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Summary. This article presents a new modeling strategy in functional data analysis. We consider the problem of estimating an
unknown smooth function given functional data with noise. The unknown function is treated as the realization of a stochastic
process, which is incorporated into a diffusion model. The method of smoothing spline estimation is connected to a special
case of this approach. The resulting models offer great flexibility to capture the dynamic features of functional data, and
allow straightforward and meaningful interpretation. The likelihood of the models is derived with Euler approximation and
data augmentation. A unified Bayesian inference method is carried out via a Markov chain Monte Carlo algorithm including
a simulation smoother. The proposed models and methods are illustrated on some prostate-specific antigen data, where we
also show how the models can be used for forecasting.
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1. Introduction
With the advent of many high-throughput technologies, func-
tional data are routinely collected. To analyze those data,
we usually assume that the observations are generated from
an unknown mean function with additive errors. This article
aims to use a diffusion model to estimate the mean function
and its derivatives under this assumption.

There is a rich literature on penalized methods to regu-
late the mean function and to incorporate smoothness as-
sumptions by using the penalized functions, with the focus
on estimation of the unknown mean function (Wahba, 1990;
Green and Silverman, 1994; Ramsay and Silverman, 2005).
In many practical settings, not only the mean function but
also its derivatives (in general referred to as dynamics) of-
fer useful insights regarding the underlying mechanism of
a physical or biological process. For example, in the study
of prostate-specific antigen (PSA), an important biomarker
of prostate cancer, we are not only interested in the PSA
level but also the dynamics of PSA. Figure 1 displays raw
data of one patient’s PSA level (panel (a)) and the scaled
difference (panel (b)) over time (Proust-Lima et al., 2008),
where Y (t) = log(PSA(t) + 0.1) and scaled difference is ΔY

Δt
.

It is easy to observe that the PSA level is largely driven
by the behavior of the scaled difference that itself provides
meaningful clinical interpretation. Modeling the process of
the scaled difference will facilitate the modeling of the PSA
level. However, the connection between the PSA level and
the scale difference cannot be established simply by associa-

tion, but instead by hierarchical models of dynamics, as the
scaled difference may be regarded as the derivative of the PSA
level.

This article presents a new modeling strategy in functional
data analysis, where the a priori smoothness assumption is
specified by stochastic diffusion processes, using a set of or-
dinary and stochastic differential equations connected in a
hierarchical fashion, in the hope that it not only models the
mean function but also captures its various dynamic features.
Note that this approach treats the unknown mean function
and its dynamics as a sample path of stochastic processes.
This treatment is different from kernel smoothing and spline
smoothing, where the mean function is regarded as a deter-
ministic unknown function. Our treatment of the mean func-
tion is similar to that considered in the Gaussian process mod-
els for nonparametric Bayesian data analysis, where the mean
function is governed by a prior Gaussian process with a mean
function M(t; φ) and a covariance function C(t, t′; φ) with
hyperparameters φ (Muller and Quintana, 2004; Rasmussen
and Williams, 2006). However, the hierarchical structure of
the proposed model enables us to make inference of the mean
function and its dynamics simultaneously. In particular, the
method provides the estimation and inference for parameters
of the stochastic differential equation from noisy data. We
note that this differs from the approaches to parameter esti-
mation for models based on ordinary differential equations as
recently developed by, for example, Ramsay et al. (2007) and
Liang and Wu (2008).
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Figure 1. PSA plots: (a) the raw data; (b) the scaled difference.

The rest of the article is organized as follows. Section 2 in-
troduces the proposed model and considers two special cases.
For each case, we give model interpretation and discuss sev-
eral interesting relationships. Section 3 develops Bayesian in-
ference for stochastic functional data analysis models, where
the likelihood is derived using Euler approximation and data
augmentation. Section 4 presents a simulation study. In Sec-
tion 5, the proposed models and methods are applied to esti-
mate the PSA profile from prostate cancer data. Concluding
remarks are given in Section 6. Technical details are included
in the Web Appendix.

2. Stochastic Velocity Model
2.1 Model Specification
Consider a regression model for functional data of the form:

Y (t) = U (t, ω) + ε(t), ω ∈ Ω, t ∈ To , (1)

where Ω is the sample space, To is the index set of obser-
vation times, defined as To := {tj : t1 < t2 < · · · < tJ }, and
U (·, ω) is an unknown function of interest to be estimated
and ε(t) ∼ N (0, σ2

ε ) at each time t. The goal is to estimate
the function U (·, ω) and its derivatives given time series ob-
servations, Y o = [Y (t1), Y (t2), . . . , Y (tJ )]T. In this article, we
develop methods based on diffusion type models for estima-
tion of U (·, ω) and its derivatives U (p)(·, ω), p = 1, . . . , m −
1. Here, U (·, ω) is regarded as a realization of an underlying
stochastic process U := U (·, ·) and thus the observed data are
the sample path of the process plus measurement error.

