intellectual engine of the nation’s scientific, technological, and technical workforce capabilities 

(outside of the health care and energy fields, which are separately supported by the National 

Institutes of Health (NIH) and DOE).   

While federal funding would provide the core support necessary to sustain the E-DIIs, 

strong participation from other partners would be expected. For example, states could 

participate in particular e-DIIs by contributing the necessary land and capital facilities. Industrial 

partners and investors could contribute financing, equipment, and personnel through joint R&D 

efforts. Universities could contribute an array of in-kind investments such as personnel, office 

space, and research infrastructure. They would also be expected to provide the necessary 

policy environment in areas such as personnel (e.g., relaxing the usual faculty constraints such 

as tenure requirements) and IP. While such participation by e-DII partners would be expected to 

become quite significant, they will likely remain modest until the e-DII program builds 

momentum and capability.  
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One additional note: The e-DII network is envisioned as one part of a larger commitment 

to federal energy research, growing to $20–30 billion per year.  Most of this new commitment 

should be directed through existing DOE and industrial laboratories, which have substantial 

research expertise and infrastructure that could be devoted to new projects.  Making a 

successful commitment to clean energy, however, extends beyond simply pumping more 

federal dollars into the current energy research enterprise.  In this respect, it should be noted 

that in addition to the specific university- and lab-led components of the e-DII push, additional e-

DII-type efforts among the labs could be launched employing some of the large funding 

increases proposed for the labs’ own growth. E-DIIs, in this sense, offer both the lab sector and 

the university community a transformative new paradigm that should be widely exploited in 

pursuit of national energy goals. 

2. The e-DII network should be an interagency effort 

Any new federal energy R&D effort would ideally be established, managed, and funded 

through an interagency effort rather than as a single federal department’s initiative, similar to 

other federal initiatives such as nanotechnology, high performance computing, and global 

climate change.  Federal agencies that might be involved include Energy, Defense, Commerce, 

Transportation, Agriculture, the Environmental Protection Agency, NSF, and NIH.  If the network 

was placed within DOE, additional reforms would be needed to free this initiative from some of 

the constraints that characterize other DOE initiatives.  (Some details are provided in the 

following section.) 

3. The e-DII network should complement efforts at the national laboratories, but be 
organizationally separate 

The e-DII network should complement efforts at DOE’s national laboratories but be 

organizationally separate, due to the constraints facing the current lab structure outlined earlier.  

In this respect, even lab-run e-DIIs should be organizationally distinct.  The national laboratories 

have the unique capacity for large-scale, infrastructure-intensive projects that require substantial 

technical and management talent.  The labs have successfully deployed such capacity towards 

development of defense systems, for instance.  The e-DIIs should not duplicate this expertise 

and infrastructure, but instead utilize a different research and translation paradigm to collaborate 

with industry, companies, investors, and governments to speed the movement of breakthroughs 

into widespread implementation.  In this manner, creation of the e-DIIs would provide a clearer 
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mission to the established national lab system, which has been lacking one since the end of the 

Cold War, even as it committed the nation to a new innovation strategy.   

     * 

In terms of its establishment and build-out, the new network would be developed through 

a competitive award process with gradual phase-in:  

• Award Process: A competitive award process should be adopted to designate e-DIIs for 

federal support and inclusion in the network.  Proposals should be evaluated by an 

interagency panel and subjected to the most rigorous peer review.  A framework of 

energy research strategies and priorities should be developed to guide the decision 

process, perhaps with the assistance of independent advisors such as the National 

Academies or a new structure such as the proposed National Energy Institute or the 

advisory board of a possible New Energy Research Initiative program. Because of its 

long experience and credibility in conducting merit-based competitions for large research 

centers (such as the Engineering Research Centers and Science and Technology 

Centers, the NSF should be considered the lead federal agency in managing the e-DII 

award process.   Successful proposals would then receive core funding by individual 

federal agencies or through interagency agreements to support and anchor the main 

programs of the e-DII and to provide for infrastructure.  To achieve a balanced utilization 

of all elements of the nation’s research triad of federal laboratories, corporate R&D 

centers, and research universities, the e-DII competitive award process for university-

based e-DIIs and federal-laboratory-based e-DIIs should be kept separate and within 

specified total funding envelopes. For example, consideration of both the relative number 

of world-class research universities and national laboratories, as well as the fact that the 

national laboratories would also benefit from very substantial growth of the total federal 

energy R&D investment (e.g., to $20 to $30 billion per year) suggests that an appropriate 

target might be $4 billion per year for the university e-DIIs program and $2 billion per year 

for the federal-laboratory e-DII program (including in both numbers the funding for 

possible joint e-DII federal laboratory-university partnerships). 

 

• Award Criteria: Although the primary award criteria for e-DII awards should be scientific 

merit and capability, other criteria should be considered such as commitments by 

participating partners (e.g., industry, investors, and state or local governments); the 
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strength of the management plan; strategies for commercialization (e.g., approaches to 

technology transfer and IP issues); integration of the e-DII into the regional economy; and 

plans for connection into the projected hub-and-spoke network that will link up both to the 

national energy research network and campus- or industry-based scientists.  

Furthermore, consideration should be given to the ability of the proposed e-DII to 

leverage investments from other actors in the energy research enterprise, ensuring a 

larger overall commitment to addressing the nation’s energy challenges.  

 

• Phase in: The e-DII network should be phased in over time, so it can benefit from 

ongoing evaluation and assessment.  Each e-DII should be subject to rigorous evaluation 

at regular intervals, together with ongoing assessment of the network’s effectiveness in 

terms of research results, funding matches, commercial spinoffs, and human resource 

production.  In this fashion, five e-DIIs a year could be launched over a five- to 10-year 

period to create the full network, with the early e-DIIs being viewed as prototypes to 

refine policy and operational issues (e.g., management, IP, and coordination).  While 

long-term energy research would require sustained funding of the network, it would also 

be possible to place a sunset of 12 to 15 years on each e-DII so that re-competition for 

federal support could occur. And indeed, a highly competitive, results-focused 

accountability system should discipline the operation of the network.   In order to promote 

consistent excellence and high-risk, high-reward research, a component of each e-DII 

budget (perhaps 10 percent) could be regularly reallocated to promising new ideas and 

directions at the expense of those that are not showing progress.  In this way, the e-DII 

system would be continually pushing to the forefront on new ideas, weeding out stale 

projects, and yet allowing good ideas to make progress and continue to move forward.  

