
Methods for statistical and population genetics
analyses

by

Shyam S. Gopalakrishnan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biostatistics)

in The University of Michigan
2011

Doctoral Committee:

Associate Professor Sebastian K. Zoellner, Chair
Professor Michael L. Boehnke
Associate Professor Zhaohui Qin
Associate Professor Noah A. Rosenberg
Assistant Professor Jun Li



c© Shyam S. Gopalakrishnan 2011

All Rights Reserved



To Mom and Dad

ii



ACKNOWLEDGEMENTS

I want to express my gratitude to all the people who made this dissertation possible.

I would like to thank my advisors, Drs. Steve Qin and Sebastian Zöllner for their
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CHAPTER I

Introduction

One of the major goals in the field of genetics is to identify disease predisposing genetic

variants, to better understand the underlying mechanism and ultimately identify tar-

gets for intervention. Aided by advances in technology, the tools used to accomplish

these goals have rapidly evolved.

Risch and Merikangas [1] first advocated the use of large scale association studies

to detect disease predisposing variants. Large scale association studies were not feasi-

ble at the time. Since then, the advances in high throughput low cost genotyping have

propelled association studies, especially genome-wide association studies (GWAS), to

become the instrument of choice in disease genetics.

GWAS have been highly successful in identifying variants associated with a wide

array of common diseases and quantitative traits, e.g. type 2 diabetes[2], Parkinson’s

disease, LDL cholesterol etc[3]. GWAS are best suited to identify variants that fall

under the Common Disease Common Variant (CDCV) hypothesis. The CDCV hy-

pothesis states that the prevalence of common diseases can be attributed to a few

common variants with moderate effect sizes. Though GWAS have identified more

than 4900 associated loci for more than 200 traits, these common variants explain
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only a small fraction of the heritability of the common diseases[4, 5].

The presence of rare causal variants has been suggested as a possible source for

the missing heritability. GWAS are not well powered to detect rare variants. The

Common Disease Rare Variant (CDRV) hypothesis suggests that common diseases

can be explained by multiple rare variants with large effect sizes[6]. Several methods

have been proposed to identify rare causal variants[7, 8]. Since testing individual

rare variants is not statistically powerful, most methods collapse information across

multiple rare variants. Development of new methods to identify rare susceptibility

variants remains an area of much interest.

The search for rare susceptibility variants was further expedited by the emergence

of short read sequencing[9]. Short read sequencing technologies allowed low cost

large scale sequencing. Sequencing studies have been used to catalog variants in

the human genome [10], identify rare causal variants for traits such as LDL and HDL

cholesterol[11, 12], quantify gene expression [13], identify DNA protein interaction[14]

and perform population genetics studies [15]. Analysis of short read sequence data

present many interesting statistical challenges.

1.1 Scope of this dissertation

In this dissertation, I present novel methods aimed at tackling some of the statistical

challenges in the field of genetics.

TagSNP Selection

Association studies rely on indirect association to maintain power. They test a rep-

resentative set of markers, tagSNPs, in lieu of all the variants in the genome. The
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power of association tests using tagSNPs is directly proportional to the linkage dis-

equilibrium measure r2 between the tagSNP and the causal variant. In chapter 2,

we propose a graph-based method to select the optimal set of tagSNPs. We define

optimality in terms of the number of tagSNP markers. We use a ”divide and con-

quer” approach to identify the smallest set of tagSNPs that is highly correlated with

all the variants in the region. As an example, we apply our method to chromosome

2 HapMap [16] data and ENCODE regions.

Remapping multiply mapped reads

The alignment of short reads is dependent on many factors like read length and error

model. Further, the presence of repetitive elements and structural variants on the

reference sequence results in a fraction of short reads being aligned to multiple loca-

tions in reference. These multiply mapped reads are often discarded.

In chapter 3, we present a Gibbs sampling approach to identify the most likely ge-

nomic location for multiply mapped reads. Additional information from the multiply

mapped reads can improve the performance of downstream analyses. We illustrate

the effect of including multiply mapped reads using variant discovery in a simulated

sample.

Admixture mapping to identify rare variants

An admixed population derives its ancestry from multiple founding populations. Ad-

mixture mapping is a tool that identifies regions associated with the disease by testing

the correlation of the ancestry of the region with the disease status.

Methods designed to detect rare causal variants combine information across multiple

markers. Several strategies exist to collapse across markers, viz., presence of minor
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allele, sum of minor alleles, sum of weighted allele frequencies etc. Ancestry across a

testing unit can be construed as a way to summarize the information contained in the

markers in the region. In chapter 4, we explore the power of admixture mapping to

detect regions harboring multiple rare causal variants. We propose a disease model

for the rare causal variants. In settings unsuitable for single marker association tests,

we test the feasibility of admixture mapping to detect the rare susceptibility loci.

Site frequency spectrum estimation

The site frequency spectrum (SFS) is a population genetics statistic that contains

information on the number of variant positions at each minor allele frequency in the

sample. The SFS is an important summary statistic in population genetics, encom-

passing information on selection and demographic history. All population genetics

statistics that do not include linkage disequilibrium information can be expressed as

functions of the (SFS). Estimates of the SFS obtained from genotyping platforms suf-

fer from ascertainment bias, since there exist potentially variable positions that are

not included on the genotyping array. Since all positions are queried in a sequencing

study, SFS estimated from sequencing studies do not suffer from ascertainment bias.

In chapter 5, we present a maximum likelihood estimation procedure to the estimate

the SFS from low coverage short read sequence data. First, we show that estimates

of the SFS obtained from genotype calling methods underestimate the number of

rare variants, especially singletons and doubletons. We demonstrate that our method

performs better than SFS obtained from genotype calling algorithms using both sim-

ulated and real data examples.
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CHAPTER II

An efficient comprehensive search algorithm for

tagSNP selection using linkage disequilibrium

criteria

2.1 Introduction

Genome-wide association studies have emerged as the predominant approach to detect

genetic variants that contribute to human diseases. Initially, genome-wide associa-

tion studies focused on single nucleotide polymorphisms (SNPs) because of their high

abundance in the human genome, their low mutation rates and their accessibility to

high-throughput genotyping [17]. There are more than 10 million verified SNPs in

dbSNP (build 124)[18], but typing all available SNP markers is inefficient and unnec-

essary since many will provide redundant information due to linkage disequilibrium

(LD). A better strategy is to select a subset of representative SNPs (tagging SNPs

or tagSNPs) and to remove the rest from consideration [19, 20]. The objective is to

have little information overlap among the selected SNPs while retaining much of the

signal contained in the original set.

The selection of tagSNPs is a well researched topic and many strategies have been

proposed [21, 22, 23, 19, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Zhang and Jin[35]
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and Carlson et al. [36] introduced methods based on the LD measure r2. These

methods search for a small set of SNPs that are in strong LD (measured through

pairwise r2) with other SNPs that are not selected for genotyping. Pairwise r2 is an

attractive criterion for tagSNP selection since it is closely related to statistical power

for case-control association studies, where a directly associated SNP is replaced with

an indirectly associated tagSNP [6].

In this manuscript, we describe efficient algorithms for tagSNP selection based on

pairwise LD measure r2. The algorithms were implemented in a computer program

named FESTA (fragmented exhaustive search for tagging SNPs). Essentially, we re-

place a greedy search, where markers are added sequentially to the tagSNP set, with

an exhaustive search where all marker combinations are evaluated. To achieve this,

we arrange the genome into precincts of markers in high LD, such that markers in dif-

ferent precincts show only low pairwise disequilibrium. TagSNP selection can then be

performed within each precinct independently, greatly reducing computation cost. In

most settings, our method is guaranteed to find the optimal tagSNP set(s) defined by

the r2 criterion. For a small proportion of precincts where exhaustive search is com-

putationally too expensive to carry out, an efficient greedy-exhaustive hybrid search

algorithm is described. Using data from the HapMap project [16], we show that the

majority of these precincts contain relatively small numbers of SNPs, especially when

a stringent r2 criterion is used. Our algorithm readily identifies equivalent tagSNP

sets, so that additional selection criteria can be incorporated. Other useful extensions

are also discussed in this manuscript, such as the inclusion/exclusion of certain SNPs

and double coverage, which can increase robustness of tagSNP sets against sporadic

genotyping failures or errors.
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2.2 Methods

Consider a set S which contains M bi-allelic SNP markers a1, a2, . . . , aM . Further

assume that all these markers have minor allele frequency (MAF) above a certain

threshold (0.05 was used in this study). First, two-SNP haplotype frequencies were

estimated [37], and then the pairwise LD measure r2 (also referred to as D2) [38]

was calculated for each pair of markers using the inferred haplotype frequencies [39].

Two markers ai and aj are said to be in strong LD if the r2 between them is greater

than a pre-specified threshold value r0, denoted as r2(ai, aj) ≥ r0 (r0 = 0.5 or 0.8 in

in this study). Both are considered tagSNPs for each other; i.e. ai can be used as a

surrogate for aj, and vice versa.

Our aim is to a find tagSNP set, denoted by T , a subset of S such that ∀ai ∈

S\T, ∃aj ∈ T that satisfies r2(ai, aj) ≥ r0. In our presentation, we introduce two

intermediate SNP sets, P and Q. P is called the candidate set which contains all the

markers that are eligible to be chosen as tagSNPs and Q is named the target set which

contains all the markers that are yet to be tagged, i.e. no marker in Q is in LD with

any tagSNP in T . For each marker am in P , let C(am) := {a : a ∈ Q&r2(a, am) ≥ r0}

represent the subset of Q which contains markers that are in strong LD with am, and

let |C(am)| be the number of the elements in the set C(am). Typically, the candidate

set P is the complement of the tagSNP set T , P = S\T and P = Q. One excep-

tion occurs when some SNPs are excluded as tagSNPs because they cannot be easily

genotyped, but they still should be tagged by other markers if possible. In this case,

the candidate set is a subset of target set. We describe several different algorithms

for updating P , Q and T starting with a greedy approach [36]. We then outline

successive refinements and extensions of a partition and exhaustive search algorithm,

designed to handle various scenarios encountered when planning association studies.
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2.2.1 Greedy Approach

The detailed algorithm is as follows [36].

Algorithm 1 (greedy approach):

1. Set T = ∅ and P = Q = S.

2. For each marker am ∈ P , calculate |C(am)|.

3. For every marker am where |C(am)| = 0, add am into T , and remove it from Q.

4. Find the marker in P that has the highest |C(am)| value, denoted as amax, and

add amax into T , removing it and all connected SNPs, i.e. C(am) from Q. (5)

Repeat Steps 2-4 until Q = ∅.

In Step 4, by removing associated markers from consideration, the coverage overlap

among tagSNPs is greatly reduced. Although it is simple to implement, the greedy

procedure may miss more efficient solutions. Figure 2.1 gives a simple example, where

markers A and B each tag half of all markers and together can tag all the markers.

However, marker C is connected to more than half of all markers, and it is the

first marker selected by the greedy algorithm. In this example, the greedy algorithm

produced a set with three tagSNPs, despite the fact that the optimal solution contains

only A and B.

2.2.2 Exhaustive search

An exhaustive search guarantees the minimum tagSNP set. Therefore, theoretically,

the exhaustive search solves the tagSNP selection problem. But in practice, genome-

wide tagSNP selection requires consideration of hundreds of thousands of SNP mark-

ers. For problem of this scale, exhaustive searches cannot be directly applied due to
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Figure 2.1: Example configuration where greedy approach does not pick the least
number of tagSNPs

prohibitive computation costs.

Since appreciable LD only occurs within clusters of nearby markers along chromo-

somes, a practical solution is to first decompose the set of markers into disjoint

precincts, such that markers in different precincts are never in strong LD. Then,

selecting tagSNPs using the r2 criterion in the whole set is equivalent to selecting

tagSNPs in each precinct and then combining all the tagSNPs together. Here the

concept of precinct is defined based on pairwise LD measure. It is therefore closely

related to haplotype blocks [40, 21, 41, 42, 23, 43], which are regions where historical

recombination events are rare. The main difference is that the precincts of markers

in high r2 are determined purely based on satistical correlation. Unlike haplotype

block, markers within each precinct may not be consecutive markers sitting next to

each other.