Model (1) is useful to model the PSA level of prostate can-
cer nonparametrically, where U (t, ω) describes the popula-
tion mean PSA process. To understand the dynamics of the
process, we incorporate models of rate and/or higher-order
derivatives into model (1). To proceed, we begin by treating

U (t, ω) in model (1) as a realization of U (t) := U (t, ·), which
enables us to express U(t) in the form of a stochastic diffusion
model. That is, the stochastic process U satisfies the following
ordinary differential equation (ODE):

dm −1U (t)
dtm −1 = V (t), (2)

and its (m − 1)th order derivative V(t) is governed by a
stochastic differential equation (SDE), given as follows:

dV (t) = a{V (t), φs} dt + b{V (t), φs} dW (t), t ∈ Ts , (3)

where W(t) is the standard Wiener process, φs is the pa-
rameter vector, and Ts := {t : t0 � t � tJ } is a continuous in-
dex set. In addition, the initial condition at time t0 is as-
sumed to be θ(t0) := [U (t0), U (1)(t0), . . . , U (m −2)(t0), V (t0)]T ∼
Nm (0, σ2

0Im ). In this article, we use continuous time stochas-
tic processes U and V to model the underlying dynamics. Let
V := {V (t, ω) : t ∈ Ts , ω ∈ Ω}, defined on a probability space
(Ω,F ,P). We limit V to a one-dimensional continuous state
space and a continuous index set Ts . Similar definition and
limitation hold for U . The SDE in (3) defines a stochastic
diffusion process V , which is a Markov process with almost
surely continuous sample paths. The existence and unique-
ness of the process can be shown rigorously; see Grimmett
and Stirzaker (2001, Chap. 13) and Feller (1970, Chap. 10).

The state equations (2) and (3), along with the observa-
tion equation (1), make up a continuous-discrete state space
model (CDSSM; Jazwinski, 1970, Chap. 6). Although infer-
ence methods will be demonstrated for the stochastic veloc-
ity model (SVM), namely the CDSSM with m = 2, they
are applicable to any higher order of m. For example, m =
3 corresponding to a stochastic acceleration model (SAM).
For SVM, the latent process U(t) represents position, and its



Stochastic Functional Data Analysis 1297

first derivative V(t) is the velocity of U(t). Similarly, in the
SAM, the processes θ(t) := [U (t), U (1)(t), V (t)]T represent the
position, velocity, and acceleration respectively. Coefficients
a{V (t), φs} and b{V (t), φs} in (3) are typically specified ac-
cording to the objectives of a given study. The drift term
a{V (t), φs} can be interpreted as the instantaneous mean of
velocity; it represents the expected conditional acceleration
when V(t) denotes velocity. Likewise, b2{V (t), φs} measures
the instantaneous variance or volatility of velocity. The diffu-
sion model and the consideration of higher derivative in (2)
allow considerable flexibility and the incorporation of vari-
ous dynamic features into the two coefficients a{V (t), φs} ∈ R

and b{V (t), φs} ∈ R
+. By this model-based approach, various

stochastic processes can be specified for V(t), the model fit-
ting can be evaluated by likelihood-based model assessment,
and forecasting can also be easily carried out.

Two special cases are considered in this article. They
are, (i) SVM with Wiener process V(t), denoted SVM-
W, where a{V (t), φs} = 0, b{V (t), φs} = σξ and φs = σ2

ξ ; (ii)
SVM with Ornstein-Uhlenbeck(OU) process V(t), denoted
SVM-OU, where a{V (t), φs} = −ρ{V (t) − ν̄}, b{V (t), φs} =
σξ and φs = [ρ, ν̄, σ2

ξ ]
T.

2.2 Wiener Process for Velocity
In SVM-W, V(t) follows a Wiener process, the instantaneous
variance σ2

ξ measures the disturbance of velocity and influ-
ences the smoothness of U(t). With the smaller the σ2

ξ , V (t)
will appear less wiggly and hence U(t) will be smoother. If
σξ = 0, the velocity V(t) is constant over time, so U(t) be-
comes a straight line.

Integrating (2) and (3) for m = 2, a{V (t), φs} = 0 and
b{V (t), φs} = σξ , we have

U (t) = U (t0) +
∫ t

t0

V (s) ds

= U (t0) + V (t0)(t − t0) + σξ

∫ t

t0

W (s) ds, (4)

V (t) = V (t0) + σξ W (t). (5)

The velocity V(t) follows the Wiener process starting at V (t0).
The position U(t) follows a linear trend with deviation gov-
erned by the integrated Wiener process, σξ

∫ t

0 W (s) ds. As
shown in the literature, there exists an interesting “equiva-
lence” between smoothing splines and Bayesian estimation of
SVM-W (Kimeldorf and Wahba, 1970; Wahba, 1978; Weinert,
Byrd, and Sidhu, 1980). By equivalence, we mean that the two
methods give the same estimate of U(t), see Web Appendix
A for details.