The National Academy of Sciences recommended this approach (at an 8 percent 

reallocation level) and DOE’s Basic Energy Sciences division has since practiced it, with 

promising results..160 

 

As to their operation, the institutes would benefit from a tiered organizational structure and 

strong network characteristics: 

• Tiered organization: The e-DIIs would utilize a tiered organization and management 

structure.  Since the proposed network represents a departure from existing research 

paradigms, it requires an independent institutional and management structure committed 
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to overseeing basic research through rapid deployment of new technologies. Each e-DII 

should have a strong external advisory board representing the participating partners, 

including government (federal and state), industry, interested nonprofits, entrepreneurs, 

and investors.  In some cases, partners might play direct management roles with 

executive authority.  The precise organizational and management structure for e-DIIs is 

not prescribed here, as it should be a component of the evaluation process to award the 

e-DII funding.  This way the proposal process encourages competition, “bottom up” 

creativity, and innovation and ensures that the e-DIIs have maximum flexibility to achieve 

meaningful advances in energy research and technology development.   

 

• Linked external relationships: The e-DII network should function in a coordinated, 

integrated manner.  To this end, the e-DII network should be undergirded by powerful 

information and communications technology and overlaid by a network of virtual 

organizations involving scientists, engineers, industrial management, and federal 

participants.  This way the network would provide a powerful test-bed for the new types 

of research organizations enabled by rapidly evolving cyberinfrastructure, such as 

collaboratories and immersive virtual environments, which reduce unnecessary 

duplication of costly research facilities and cumbersome management bureaucracy.  

Such coordination would allow separate e-DIIs, focused on different themes, to remain 

connected and coordinated in pursuit of larger national goals.   

XI. ORGANIZING AND FUNDING OPTIONS FOR THE E-DII NETWORK 

It will be challenging to develop an organizational and management strategy and 

generate the necessary funding capable of ramping up a national network of energy discovery-

innovation institutes over a short period of time.  However, numerous similar initiatives have 

been launched, as we have seen, so the questions and challenges of implementation can be 

tackled confidently with the benefit of past experience.  

A few comments bear consideration:.   

1. The e-DII network could be placed within the Executive Office of the President or 
within a lead agency  

The e-DII network should be organized and funded as an interagency effort.  One might 

consider a strong interagency committee of the Executive Office of the President’s Office of 
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Science and Technology Policy (OSTP) overseeing the program, similar to those for 

nanotechnology and climate change.  In this case, the program management would consist of a 

project director and representatives from OSTP and the Office of Management and Budget 

(OMB), with a reporting line to the National Science and Technology Council.   

Locating this initiative entirely within DOE could be problematic, due to the limitations of 

federal energy activities raised earlier in this report.  To achieve a balance among intramural 

and extramural participants (e.g., DOE labs, industry, higher education, and the states), the role 

of managing the e-DII network would need to be a major assignment for either a senior DOE 

administrator (e.g., the Under Secretary for Science or Deputy Secretary) or a new senior 

position such as Level II presidential appointment. The strong role of the e-DIIs in R&D and 

work with industry to commercialize technology suggests that this position should not be the 

Under Secretary for Science. 

It is also important that this initiative cut across existing DOE programs (e.g., fossil fuels, 

nuclear, renewables, science, as well as the national laboratories) and have monies 

appropriated to it that are for pass-through or coordination with other agencies so that a true 

interagency character can be developed.  An alternative arrangement would be to appropriate 

funds directly to other federal agencies (e.g., Defense, Commerce, Interior, Agriculture) and 

enable them to also fund the e-DIIs, although this would create the additional complexity of 

coordinating among multiple appropriations subcommittees—a near impossible task.   

2. The e-DII network could be established by Congress 

The national e-DII network could be established by a general authorization bill similar to 

the Hatch Act of 1887 that creates the network as one component of the nation’s energy 

research activities.  The bill would designate the administrative home of the network and would 

include a proposed funding and program evaluation plan (e.g., building up over a five year 

period and initially sustained for 20 years with five-year reviews of both individual innovation-

discovery institutes and the entire network).  Following authorization, specific appropriations 

requests could then be submitted, as appropriate, to the respective appropriations 

subcommittees in both chambers of Congress for funding the e-DIIs.   

Two Senate bills have already included authorizing language for a handful of national 

laboratory-based DIIs, including the Protecting America’s Competitive Edge through Energy Act 

of 2006 (S.2197) and the America COMPETES Act of 2007 (S.771).  S.2197 proposed funding 
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multiple lab-based DIIs at $50 million per year for FY 2007 through FY 2013.  The CBO 

estimated S.2197 would cost $243 million from 2007–2011.161  The final version of America 

COMPETES signed into law (P.L. 110-69) included language for no more than three DIIs each 

authorized to receive $10 million per year for FY 2008 through FY 2010.  No funding has yet 

been appropriated for the DIIs.  The lab-based DIIs in America COMPETES were also limited to 

developing partnerships with universities and industry, whereas the initial language in S.71 and 

S.2197 would have allowed partnerships with other actors.  A larger and more comprehensive 

national network of DIIs is necessary than what was authorized in America COMPETES.162 

The authorizing legislation might also be linked to ongoing efforts, such as the carbon 

cap-and-trade proposals that are likely to be debated in the current Congress  or to other major 

R&D legislation, such as appropriations for America COMPETES.   

3. The e-DII network could be funded using existing revenues, new revenues, or 
deficit financing 

When fully implemented, the proposed e-DII network would receive $5 billion to $6 billion 

per year to integrate basic science and technology development activities not otherwise 

undertaken by the nation’s energy research enterprise.  This would be one component of a 

larger energy research effort of—ideally—about $20–30 billion per year.  While such 

investments may seem ambitious during difficult economic times and constrained budgets, 

chronic underfunding of energy research has left the nation underprepared to deal with the 

scale, urgency, and complexity of the nation’s energy supply, security, and sustainability 

challenges.  Difficult choices will need to be made and energy research deserves priority 

funding in light of these challenges.   