Partitioning the markers into precincts can be achieved using standard algorithms
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in graph theory. We applied the Breadth First Search (BFS) algorithm [44]. Starting

from any node (a marker) in a new precinct, this algorithm adds all neighboring nodes

(markers in LD) and all neighbors of the newly added nodes to the precinct, until

there are no neighbors to be added to the precinct. This process is restarted from

different nodes until all the nodes are assigned to a precinct.

After the partitioning step, we perform the tagSNP selection within each precinct.

Starting with K = 1, all K-marker combinations are searched to see if they cover all

markers within this precinct. If not, K is increased by one and the search is repeated

until a tagSNP set is found or a pre-specified search limit is reached.

When evaluating all K-marker combinations, the computation cost required for an

exhaustive search might be too great in some precincts. In such cases, we propose

a hybrid solution which reduces the computation cost and retains a good chance of

finding optimal tagSNP sets. For each precinct i with Ni markers (Here on, all pa-

rameters with subscript i indicate parameters within the i-th precincts, such as Ki,

Ji, Pi, Qi, Ti and Ni.), we decide whether an exhaustive search is feasible by compar-

ing the computation cost required for evaluating all K-marker combinations within

a precinct,
(

Ni

K

)

, with a computation cost limit L specified a priori, determined based

on available computing resources. Larger limits allow a more comprehensive search,

which may result in fewer tagSNPs being selected, but require additional computa-

tional effort. In this study, we set this limit at 1 million. When this limit is exceeded,

we apply the following hybrid algorithm. Specify K∗
i such that it is the largest K pos-

sible that satisfies
(

Ni

K

)

≤ L0 , where L0 is a pre-specified computation cost limit (less

than L, set at 10000 in studies conducted here). Subsequently, for each K∗
i -marker

combinations, denoted as {a1 . . . aK∗

i
}, assume that these markers have already been

selected, remove am together with all the markers in C(am) from candidate set Pi and
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target set Qi, m = 1 . . . K∗
i , i.e. Pi = Qi = Si

⋃K∗

i

m=1(am ∪ C(am)), then apply the

greedy approach to identify a subset of Pi that is able to cover Qi, which contains

the remaining untagged markers.

The tagSNP set obtained in the reduced set plus the previous K∗
i markers together

form a complete tagSNP set for the i-th precinct. The detailed algorithm is as follows:

Algorithm 2 (FESTA: greedy-exhaustive hybrid search):

1. Apply the Breadth First Search to decompose the entire set of markers into

precincts such that high LD can only be observed within precincts. S =
⋃

n Si, andSi ∩ Sj = ∅foralli 6= j

2. Within each precinct Si, set K = 1,

a If
(

Ni

K

)

≥ L, move to (b), otherwise conduct an exhaustive search over all

possible K-marker combinations. Both the candidate set Pi and the target

set Qi are Si. If no combination of K SNPs can cover the entire precinct,

set K = K + 1, and repeat this step.

b Find K∗
i such that

(

Ni

K∗

i

)

≤ L0 and
(

Ni

K∗

i +1

)

> L0. For every K∗
i marker

combination in Si, denoted as {a1 . . . aK∗

i
}, let Ti = ∪m{am}, Pi = Qi =

Si\
⋃K∗

i

m=1({am}∪C(am), and apply the greedy approach to identify a subset

of Pi that is able to cover the remaining untagged markers Qi. Among all

the resulting tagSNP sets, we choose the smallest set.

3. Record all minimum tagSNP sets that cover the precinct. These form the

complete minimum tagSNP sets {T j
i : j = 1 . . . Ji}, where Ji is the total number

of such minimum tagSNP sets.

4. Any combination of tagSNP sets identified from all disjoint precincts forms a
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tagSNP set for the whole set S. Suppose the size of the minimum tagSNP set(s)

in each precinct is Ki, then the overall size of such minimum tagSNP sets is
∑n

i=1 Ki, and the total number of such minimum tagSNP sets is
∏n

i=1 Ji.

FESTA executes either a pure exhaustive search or a greedy-exhaustive hybrid search

in each precinct depending on the computational cost. Exhaustive search is first at-

tempted, and if the computation cost becomes too high, the hybrid algorithm is used

as a fall back. Typically, only a small proportion of the precincts require the greedy-

exhaustive hybrid search.

2.2.3 Additional features

Mandatory tagSNP markers

Our algorithm readily allows users to force certain mandatory SNP markers to be

included or excluded in the tagSNP set. There are several scenarios where such func-

tionality is important. First, in candidate gene studies, previous knowledge may be

available as to which SNPs are functionally important. These might include non-

synonymous coding region SNPs (cSNPs) as well as SNPs located in regulatory re-

gions. Second, in genome wide studies, one might carry out multiple rounds of geno-

typing and tagSNP selection. In such cases, additional tagSNPs could be selected at

each round to cover the markers not tagged by tagSNPs successfully genotyped in

the previous round. We provide an example of this in the results section. In other

settings, it may be useful to exclude certain SNPs from consideration as tags. For

example, some SNP markers may be difficult to genotype using a particular platform.

When there are mandatory markers {t1, . . . , tr} to be included, add these markers into

the tagSNP set T , and remove them from the candidate set, i.e. P = P\⋃r
i=1{ti}.

The target set Q = Q\⋃r
i=1({ti} ∪ C(ti)). If there are SNPs {u1, . . . , us} that need
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to be excluded from the tagSNP set, we simply remove them from the candidate set,

the target set Q is unchanged.

Choosing between alternative solutions

Within a densely typed SNP set, redundant tagSNPs are common, which results in

multiple tagSNP sets of the same size. All of these sets are equal in the sense of min-

imizing the number of tagSNPs. In order to choose one set for genotyping, additional

criteria can be employed. Here we evaluate several alternative criteria:

1. Maximize average r2 between tagSNPs and untagged SNPs they represent

2. Maximize the lowest r2 between tagSNPs and the untagged SNPs they cover

3. Minimize the average r2 among all pairs of tagSNPs within a precinct

4. Maximize the average r2 among all pairs of tagSNPs within a precinct

5. Maximize the average minor allele frequencies among all tagSNPs

In criteria 1 and 2, we try to identify the tagSNP sets that have the strongest connec-

tions with those untagged SNPs, which should increase power on average and in the

worst case respectively. The purpose of using criteria 3 is to find a tagSNP set whose

members are as independent as possible which minimizes overlap between tagSNPs

and potentially increases the chance of linking to untyped SNPs. Criteria 4 may

increase redundancy and robustness to genotype failure; and criteria 5 may improve

genotyping success for some assays.

To evaluate the relationship between each tagSNP set identified by the aforementioned

criteria, and more importantly, their potential of uncovering the disease causing mu-

tations in association studies, we conducted some empirical evaluations, summarized

in the Result section.
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Other types of criteria may be of even greater interest in practice. For example,

in many genotyping technologies, some SNPs are harder to genotype than others due

to characteristics of surrounding genome sequence. We can use this information to

select tagSNPs that are likely to have a high success rate, and to avoid SNPs that

are prone to genotyping failure.

Double Coverage

So far, both the greedy approach and our FESTA algorithm focus on finding a tagSNP

set such that each SNP is either a tagSNP itself or is in LD with at least one of the

tagSNPs. This is a criterion aimed at minimizing the number of tagSNPs selected.

In reality, random genotyping failure or genotyping error on these tagSNPs can result

in loss of power to identify the true signal. To be more robust against such adverse

events, we evaluated a more stringent criterion requiring that every untyped SNP be

in LD with at least two tagSNPs.

Our FESTA algorithm can be extended to find tagSNP sets that will have double

coverage on the SNP markers considered. As always, an exhaustive search is able to

find such tagSNP sets when the marker set considered is not too large. When ex-

haustive search is not feasible, the same greedy-exhaustive hybrid search strategy can

be applied. In practice, it may be useful to consider double coverage only for large

precincts, where the cost of losing an SNP to genotyping failure might be higher.

2.3 Results

To illustrate our proposed piecewise exhaustive search strategy, compare it with the

greedy approach and explore the various characteristics of the tagSNP sets selected

by our method, we applied both methods to two sets of data, the entire Chromosome
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2 and five ENCODE regions (ENr112, ENr131, ENr113, ENm010 and ENm013) geno-

typed by the HapMap project (release 16c, June 2005). All three populations: CEU

(European), YRI (Yoruban) and JPT + CHB (Japanese and Chinese) were studied.

The first is in the context of a genome-wide association study and the second is sim-

ilar to the situation of a candidate region study.

2.3.1 Chromosome wide tagging

We have applied the greedy algorithm and FESTA to Chromosome 2 using HapMap

Phase 1 genotype data (release 16c, June 2005). Tables 2.1 and 2.2 summarizes the

results. FESTA produces fewer tagSNPs compared with the greedy approach in all

three populations. When compared across populations, the YRI samples have about

twice the amount of tagSNPs as the CEU or the JPT+CHB samples. The JPT+CHB

samples have slightly less tagSNPs identified than the CEU samples. With r2 thresh-

old 0.5, the percentages of tagSNPs identified by our algorithm are 21.6% in CEU,

39.3% in YRI and 20.9% in JPT+CHB samples, respectively.

The size of the tagSNP set is optimal for precincts where the greedy approach indi-

cates that one or two tagSNPs are enough to cover all the SNPs in it. Improvements

over the greedy approach is only possible for the remaining precincts. In the CEU

samples, there are 599 of such precincts, in which the greedy approach identified

2423 tagSNPs, and FESTA identified 2022, a 16.5% reduction. When the r2 thresh-

old is 0.8, 154 precincts require more than two tagSNPs, as identified by the greedy

approach. Among them, the greedy approach and FESTA identified 526 and 402

tagSNPs, respectively, a reduction of 23.6% in tagSNPs chosen by FESTA. When

double coverage is required, 69.1% and 45.9% more tagSNPs are needed with r2

thresholds of 0.5 and 0.8, respectively. Similar results were obtained from the YRI
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and JPT + CHB samples.

Among all the non-singleton precincts in the CEU samples (6545 for r2 threshold of

0.5 and 10196 for r2 threshold of 0.8), most require only a small number of tagSNPs,

so that the exhaustive search can be applied directly. With r2 threshold of 0.5, the

greedy-exhaustive hybrid approach was required for only 98 precincts or 1.5% of all

precincts (11 precincts (0.1%) with r2 threshold of 0.8).

2.3.2 Densely typed region

A dense SNP map was released by the HapMap project on the ENCODE regions. We

used five such regions (ENr112, ENr131, ENr113, ENm010 and ENm013) to evaluate

the performance of our algorithm. Each ENCODE regions is 500 kb in length, for

the CEU samples, the average number of SNPs in these regions is 832 (ranges from

551 to 1126), corresponding to an SNP density about 1 SNP per 601 bps (1 SNP

per 907 bps to 1 SNP per 444 bps for individual regions). The detailed results were

summarized in Table 2.3. In this set of densely typed SNPs, using our method with

r2 threshold of 0.5, the average percentage of tagSNPs required to cover each of the

five regions is 8.3% of all markers (ranges from 5.4 to 11.3%). For double coverage, on

average, 76.7% more tagSNPs are required (ranges from 70.7 to 83.6%). With a more

stringent r2 threshold of 0.8, the average percentage of tagSNPs required increased

to 16.6% of all markers (ranges from 11.4 to 24.1%). To double cover these regions,

62.9% more tagSNPs are required (ranges from 56.9 to 71.6%). For precincts where

improvement over greedy search is possible, using FESTA, the improvement in the

number of tagSNPs is 17.9 and 23.0% on average for the five ENCODE regions with

r2 thresholds of 0.5 and 0.8 respectively. Using our method on YRI and JPT + CHB

samples results in similar trends (data not shown).
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2.3.3 Additional TagSNPs for denser SNP map

With the improvement in genotyping technologies and discovery of rarer variants,

progressively denser SNP maps will become available. As more refined association

studies are carried out, it will be useful to select new tagSNPs to ‘fill holes’ in the

initial sparse maps. With a good picking strategy for the first round of tagging, this

staged approach should result in only a small-to-moderate increase in the total num-

ber of tagSNPs compared to a one-stage strategy.