2.3 Ornstein–Uhlenbeck Process for Velocity
The OU process originated as a model for the velocity of a
particle suspended in fluid (Uhlenbeck and Ornstein, 1930).
The velocity V(t) takes the form

dV (t) = −ρ{V (t) − ν̄} dt + σξ dW (t), t ∈ Ts , (6)

where ρ ∈ R
+, ν̄ ∈ R, and σξ ∈ R

+. In contrast to the Wiener
process, the OU process is a stationary Gaussian process with
stationary mean ν̄ and variance σ2

ξ /2ρ. σ2
ξ has the same in-

terpretation as that of the Wiener process. The instantaneous
mean or the expected conditional acceleration −ρ{V (t) − ν̄}

describes how fast the process moves. The larger the ρ, the
more rapidly the process evolves toward ν̄. The farther V(t)
departs from ν̄, the faster the process moves back toward ν̄.

If the data are equally spaced, namely δj := tj − tj−1 =
δ, V (t) coincides with the first-order autoregression (AR(1))
process with autocorrelation exp(−ρδ). The converse also
holds; AR(1) converges weakly to the OU process as δj →
0 (Cumberland and Sykes, 1982).

For the PSA data example in Figure 1, it is obvious that
the scaled difference is varying around a certain level after
about 3 years, which is more consistent with the behavior of
an OU process than a Wiener process, suggesting that the
SVM-OU may fit better.

3. Estimation and Inference
Statistical inference for CDSSM is challenging because
we consider a vector of stochastic processes θ(t) :=
[U (t), U (1)(t), . . . , U (m −2)(t), V (t)]T simultaneously. This leads
to a complex likelihood function, which may not even exist in
a closed form. Since an analytical solution of the SDE is rarely
available, the conditional distribution of θ(t) given θ(t′), for
t′ < t, which we call the exact transition density, does not
have a simple closed-form expression. Thus exact inference
for the latent processes and its parameters is not generally
possible. Hence, a numerical approximation will usually be
needed. We will use the Euler approximation of the SDE to
approximate the transition density, which enables us to ob-
tain a simple closed form of the likelihood. To alleviate the
errors associated with this approximation, it may be helpful
to augment the observed data by adding virtual data at extra
time points (Tanner and Wong, 1987), so that the interval
between adjacent time points is shorter and a more precise
approximation is achieved. Even when the exact transition
density exists, using the approximated one will significantly
simplify the estimation of parameters φs . A case in point is
the SVM-OU.

The resulting likelihood with this approximate method in-
volves high-dimensional integrals, and we adopt a Bayesian
approach using Markov chain Monte Carlo (MCMC; Gelfand
and Smith, 1990; Geman and Geman, 1993; Gilks, Richard-
son, and Spiegelhalter, 1996) to estimate U (t), V (t), and the
parameters (σ2

ε , φs ), with the assistance of the simulation
smoother (Durbin and Koopman, 2002).

Different approaches for inference for discretely observed
diffusions are reviewed by Beskos et al. (2006). These in-
clude numerical approximations to obtain likelihood functions
(Aı̈t-Sahalia, 2002) and methods based on iterated filtering
(Ionides, Breto, and King 2006). The idea of Euler approx-
imation has been applied to the stochastic volatility model
in the finance literature. Pedersen (1995) applied the approx-
imation and data augmentation to facilitate Monte Carlo inte-
gration and it was further developed by Durham and Gallant
(2002). Bayesian analysis of the diffusion model, especially the
stochastic volatility model, has been developed by many au-
thors, including Elerian, Chib, and Shephard (2001), Eraker
(2001), and Roberts and Stramer (2001). Sorensen (2004) gave
a survey on inference methods for stochastic diffusion mod-
els in finance. Distinctions between the models considered in
financial statistics and the models considered in this article
are that we specify an observation equation to allow for the
measurement errors. Most methods of inference for diffusion
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process do not extend easily when there is measurement error
(Beskos et al., 2006). However, MCMC methods can be ex-
tended. A further distinction is that we consider the case m >
1 for the ODE, and that we apply the ODE and SDE to model
various biomedical phenomena via U(t) and V(t). Thus, the
SVM is focused on estimating the unknown sample paths of
the latent stochastic process U(t) and V(t), whereas the dif-
fusion models commonly used in the finance literature do not
include an observation equation for measurement errors and
typically focus on estimating the volatility or variance of the
process of interest, for example, derivative securities.

3.1 Likelihood and Euler Approximation
To develop Bayesian inference with an MCMC algorithm, we
begin with the likelihood of the SVM

[yo | φo , φs , θ0]

=
∫ ∫

[yo | Uo , V o , φo ][Uo , V o | θ0, φs ] dUo dV o ,

where Uo := [U (t1), U (t2), . . . , U (tJ )]T, V o := [V (t1), V (t2), . . . ,
V (tJ )]T, and yo := [y(t1), y(t2), . . . , y(tJ )]T are vectors of the
latent states and observations at t ∈ To . θ0 = [U (t0), V (t0)]T

is the unknown initial vector of the latent states, and [.|.]
denote conditional density. The conditional density of the ob-
servations is given by

[yo | Uo , V o , φo ] =
J∏

j=1

φ
[
y(tj ) | U (tj ), σ2

ε

]
,

since the observations are mutually independent given the
latent states and follow a normal distribution according to
model (1), where φ(· | UG , σ2