Several options exist for funding the core federal support of the national energy research 

network: 

• Funding could be diverted from existing federal subsidies for energy-related activities 

such as subsidies of energy inefficient technologies (e.g., corn-based ethanol) or 

unnecessary tax incentives for highly profitable energy industries (depletion allowances 

for oil and gas production163  

 

• Funding could be dedicated from a carbon tax or the auction of carbon cap-and-trade 

allowances.  Revenues from carbon allowances are estimated to yield $100 billion per 
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year once implemented, growing to as much as $500 billion per year over the next 

several decades164   

 

• The e-DII network could be funded out of general revenue, and deficit-financed if 

necessary.  Deficit financing is appropriate given the long-term social benefits of such an 

investment to the nation’s economic competitiveness, national security, and 

environmental sustainability.  

XII. CONCLUSION 

The sheer scale of the world’s energy challenge combined with the urgent need to 

commercialize of new and powerful low-carbon technologies in the next 10 to 20 years makes it 

imperative that nations everywhere—and the U.S. in particular—move aggressively to “change 

the game.” 

Today our national energy system—based primarily upon the unsustainable use of fossil 

fuels and heavy dependence on foreign energy imports—must be remade, and it is increasingly 

clear that we must not only do much more to accelerate the invention and diffusion of low-

carbon technologies, but do it differently.   

Current national investments, policies, and programs, however, are inadequate to 

address these challenges.  Too little is being done, and too little of what is being done is 

employing the newest distributed, “hub-and-spoke” innovation strategies.   

Therefore, the nation should embark on a new push to greatly improve both the scale 

and the format of its efforts to accelerate the invention and commercialization of breakthrough 

low carbon technologies, practices, and process.  

Along these lines, this report urges two major changes in U.S. energy policy. First, it 

calls for an order-of-magnitude increase in federal investment levels for energy R&D, as a 

necessary step to matching the enormous scale of the nation’s energy problem with massive 

efforts to develop market-ready technological solutions.  Second, it argues that the complexity of 

the nation’s energy challenges require that the nation make use of decentralized, multi-

disciplinary, collaboration-oriented new research paradigms better able to integrate scientific 

research, technology development and commercialization, and the production of human 
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resources across a broad range of scientific, technological, economic, behavioral, and public 

policy considerations. 

More specifically, the report proposes augmenting expanded energy R&D programs 

across the nation’s range of national laboratories and industrial research centers with a new 

research paradigm proposed by the National Academy of Engineering: a national network of 

energy discovery-innovation institutes (e-DIIs).  Decentralized, multidisciplinary, and 

applications oriented, the proposed e-DII network would link together a new regionally 

grounded, “bottom up” drive to accelerate the commercialization of breakthrough technological 

advances in many domains.  When completed, the new network would consist of 20 to 30 e-

DIIs, with interagency federal funding building to a total level of $5 to $6 billion a year.   

In all of this, the nation’s past responses to earlier crises offers antecedents and grounds 

of optimism about what can be achieved.  In earlier times, the federal government responded to 

the changing needs of the nation with massive investments in the nation’s research capacity 

during periods of great challenge or opportunity.165  The Manhattan Project developed the 

nuclear technology to protect the nation during a period of great international peril.  The post-

WWII research partnership between the federal government and the nation’s universities was 

critical to national security during the Cold War and drove much of America’s economic growth 

during the latter half of the 20th century.  And the Apollo Program fulfilled humankind’s dream to 

conquer space by sending men to the moon.  These earlier successful efforts demonstrate the 

nation’s recurrent willingness to invest at a scale needed to address pressing national 

challenges, although the Manhattan and Apollo models are not entirely appropriate to meet 

today’s complex, urgent, and multidisciplinary energy challenges.166 

  Most analogous to what is needed today, in this respect, is the visionary action taken 

by Congress to respond to the challenge of modernizing American agriculture and industry with 

the Hatch Act of 1887.  This act created a network of agricultural and engineering experiment 

stations through a partnership involving higher education, business, and state and federal 

government that developed and deployed the technologies necessary to build a modern 

industrial nation for the 20th century while stimulating local economic growth.  The proposed 

network of regional e-DIIs is remarkably similar both in spirit and structure, since it will bring 

together a partnership among research universities, business and industry, entrepreneurs and 

investors, and federal, state, and local governments working together across a broad spectrum 

of scientific, engineering, economic, behavioral, and policy disciplines to build a sustainable 
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national energy infrastructure for the 21st century, while also stimulating strong regional 

economic growth. 

It is time once again for the federal government to make a major commitment to 

investing adequately in the R&D necessary to develop breakthrough technologies that will 

secure prosperity and security for future generations while protecting global environmental 

sustainability.  The proposed e-DII network would represent a critical element of this effort. 



 

 65 Brookings · February 2009 
 

 

NOTES 
 
 
                                                 
1 See National Academy of Engineering, Engineering Research and America's Future: Meeting 
the Challenges of a Global Economy (Washington: National Academies, 2005) 

2 “E-DIIs” represent an energy-oriented adaptation of the discovery-innovation institute concept 
developed by the National Academy of Engineering to stimulate applications-oriented R&D 
across the range of the physical sciences.  See National Academy of Engineering, Engineering 
Research and America's Future. 

3 Energy Information Administration, "Annual Energy Review 2007" (Washington, 2008). 

4 Energy Information Administration, "International Energy Outlook 2008" (Washington, 2008). 

5 International Energy Agency, "World Energy Outlook" (Paris, 2006). 

6 Nathan S. Lewis, "Powering the Planet," Caltech Engineering & Science 2 (2007): 13.  

7 Energy Information Administration, "Petroleum Basic Statistics," available at 
www.eia.doe.gov/basics/quickoil.html (October 14 2008). 

8 David Goodstein, Out of Gas: The End of the Age of Oil (New York: W.W. Norton, 2004). 

9 Oil dependence here was measured as net imports (total imports minus total exports) divided 
by total products supplied.  Energy Information Administration, "Petroleum Basic Statistics."  
The United States also imports 16 percent of the natural gas consumed each year, resulting in 
similar economic and security vulnerabilities as with oil.  Energy Information Administration, 
"Natural Gas Basic Statistics," available at www.eia.doe.gov/basics/quickgas.html (October 13 
2008). 

10 Jason Furman and others, "An Economic Strategy to Address Climate Change and Promote 
Energy Security" (Washington: Brookings, 2007). 

11 Robert E. Scott, "U.S. Trade Balance Improves for First Time since 2001," Economic Policy 
Institute, available at www.epi.org/content.cfm/indicators_intlpict_20080215 (October 13 2008). 