To evaluate this strategy, we constructed an artificial sparse SNP map for each of

the five ENCODE regions (using the CEU samples only). Specifically, we selected

one in every five consecutive SNP markers. The density of this sparse map is about

1 SNP per 3kb, close to the density of the phase I HapMap. Then, three different

tagSNP sets are identified using the three criteria described previously, denoted by

Ti, i = 1, 2, 3. Finally, we applied our approach to the full ENCODE SNP set, using

each of these tagSNP sets as a seed, to search for additional tagSNPs to cover the

previously ‘hidden’ SNP markers. The effectiveness of these tagSNP sets is evalu-

ated by comparing the number of new tagSNPs needed to cover the ‘newly found’

SNPs. In addition to the three criteria, we also compared three other tagSNP selec-

tion strategies: Z random SNPs, assume Z is the number of tagSNPs for the sparse

map, a picket fence strategy with Z equally spaced SNPs, where we place equally

spaced grid points along the interval and then select markers that are closest to these

grid points or using all original SNPs as tagSNPs. The results are summarized in

tables 2.4. When the r2 threshold is 0.5, 14.4% more tagSNPs (range from 7.0 to

20.9%) are needed to fill holes in the original map and that number is only 5.4%

(range from 3.8 to 7.0%) with an r2 threshold of 0.8. The three tagSNP sets require
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CEU YRI CHB+JPT
No. of SNPs 64801 69630 57810

r2 ≥ 0.5
No. of precincts 11786 24752 10248
No. of tagSNPs (Greedy) 14384 27804 12454
No. of tagSNPs (FESTA) 13983 27379 12108
No. of tagSNPs (FESTA, double cover) 23644 41668 20644

r2 ≥ 0.8
No. of precincts 23426 41079 20178
No. of tagSNPs (Greedy) 24300 41729 21044
No. of tagSNPs (FESTA) 24176 41664 20963
No. of tagSNPs (FESTA, double cover) 35824 54101 31463

Table 2.1: Summary of Chromosome 2: Number of tagSNPs with greedy approach
and FESTA

fewer tagSNPs to cover the holes, compared with tagSNPs picked using a picket fence

strategy (31.6% difference for r2 threshold of 0.5 and 21.6% difference for r2 thresh-

old of 0.8) or picked at random (33.8% difference for r2 threshold of 0.5 and 21.0%

difference for r2 threshold of 0.8).

2.4 Discussion

In this manuscript, we developed an efficient computational framework for tagSNP

selection using the r2 criteria. Our algorithm can handle 100,000s of linked markers

and can identify smaller tagSNP sets than the greedy approach [36]. Using both chro-

mosome wide data and densely typed ENCODE data from HapMap, we illustrated

the utility of our approach and showed savings increase in more densely typed regions

and inside large LD “blocks”. Computational effort required by our method can be

tailored to available computing resources. Another important feature is the ability of

our method to identify multiple equivalent tagSNP sets and use additional criteria,

such as assay design scores, to choose an optimal tagSNP set for genotyping. This

feature offers flexibility in picking tagSNPs which is desirable when designing real

association studies.
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CEU YRI CHB+JPT
Greedy FESTA Greedy FESTA Greedy FESTA

Singleton 5241 5241 15079 15079 4416 4416
1 5172 5172 8096 8096 4660 4660
2 774 911 924 1070 634 770
3 318 278 355 291 312 250
4 144 99 127 100 113 90
5 59 42 73 53 60 30
6 27 18 36 28 16 15
7 17 17 21 10 14 6
8 16 4 10 8 11 6
9 11 1 6 3 4 4
10+ 7 3 25 14 8 1
Total 14384 13983 27804 27379 12454 12108

Table 2.2: TagSNP distribution on Chromosome 2: Number of tagSNPs per precinct.

Region ENr112 ENr131 ENr113 ENm010 ENm013
No. of SNPs 863 988 1061 539 708

r2 ≥ 0.5
No. of precincts 55 78 43 44 26
No. of singletons 23 31 16 16 11
No. of tagSNPs (Greedy) 81 110 71 66 41
No. of tagSNPs (FESTA) 75 105 67 61 38
No. of tagSNPs (double cover) 128 183 123 109 67

r2 ≥ 0.5
No. of precincts 134 184 131 125 72
No. of singletons 63 81 62 61 25
No. of tagSNPs (Greedy) 152 197 142 131 83
No. of tagSNPs (FESTA) 146 193 141 130 81
No. of tagSNPs (double cover) 237 311 229 204 139

Table 2.3: Summary of tagSNP results for Encode regions: CEU samples
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Region ENr112 ENr131 ENr113 ENm010 ENm013
# SNPs in dense map 863 988 1061 539 708
# SNPs in sparse map 173 198 213 108 142

One-stage picking
TagSNPs in dense map 75 105 67 61 38

Two-stage picking
Max average r2 85 114 81 72 40
b/w tags and non-tags
Min lowest r2 85 115 80 75 40
b/w tags and non-tags
Min average r2 85 117 82 74 42
among

Other Strategies
Random picking 103.2 137.7 91.4 71.0 52.0
Picket fence 103 136 94 78 52
Use all sparse 200 241 239 134 153

Table 2.4: Comparing different criteria for tagSNP selection: Effect on number of
tagSNPs in denser SNP maps

The key improvement of FESTA over the greedy approach is the ‘precinct parti-

tioning’ step which enables the exhaustive search to be carried out very rapidly in

most of the partitioned precincts. This is similar in spirit to the idea of ‘partition-

ligation’ algorithm proposed by Niu et al. [45] for haplotype inference.

Many of the existing tagSNP picking algorithms aim to capture haplotype diver-

sity using the reduced set of markers (called haplotype tagging SNPs, htSNPs) such

as BEST [25]. They work well when a small number of common haplotypes exist

(typically true in the vicinity of a candidate gene) but these approaches often re-

quire the knowledge of complete haplotype phase and the boundary of the haplotype

blocks. On the other hand, tagSNP selection using r2 criteria does not require knowl-

edge of block boundaries and can easily be applied to cover the whole chromosome.

Multiple-marker tagging strategies [46, 47] in which multiple tagSNPs can be used

to represent each untagged SNPs have been proposed. While these methods further
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reduce the number of tagSNPs selected, this approach may be sensitive to random

genotyping failures.

Our approach is amenable to further computational improvements. For example,

parallel programming could be used to search for tagSNPs in separate precincts, fur-

ther speeding up the computation.
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CHAPTER III

Framework for remapping multiply mapped short

reads

3.1 Introduction

Short read sequencing has been deployed in many areas, such as, cataloging popula-

tion variation [10], identifying disease susceptibility loci [48], differential gene expres-

sion analysis [49, 50] and epigenetics [51, 14].

Most sequencing study designs consist of three main steps, short read sequencing,

alignment to the reference sequence and finally downstream analyses. The alignment

step is affected by many factors, such as read length, error rate and model, repetitive

elements and sequence homology in the reference sequence. These factors, combined

with the parameters of the alignment algorithm, can result in the ambiguous align-

ment of reads, i.e., these reads can be mapped, with similar confidence, to multiple

locations in the reference sequence within the constraints placed on the alignment

process.

Several algorithms have been proposed for aligning short sequences to a reference

sequence[52, 7, 53]. Most of the alignment algorithms only report reads that can be

mapped to a unique location in the reference sequence. As a consequence, themultiply
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mapped reads are commonly excluded from downstream analyses. The exclusion of

multiply mapped reads can result in information loss leading to decreased sensitivity

and specificity in downstream analyses. It can also produce biased results, especially

in quantitative analyses [54].

Several methods have been proposed to incorporate multiply mapped reads in down-

stream analyses [54, 55]. Most approaches assign multiply mapped reads propor-

tionally to their mapping positions, either based on the coverage at the mapping

locations[55, 56] or a model based assignment[54, 57]. Many of the approaches were

developed specifically for RNA-seq and ChIP-seq datasets. The quantitative nature

of the downstream analysis allows for proportional assignment. The proportional

assignment approaches cannot be utilized for DNA sequencing projects where down-

stream analysis is predicated upon a single accurate alignment of each read.

We present a model based approach designed to identify the most probable map-

ping location for the multiply mapped reads. We model the the abundance of the

individual bases at each location and use a Gibbs sampler to identify a single most

probable mapping for each multiply mapped read. We perform a simulation study

to test accuracy in identifying the true alignment of multiply mapped reads using

our method. In a subsequent simulation, we use variant discovery as the analysis of

interest to quantify the improvement in downstream analysis when adding multiply

mapped reads. Our algorithm was able to align upto 87% of correctly mappable short

reads back to their true location. The inclusion of multiply mapped reads in variant

discovery resulted in a 3% increase in the number of variants detected.
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3.2 Methods

Let R be the set of all reads mapped successfully to the reference sequence L. R can

be partitioned into two mutually exclusive sets, R1 and R2+, based on the number

of mappings returned by the alignment algorithm. R1 is the set of reads for which

the alignment algorithm found exactly one mapping and R2+ is the set of reads with

multiple mappings.

R1 := {r : r ∈ R, |Mr| = 1} (3.1)

R2+ := {r : r ∈ R, |Mr| ≥ 2} (3.2)

where Mr is the set of mappings for the read r. Each mapping is a location in the

reference sequence to which the read can be aligned.

3.2.1 Count matrix

Consider a single location i. Let Ci = {CA
i , C

C
i , C

G
i , C

T
i } be the counts of bases A, C,

G and T aligned to the location i. Ci can be obtained by counting the number of A, C,

G and T bases present in all the reads that contain location i in their alignment, i.e.

their selected mapping covers location i. Conditional on the underlying true genotype

at location i, Gi, we assume that the counts follow a multinomial distribution.

(Ci|Gi = g) ∼ Multinomial(Ni, pg) (3.3)

P (Ci|Gi = g) =

(

Ni

Ci

)

(pg)
Ci

=

(

Ni

CA
i , C

C
i , C

G
i , C

T
i

)

(pAg )
CA

i (pCg )
CC

i (pGg )
CG

i (pTg )
CT

i (3.4)

where Ni = CA
i + CC

i + CG
i + CT

i is the total number of reads covering the location

and pg = {pAg , pCg , pGg , pTg } is the vector of probabilities of observing A, C, G and T
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conditional on the true genotype g.

The probability vector pg depends on the error model for the sequencing process.

In this work, we assume a uniform error model. If the underlying genotype is ho-

mozygote, i.e. g = b1/b1, the probability of observing the different bases can be

written as

P (o|g = (b1, b1)) =











1− ǫ , o = b1

ǫ
3

, o 6= b1

(3.5)

where ǫ is the sequencing error rate per base. In case of a heterozygote genotype, i.e.

g = b1/b2, we can compute the probabilities to be

P (o|g = (b1, b2)) =











0.5− ǫ
3

, o ∈ {b1, b2}
ǫ
3

, o 6∈ {b1, b2}
(3.6)

Since the underlying genotype is unobserved, we compute the probability of observing

count configuration Ci by integrating over all the possible genotypes.

P (Ci) =
∑

g∈{AA,...,TT}
P (Ci|Gi = g)P (Gi = g) (3.7)

We use the reference sequence information to construct the genotype probabilities,

P (Gi). We assume the probability of a base different from the reference sequence

to be 0.001, equal to the expected sequence difference for human sequences. We

assign equal probabilities to all three non-reference bases. We use Hardy-Weinberg

equilibrium (HWE) to obtain the genotype probabilities. In the absence of reference

sequence information, we can assign equal probabilities to all bases and use HWE to

get genotype probabilities.

Let C = {Ci : i ∈ L} be the count matrix for the entire reference sequence. Un-
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der the assumption that the counts at different locations are independent, we can

compute the probability of observing the count matrix C.

P (C) =
∏

i∈L
P (Ci)

=
∏

i∈L

∑

g∈{AA,...,TT}
P (Ci|Gi = g)P (Gi = g) (3.8)

Consider a single read r. Let ar be the alignment of read r, i.e. ar is the mapping

selected from Mr as the estimate of the true location of r.