G) is the normal density with
mean UG and variance σ2

G . In principle, the density of latent
states Uo and V o can be written as

[Uo , V o | θ0, φs ] =
J∏

j=1

[ U (tj ), V (tj ) | U (tj−1), V (tj−1), φs ],

due to the Markov property. The exact transition density
[U (tj ), V (tj ) | U (tj−1), V (tj−1), φs ) exists in a closed form
only for few models with simple SDEs. Even in those cases,
the exact transition density may have a complex form. For
SVM-OU,

[U (tj ), V (tj ) | U (tj−1), V (tj−1), φs ] = N2(mO U , V O U ) (7)

with

mO U =

[
U (tj−1) + ν̄δj + {V (tj−1) − ν̄}

{
1 − exp(−ρδj )

ρ

}
, ν̄ + {V (tj−1) − ν̄} exp(−ρδj )

]T

,

V O U = σ2
ξ

⎡
⎢⎣

δj

ρ2 +
1

2ρ3 {−3 + 4 exp(−ρδj ) − exp(−2ρδj )}
1

2ρ2 {1 − 2 exp(−ρδj ) + exp(−2ρδj )}

1
2ρ2 {1 − 2 exp(−ρδj ) + exp(−2ρδj )}

1
2ρ

{1 − exp(−2ρδj )}

⎤
⎥⎦ ,

the proof of which is given by Zhu (2010). When using data
augmentation, we may take the component-wise first-order
Taylor approximation of mO U , V O U with respect to δj and
get

m̃O U = [U (tj ) + V (tj )δj , V (tj ) − ρ{V (tj ) − ν̄}δj ]T, (8)

Ṽ O U = σ2
ξ

[
0 0

0 δj

]
. (9)

We note that these are the same expressions as those ob-
tained by applying Euler approximation to SVM-OU. Thus,
although m̃O U and Ṽ O U as given in (8) and (9) are not
strictly necessary for calculating [Uo , V o | θ0, φs ] when mO U

and V O U are available, they however lead to a simpler form
for parameter ρ, which is much easier to update and converges
much faster in the following MCMC algorithm.

For a general SDE, e.g., (3), the forms for U(t) and V(t) are

U (t) = U (t0) +
∫ t

t0

V (s) ds,

V (t) = V (t0) +
∫ t

t0

a{V (s), φs} ds

+
∫ t

t0

b{V (s), φs}dW (s), t ∈ T, s,

where [U (tj ), V (tj ) | U (tj−1), V (tj−1), φs ] is implicitly defined
but in general is not available analytically. To deal with this
difficulty, we use the Euler approximation to obtain a numeri-
cal approximation of the transition density in the general SDE
case.

The Euler approximation is a discretization method for
the SDE through the first-order strong Taylor approximation
(Kloeden and Platen, 1992). The resulting discretized ver-
sions of the ODE and the SDE in (2) and (3) are given by,
respectively,

U (J )(tj ) = U (J )(tj−1) + V (J )(tj−1)δj , (10)

V (J )(tj ) = V (J )(tj−1) + a{V (J )(tj−1), φs}δj

+ b{V (J )(tj−1), φs}ηj , tj ∈ To , (11)

where δj = tj − tj−1 and ηj := W (tj ) − W (tj−1) ∼ N (0, δj ).
For t ∈ [tj−1, tj ], a linear interpolation takes the form

Ṽ (J )(t) = V (J )(tj−1) +
t − tj−1

tj − tj−1

×
(
V (J )(tj ) − V (J )(tj−1)

)
, t ∈ Ts .

A similar linear interpolation is applied to Ũ (J )(t). Bouleau
and Lepingle (1992) showed that under some regularity con-
ditions, with constant C, the Lp -norm of the discretization
error is bounded and given by

|| sup
t∈Ts

| V (t) − Ṽ (J )(t) | ||p � C

(
1 + log J

J

)1/2

.

This indicates that if J is sufficiently large, which can be
achieved when the maximum of δj is sufficiently small for
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fixed interval [t1, tJ ], then Ṽ (J )(t) will be close to its contin-
uous counterpart V(t) with arbitrary precision.

In the rest of this article, we assume the δj is sufficiently
small and the approximation is well achieved. To simplify
notation, we replace Ṽ (J )(t) with V (t) and Ũ (J )(t) with U
(t), for t ∈ Ts . Under these assumptions, the exact transition
density, if it exists, is well approximated by the approximate
transition density, as shown in the SVM-OU. Note that equa-
tions (10) and (11) imply the approximate transition densi-
ties of U(t) and V(t) are Gaussian for t ∈ To , because they
are linear combinations of ηj , U (t0), and V (t0), which are all
Gaussian random variables. Under the Euler approximation,
[Uo , V o | θ0, φs ] degenerates to ≺ V o | V (t0), φs 	 because of
equation (10), where ≺ · | · 	 denotes the approximate con-
ditional density. Consequently, the likelihood based on the
approximated processes U (t) and V (t) for t ∈ To is given by

≺ yo | φo , φs , V (t0) 	 =
∫

[yo | V o , φo ]

≺ V o | V (t0), φs 	 dV o ,

where

[yo | V o , φo ] =
J∏

j=1

φ
(
y(tj ) | U (tj ), σ2

ε

)
,

≺ V o | V (t0), φs 	 =
J∏

j=1

≺ V (tj ) | V (tj−1), φs 	,

and

V (tj ) | V (tj−1), φs ∼ N
(
V (tj−1) + a{V (tj−1), φs}δj ,

b2{V (tj−1), φs}δj

)
.