12 See Table 3.3a, Energy Information Administration, "Monthly Energy Review (September 
2008)" (Washington, 2008). 

13 David Mark, "Q&A with William Antholis," Politico, available at 
www.politico.com/news/stories/1008/14537.html (October 20 2008). 

14 Joe Barnes and Matthew E. Chen, "NOCs and U.S. Foreign Policy" (Houston, TX: Rice 
University, 2007). 

15 Michael T. Klare, Blood and Oil: The Dangers and Consequences of America's Growing 
Dependency on Imported Petroleum (New York: Metropolitan Books, 2005) 



 

 66 Brookings · February 2009 
 

                                                                                                                                                          
16 Daniel Yergin, "Ensuring Energy Security," Foreign Affairs 85 (2) (2006): 69–82; Furman and 
others, "An Economic Strategy to Address Climate Change and Promote Energy Security.” 

17 Intergovernmental Panel on Climate Change, "Climate Change 2007" (Cambridge: 
Cambridge University Press, 2007). 

18 International Energy Agency, "Energy Technology Perspectives 2008: Scenarios and 
Strategies to 2050" (Paris: Organization for Economic Cooperation and Development, 2008). 

19 Intergovernmental Panel on Climate Change, "Climate Change 2007.” 

20 International Energy Agency, "Energy Technology Perspectives 2008.” See also Richard G. 
Newell, “A U.S. Innovation Strategy for Climate Change Mitigation” (Washington: Brookings 
Institution, 2008). 

21 Newell, “A U.S. Innovation Strategy for Climate Change Mitigation.” 

22 U.S. Energy Information Administration, “Annual Energy Outlook 2008 (Washington: U.S. 
Department of Energy, 2008) in Newell, “A U.S. Innovation Strategy for Climate Change 
Mitigation.”  

23 Ibid. 

24 Ibid. 

25 Ted Nordhaus and Michael Shellenberger, "Scrap Kyoto," Democracy Journal 9 (Summer) 
(2008): 8–19. See also Shellenberger and others, “Fast. Clean, and Cheap: Cutting Global 
Warming’s Gordian Knot,” Harvard Law and Policy Review 2: 93–118. 

26 International Energy Agency, "Energy Technology Perspectives 2008.” 

27 Paul J. Runci and James J. Dooley, "Research and Development Trends for Energy." In 
Cutler J. Cleveland, ed. Encyclopedia of Energy (Oxford, UK: Elsevier, 2004). 

28 Diana Farrell and others, "The Case for Investing in Energy Productivity" (San Francisco: 
McKinsey&Company, 2008). 

29 Ibid. 

30 International Energy Agency, "Energy Technology Perspectives 2008.” See also Lawrence 
Goulder, “Induced Technological Change and Climate Policy” (Washington: Pew Center on 
Global Climate Change, 2004); Lewis Milford, “From Here to Stabilization: A Call for Massive 
Climate Technology Innovation” (Montpelier: Clean Energy Group, 2006) and Nicholas Stern, 
“The Stern Review: The Economics of Climate Change” (London: HM Treasury, 2006). 

31 Newell, “A U.S. Innovation Strategy for Climate Change Mitigation.”  Many studies have 
demonstrated the central role that the availability and affordability of advanced energy 
technologies plays in determining the cost of various emissions targets. See also Shellenberger 
and others, “Fast, Clean, and Cheap: Cutting Global Warming’s Gordian Knot,” Harvard Law 
and Policy Review 2: 93–118. 



 

 67 Brookings · February 2009 
 

                                                                                                                                                          
 

32 Jon Gertner, "Capitalism to the Rescue." The New York Times Magazine, October 5, 2008; 
George S. Ford, Thomas M. Koutsky, and Lawrence J. Spiwak, "A Valley of Death in the 
Innovation Sequence: An Economic Investigation" (Phoenix: Phoenix Center for Advanced 
Legal & Economic Policy Studies, 2007). 

33 John P. Holdren, "The Energy Innovation Imperative: Addressing Oil Dependence, Climate 
Change, and Other 21st Century Energy Challenges," Innovations 1 (2) (2006): 3–23. 

34 Government Accountability Office, "Key Challenges Remain for Developing and Deploying 
Advanced Energy Technologies to Meet Future Needs" (Washington, 2006). 

35 Ken Zweibel, James Mason, and Vasilis Fthenakis, "Solar Grand Plan," Scientific American 
298 (1) (2008): 64–73. 

36 Worldwatch Institute and Cornell University Global Labor Institute, "Green Jobs: Towards 
Decent Work in a Sustainable, Low-Carbon World" (Washington: United Nations Environment 
Programme, 2008). 

37 Roger Bezdek, "Renewable Energy and Energy Efficiency: Economic Drivers for the 21st 
Century" (Boulder, CO: American Solar Energy Society, 2007). 

38 Nordhaus and Shellenberger, "Scrap Kyoto.” 

39 Holdren, “The Energy Innovation Imperative.” 

40 Mark Boroush, "New Estimates of National Research and Development Expenditures Show 
5.8% Growth in 2007" (Arlington: National Science Foundation, 2008).   

41 Ibid.  Data is for 2007, reported in constant 2008 dollars. 

42 Ibid. 

43 Part of the R&D funded by the Department of Energy that had been classified as “energy” 
was shifted into the “general science” budget classification beginning in 1998.  Federal energy 
spending was $3.24 billion in 1997 and $1.27 billion in 1998, a difference of $1 billion.  The 
general science category also increased by approximately $1 billion, suggesting the magnitude 
of change was $1 billion.  This difference is the primary reason why the federal figures used 
here differ from the “public” energy spending reported in Gregory F. Nemet and Daniel M. 
Kammen, "US Energy Research and Development: Declining Investment, Increasing Need, and 
the Feasibility of Expansion," Energy Policy 35 (1) (2007): 746–755. 

44 Holdren, “The Energy Innovation Imperative.” 

45 Robert M. Margolis and Daniel M. Kammen, "Underinvestment: The Energy Technology and 
R&D Policy Challenge," Science 285 (5428) (1999): 690–692. 

46 Value for each industry calculated as federal R&D by budget function divided by gross output 
by industry (latest available data for 2006).  All values expressed in constant 2008 dollars.  