3.2.2 Alignment of uniquely mapped reads

If r ∈ R1, r has exactly one mapping returned by the aligner, i.e. |Mr| = 1. Thus,

there is no ambiguity in the alignment of reads in R1. Let A1 := {ak : k ∈ R1} be

the set of alignments for the reads in R1. We initialize the count matrix using the

sequence of reads in R1 at positions covered by A1.

3.2.3 Alignment of multiply mapped reads

Consider the set of multiply mapped reads, R2+. For each read r ∈ R2+, assume

that a single mapping from Mr has been selected as the current alignment. Let

A2 := {ak : k ∈ R2+} be the set of alignments for the multiply mapped reads. Using

Bayes rule, we can write the posterior probability of the alignments in A2 as

P (A2|C, A1) =
P (C|A2, A1)P (A2|A1)

P (C|A1)
(3.9)

We propose a Gibbs Sampling scheme to compute the posterior distribution of the

multiply mapped reads. Let r ∈ R2+ be a single multiply mapped read with map-
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pings Mr. Additionally, let A2,−r be the set of alignments for all multiply mapped

reads excluding r. We can write the posterior distribution of the alignment, ar, of r

conditional on the current alignment of the other reads.

P (ar = m|C, A2,−r, A1) ∝ P (C|(A2,−r ∪m), A1)P (ar = m|A1, A2,−r) (3.10)

where m is an element of Mr. We assume a uniform prior distribution over the

mappings in Mr, i.e. P (ar = m|A1, A2,−r) = |Mr|−1 ∀m ∈ Mr.

P (ar = m|C, A2,−r, A1) ∝ P (C|(A2,−r ∪m), A1)

|Mr|
(3.11)

P (ar = m|C, A2,−r, A1) ∝ P (C|(A2,−r ∪m), A1) (3.12)

Since the probability of the count matrix using only the alignments in A2,−r and

A1 is independent of the mappings in Mr, we can simplify the computation of the

conditional distribution as follows

P (ar = m|C, A2,−r, A1) ∝
P (C|(A2,−r ∪m), A1)

P (C|A2,−r, A1)
(3.13)

Using equation (3.8), we get

P (ar = m|C, A2,−r, A1) ∝ P (C|(A2,−r ∪m), A1)

P (C|A2,−r, A1)

∝
∏

i∈m

P (Ci|(A2,−r ∪m), A1)

P (Ci|A2,−r, A1)
(3.14)

We limit our computation to the locations covered by the mapping m. The read

contributes one additional count at each location covered by the mapping. Assume

that Cr,l is the contribution of the read r to the counts at location l. As an example,

if the reads contains the base A at location l, Cr,l = (1, 0, 0, 0); if it contains the base

C at location l, Cr,l = (0, 1, 0, 0) and so on. Using the read counts and substituting
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equation (3.8) into (3.14), we get

P (ar = m|C, A2,−r, A1) ∝
∏

i∈m

P (Ci|(A2,−r ∪M), A1)

P (Cl|A2,−r, A1)

∝
∏

i∈m

∑

g∈{AA,...TT}
(

Ni

Ci+Cr,i

)

(pg)
(Ci+Cr,i)

∑

g∈{AA,...TT}
(

Ni

Ci

)

(pg)Ci

(3.15)

We iteratively align each multiply mapped read using the conditional distribution

derived above. After allowing for burn-in, we sample the alignments of the reads

to obtain the joint posterior distribution of the alignments of the multiply mapped

reads. We obtain the maximum a posteriori (MAP) estimate of the alignments by

selecting the marginal mode of the posterior alignment distribution for each multiply

mapped read.

3.2.4 Simulations

We conduct two simulation studies to test the performance of our method. In the

first study, we simulate a single individual using the coalescent simulator ms [58].

The population parameters for the coalescent simulation are given in table 3.1. We

generate a region approximately the size of chromosome 21. Using the reference

sequence of chromosome 21 as the ancestral state, we introduce variants using the

sites obtained from the ms haplotypes. We randomly place 70 bp long reads on the

simulated chromosomes. Assuming independent errors at each location on the read,

we introduce errors using a uniform error model. We generate two datasets, with

10X and 30X average coverages. We use the Burrows-Wheeler aligner, bwa [52], to

align these reads back to the reference sequence. Using our algorithm, we obtain

the alignment for the multiply mapped reads. We measure the performance of our

algorithm using the proportion of multiply mapped reads that were aligned back to

their true location in 1000 replicates.
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Parameter Value
Effective population size (Ne) 10000
Mutation rate (µ) 1.5× 10−8

Recombination rate (r) 1× 10−8

Gene Conversion rate 4.5× 10−9

Table 3.1: Population parameters for simulating short read sequence data

In the second simulation study, we simulate 1Mb long haplotypes for 100 diploid

individuals using the same population parameters as the first simulation. We use a

1Mb long sequence from chromosome 1 as the ancestral state. Using the mechanism

described above, we generate short reads for each individual with 10X and 30X average

coverage. After aligning the short reads using bwa, we use our algorithm to resolve

the alignment of the multiply mapped reads. We use glfMultiples [59] to identify

single nucleotide variants in the sample. We repeat the variant discovery step using

only uniquely mapped reads. We compare the sensitivity and specificity of variant

discovery between the two datasets.

3.3 Results

We present the results of our simulation study to characterize multiply mapped reads.

Table 3.2 shows the numbers of uniquely mapped and multiply mapped reads with

10 and 30 fold average coverage on chromosome 21. More than 90% of all reads are

uniquely mapped to the reference region and 5% of reads are multiply mapped. BWA

could not align about 4% of reads. Greater than 95% of the uniquely mapped reads

are aligned to their true location in the reference sequence. The proportion of multi-

ply mapped reads that contain the true alignment in the list of mappings returned by

BWA is approximately 80%. Since 20% of the multiply mapped reads do not contain

the true alignment, our algorithm cannot remap them to their true genomic location.

Fig. 3.1 shows the proportion of multiply mapped reads aligned to their true genomic
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Coverage Read type Fraction Correctly mappable
Uniquely mapped 0.91 96.54%

10X Multiply mapped 0.05 79.01%
Unmappable 0.04 -

Uniquely mapped 0.90 95.10%
30X Multi-mapped 0.06 80.77%

Unmappable 0.04 -

Table 3.2: Read characteristics for chromosome 21 simulated data

location using the Gibbs sampling approach. The proportion of multiply mapped read

aligned correctly increases quickly before plateauing out at 70%. We see a slight in-

crease in the proportion of correctly mapped read at 30 fold coverage compared to 10

fold coverage. Since only 80% of multiply mapped reads can be aligned back to their

true location, our method is able to align approximately 87% of multiply mapped to

their true location conditional on their true mapping being identified by the align-

ment algorithm.

The improvement in variant discovery with the inclusion of multiply mapped reads

aligned by our method is given in table 3.3. For the 10 fold coverage data, using

only uniquely mapped reads uncovers 87% of all variants present in the sample. Us-

ing the alignment provided by our method, we were able to increase the number of

variants discovered from 1782 to 1842, a 3% increase. If all multiply mapped reads

had been placed in their true genomic location, 93% of all variants would have been

discovered. Similar trends can be seen for the dataset with 30 fold average coverage.

Variant discovery with uniquely mapped reads resulted in 1897 variants. Including

multiply mapped reads in the analysis led to a 3% increase in the number of variants

discovered.
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Figure 3.1: Proportion of multiply mapped reads aligned to their true location using
our algorithm

3.4 Discussion

In this work, we developed a Bayesian framework to identify the true location of

multiply mapped reads. In simulation studies, our method was able to resolve the

mapping ambiguities of more than 70% of the multiply mapped reads. Restricting

to multiply mapped reads which could be correctly assigned, our method was able

to correctly align ∼90% of the multiply mapped reads. Incorporating the estimated

alignment of multiply mapped reads into variant discovery resulted in a 3% increase
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Coverage Reads used # SNPs True SNPs discovered False positivesa

Uniquely mapped 1782 0
10X Multiply mapped 1842 5

Mappableb 2057 1918 1
Uniquely mapped 1897 0

30X Multiply mapped 1951 3
Mappableb 2057 2011 0

a Monomorphic positions identified as single nucleotide variants
b All reads that were mapped by the aligner were assigned to their true location

Table 3.3: Effect of multiply mapped reads on variant discovery

in the number of variants detected.

Since variant discovery is a computationally intensive process, we use the MAP es-

timate for downstream analysis. Since ∼20% of the multiply mapped reads are not

aligned to their true location, variant calling on a single individual results in a high

false discovery rate. Using information from multiple samples helps overcome the

adverse effects of misaligned multiply mapped reads.

Most existing methods for resolving multiply mapped reads assign the reads pro-

portionally to multiple locations. In contrast, our method can estimate a unique

alignment for each multiply mapped read. Further, the Gibbs sampling approach al-

lows the estimation of the joint posterior distribution of the alignment of all multiply

mapped reads. Using this joint distribution, our method can be used for quantitative

analyses by aligning multiply mapped reads proportional to their posterior probabil-

ities.

Short read sequencing protocols are constantly evolving, resulting in ever increas-

ing read lengths. As read length is inversely proportional to mapping ambiguity, this

leads to a reduction in the proportion of multiply mapped reads. Paired end sequenc-
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ing is another tool that can be used to improve the mapping fidelity. Although these

advances result in fewer multiply mapped reads, repetitive sequences, structural vari-

ants and sequence homology in the human genome will ensure ambiguity in mapping

short read sequences. Our method can be used as an additional tool to extract infor-

mation from multiply mapped reads.
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CHAPTER IV

Feasibility of admixture mapping to identify rare

susceptibility variants

4.1 Introduction

Genome wide association studies (GWAS)[1] have been the instruments of choice in

detecting genetic susceptibility loci. GWAS use genotype-phenotype correlation, com-

puted using sets of affected and unaffected samples, to identify loci associated with the

trait of interest. GWAS are best suited to detect variants that fall under the Common

Disease-Common Variant (CDCV)[60] hypothesis. The CDCV hypothesis proposes

that common diseases are caused by commonly occurring genetic variants with low

to moderate effect sizes. GWAS have been successfully employed to identify common

risk variants for common diseases such as diabetes[2], cardio-vascular diseases[61],

Parkinson’s disease [62, 63] and colorectal cancer [64, 65]. They have been used to

identify genetic variants affecting quantitative traits such as lipid levels[66, 67] and

BMI[68, 69]. While GWAS have been successful in identifying genetic loci influencing

many heritable traits [3], in many cases, the variants so identified have not been able

to adequately explain the heritability of common diseases [4, 5].

The unexplained heritability may be attributed to the presence of rare causal vari-
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ants that GWAS are not well suited to detect. The Common Disease-Rare Variant

(CDRV)[70] hypothesis surmises that the prevalence of common diseases can be at-

tributed to the presence of several rare causal variants in the population, each with

a moderate to high effect size. The two hypotheses, CDCV and CDRV, reflect the

presence of causal variants at different parts of the allelic spectrum of susceptibility

variants. These hypotheses fit as complementary pieces in our effort to unravel the

underlying genetic architecture of complex common diseases.

Several methods have been proposed to identify rare causal variants [71, 72, 73,

8, 74]. Rare variants mapping methods have been used to find loci affecting LDL

cholesterol[12, 75] and HDL cholesterol levels[11]. Since testing each rare variant in-

dividually is not statistically powerful, many rare variant mapping methods combine

the rare variants across a larger unit, such as a gene or an exon. Subsequently, they

test the burden or distribution of rare variants in each testing unit across affected

and unaffected samples. Different strategies have been proposed to combine the rare

variants across a testing unit, such as the presence or absence or rare variants[11, 7],

sum of minor alleles across rare variants[8] and weighted rare allele counts[71].

In admixed populations, i.e. populations with multiple founding populations, we

can use the ancestry of a testing unit as one way to collapse information across the

variants present in the region. An admixed population derives its ancestry from two

or more genetically different founder populations. The chromosomes of individuals

from an admixed population consist of a mosaic of genetic material from the different

founding populations. A block of shared ancestry is known as an admixture block.