3.2 Data Augmentation
If observational time intervals are not short enough, the Euler
approximation will not work well, because linear interpolation
of V(t) and U(t) for t ∈ To is not accurate enough. A solution
to reduce the approximation error is simply to add sufficiently
dense virtual data in each time interval and consider the la-
tent states at these times in addition to those at t ∈ To . The
corresponding values of Y (·) at added times can be regarded
as missing data. They will be sampled as part of the MCMC
scheme in the Bayesian analysis.

To carry out data augmentation, we add Mj equally spaced
data at times tj−1,1, . . . , tj−1,M j

over a time interval (tj−1,

tj ]. Denote δM j
:= δ j

M j +1 . The resulting augmented index set
is Tao = {tj,m : j = 0, 1, . . . , J, m = 0, 1, 2, . . . , Mj , MJ = 0}.
Note that Tao = To , if Mj = 0 for all j. The observed
data and the augmented data are denoted by yo :=
[y(t1,0), y(t2,0), . . . , y(tJ,0)]T and ya := [yT

a ,0, y
T
a ,1, . . . , y

T
a ,J −1]

T,
respectively, where ya ,j := [y(tj,1), y(tj,2), . . . , y(tj,M j

)]T.
We also denote V := [V T

1 , V T
2 , . . . , V T

J ]T where
V j := [V (tj,0), V (tj,1), . . . , V (tj,M j

)]T. Similar notation
is applied to U and U j . For ease of exposition, we let yj ,m

:= y(tj ,m), and similarly for other variables.

If the exact transition densities exist, the augmented like-
lihood is

[yo | φo , φs , θ0] =
∫ ∫ ∫

[yo , ya | U , V , φo ]

× [U , V | θ0, φs ] dya dU dV ,

where

[yo , ya | U , V , φo ] =
J∏

j=0

M j∏
m =0

φ
(
yj,m | Uj,m , σ2

ε

)
,

[U , V | θ0, φs ] =
J∏

j=1

M j +1∏
m =1

[ Uj−1,m , Vj−1,m | Uj−1,m −1,

Vj−1,m −1, φs ].

If the exact transition densities do not exist, the discretized
versions of the ODE and the SDE are modified from t ∈ To to
t ∈ Tao and given as follows:

Uj−1,m = Uj−1,m −1 + Vj−1,m −1δM j
,

Vj−1,m = Vj−1,m −1 + a{Vj−1,m −1, φs}δM j

+ b{Vj−1,m −1, φs}ηj−1,m ,

where t0,0 := t0, tj−1,M j +1 := tj,0, and ηj−1,m := W (tj−1,m ) −
W (tj−1,m −1) ∼ N (0, δM j

). The approximate transition density
and the corresponding likelihood are given in Section 3.3.

3.3 Bayesian Inference
MCMC enables us to draw samples from the joint poste-
rior [θ0, V , φo , φs | yo ] or [θ0, V , φo , φs , ya | yo ]. For the latter
case, we will augment Mj equally spaced data points between
time interval (tj−1, tj ]. To assess whether Mj is sufficiently
large we suggest a sensitivity analysis in which Mj is increased
until the parameter estimates are stable. An illustration of
this is given in Section 4. We may also compare the trace
plots of parameter estimates and deviance information criteria
(DIC) values for different Mj values to evaluate the numerical
performance of MCMC and goodness of fit respectively.

MCMC draws samples from [θ0, V , φo , φs , ya | yo ] by it-
eratively simulating from each full conditional density of
θ0, V , φo , φs , and ya . The joint posterior density is propor-
tional to the product of the likelihood and prior densities:

[θ0, V , φo , φs , ya | yo ] ∝ [yo | θ0, V , φo , φs ]

× [ya | θ0, V , φo , φs ] ≺ V | θ0, φs 	
× [θ0][φs ][φo ],

where

[yo | θ0, V , φo , φs ] =
J∏

j=1

φ(yj,0 | Uj,0(θ0, V ), φo ),

[ya | θ0, V , φo , φs ] =
J −1∏
j=0

M j∏
m =1

φ(yj,m | Uj,m (θ0, V ), φo ),

≺ V | θ0, φs 	 =
J∏

j=1

M j +1∏
m =1

≺ Vj−1,m | Vj−1,m −1, φs 	,
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and Vj−1,M j +1 = Vj,0. The approximate transition density
≺ Vj−1,m | Vj−1,m −1, φs 	 with augmented data is given by,

≺ Vj−1,m | Vj−1,m −1, φs 	:=

φ
(
Vj−1,m | Vj−1,m −1 + a{Vj−1,m −1, φs}δM j

,

b2{Vj−1,m −1, φs}δM j

)
,

and [θ0], [φs ], [φo ] are noninformative prior densities. See Web
Appendix B for specification of the prior distributions and de-
tails of the MCMC algorithm. We use the simulation smoother
(Durbin and Koopman, 2002) to achieve an efficient MCMC
algorithm. In the simulation smoother, the latent states are
recursively backward sampled in blocks instead of one state at
a time. This leads to low autocorrelation between successive
draws, and hence faster convergence.