 

 68 Brookings · February 2009 
 

                                                                                                                                                          
National Science Foundation, "Federal R&D Funding by Budget Function: Fiscal Years 2007–
09" (Arlington, VA, 2008); Bureau of Economic Analysis, "Industry Economic Accounts," 
available at www.bea.gov/industry/index.htm (October 27 2008).  R&D intensity for the energy 
sector was calculated as federal plus large industrial energy R&D expenditures divided by total 
energy expenditures, reported in the Energy Information Administration’s “State Energy Data 
System,” available at www.eia.doe.gov/emeu/states/_seds.html [October 17, 2008].  Energy 
R&D, according to NSF, is conducted by the following industries: manufacturing (petroleum and 
coal products; chemicals; machinery; computer and electronic equipment; electrical equipment, 
appliances, and components; transportation equipment; other manufacturing); 
nonmanufacturing (mining, extraction, and support activities; other nonmanufacuring).  Total 
energy expenditures of $1 trillion may underestimate the entire U.S. energy market, as recent 
estimates of the U.S. renewable energy and efficiency market alone place its value at $972 
billion in 2006.  Bezdek, "Renewable Energy and Energy Efficiency: Economic Drivers for the 
21st Century.” 

47 Margolis and Kammen, "Evidence of under-Investment in Energy R&D in the United States 
and the Impact of Federal Policy," Energy Policy 27 (1999): 575–584; Nemet and Kammen, "US 
Energy Research and Development.” 

48 Gertner, "Capitalism to the Rescue." 

49 Marilyn A. Brown and others, "Carbon Lock-In: Barriers to Deploying Climate Change 
Mitigation Technologies" (Oak Ridge, TN: Oak Ridge National Laboratory, 2007). 

50 For more detail on the market failures related to innovation, see Robert Atkinson and Howard 
Wial, "Boosting Productivity, Innovation, and Growth through a National Innovation Foundation" 
(Washington: Brookings, 2008). 

51 See Newell, “A U.S. Innovation Strategy for Climate Change Mitigation,” for a discussion of 
how certain market failures depress world R&D and innovation levels.   

52 Government Accountability Office, "Key Challenges Remain for Developing and Deploying 
Advanced Energy Technologies to Meet Future Needs.” 

53 Gertner, "Capitalism to the Rescue." 

54 PricewaterhouseCoopers and National Venture Capital Association, "Moneytree Report: Q2 
2008 US Results," available at 
www.pwcmoneytree.com/MTPublic/ns/moneytree/filesource/exhibits/MoneyTree%20-
%20Q2%202008%20final.pdf (October 28 2008). 

55 Clifford Krauss, "Momentum Slows for Alternative Energy in U.S." International Herald 
Tribune, October 21, 2008. 

56 A growing body of literature is coming to this view.  See among others Michael Grubb, 
“Technology Innovation and Climate Change Policy: An Overview of Issues and Options,” Keio 
Economic Studies 41 (2): 103–132; Milford, “From Here to Stabilization;” Knut A. Alfsen and 
Gunnar Eskeland, “A Broader Palette: The Role of Technology in Climate Policy, Report to the 
Ministry of Finance” (Stockholm: Ministry of Finance, 2007); Stern, “The Stern Review;”  



 

 69 Brookings · February 2009 
 

                                                                                                                                                          
Nordhaus and  Shellenberger, "Scrap Kyoto;" and Shellenberger and others, “Fast. Clean, and 
Cheap.” 

57 Goulder, “Induced Technological Change and Climate Policy.” 

58 Holdren, "Federal Energy Research and Development for the Challenges of the 21st Century: 
The 1997 PCAST Study and its Relevance to Provisions of S.597." Testimony, July 18, 2001; 
Adam B. Jaffe, Richard G. Newell, and Robert N. Stavins, "A Tale of Two Market Failures: 
Technology and Environmental Policy" (Washington: Resources for the Future, 2004). 

59 Ibid. 

60 Ibid. 

61 Recent estimates place public benefits nearly four times larger than private benefits.  Furman 
and others, "An Economic Strategy to Address Climate Change and Promote Energy Security.” 

62 Jaffe, Newell, and Stavins, "A Tale of Two Market Failures.” 

63 Ibid. 

64 Shellenberger and others, “Fast. Clean, and Cheap.” 

65 Stern, “The Stern Review.” 

66 Ibid. 

67 Boroush, "New Estimates of National Research and Development Expenditures Show 5.8% 
Growth in 2007.”   

68 Ibid.   

69 Atkinson and Wial, "Boosting Productivity, Innovation, and Growth through a National 
Innovation Foundation"; PricewaterhouseCoopers and National Venture Capital Association, 
"Moneytree Report: Q2 2008 US Results." 

70 Runci and Dooley, "Research and Development Trends for Energy." In Cleveland, 
Encyclopedia of Energy. p.445. 

71 Marilyn A. Brown, "Market Failures and Barriers as a Basis for Clean Energy Policies," Energy 
Policy 29 (14) (2001): 1197–1207. 

72 Margolis and Kammen, "Evidence of under-Investment in Energy R&D in the United States 
and the Impact of Federal Policy." 

73 Brown, "Market Failures and Barriers as a Basis for Clean Energy Policies." 

74 Jaffe, Newell, and Stavins, "A Tale of Two Market Failures.” 

75 Ibid. 



 

 70 Brookings · February 2009 
 

                                                                                                                                                          
76 Furman and others, "An Economic Strategy to Address Climate Change and Promote Energy 
Security.” 

77 Richard G. Newell, "Inducing Innovation for Climate Change Mitigation" (Washington: 
Resources for the Future, 2008). 

78 For a general review of the academic literature on industry clusters, what they are, how they 
work, and why they matter for innovation see Joseph Cortright, “Making Sense of Clusters: 
Regional Competitiveness and Economic Development” (Washington: Brookings Institution, 
2006).  See also Timothy F. Bresnahan, Alfonso Gambardella, and AnnaLee Saxenian, "'Old 
Economy' Inputs for 'New Economy' Outcomes: Cluster Formation in the New Silicon Valleys," 
Industrial and Corporate Change 10 (4) (2001): 835-860; AnnaLee Saxenian, Regional 
Advantage: Culture and Competition in Silicon Valley and Route 128 (Cambridge, MA: Harvard 
University Press, 1996); Michael E. Porter, On Competition (Cambridge, MA: Harvard Business 
Press, 1998); and Karen G. Mills, Elisabeth B. Reynolds, and Andrew Reamer, "Clusters and 
Competitiveness: A New Federal Role for Stimulating Regional Economies" (Washington: 
Brookings, 2008).  