Genetic recombination reduces the size of admixture blocks over generations. Figure

4.1 shows the changes in admixed chromosomes over multiple generations.
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Admixture mapping is a tool used to identify regions associated with a trait of

Figure 4.1: Admixed chromosomes and admixture blocks

interest by examining the differences in ancestry between affected and unaffected in-

dividuals. Consider an admixed population with two founding populations A and

B. In the admixed population, the genomic regions that are not associated with the

diseases should have ancestry equal to the mixing proportions, irrespective of the dis-

ease status of the individuals. For regions associated with the disease, the ancestry

contribution is dependent on the disease status. For affected individuals, we expect

to see excess ancestry from the founding population where the region’s contribution

to disease prevalence is higher. Conversely, for unaffected individuals, we expect to

see diminished ancestry contribution from this founding population. This difference
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in ancestry between affected and unaffected samples can be tested to map regions

associated with the disease.

Admixture mapping can be used in two flavors. Case-control admixture mapping

tests the difference in ancestry between affected and unaffected samples. A more

powerful approach is cases only admixture mapping, which compares the ancestry of

admixture blocks in cases to the estimated average genome-wide ancestry. Cases only

admixture mapping can produce spurious results in the presence of deviations from

average ancestry unrelated to the disease.

Admixture mapping has been shown to be powerful in identifying common causal

variants [76]. Risk variants for end-stage renal disease[77] have been identified using

admixture mapping. Admixture mapping has also yielded promising candidate re-

gions associated with prostate cancer. Several diseases including hypertension, lung

cancer, stroke have disparate prevalences in African and European populations [78],

making them good candidates for admixture mapping. For many of these diseases,

susceptibility loci have yet to be identified. Here, we explore the feasibility of admix-

ture mapping in the context of mapping rare causal variants.

Data from HapMap [16] and 1000 Genomes[10] projects show that African popu-

lations contain more polymorphic sites than European or Asian populations. This

difference is more pronounced for low frequency and rare variants. Many rare variants

are private to one of the two populations and those that occur in both populations

seldom have the similar frequencies [10]. This difference in the frequencies of rare

variants among populations combined with the CDRV hypothesis, implies a differ-

ence in contribution of the locus to disease prevalence in the two populations. Since

admixture mapping draws its power from the difference in prevalence contributions,
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it is a natural choice to identify loci harboring rare variants.

The first step in admixture mapping is the estimation of the ancestry of admixture

blocks. For the remainder of this work, we assume that ancestry of admixture blocks

can be accurately estimated. This assumption is justified since modern genome-wide

genotyping platforms include a dense set of markers spread across the genome. We can

estimate ancestry of genomic locations by combining information from neighboring

markers [79, 80]. We compare admixture mapping to single marker association studies

using a simulation study. Using a multiplicative model for disease risk, we analyti-

cally compute the power of admixture mapping conditional on the contribution of the

locus to prevalence in both populations. We simulate the founding populations using

ms [58]. We calibrate the coalescent simulator using a model for population history

of Africans and Europeans[81]. We compute the power of the single marker associa-

tion tests using simulated cases and controls sampled from the founding populations.

The power of the single marker association tests is computed as the proportion of

datasets with a significant result using a 1 degree of freedom test for allelic associa-

tion. We perform association tests using two strategies, viz., direct association where

the causal variants are among the variants tested and indirect association, where a

set of tagging SNPs are tested. We compare the performance of admixture mapping

to single marker association analysis across different cumulative risk allele frequencies.

Under our simulation settings, we find that admixture mapping has moderate power

to detect the susceptibility region. For our disease model, admixed populations with

equal contributions from two founding populations yield the best power for admixture

mapping. The power of admixture mapping is directly proportional to the cumulative

risk allele frequency. When the cumulative risk allele frequency is held under 1% in

the European population, admixture mapping has less than 10% power to detect as-
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sociation of the region with the disease, even with sample sizes upto 10000 cases and

10000 controls. At a cumulative risk allele frequency of 5% in Europeans, with 10000

cases and controls each, admixture mapping has 60% and 80% power in populations

with mixing ratios of 80-20 and 50-50 respectively.

4.2 Methods

In this section, we present the disease model that we use for rare variants. We also

derive the relationship between the contribution of the locus to disease prevalence in

the founding populations and the admixed populations. Using these results, we ana-

lytically compute the power of admixture mapping under the chosen disease model.

We need to set up some parameters to elaborate the disease model and compute

the power of admixture mapping. Consider an admixed population, C, with two ge-

netically different founding populations. Let the two founding populations be denoted

by population A and population B. Let pA and pB = 1− pA denote the contributions

of population A and population B to the admixed population respectively. This im-

plies that for any locus not associated with disease, an admixed individual is expected

to derive their ancestry from population A with probability pA. Additionally let FA

denote the contribution of the causal region to disease prevalence in population A and

let FB be the same in population B. We show that the power of admixture mapping

is a monotonically increasing function of the ratio of the contributions to prevalences.

4.2.1 Disease Model

To compute the power of admixture mapping, we need to specify the underlying

disease model. Following the model proposed by Zhu and Risch [82], we assume a

multiplicative disease model at each susceptibility locus. In addition, we assume that
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the different causal variants at the same locus interact in a multiplicative manner to

affect the disease risk.

Consider the causal region in population A. Assume there are K causal variants

in this region. We denote the relative risk of causal variant k by rk. Given the rela-

tive risk of all the causal variants and a model of multiplicative interaction of causal

variants, we can write the relative risk associated with a given haplotype h, Rh, as

Rh =
K
∏

k=1

r
I(hk)
k (4.1)

where I(hk) is a variable indicating whether haplotype h carries the risk allele at the

k-th causal variant. Given an individual from population A, carrying haplotypes h1

and h2, we can write the risk of disease in that individual as

P (D|(h1, h2), A) = b2Rh1
· Rh2

= b2
K
∏

k=1

r
I(hk

1
)

k r
I(hk

2
)

k (4.2)

Here, b2 is the baseline risk associated with the null genotypes, i.e. the risk conferred

by carrying no causal variants.

4.2.2 Contribution to prevalence in the founding and admixed popula-

tions

Using the haplotype risks, we can compute the contribution of this region to the

prevalence of the disease, FA. Let H be the set of all possible haplotypes of the

causal variants. Let fA
h denote the frequency of haplotype h in population A. We can
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write FA in terms of haplotype risks and frequencies as

FA =
∑

(h1,h2)∈H∈

P (D|(h1, h2))f
A
h1
fA
h2

=
∑

(h1,h2)∈H∈

b2Rh1
Rh2

fA
h1
fA
h2

=
∑

(h1,h2)∈H∈

(bRh1
fA
h1
)(bRh2

fA
h2
)

=

(

∑

h∈H
bRhf

A
h

)2

(4.3)

We can derive the contribution of the locus to the prevalence in population B similarly.

If we assume that identical haplotypes confer identical risks in both populations, we

find that the risk of disease for an individual from population B carrying haplotypes

h1 and h2 is exactly the same as in equation (4.2). Using an approach similar to

equation (4.3), we can compute the contribution of the locus to disease prevalence in

population B, FB.

FB =

(

∑

h∈H
bRhf

B
h

)2

(4.4)

In the above equation, fB
h is the frequency of haplotype h in population B. We note

that the difference in contributions to prevalence of the region in the two founding

populations is driven by the difference in the frequencies of the haplotypes carrying

the causal variants.

We can calculate the contribution to prevalence of the region in the admixed popula-

tion by combining the equations (4.3) and (4.4). First, we note that for an individual

carrying a pair of haplotypes h1 and h2 admixed population, there are three possible

ancestries. They can both trace their ancestry back to a single population, A or B.

Alternatively, one haplotype each can be inherited from populations A and B. Let fC
h
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be the frequency of haplotype h in the admixed population. We can write fC
h as the

weighted mean of the frequencies of the haplotype in populations A and B.

fC
h = pAf

A
h + pBf

B
h (4.5)

Since we assume that the baseline and haplotype risks remain unchanged in the

admixed population, we can explicitly write out the contribution of the region to

disease prevalence in the admixed population, FC , as follows

FC =
∑

h1∈H

∑

h2∈H
b2Rh1

fC
h1
Rh2

fC
h2

=

(

∑

h∈H
bRhf

C
h

)2

(4.6)

We can use equations (4.3), (4.4) and (4.5) to simplify equation (4.6).

FC =

{

∑

h∈H
bRh

(

pAf
A
h + pBf

B
h

)

}2

=

{

pA
∑

h∈H
bRhf

A
h + pB

∑

h∈H
bRhf

B
h

}2

=
{

pA
√

FA + pB
√

FB

}2

= p2AFA + p2BFB + 2pApB
√

FAFB (4.7)

We can break the contribution to prevalence of the region in the admixed population

into three parts.p2AFA and p2BFB are the contributions from individuals both of whose

haplotypes are inherited from population A and B respectively, while 2pApB
√
FAFB is

the contribution of individuals with one haplotype from each population. Conversely,

we can view FA, FB and
√
FAFB as the probability of disease given that the individual
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is carrying two haplotype from population A, two haplotypes from population B and

one haplotype each from either population, respectively.

4.2.3 Power of admixture mapping

We can calculate the power of admixture mapping analytically, conditional on know-

ing the contribution of the locus to disease prevalence in the two founding populations,

viz., FA and FB. We will focus on case-control admixture mapping. Admixture map-

ping compares the ancestry proportions of cases and controls. It tests the difference

in ancestries for cases versus controls using a one degree of freedom χ2 test for inde-

pendence between ancestry and disease status. If the contribution of the region to

disease prevalence is the same in both founding populations, the ancestry proportions

of cases and controls should be identically distributed and admixture mapping rejects

the hypothesis that the region is associated with the disease. Let us consider an

admixture mapping setup with nC cases and nC controls sampled from the admixed

population. Let the counts of the 2x2 table be given by nAC , nBC , nAC and nBC .

Ancestry A Ancestry B

Case nAC nBC

Control nAC nBC

Here nAC and nBC are the counts, in cases, of haplotypes inherited form population

A and B respectively. Similarly, nAC and nBC are the counts of haplotypes in controls

inherited from population A and B respectively. We can obtain the probability of a

haplotype falling in each one of the four cells of the 2x2 table using the contributions

of the region to disease prevalence in the founding and the admixed populations.

Let P (C,A), P (C,B), P (C,A) and P (C,B) be the aforementioned probabilities.

Consider the probability of a haplotype falling in the cell for cases with ancestry in

population A.
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P (C,A) = P (A|C)P (C) =
nC

nC + nC

P (A|C) (4.8)

P (A|C) is the probability of the haplotype being from population A if it was sampled

from a case. We can expand equation (4.8) by explicitly calculating P (A|C) using

P (A,A|C), the probability of carrying the second haplotypes also from population

A conditional on being a case and P (C|A,B), the probability of carrying the second

haplotype from population B conditional on being a case.

P (C,A) = P (A|C)P (C)

=
nC

nC + nC

(P (A,A|C) + P (A,B|C))

=
nC

nC + nC

(

p2AFA

FC

+
pApB

√
FAFB

FC

)

=
nC

nC + nC

(

pA
√
FA

FC

(pA
√

FA + pB
√

FB)

)

=
nC

nC + nC

(

pA

√
FAFC

FC

)

(4.9)

Similarly, we can obtain the other probabilities. They are given below.

P (C,B) =
nC

nC + nC

(

pB

√
FBFC

FC

)

P (C,A) =
nC

nC + nC

(

pA
(1−√

FAFC)

1− FC

)

P (C,B) =
nC

nC + nC

(

pB
(1−√

FBFC)

1− FC

)

(4.10)

Finally, conditional on the contribution of the region to prevalence in the founding

populations, we can calculate the power of case-control admixture mapping using the
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probabilities of each cell in the 2x2 table. We calculate the non-centrality parameter,

λ, of the χ2 statistic under the alternative hypothesis of non-independence of ancestry

and disease status. The power of case-control admixture mapping, PCC,adm, at level

α, under our disease model for rare variants is given by

λ = 4n
(P (C,A)− P (C,A))2

P (A)P (B)
(4.11)

PCC,adm = P (χ2
1,λ > χ2

1(1− α)) (4.12)

where P (A) = P (C,A)+P (C,A) and P (B) = P (C,B)+P (C,B) are the probabilities

of sampling a chromosome inherited from population A and B respectively, in a

balanced case-control study. Note that these probabilities are not equal to the mixing

proportions pA and pB.