3.4 Posterior Forecasting with SVM
A desirable property of this approach is the ease of deriving
forecasts of states at future times. To forecast the k-step future
latent state θf

J +k given the observations yo , we simulate θf
J +k

from the following posterior forecasting distribution:

[
θf

J +k | yo

]
=

∫ ∫ ∫ [
θf

J +k | ya , yo , φs , φo

]
× [ya , φs , φo | yo ] dya dφs dφo ,

where ya , φs , and φo are drawn from [ya , φs , φo | yo ] by the
MCMC algorithm. Given ya , φs , and φo , we first discretize
the SVM. For SVM-OU, this will lead to equations (B.3) and
(B.4) in Web Appendix B. Let θJ denote the latent state of
the last observation. Then, E(θJ ) = aJ and Var(θJ ) = RJ

are obtained via the Kalman filter. Moreover, it follows from
(B.4) that the mean and variance of θf

J +k can be recursively
obtained as follows:

aJ +k = GJ +k−1aJ +k−1

RJ +k = GJ +k−1RJ +k−1G
T
J +k−1 + Σω J +k −1 , k = 1, 2, . . . ,

where GJ +k−1 and Σω J +k −1 are specified in Web Appendix
B for the SVM-OU and SVM-W, respectively. Finally, we
draw θf

J +k from θf
J +k | ya , yo , φs , φo ∼ N (aJ +k , RJ +k ). By

this way, the forecasts at future times take the variation of
parameter draws into consideration.

4. Simulations
Using Euler approximation enables us to make inference for
the SVMs with the analytically intractable exact transition
densities. Although such flexibility seems to induce approx-
imation errors, in practice these errors would be alleviated
by applying the data augmentation. We are interested in as-
sessing the performance of the estimation of the parameters,
U(t) and V(t) as the number of data augmentation changes,
so we simulate 100 replicate datasets from the SVM-OU with
exact transition density (7). The parameters are chosen to
be close to the ones estimated from a real dataset analyzed
in the following section. Each dataset includes 40 observa-
tions, equally spaced with interval length 0.5. We fit each
dataset by the SVM-OU, under the following three data aug-
mentation schemes: (1) No augmentation; (2) one data point
added in the middle of every two adjacent observations; and
(3) three evenly spaced data points are inserted between ev-
ery two adjacent observations. In all cases, MCMC is run

Table 1
Simulation results for the estimation of SVM-OU parameters

and stable rates. For data augmentation, 0, 1, and 3 data
points are added between every two adjacent observations.

No. data
points
augmented Parameter Truth Bias MSE

0 σ2
ε 0.01 −6.723E-04 1.590E-05

σ2
ξ 0.2 −9.837E-02 1.322E-02

ρ 1 −1.863E-01 5.239E-02
V̄ 0.3 −7.612E-03 1.297E-02

1 σ2
ε 0.01 1.120E-04 1.521E-05

σ2
ξ 0.2 −6.089E-02 1.130E-02

ρ 1 −6.426E-02 3.793E-02
V̄ 0.3 −9.181E-03 1.304E-02

3 σ2
ε 0.01 4.489E-04 1.611E-05

σ2
ξ 0.2 −3.905E-02 1.219E-02

ρ 1 8.856E-03 4.687E-02
V̄ 0.3 −9.955E-03 1.284E-02

for 45,000 iterations, in which the first 35,000 runs are dis-
carded as the burn-in and every 10th draw is saved. Table 1
presents the Bias E(φ̃0.5 − φ), and mean squared error (MSE)
E(φ̃0.5 − φ)2 of the posterior median φ̃0.5 for each parameter
φ. These results indicate that the strategy of data augmen-
tation, even for the single data point augmentation, would
reduce estimation bias rate for variance parameter σ2

ξ and
drift parameter ρ. The estimations of other parameters σ2

ε

and ν̄ are little affected by the data augmentation. As shown
in Web Table 2, the data augmentation improves the esti-
mation of U(t) and V(t) as well, indicated by the smaller
average absolute Bias 1

40

∑40
j=1 E(| θ̂(tj ) − θ(tj ) |) and aver-

age MSE 1
40

∑40
j=1 E(θ̂(tj ) − θ(tj ))2 of posterior means. We

observed that the computation time of the proposed MCMC
algorithm is proportional to the size of observed and aug-
mented data, and thus the data augmentation would signifi-
cantly increase the computation burden, which discourages us
to add a massive number of augmented data. Those simulation
results suggest that in practice we may add few augmented
data and achieve accurate estimation.