79 Bresnahan, Gambardella, and Saxenian, "'Old Economy' Inputs for 'New Economy' 
Outcomes;" Saxenian, Regional Advantage: Culture and Competition in Silicon Valley and 
Route 128; Porter, On Competition; Mills, Reynolds, and Reamer, "Clusters and 
Competitiveness.”  

80 For further discussion of the as-yet-nascent clustering of the “cleantech” sector see Karen 
Mills and Mark Muro, “Clusters and Cleantech: Stimulating Energy Innovation in America’s 
Economic Regions” (Washington: Brookings Institution, forthcoming).  

81 See, among others, Newell, “A U.S. Innovation Strategy for Climate Change Mitigation,” for a 
discussion of how emissions pricing would encourage energy innovation and cost-effective 
deployment. 

82 Shellenberger and others, "Fast, Clean, & Cheap."  

83 For discussions of the sort of research that government should support see Furman and 
others, "An Economic Strategy to Address Climate Change and Promote Energy Security;" 
Brown, "Market Failures and Barriers as a Basis for Clean Energy Policies;" International 
Energy Agency, "Energy Technology Perspectives 2008;” and Newell, “A U.S. Innovation 
Strategy for Climate Change Mitigation.” 

84 Ford, Koutsky, and Spiwak, "A Valley of Death in the Innovation Sequence: An Economic 
Investigation.” 

85 Margolis and Kammen, "Evidence of under-Investment in Energy R&D in the United States 
and the Impact of Federal Policy." 

86 President's Committee of Advisors on Science and Technology, "Federal Energy Research 
and Development for the Challenges of the Twenty-First Century" (Washington, 1997). See also 
Newell, “A U.S. Innovation Strategy for Climate Change Mitigation.” 



 

 71 Brookings · February 2009 
 

                                                                                                                                                          
87 For a classic discussion of the public goods rationale for different levels of government 
engagement, see Edward M. Gramlich, “The Economics of Fiscal Federalism and its Reform” in 
Thomas Swartz and John Peck, eds., The Changing Face of Fiscal Federalism (Armonk: M.E. 
Sharpe, Inc., 1990). 

88 Walter A. Rosenbaum, Environmental Politics and Policy (Washington, DC: CQ Press, 2008) 

89 R&D expenditures are reported in constant 2008 dollars. National Science Foundation, 
"Federal R&D Funding by Budget Function.” 

90 Ibid. 

91 Approximately five percent of the current federal energy R&D budget goes to the Tennessee 
Valley Authority (1 percent) and the Nuclear Regulatory Commission (4 percent). National 
Science Foundation, "Federal R&D Funding by Budget Function.” 

92 Michael Crow and Barry Bozeman, Limited by Design: R&D Laboratories in the U.S. National 
Innovation System (New York: Columbia University Press, 1998), p. 63. 

93 Peter Odgen, John Podesta, and John Deutch, "A New Strategy to Spur Energy Innovation," 
Issues in Science & Technology 24 (2) (2008): 35–44. 

94 Kelly Sims Gallagher, "DOE Budget Authority for Energy Research, Development, and 
Demonstration Database" (Cambridge, MA: Harvard University, 2008). 

95 Ibid. 

96 Department of Energy, "DOE Funded Research Projects Win 30 R&D Awards for 2008," 
available at www.energy.gov/news/6423.htm (December 11 2008). 

97 Office of Scientific and Technical Information, “Nobel Laureates Associated with the DOE and 
Predecessor Agencies,” available at www.osti.gov/accomplishments/nobel.html (December 11, 
2008). 

98 The national labs are more formally known as federally funded research and development 
centers (FFRDCs).  See National Science Foundation, "Master Government List of Federally 
Funded R&D Centers" (Arlington, VA, 2007). 

99 Charles M. Vest, "Critical Choices: Science, Energy, and Security" (Washington: U.S. 
Department of Energy, 2003). 

100 International Energy Agency, "Energy Technology Perspectives 2008;" President’s Council of 
Advisors on Science and Technology (PCAST), "The Energy Imperative: Technology and the 
Role of Emerging Companies" (Washington: Executive Office of the President, 2006); National 
Academy of Engineering, Engineering Research and America's Future; National Academies, 
"America’s Energy Future: Technology Opportunities, Risks and Tradeoffs" (Washington: 
National Academies Press, 2008). 

101 Holdren, "The Energy Innovation Imperative.” 



 

 72 Brookings · February 2009 
 

                                                                                                                                                          
102 Vest, "Critical Choices.” 

103 Lamar Alexander, "A New Manhattan Project for Clean Energy Independence," Issues in 
Science & Technology (Summer) (2008); Jay Inslee, "We Need to Reward Clean Energy" 
(Washington, 2008). 

104 Newell, "Inducing Innovation for Climate Change Mitigation;” and Newell, “A U.S. Innovation 
Strategy for Climate Change Mitigation.”  In the latter report, Newell recommends gradually 
increasing federal spending for climate mitigation research to roughly $8 billion per year over 
the next eight years, or roughly doubling energy research from 2007 levels by 2016.” Nemet and 
Kammen, "US Energy Research and Development.” 

105 Figures are adjusted to year 2007 dollars.  See Deborah D. Stine, "The Manhattan Project, 
the Apollo Program, and Federal Energy Technology R&D Programs: A Comparative Analysis" 
(Washington: Congressional Research Service, 2008); Susan Hockfield, "Reimagining Energy." 
The Washington Post, September 11, 2008, p. A17; Alexander, "A New Manhattan Project for 
Clean Energy Independence." 

106 Stine, "The Manhattan Project, the Apollo Program, and Federal Energy Technology R&D 
Programs.” 

107 Vest, "Critical Choices.” 

108 Holdren, "Federal Energy Research and Development for the Challenges of the 21st 
Century." For a depiction of the large-scale organizational “stovepiping” that segments the DOE 
see the agency’s official org chart, available at www.energy.gov/organization/orgchart.htm 

109 Benjamin K. Sovacool, "Replacing Tedium with Transformation: Why the US Department of 
Energy Needs to Change the Way It Conducts Long-Term R&D," Energy Policy 36 (3) (2008): 
923–928.  

110 Odgen, Podesta, and Deutch, "A New Strategy to Spur Energy Innovation." 

111 Vest, "Critical Choices.” 

112 For a review of technology transfer problems in universities see Robert Litan, Lesa Mitchell, 
and E.J. Reedy, “The University as Innovator: Bumps in the Road,” Issues in Science and 
Technology (Summer, 2007). 