4.2.4 Relationship between power and contributions to prevalence

We investigate the effect of the contribution to prevalences in the founding populations

on the power of case-control admixture mapping. We can rewrite the non-centrality

parameter, λ, by substituting the values of P (C,A) and P (C,A) from equations (4.9)

and (4.10).

λ = 4n
(P (C,A)− P (C,A))2

P (A)P (B)

= 4n

(

nC

nC+n
C

√
FAFC

FC
− n

C

nC+n
C

1−
√
FAFC

1−FC

)2

P (A)P (B)
(4.13)
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Assuming a balanced case-control design, i.e. nC = nC = n, we can further simplify

the non-centrality parameter as,

λ = 4n(0.5)2

{

pA
√
FAFC

FC
− pA

(1−
√
FAFC)

1−FC

}2

P (A)P (B)

= n
(pApB)

2

P (A)P (B)

{ √
FA −√

FB√
FC(1− FC)

}2

. (4.14)

For fixed mixing proportion pA and contribution to prevalence in the admixed pop-

ulation, the non-centrality parameter, λ, depends on the relationship between the

two populations solely through the term (
√
FA −√

FB)
2, which can be expressed in

terms of the ratio of the contribution to prevalences. Any deviation of the ratio,

FA/FB, from 1, results in an increase in λ, resulting in increased power for admixture

mapping. Conversely, if the contributions to prevalence in the two populations are

the same, i.e. FA = FB, we obtain a central χ2 distribution under the alternative

hypothesis, resulting in no power for admixture mapping. It is important to note

that λ is not symmetrically related to the contributions to prevalence in the founding

populations in case of non-equal mixing proportions, i.e. pA 6= 0.5, since it depends

on the contribution to prevalence in the admixed population.

Using the explicit form for FA and FB from eqns. (4.3) and (4.4), we can rewrite

(4.14) as

λ = n
(pApB)

2

P (A)P (B)FC(1− FC)2

{

b

(

∑

h∈H
Rhf

A
h −

∑

h∈H
Rhf

B
h

)}2

= n
(pApB)

2

P (A)P (B)FC(1− FC)2

{

b
∑

h∈H
Rh(f

A
h − fB

h )

}2

(4.15)
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From equation (4.15), we can view the non-centrality parameter as being propor-

tional to the squared difference between the mean haplotype risks in the two popula-

tions, weighted by the haplotype frequencies. If we make the simplifying assumptions

that each risk variant lies on its own haplotype, we can compute the expected non-

centrality parameter using equation (4.15) as

E(λ) = E(n
(pApB)

2

P (A)P (B)FC(1− FC)2

{

bRh

K
∑

k=1

(fA
k − fB

k )

}2

)

= n
(pApB)

2

P (A)P (B)FC(1− FC)2
b2∆2

ABE(R2
h)

= n
(pApB)

2

P (A)P (B)FC(1− FC)2
b2∆2

AB(µ
2
R + σ2

R) (4.16)

where fA
k and fB

k are the frequencies of risk variant k in populations A and B re-

spectively, ∆AB =
(

∑K
k=1 f

A
k − fB

k

)

is the difference in the cumulative risk variant

frequencies between the two populations and µR and σ2
R are the mean and variance of

the haplotype risks. The power of case-control admixture mapping is a monotonically

non-decreasing function of the difference in risk variant frequencies between the two

populations.

4.2.5 Power of single marker association test

We compare the case-control admixture mapping test to the 1 degree of freedom

single marker case-control test for allelic association. This test is more powerful

that the 2 degrees of freedom genotype association test under the disease model

considered here. We can analytically compute the power of a single marker test,

assuming that the causal variants are tested directly and linkage equilibrium between

the susceptibility loci. For illustration purposes, we consider single marker tests

conducted in population A. Given n cases and n controls, we can compute the non-
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centrality parameter of the 1-df χ2 statistic testing allelic association for risk variant

k in a similar fashion as (4.14).

λA
k = n

(fA
k (1− fA

k )bk)
2

P (k)(1− P (k))

(

rk − 1√
FA(1− FA)

)2

(4.17)

where P (k) is the probability of sampling the risk allele in a balanced case-control

study and bk is the baseline risk at causal variant k. We have the most power to

detect the causal variant with the highest non-centrality parameter. Since we test

multiple markers, we compare the case-control admixture mapping with the most

extreme test statistic. We perform the single marker association test under two

scenarios; direct association, when the causal markers are among the variants tested

for association, and indirect association, where tagging SNPs are used as proxies

for the causal variants. In either scenario, the distribution of the most extreme

test statistic does not follow the non-central χ2 distribution under the alternative

hypothesis. Since we cannot compute power analytically, we use a simulation study

to estimate the power of the single marker association test.

4.2.6 Simulations

The power of admixture mapping depends on the distribution of the contributions to

prevalence in the founding populations, FA and FB. The joint distribution of these

parameters is controlled by the relationship between the two populations, the disease

model and the linkage disequilibrium (LD) structure in the locus harboring the causal

variants. Similarly, the power of the single marker association test depends on the

local LD structure and distribution of the frequencies of the risk variants. We present

a simulation scheme to generate admixture blocks and case-control samples using a

calibrated population history and the previously described rare causal variant disease

model.
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For admixture mapping, we are most interested in two admixed populations, the

African-American and Latino populations. We use a model of population history[81]

shown in fig. 4.2 to simulate haplotypes from the founding populations, viz., Africans

and Europeans. We consider an admixture block 100 kb long. We use ms [58] to

generate haplotypes in the admixture block from each of these two founding pop-

ulations. We simulate 200 independent realizations of the coalescent process using

the same population parameters. We create 50 replicates of case-control samples and

contribution to prevalences in the two populations using each coalescent realization,

for a total of 10000 data points.

Figure 4.2: Population model used for simulating haplotypes using ms
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4.2.6.1 Choosing risk variants

Using the simulated haplotypes, we select causal variants randomly from the set of

variants with minor allele frequency (MAF) less than 10% in both populations. We

select causal variants such that the cumulative MAF reaches a pre-specified threshold

in the European population. We use different values of the cumulative MAF thresh-

old in our simulation study. We assume that the minor allele is the risk allele. We

also assume that the risk of the variant is inversely proportional to its MAF. Since

we focus on variants that are unlikely to be found using a genome wide association

study, we assign relative risks to causal variants such that the power of a genome wide

association study, with 20000 cases and 20000 controls is fixed at 10% after correct-

ing for 1 million tests. Fig. 4.3 shows the relative risk as a function of minor allele

frequency. We use the higher of the two MAF from the two populations to assign the

relative risk. We compute the risk of each haplotype using equation (4.1). We fix the

baseline risk by setting the contribution to prevalence in the European population to

be 1% in equation (4.3).

4.2.6.2 Admixture mapping

We generate an admixed individual by picking random haplotypes from the two found-

ing populations, proportional to their contribution to the admixed population. For

the African-American population, we use a mixing ratio of 80% African contribution

and 20% European contribution. For the Latino population we simulate, we use an

equal contribution from both populations. We note that all the markers in the ad-

mixture block share their ancestry, i.e. the boundaries of the admixture block are

shared among the individuals. We compute the contribution to prevalence in the

African population using haplotype risks and frequencies in that population and us-

ing the same baseline risk as the European population. We compute the power of
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Figure 4.3: Relative risk vs minor allele frequency. Power of single marker test is set
at 10% for 20000 cases and controls, correcting for 1 million tests.

admixture mapping by plugging the contribution of prevalences for both populations

into equations (4.7), (4.12) and (4.14) and correcting for 3000 equivalent independent

tests. Finally, we obtain the overall power of admixture mapping by averaging power

across the 10000 datasets.

4.2.6.3 Single marker test

We perform the single marker association test on two different sets of markers. In the

first set of markers, we perform the single marker association test on all the variants

present in the region, including directly testing the risk variants. In the second set,
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we limit ourselves to tagging SNPs, which are chosen to maximize information on

common markers present in the region. We choose tagSNPs such that all the variants

in the region with a minor allele frequency greater than 1% are either present in the

tagging SNP set or have a pairwise LD measure, r2, greater than 0.8 with at least

one member of the tagging SNP set. We repeat the analysis with a tagging minor

allele frequency threshold of 0.5%. We compute the power of the single marker test

by checking the significance of the maximum test statistic in the region corrected for

genome wide significance (α = 5× 10−8) in the 10000 replicates.

4.3 Results

We present the analytical results for the power of admixture mapping under our

disease model. Figure 4.4 shows the power of admixture mapping over a range of

contributions to prevalence in the two founding populations. Admixture mapping

is more powerful when two founding populations contribute equally to the admixed

population. In the case of unequal contributions, the contribution to prevalence in

the population with lower ancestral contribution plays a larger role in determining the

power of admixture mapping. Figure 4.5 shows the relationship between the power

of admixture mapping, contribution to prevalence in one population and sample size.

The contribution to prevalence in the other founding population is fixed at 1%. For

both mixing ratios, viz., 50-50 and 80-20, admixture mapping power increases sharply

as contribution to prevalence moves away from 1%. This increase is more pronounced

with higher sample sizes.

Figure 4.6 shows the mean and standard error of the ratio of contribution to preva-

lence in Africans and Europeans, across a range of different cumulative risk allele

frequencies in Europeans. We find a moderate increase in the ratio of prevalence
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contributions with cumulative risk allele frequency. The ratio starts to plateau at the

higher end of the allele frequency range. We obtain similar results across a range of

contribution to prevalence in the European population, indicating that the ratio of

prevalence contributions is solely dependent on the risk allele frequencies. We also

note that this distribution is independent of the mixing ratios.

We compare the power of admixture mapping and direct association, where the causal

variants are directly tested for correlation to the disease, in figure 4.7. For both sample

sizes considered, admixture mapping performs better than single marker association

tests. The powers of all three tests increase with cumulative risk allele frequency. The

difference in power between the admixture mapping for the two mixing ratios is higher

with the 10000 cases and controls compared to 1000 cases and controls. Admixture

mapping with 10000 cases and controls each, on a population similar to the African-

Americans, increases in power from 10% to 60% as the risk allele frequency increases

from 1% to 5%. The power of admixture mapping under the same settings, in a

population with a 50-50 mixing ratio, increases from 25% to 80%.

We compute the power of indirect association using tagSNPs and compare to ad-

mixture mapping. Using 5000 cases and controls each, the power of single marker

test using tagSNPs is much lower than the power of both admixture mapping tests.

For cumulative risk allele frequency of 0.5%, all tests have very low power with di-

rect association being the best test at 3% power. Power improves for all tests with

increasing risk allele frequency, with admixture mapping gaining the most. Single

marker association tests using tagging SNPs have power less than 5% for all risk al-

lele frequencies below 0.05.
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4.4 Discussion

In this work, we explored the feasibility of admixture mapping as a tool to identify

regions harboring rare causal variants. Under the multiplicative disease model for

rare variants and relative risk settings resulting in very low power for single marker

association studies, admixture mapping had moderate power to detect the suscepti-

bility locus.

In our simulation studies, the power of admixture mapping was higher than 50%

only for sample sizes larger than 5000 cases and controls each. Modern admixture

mapping studies have much smaller sample size[77, 83], of the order of 1000 cases and

controls each. Admixture mapping with current sample sizes would be underpowered

to detect regions harboring rare susceptibility variants.

The power of admixture mapping is directly proportional to the cumulative frequency

of the risk alleles. At cumulative risk allele frequencies less than 0.5%, admixture

mapping had almost no power to detect the association of the region to the disease.

Increasing the cumulative risk allele frequency to 1% significantly increased the power

of admixture mapping. Admixture mapping draws its power from the difference in

risk allele frequencies between the founding populations. Since very low risk allele

frequencies preclude a large frequency difference between the founding populations

under our disease model, it follows that admixture mapping is not well powered to

detect an accumulation of really rare risk variants.