To compare, we analyze these simulated datasets by the
SVM-W, and an ODE model, respectively. Note that the
posterior mean in the SVM-W is equivalent to the smooth
natural cubic spline. The ODE model used in the analysis
satisfies the observation equation (1) for functional response,
and the mean function U (·) is governed by the following two
ODEs:

dU (t) = V (t) dt,

dV (t) = −β3(V (t) − β1) dt, (12)

with boundary conditions U (t0) = β0 + β2 and V (t0) = β1 −
β2β3 at t0 = 0. This formulation leads to a deterministic
mean function U (t) = β0 + β1t + β2 exp (−β3 t), which
implies that ODE model is essentially a parametric nonlinear
regression model. As shown in Table 2, the proposed SVM-
OU model is superior to the ones from the other two models
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Table 2
Simulation results for the estimation of U (t) and V (t), when
data are simulated from SVM-OU and ODE model. For data

augmentation, 0, 1, and 3 data points are added between every
two adjacent observations.

No. data
Simulation Fitting points
model model augmented States Bias MSE

SVM-OU SVM-OU 0 U (t) 0.008 0.005
V (t) 0.079 0.085

SVM-OU 1 U (t) 0.008 0.005
V (t) 0.046 0.048

SVM-OU 3 U (t) 0.008 0.005
V (t) 0.028 0.038

SVM-WN 0 U (t) 0.014 0.006
V (t) 0.052 0.079

ODE 0 U (t) 0.051 0.099
V (t) 0.054 0.133

ODE SVM-OU 3 U (t) 0.043 0.026
V (t) 0.045 0.090

SVM-WN 0 U (t) 0.066 0.067
V (t) 0.135 0.303

ODE 0 U (t) 0.030 0.018
V (t) 0.020 0.018

in the estimation of U(t) and V(t), when the SVM-OU model
generates the data. We are also interested in exploring how
the proposed methods perform when data are generated from
other models different from the SVM-OU. For this, we fur-
ther simulate another 100 replicate datasets from above the
ODE model with β0 ∼ N (−2.5, 0.01), β1 ∼ N (0.3, 0.01), β2 ∼
N (9, 0.04), β3 ∼ N (1, 0.01) and σ2 = 0.04. The processes U(t)
and V(t) are then estimated by the SVM-OU, SVM-W, and
ODE model, respectively. As shown Table 2 when data are
generated from the ODE model, estimated U(t) and V(t) by
the SVM-OU are close to those by the ODE model, and bet-
ter than the SVM-W in terms of smaller average absolute bias
and average MSE.

In addition to the above equally spaced data, we are also
consider some other scenarios of datasets simulated from the
SVM-OU, including: (1), the unequally spaced data resulted
from uniform deletion of 15 data points from the original
equally spaced data; (2), unbalanced and unequally spaced
data resulted from uniform random deletion of 10 data points
in the first half period (0,10] and of 5 data points in the sec-
ond period (10,20] from the original equally spaced data sim-
ulated by the SVM-OU; (3), the data similar to the scenario
(2) except with the reserved allocation of the unbalanced data
points; (4) and (5), The fivefold larger variance σ2

ε = 0.05 and
10-fold larger variance σ2

ε = 0.1. Web Table 1 lists the summa-
rized results of these five scenarios, regarding the estimation
of U(t) and V(t) by the SVM-OU. The results from the first
three scenarios indicate that the unbalance data distribution
between the first and second half period times has different
impact on the estimation of U(t) and V(t) in the average ab-
solute bias and MSE. The second case with less data avail-
able in the first half time period is the worst. In the last two
scenarios with increased measurement errors, the simulation

results suggest that the estimation for U(t) and V(t) becomes
a harder task.

5. Application
We now demonstrate an application where the diffusion mod-
els are used to investigate dynamic features of the PSA profile
for a prostate cancer patient. We fit the SVM and SAM with
the Wiener process and the OU process V(t), respectively. We
also forecast the future profile of PSA for both models. The
models are evaluated by the DIC model selection criterion
(Speigelhalter et al., 2003). DIC = D̄ + PD , where D̄ is pos-
terior mean of the deviance and PD is the effective number
of parameters. DIC has been shown asymptotically to be a
generalization of Akaike’s information criterion (AIC). Sim-
ilar to AIC, DIC trades off the model fitting by the model
complex and can be easily computed from the MCMC out-
put. The smaller the DIC value indicates better model-fitting.
For each application, the posterior draws are from a 400,000
iteration chain with 200,000 burn-in, and every 100th draw is
selected. Convergence was assessed by examination of trace
plots and autocorrelation plots.

5.1 Prostate-Specific Antigen
PSA is a biomarker used to monitor recurrence of prostate
cancer after treatment with radiation therapy. When PSA re-
mains low and its rate varies around zero with low volatility,
the tumor is stable and the patient may be cured. If PSA in-
creases dramatically with high rate, it is a strong sign of the
tumor regrowing and that the treatment did not cure the pa-
tient. Therefore, PSA has strong prognostic significance and
is important for making clinical decisions. We want to esti-
mate dynamics of the PSA marker, including PSA level, rate,
and the volatility of rate. We analyzed the PSA profile of one
patient using the SVM and SAM model to estimate PSA(t)
nonparametrically. For these data illustrated in the introduc-
tion, the average time interval between two observations was
0.4 years with minimum 0.016 and maximum 0.731 years. We
added 32 virtual data points to reduce the time span between
any pairs of consecutive time points to less than 0.25 year.