113 Ibid. 

114 Robert Sanders, “EBI Named Tech-Transfer ‘Deal of Distinction.” Press release, University of 
California at Berkeley, Oct. 22, 2008. 

115 Litan, Mitchell, and Reedy, “The University as Innovator.” 

116 Brad Whitehead, “Initial Perspectives on e-DIIs,” Personal communication, December, 2008. 

117 Litan, Mitchell, and Reedy, “The University as Innovator.”   



 

 73 Brookings · February 2009 
 

                                                                                                                                                          
118 Newell, among many others, names the training of researchers and engineers as a key 
benefit of public R&D funding in the energy area. See Newell, “A U.S. Innovation Strategy for 
Climate Change Mitigation.”   

119 Deborah D. Stine, "Advanced Research Projects Agency - Energy (ARPA-E): Background, 
Status, and Selected Issues for Congress" (Washington: Congressional Research Service, 
2008). Stine here cites testimony of Dr. Anthony Tether, Director of DARPA, before the House 
Committee on Science on May 12, 2005. 

120 Norman R. Augustine and others, Rising above the Gathering Storm: Energizing and 
Employing America for a Brighter Economic Future (Washington: National Academies Press, 
2007) 

121 Stine, "Advanced and Research Projects Agency - Energy (ARPA-E).” 

122 Ibid. 

123 Ibid. 

124 Department of Energy, "Energy Frontier Research Centers: Tackling Our Energy Challenges 
in a New Era of Science" (Washington, 2008). 

125 For more information, see www.sc.doe.gov/bes/EFRC.html (October 29 2008). 

126 Organization for Economic Cooperation and Development, "Competitive Regional Clusters" 
(Paris, 2007). 

127 See www.crann.tcd.ie for more information on CRANN. 

128 Ibid. 

129 More information available at Quebec’s Department of Economic Development, Innovation, 
and Export at www.mdeie.gouv.qc.ca/index.php?id=10 (October 29 2008).  

130 For more, see ifci-iipc.nrc-cnrc.gc.ca/main_e.html.  Also see the Organization for Economic 
Cooperation and Development’s 2007 report, “Competitive Regional Clusters: National Policy 
Approaches,” available at 213.253.134.43/oecd/pdfs/browseit/0407061E.PDF. 

131 Chris Webber, "Innovation, Science, and the City" (London: Center for Cities, 2008). While in 
most places the “Science City” infrastructure has helped to improve public/private and 
university/industry partnerships, the reviews are mixed on the actual value-added of the 
“Science City” brand. 

132 More information on the UK’s Technology Strategy Board is available at 
www.innovateuk.org.  For more on Knowledge Transfer Networks, see www.ktnetworks.co.uk.  
For more on Knowledge Transfer Partnerships, see www.ktponline.org.uk. 

133 Organization for Economic Cooperation and Development, "OECD Reviews of Innovation 
Policy - China, Synthesis Report" (Paris, 2007). 



 

 74 Brookings · February 2009 
 

                                                                                                                                                          
134 See New York State’s Centers of Excellence website at 
www.nylovesbiz.com/High_Tech_Research_and_Development/centers_for_excellence.asp 
(October 29 2008). 

135 See the Infotonics Technology Center’s website at www.itcmems.com (October 29 2008).  

136 See the Syracuse Center of Excellence website at www.syracusecoe.org (October 29 2008).  

137 See the New York State Center of Excellence in Bioinformatics and Life Sciences website at 
www.bioinformatics.buffalo.edu (October 29 2008).  

138 See ONAMI’s website at www.onami.us (October 29 2008).  

139 See the OTRADI website at www.otradi.org (October 29 2008).  

140 See the Oregon BEST website at oregonbest.org (October 29 2008).  

141 Atkinson and Wial, "Boosting Productivity, Innovation, and Growth through a National 
Innovation Foundation.” 

142 Government Accountability Office, "Key Challenges Remain for Developing and Deploying 
Advanced Energy Technologies to Meet Future Needs.” 

143 Jeffrey Brainard, “Biofuel Research Pays Off for Iowa State,” The Chronicle of Higher 
Education, April 20, 2007, p. 22; Goldie Blumenstyk, “Tennessee to Construct Ethanol 
Refinery,” Money & Management 54(6): 26; the website for Memphis’ efforts available at 
best.memphis.edu/index.htm;   

144 For more information see “BP Selects UC Berkeley to Lead $500 Million Energy Research 
Consortium With Partners Lawrence Berkeley National Lab, University Of Illinois” available at 
berkeley.edu/news/media/releases/2007/02/01_ebi.shtml (January 2009). 

145 For more information, see “U-M and GM Open $5M Advanced Battery Research Lab” 
available at www.ns.umich.edu/htdocs/releases/story.php?id=6920 (January 2009). 

146 For more information, see the FSEC website at www.fsec.ucf.edu (January 2009).  

147 For more information, see the Lugar Energy Center website at 
www.lugarenergycenter.iupui.edu (January 2009). 

148 For more information, see the Colorado Collaboratory website at 
www.coloradocollaboratory.org/ (January 2009). 

149 For more information, see the Department of Energy website at 
www.er.doe.gov/News_Information/News_Room/2007/Bioenergy_Research_Centers/index.htm 
(January 2009).  

150 For more information see “Entrepreneur in Residence Questions and Answers” available at 
www.eere.energy.gov/commercialization/entrepreneur_qanda.html (January 2009). 



 

 75 Brookings · February 2009 
 

                                                                                                                                                          
151 For more information, see Center for Wireless Communications website at www-
cwc.ucsd.edu/industry.php  (January 2009).   

152 For more information, see the National Center for Manufacturing Sciences website at 
www.ncms.org/ (January 2009).   

153 For more information, see the Mesa del Sol website at www.mesadelsolnm.com/  (January 
2009). 

154 For more information, see “Boeing Joins Aviation, Energy and Academic Leaders to 
Accelerate Development and Availability of Sustainable Biofuels” available at 
www.boeing.com/news/releases/2008/q3/080924e_nr.html (January 2009).   

155 For more information, see the NextEnergy website at www.nextenergy.org/index.aspx 
(January 2009).   

156 For more information, see the Fund for Our Economic Future at www.futurefundneo.org  
(January 2009). 

157 For more information, see the BioEnterprise website at www.bioenterprise.com (January 
2009).   

158 For more information, see “Six Northeast Ohio Technology Centers Receive $1M for 
Commercialization Projects” available at www.nortech.org/News/NewsDetail.aspx?NewsID=97  
(January 2009).   