For the purposes of this study, we considered Africans and Europeans as the two

founding populations. The disparity in the number and frequency of rare variants

between the two populations makes African-Americans well suited for admixture

mapping[16]. Equal ancestry contributions results in significantly higher power for
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admixed population compared to a 80%-20% split in ancestry. We can find candidate

admixed populations with equal contributions from Native Americans and Africans.

We expect admixture mapping power to diminish significantly if the two founding

populations are not as distant, e.g. Native Americans and Europeans.

Admixture mapping is predicated upon accurately identifying the ancestry of ad-

mixture blocks. In this study, we have assumed perfect ancestry estimation. Mod-

ern genotyping platforms contain a dense set of markers, with more than a million

variants. The cumulative information from these markers can be used to identify

admixture blocks and their ancestry accurately [84].

In this study, we have assumed that risk variants are equally likely to be more frequent

in either of the two founding populations. Differential selection on the risk variants

in the two founding populations can lead to scenarios where this assumption does not

hold. Violation of this assumption can lead to a large difference in the cumulative

frequency difference of risk variants, thus resulting in different contributions to preva-

lence in the two founding populations and higher power for admixture mapping.

Several methods have been proposed that test the cumulative burden of carrying

multiple rare causal variants across a testing unit. These burden tests have been

successful in detecting rare disease predisposing variants. As a follow up to this work,

we would compare admixture mapping to burden tests. Admixture mapping has

some advantages over the burden tests. The burden tests suffer from drawbacks such

as non-robustness to variant misspecification and loss of power in the presence of

both risk and protective variants. Admixture mapping combines information across

all the markers across an admixture block; hence it does not suffer from the effects

of variant misclassification. The presence of protective variants can work favorably
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for admixture mapping by further skewing the ratio of contributions to prevalence.

Additionally, burden tests are not a genome-wide testing strategy as they rely on

accumulating variants across a testing unit such as a gene or an exon, whereas ad-

mixture mapping can be used to test across the entire genome. Admixture mapping

can be an effective complementary tool to burden tests in the effort to identify rare

risk variants.
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Figure 4.4: Contour plot showing the power of admixture mapping against the con-
tribution to prevalences in the two founding populations. The power of
admixture mapping is shown for two different mixing ratios of 80%-20%
and 50%-50%.
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Figure 4.5: The relationship between power of admixture mapping and contribution
to prevalence in population A, plotted for various sample sizes. The
contribution to prevalence in the second population was fixed at 1%.
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Figure 4.6: Mean ratio of contribution to prevalences in the African population vs the
European population plotted against the cumulative risk allele frequency.
The contribution to prevalence in Europeans was fixed to 1%.
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Figure 4.7: Power of admixture mapping compared to the power of single marker
tests (blue lines) in Europeans. Two levels of European ancestry were
considered, 20% (red lines) and 50% (black lines). The hollow symbols
represent tests with 1000 cases and 1000 controls, whereas the filled sym-
bols represent test with 10000 cases and controls each.
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Figure 4.8: Power of admixture mapping compared to indirect association. Sample
size was 5000 cases and controls each. TagSNPs were chosen with two
minor allele frequency cutoffs, 1% and 0.5%.
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CHAPTER V

Estimating site frequency spectra from low

coverage sequencing data

5.1 Introduction

The Site Frequency Spectrum (SFS) is an important sample summary statistic in

population genetics. The SFS encapsulates the abundance of variations occurring at

different frequencies of the derived allele. Many demographic history and molecular

evolution parameters can be calculated from the SFS. Estimators of the scaled muta-

tion rate θ, such as Watterson’s estimator, θW , [85] and the mean pairwise sequence

difference, π are functions of the SFS. The SFS also contains information on the de-

mographic history of the population like expansion, shrinkage and recent bottlenecks

[86]. Adams and Hudson [87] used the SFS to obtain the maximum likelihood es-

timates (MLE) of demographic parameters. Statistics that test for deviation from

a constant sized Wright-Fisher population with neutral molecular evolution, such as

tajima’s D [88] and Fay and Wu’s H [89], can be derived from the SFS. Fu [90] pre-

sented several statistical tests of neutrality based on the SFS. All population genetics

statistics that do not use linkage or linkage disequilibrium information can be repre-

sented as functions of the SFS.
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Before the emergence of large scale sequencing technologies, the SFS was estimated

using genotypes obtained using genotyping platforms such as Illumina 1M or the

Affymetrix 600K SNP chips. Genotyping arrays do not include all variants present

in the region; they are designed using variants identified using a discovery panel.

This discovery scheme introduces an ascertainment bias in SFS estimation. Several

methods [91] are available to correct for the ascertainment bias, but they depend on

knowing the ascertainment scheme a priori.

With the advent of low cost high throughput sequencing platforms, SFS can be es-

timated using short read sequence data. Since short read sequencing queries every

nucleotide in the region of interest, estimates of the SFS obtained using sequence

data do not suffer from ascertainment bias. The SFS can be computed directly using

the genotypes estimated from the short read sequences. The genotypes estimated

from the short read sequence data are probabilistic. The uncertainty in genotype

estimate is a function of many factors such as alignment fidelity, sequencing depth,

i.e. the number of short reads covering the variant position and the error model of

the sequencing technology.

Sequencing depth is an important determinant of genotype calling accuracy. It is

a study design parameter that can be adjusted based on study goals. The trade off

between sample size and sequencing depth has given rise to two competing study de-

signs. The ”small sample high coverage” strategy results in a high variant discovery

rate with high confidence genotype calls. Under this design, the SFS can be accurately

estimated. Conversely, the ”large sample low coverage” strategy has low confidence

genotype calls with a moderate variant discovery rate. The two study designs attempt

to balance the probability of sampling a variant against the probability of discovering

it, conditional on it being included in the analysis. Ionita-Laza et al[92, 93] showed
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that, for realistic design parameters, the overall probability of discovering a variant

is higher under the latter design.

Several methods have been proposed to improve the genotyping accuracy under the

”large sample low coverage” design, e.g. borrowing information across samples and

using linkage disequilibrium (LD) to improve genotype confidence. The informa-

tion pooling methods perform well for common variants but exacerbate the geno-

type uncertainty for low frequency and rare variants. We analyze the performance

of three variant calling strategies, viz., individual-based, population-based and LD-

aware, with respect to estimating the SFS. All three calling strategies result in an

underestimation of the rare end of the SFS. While combining information across sam-

ples and markers improves the SFS estimate for allele counts greater than 5, it further

biases the estimate of the SFS for rarer variants.

Yi et al [94] presented Bayesian approach to estimate the SFS from short read se-

quence data. They applied their method to estimate the SFS using 50 sequenced

Tibetan exomes. Comparing the SFS estimates between Tibetans and Han Chinese,

they identified a variant under selection in the EPAS1 gene, found to facilitate adap-

tation to hypoxic environments. Their method is not designed to estimate SFS from

low coverage data.

In this work, we pose the SFS estimation problem in a parametric framework. We pa-

rameterize the SFS using scaling parameters to account for the change in the relative

abundance of rare variants. We use the maximum likelihood estimates (MLE) of the

scaling parameters to estimate the SFS. We use a simulation study to compare the

performance of our algorithm to the counting estimate of the SFS, obtained by count-

ing across the estimated genotypes. In the simulation study, our method provided a
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more accurate estimate of the SFS compared to the counting estimates. Our method

resulted in a overestimation in the absolute numbers of rare variants, especially for

singletons. We also applied our algorithm to estimate the SFS for a subset of the

samples sequenced as part of the quantitative proof of concept (QPOC) [95] study.

In the real data example, our method underestimated the SFS in the QPOC data,

but it outperformed the counting estimate of the SFS.

5.2 Methods

In this section, we describe the SFS in a mathematical framework and present its ex-

pectation under constant sized Wright Fisher population with neutral mutations. We

introduce two estimates of the SFS from short read sequence data, viz. the counting

estimate based on the estimated genotypes and maximum likelihood estimates (MLE)

based on our parameterization of the SFS. Finally, we detail our simulation study to

test the performance of our approach.

5.2.1 Site Frequency Spectrum

Consider a sample of n diploid individuals with S sites being analyzed. Let X =

{ξ1, . . . , ξ2n−1} represent the 2n − 1 bins of the SFS. Here, ξi counts the number of

variant sites that have exactly i derived alleles in the sample, i.e.

ξi =
S
∑

s=1

I(Ds = i) (5.1)

Here Ds is the total number of derived alleles in the sample at site s. In the absence of

information regarding the ancestral and derived allele at each site, we cannot compute

the SFS as above. We can instead compute the folded version of the SFS which counts

minor alleles instead of derived alleles. Let Xf = {η1, . . . , ηn} represent the folded
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SFS. If we denote the total number of minor alleles in the sample at site s by Ms, we

have

ηi =
S
∑

s=1

I(Ms = i) (5.2)

For the remainder of this paper, we focus on the folded SFS. We can use coalescent

theory for a constant sized Wright-Fisher population with neutral sequence evolution

to compute the expected SFS.

E(ηi) = θ

(

1

i
+

1

2n− i

)

, i = 1, . . . , n (5.3)

where θ is the scaled mutation rate given by 4Nµ. Here N is the coalescent effective

population size and µ is the mutation rate per base per generation. The neutral

expected SFS is parameterized by a single parameter θ which controls the overall

amplitude of the SFS. The shape of the expected neutral SFS is fixed for a fixed

sample size, n, and does not depend on θ. Violations of the assumptions under which

the expectation was computed lead to changes in the shape of the SFS. Population

growth leads to an excess of rare variants while population decline results in fewer

rare variants than expected. In addition, selection pressures can also result in devia-

tion from the expected neutral SFS.

5.2.2 Counting estimate of SFS

We can use a genotype calling algorithm to estimate the genotype for each sample at

each site. We can obtain the number of minor alleles observed at each site using the

estimated genotypes. In this framework, we assume each variant site to be bi-allelic.

We can construct the folded SFS by counting the number of sites with each minor

allele count.
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η̂i,count =
S
∑

s=1

I(M̂s,count = i|Cs), i = 1, . . . , n (5.4)

Here, η̂i,count is the counting estimate of the ith bin of the SFS, M̂s,count is the counting

estimate of the total number of minor alleles at site s. Cs is the matrix of counts of

bases A, C, G, T at site s for each sample, obtained by counting the bases on the

short reads aligned to the genomic location of site s.

5.2.3 Parameterizing the SFS

We tackle the SFS estimation in a parametric framework. The natural choice for a

parameterized folded SFS is the expected folded SFS under a constant sized Wright

Fisher population with neutral sequence evolution, given in eqn. (5.3). We propose

an alternative parameterization for the SFS to accommodate the deviations from the

neutral SFS caused by violations of assumptions such as constant population size and

no selection on variants. We introduce an additional parameter for each bin, zi to

scale the number of variants with i minor alleles in the sample. Table 5.1 shows the

expected bin counts under the neutral and our parameterization of the SFS.

Table 5.1: Expected SFS bin counts under neutral and our parameterization
Minor allele count Neutral model Our model

i = 1 θ
(

1 + 1
2n−1

)

z1θ
(

1 + 1
2n−1

)

i = 2 θ
(

1
2
+ 1

2n−2

)

z2θ
(

1
2
+ 1

2n−2

)

i ≥3 θ
(

1
i
+ 1

2n−i

)

ziθ
(

1
i
+ 1

2n−i

)
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5.2.4 Estimating parameters of the SFS

We set up a likelihood framework for the estimation of the parameters of the SFS.

Given the alignment of the set of short reads, we can write the likelihood of the pa-

rameters, Z = zi : 1 ≤ i ≤ 2n− 1, using the probability of observing Cs, the matrix

of counts of bases A, C, G, T at site s. Assuming independence between sites, we can

write the likelihood as

L(Z, θ) =
S
∏

s=1

P (Cs|Z, θ) (5.5)

For each site, we can compute the probability term P (Cs|Z, θ) by further condition-

ing on Ms, the number of minor alleles observed at site s. Leveraging the fact that

Cs depends on Z and θ only through Ms, we get

P (Cs|Z, θ) =
n
∑

j=0

P (Cs|Ms = j)P (Ms|Z, θ) (5.6)

In order to ease the computational burden, we make two simplifying assumptions.