Table 3 and Web Table 2 show the means and quantiles of
the SVM and SAM parameters from the Wiener and the OU
process V(t), respectively. Figure 2 and Web Figure 1 show
the posterior means and the corresponding 95% credible in-
tervals of the latent states for SVM and SAMs. Here, the four
models demonstrate similar trends of the PSA level. How-
ever, the rates in the SVMs fluctuate with higher volatility,
compared to the SAMs. In addition, there are the nonzero
instantaneous mean terms in the SVM-OU and SAM-OUs,
whose rates evolve more stably than those in the models with
Wiener process. The SVM-OU gives the smallest DIC, which
indicates the best model fitting. In this model, the posterior
mean of ν̄ is 0.385 with 95% credible interval [0.143, 0.626].
This stable and clearly positive rate after year 2.2 is a strong
indicator of prostate cancer recurrence.

Figure 2 illustrates the forecasting of the PSA latent states
for the next 3 years, starting from year 11.2, by SVM-W and
SVM-OU. The future states are sampled every 0.25 years and
then linearly interpolated, from the posterior forecasting dis-
tribution given in Section 3.4. The SVM-OU gives a fore-
cast with narrower credible intervals than the SVM-W. This
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Table 3
PSA data: Posterior mean and quantiles for the SVMs

Wiener process OU process
D̄ = −45.1757, PD = 12.303, DIC = −32.873 D̄ = −45.935, PD = 10.658, DIC = −35.277

Mean SD 2.5% 50% 97.5% Mean SD 2.5% 50% 97.5%

σ2
ε 0.014 0.009 0.003 0.012 0.036 0.012 0.005 0.005 0.012 0.024

σ2
ξ 0.961 0.589 0.297 0.809 2.548 0.177 0.181 0.037 0.122 0.682

ν̄ 0.385 0.124 0.143 0.382 0.626
ρ 1.150 0.271 0.756 1.106 1.798
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Figure 2. PSA posterior summary and forecasting: Plots of posterior means (|) and 95% credible intervals (gray shades)
for the SVM with the Wiener process and OU process, respectively, till year 11.2. The future rates and levels are forecasted
for the next 3 years, illustrated by the forecasting means (|) and 95% forecasting credible intervals (gray shades). The five
randomly picked realizations for each plot are also illustrated.

result seems clinically more sensible, because several studies,
including ours presented in Section 4.2, have found that the
rate of PSA follows a stationary process. In contrast, a Wiener
process corresponds to a nonstationary process for the rate
of change of PSA, resulting in an unbounded variance of
the forecast over time. This lacks relevant clinical interpreta-
tion. The comparison in the forecasts indicates that specifica-

tion of the latent process is crucial for adequate forecasting,
even though their estimates of the mean function are quite
similar. A similar phenomenon has been reported by Taylor
and Law (1998) in the linear mixed model of CD4 counts,
where the covariance structure matters for individual-level
predictions, although it affects little the estimation of fixed
effects.



Stochastic Functional Data Analysis 1303

6. Discussion
Diffusion-type models are widely applied in areas such as fi-
nance, physics, and ecology. However, other than through the
connection with the smoothing spline, they have not played
a major role in functional data analysis or nonparametric
regression. In this article, we develop a framework that sheds
light on more general diffusion models to be used in functional
data analysis. Unlike in some applications where the form of
the diffusion model is determined by the context, we specify
a general form based on an ODE, an SDE, and measurement
error. The key advantage of the proposed diffusion model is
that is addresses not only the mean function nonparametri-
cally but also its dynamics, which are also of great interest
in many applications. Based on this model, we adapt and
develop existing ideas for estimation and inference for diffu-
sion models. An additional attractive feature of this stochastic
model approach to functional data analysis is that forecasting
can be easily implemented.

A number of extensions of the SVM and SAM are possi-
ble. Generalizing SVM and SAM to analyze discrete-valued
outcomes is of interest. For the SVM, we have an explicit
expression for the observation equation given by:

Y (tj ) = U (tj ) + ε(tj )

=

[
1

0

]T [
U (tj )

V (tj )

]
+ ε(tj )

= F Tθ(tj ) + ε(tj ), j = 1, 2, . . . , J.

The observation equation can be expressed as,

d Φ
{
Y (t) | F Tθ(t), σε

}
, t ∈ To , (13)

where Φ(· | UG , σG) is the normal CDF with mean UG and
standard deviation σG . Then, (13) can be extended to,

d F{Y (t) | θ(t), φo},

where one specifies the corresponding observation distribution
F in the exponential family, with state equations (2) and (3)
unchanged.

7. Supplementary Materials
Web Appendices, Tables, and Figures referenced in Sections 2,
3, 4, 5, and 6 are available under the Paper Information link at
the Biometrics website http://www.biometrics.tibs.org.
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