159 For more information, see the SFAz website at www.sfaz.org (January 2009). 

160 Augustine and others, Rising above the Gathering Storm 

161 Congressional Budget Office, "Cost Estimate: S. 2197 - Protecting America’s Competitive 
Edge through Energy Act of 2006" (Washington, 2006). 

162 The President did not propose any funding for DIIs following adoption of America 
COMPETES, and instead proposed that EFRCs be enacted by DOE.  The proposed DOE 
EFRC initiative may be authorized $100 million in FY 2009 (still to be finalized).  

163 Furman and others, "An Economic Strategy to Address Climate Change and Promote 
Energy Security"; Atkinson and Wial, "Boosting Productivity, Innovation, and Growth through a 
National Innovation Foundation”; Richard Duke and Daniel M. Kammen, "The Economics of 
Energy Market Transformation Programs," Energy Journal 20 (4) (1999): 15–64. 

164 Clive Thompson, "A Green Coal Baron?" New York Times Magazine, June 22, 2008, p. 26. 

165 For a review of national engagements in U.S. innovation breakthroughs going back to the 
transcontinental railroads see The Breakthrough Institute, “Case Studies in American 
Innovation: A New Look at Government Involvement in Technological Development” (Oakland, 
2008).  



 

 76 Brookings · February 2009 
 

                                                                                                                                                          
166 Stine, "The Manhattan Project, the Apollo Program, and Federal Energy Technology R&D 
Programs.” 

 

 

 

 

About the Metropolitan Policy Program at Brookings 
Created in 1996, the program provides decision makers with cutting-edge research and policy 
ideas for improving the health and prosperity of cities and metropolitan areas including their 
component cities, suburbs, and rural areas.  Learn more at www.brookings.edu/metro   

 
The Blueprint for American Prosperity 

The Blueprint for American Prosperity is a multi-year initiative to promote an economic agenda 
for the nation that builds on the assets and centrality of America’s metropolitan areas. Grounded 
in empirical research and analysis, the Blueprint offers an integrated policy agenda and specific 
federal reforms designed to give metropolitan areas the tools they need to generate 
economically productive growth, to build a strong and diverse middle class, and to grow in 
environmentally sustainable ways. Learn more about the Blueprint at 
www.blueprintprosperity.org   

 
The Metropolitan Policy Program Leadership Council 

The Blueprint initiative is supported and informed by a network of leaders who strive every day 
to create the kind of healthy and vibrant communities that form the foundation of the U.S. 
economy.  The Metropolitan Policy Program Leadership Council–a bipartisan network of 
individual, corporate, and philanthropic investors–comes from a broad array of metropolitan 
areas around the nation.  Council members provide us financial support but, more importantly, 
are true intellectual and strategic partners in the Blueprint.  While many of these leaders act 
globally, they retain a commitment to the vitality of their local and regional communities, a rare 
blend that makes their engagement even more valuable.  To learn more about the members of 
our Leadership Council, please visit www.blueprintprosperity.org  
 
 

About the Authors 
James Duderstadt is President Emeritus and University Professor of Science and Engineering 

at the University of Michigan 
Gary Was is Director of the Michigan Memorial Phoenix Energy Institute and is the  Walter J. 

Weber, Jr. Professor of Sustainable Energy, Environmental, and Earth Systems Engineering at 
the University of Michigan 



 

 77 Brookings · February 2009 
 

                                                                                                                                                          

Robert McGrath is Deputy Laboratory Director, Science & Technology at the National 
Renewable Energy Laboratory 

Mark Muro is a Fellow and the Policy Director of the Metropolitan Policy Program at Brookings 
Michael Corradini is the Wisconsin Distinguished Professor of Nuclear Engineering and 

Engineering Physics and Chair of the Energy Institute at the University of Wisconsin 
Linda Katehi is Provost and Vice Chancellor of Academic Affairs and Professor of Electrical and 

Computer Engineering at the University of Illinois at Urbana-Champagne 
Rick Shangraw is Vice-President for Research and Economic Affairs at Arizona State University 
Andrea Sarzynski is Assistant Research Professor at the George Washington Institute of Public 

Policy 

 

For More Information 
 

The shorter brief summarizing this paper is available at  
www.blueprintprosperity.org 

 
James J. Duderstadt 

President Emeritus and University Professor of Science and Engineering 
University of Michigan 

jjd@umich.edu 
 

Mark Muro 
Fellow and Policy Director 

Metropolitan Policy Program at Brookings 
mmuro@brookings.edu 

 
 

Acknowledgments 
 

This paper resulted from a collaborative process involving participants throughout the Great 
Lakes and Intermountain West regions and chaired by President Michael Crow of Arizona State 
University and President Gordon Gee of The Ohio State University.  Working group participants 
included Kevin Cook, Michael Corradini, Jim Duderstadt, Linda Katehi, Mary Lindstrom, Robert 
McGrath, Roberto Peccei, Rick Shangraw, Stein Sture, and Gary Was.  Development of the 
report was managed by Mark Muro.  Drafting assistance was provided by Andrea Sarzynski, 
with research assistance from Sarah Rahman and David Warren.  Many people also provided 
advice and comments during development of the paper, including Wade Adams, William 
Antholis, Robert Atkinson, Bill Bates, Alan Berube, Howard Berke, Jason Bordoff, Jennifer 
Bradley, Doug Cameron, Joe Cecchi, Mark Fleiner, Billy Glover, Steve Forrest, Christina 
Gabriel, Howard Gobstein, William Harris, Paul Hillegonds, Jesse Jenkins, Richard Kauffman, 
Chris King, Don Lamb, Neal Lane, Nate Lewis, Amy Liu, Deron Lovass, William Madia, Donald 
McConnell, Peter McPherson, Terry Michalske, Karen Mills, Matt Nemerson,  Teryn Norris, 
Thomas Palmieri, Paul Percy, David Pines, Robert Puentes, Jim Sears, Michael Shellenberger, 
Jennifer Vey, Jeffrey Wadsworth, Bradley Whitehead, Howard Wial, and William Wulf. 
 



 

 78 Brookings · February 2009 
 

                                                                                                                                                          
 

 

 

 

 

 