Firstly, we assume that the counting estimate of the folded SFS is accurate for sites

with minor allele counts greater than m, an arbitrary minor allele threshold, i.e.

P (Ms = k|M̂s,count = k, k > m) = 1. We also assume that m is small enough that we

can ignore the probability of finding a homozygote for the minor allele for sites with

less than m minor alleles. Using the first assumption we can reduce the summation

in (5.6) tom terms by conditioning onMs ≤ m. Now, we can rewrite (5.6) and (5.5) as

P (Cs|Z, θ,Ms ≤ m) =
m
∑

j=0

P (Cs|Ms = j)P (Ms = j|Z, θ,Ms ≤ m) (5.7)

L̃(Z, θ) =
∏

s∈Sm

m
∑

j=0

P (Cs|Ms = j)P (Ms = j|Z, θ,Ms ≤ m) (5.8)
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where Sm is the set of sites where the counting estimate of the number of minor alleles

is ≤ m.

We can write the probability P (Ms|Z, θ,Ms ≤ m) using our parameterization of the

folded SFS. We obtain these probabilities using table 5.1 as

P (Ms = j|Z, θ,Ms ≤ m) =











1−∑m
k=1 P (Ms = k|Z, θ,Ms ≤ m) if j = 0

ziθ
(

1
i
+ 1

2n−i

)

/|Sm| if j ≥ 1
(5.9)

In order to calculate the probability of observing the count configuration Cs con-

ditional on minor allele count, Ms, we need to identify the minor allele and the

samples that carry the minor allele. Since we cannot ascertain the minor allele or

the carrier status for the samples, we integrate them out by summing over all three

possible minor alleles and all possible carrier statuses, i.e. all ways of splitting the

Ms into the n samples. Here, we leverage the assumption of no homozygotes of the

minor allele so that each sample can carry at most one copy of the minor allele. Let

k ∈ {A,C,G, T} be the minor allele and K ∈ {A,C,G, T} represent the major allele.

Let Tj = (t1, . . . , tn) be the vector of carrier status for each sample with j total minor

alleles, where ti = 1 if sample i carries the minor allele and ti = 0 if not.

P (Cs|Ms = j) =
∑

k∈{A,C,G,T}/K
P (k)

∑

Tj

P (Cs|Tj)P (Tj)

=
∑

k∈{A,C,G,T}/K
P (k)

∑

Tj

(

n
∏

i=1

P (C i
s|ti)

)

P (Tj) (5.10)

The probability of the minor allele, P (k) in the first sum above, is calculated assum-

ing a transition-transversion ratio of 2:1 [96]. If the major allele K and the chosen

minor allele k are both purines or pyrimidines, i.e. the mutation that gave rise to the

variation was a transition mutation, we set P (k) = 2/3. Similarly, if the mutation

that gave rise to the variation was a transversion, we set P (k) = 1/6. The probability

69



of each carrier vector Tj is the same and is given by P (Tj) =
(

n
j

)−1
, as there are

(

n
j

)

ways of choosing j carriers from n samples. The carrier status and the minor allele

completely determine the genotypes of all the samples. Given the genotype of sample

i, we can compute the probability of the count vector for sample i, C i
s, as

P (C i
s|ti) =











P (C i
s|Gi = (k,K)) if ti = 1

P (C i
s|Gi = (K,K)) if ti = 0

(5.11)

We have presented the likelihood as the function of genotype likelihoods of the samples

at each site. While our method is based on the genotype likelihoods, it is independent

of the method or model used to estimate the genotype likelihoods. The genotype like-

lihoods can be computed using variant calling methods such asMAQ [7] and soapSNP

[97].

Under the complete model with parameters Z and θ, the parameters are uniden-

tifiable. In order to overcome the identifiability issue, we fix θ to be the Watterson’s

estimator obtained using the counting estimate of the SFS. We further reduce the

parameter space by assuming that scaling factors for all bins with greater than three

minor alleles are the same, i.e. z3 = z4 = · · · = zm. We obtain the maximum

likelihood estimates of Z using Newton-Raphson algorithm to find the maximum of

L̃(Z, θ).

5.2.5 Simulation

We used a simulation study to quantify the bias in the counting estimate of SFS

obtained using various genotype callers. We used cosi [98] to generate 1 Mb long

haplotypes matched to CEU HapMap [16] on multiple summary statistics. We used

a randomly selected 1 Mb region on chromosome 21 as the ancestral state. At the
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positions of the derived alleles on the simulated haplotypes, we introduced variant

positions with a transition-transversion ratio of 2:1. Subsequently, we selected a pair

of haplotypes at random to simulate an individual. We generated short read data

for the samples by randomly placing short reads on the haplotypes. We introduced

errors with a per base error rate of 0.5%. We simulated a high depth dataset with

30-fold average coverage and a low depth dataset with 4-fold average coverage. For

both coverage depths, we generated 10 replicates each for two different sample size

settings with 200 and 400 samples each.

We used three types of genotype calling algorithms to obtain the counting estimate

of the SFS. We used individual-based, population-based and Linkage Disequilibrium

(LD) aware callers on the simulated data to estimate the genotypes at each site for

all samples. We used SOAPSnp [97], glfMultiples [99] and Thunder [100] as represen-

tative individual, population and LD-aware genotype callers respectively. We filtered

the genotype calls using a phred scaled quality threshold of 20. We assumed a major

allele homozygote genotype when a genotype call did not pass the quality threshold.

We computed the counting estimate of the SFS by counting minor alleles across the

filtered genotypes. Using the counting estimates of the SFS, we qualitatively com-

pared the biases in the estimates obtained by using the genotypes from the three

different classes of genotype callers.

We also applied our method on the simulated datasets using a minor allele threshold

of 10, i.e. we set m = 10. We estimated the parameters Z independently in each

replicate. We restricted the comparison between the counting estimate and our esti-

mate of the SFS to the first 10 bins, since our method estimates only the first m bins

of the SFS.
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5.2.6 Validation using QPOC data

We validated our method by using the Glaxo-SmithKline Quantitative Proof of Con-

cept (QPOC)[95] study. We used 219 Iberian samples sequenced as part of the GSK

QPOC study. The coding sequence of 208 genes were sequenced in these samples

at 25-fold average depth across the target sequence. We thinned the data by sub-

sampling the reads for each individual. We generated two sub-sampled datasets, with

an average of 4-fold and 10-fold coverage depths. We applied our method to esti-

mate the SFS for the sub-sampled datasets. We compared the estimated SFS to the

counting estimate of the SFS obtained from the full (25-fold) dataset.

5.3 Results

First we present the count estimates of the SFS. For all subsequent results, we present

only the first 10 bins of the SFS. Fig. 5.1 shows the first 10 bins of the estimated SFS,

combined across the 10 replicates, using an individual based caller for a high coverage

depth dataset with an average 30-fold coverage across 200 samples. The estimated

SFS recapitulates the true SFS well for the rare and less common allele frequencies.

Population based and LD aware callers perform similarly.

Figs. 5.2(a)-5.2(c) show the estimated SFS using the three different genotype callers

on a low coverage dataset. The individual level caller underestimates the number of

singletons and doubletons significantly. In addition, it suffers from underestimation

problems at intermediate minor allele counts(between 3 and 10). In comparison, the

population level callers perform better at the intermediate minor allele counts, but

worse for singletons and doubletons. In particular, the LD aware callers estimate

the SFS accurately for minor allele counts greater than 5. This observation validates

our assumption about the accuracy of the counting estimate and lets us limit our
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Figure 5.1: Estimated SFS using individual based genotype calls using 200 samples
sequenced at 30-fold average depth

estimation procedure to site with minor allele counts ≤ 10.

Figs. 5.3(a) and 5.3(b) show the SFS estimated using our maximum likelihood ap-

proach, combined across 10 replicates, with 4-fold average coverage across the region.

The graphs of the true and estimated SFS show that our method is able to recover

the site frequency spectrum well. Specifically, we are able to recover the number of

singletons and doubletons present in the data. We observe a slight overestimation

of the number of singletons, irrespective of the sample size. The mean and standard

error of the ratio of true to estimated site frequency for each bin is shown in figure

5.4. For singletons, our estimate is upwardly biased; for minor allele counts greater

than one, our estimate is not statistically different from the true SFS.

We applied our method to the Iberian samples present in the QPOC study. Fig.(5.5(a))

shows three different estimates of the SFS, viz., our estimate and the counting es-

timate of the SFS, both using the 4-fold average coverage data and the ”true” SFS

estimated by a counting estimate using the 25-fold coverage data. Fig.(5.5(b)) shows

the same three estimates of the SFS for the 10-fold average coverage data. The

MLE and counting estimate of the SFS underestimate the SFS. The MLE method is
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significantly less biased than the counting estimate, for both coverage levels.

5.4 Discussion

The goal of this project was two-fold. The first aim was to test the estimation of the

SFS using genotypes obtained from various genotype calling algorithms. All three

genotype calling strategies resulted in an underestimation of the rare part of the SFS.

The individual based caller resulted in an uniform underestimation over the entire

range of the SFS. Population and LD-aware callers recovered the SFS accurate for low

frequency variants, but performed significantly worse for the rarest variants. Since

information for the rarest variants in the sample is limited, using population or LD

based genotype calling results in rare variants being misclassified as errors. For exam-

ple, singletons occur in exactly one individual in the sample; combining information

across samples does not improve the genotyping accuracy for singletons. The lack

of evidence from other individuals leads to further loss in quality of the genotype.

LD-aware callers suffer from a similar problem. As singletons do not occur on a

shared haplotype, the LD-aware callers are unable to incorporate information from

neighboring markers leading to a reduction in genotype confidence.

The second aim of the project was to devise a maximum likelihood based method to

estimate the SFS from low coverage short read sequence data. In simulation studies,

our method successfully recaptures the true SFS for low coverage short read datasets.

Although our method overestimates the true number of singletons, it accurately esti-

mates the rare part of the SFS for sites with minor allele counts greater than 1. In this

study, we have limited the estimation to a one-dimensional frequency spectrum. The

estimation procedure can be extended to multiple populations. While the estimation

framework remains unchanged, much larger sample sizes would be required to over-

come the instability in the estimation due to the increase in the number of parameters.
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Our approach amalgamates the advantages of LD-aware calling with MLE estimation.

LD aware callers borrow information from adjoining markers to refine genotype call-

ing at each marker, thus accurately estimating the genotypes at markers with more

than 5 minor allele copies in the sample. We leverage the accuracy of these genotype

calls to limit our SFS estimation to sites with minor allele counts less than 10, vastly

improving our computation time.

We have presented a maximum likelihood framework for SFS estimation which in-

tegrates out the inherent uncertainty present in low coverage sequencing datasets.

Although we have used this framework only to estimate the SFS, it can be extended

to estimate any function of the genotypes, such as heterozygosity, inbreeding coeffi-

cient etc. Our method provides a statistical framework to account for the uncertainty

in low coverage sequence data. With an increasing number of low coverage medical

sequencing studies underway, it can be used to augment the tools currently used to

analyze rare variants in the sample.
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(a) SOAPSnp: Individual-based genotype caller
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(b) glfMultiple: Population-based genotype caller
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(c) Thunder: LD-aware genotype caller

Figure 5.2: Estimated SFS for low pass, 4-fold, short read sequencing data. The
panels show the first 10 bins of the estimated SFS using genotypes from
(a) an individual level caller, (b) population level caller and (c) population
level LD aware caller.
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Figure 5.3: MLE estimate of the SFS using simulated data
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Figure 5.5: QPOC data: Comparison of MLE and counting estimate of SFS
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CHAPTER VI

Conclusion

My dissertation focused on developing novel statistical methods for a wide array of

problems in the fields of disease and population genetics.

In chapter 2, I developed a graph based algorithm to select the smallest set of tag-

ging SNPs, based on the linkage disequilibrium measure r2. We used a “divide and

conquer” approach to break the tagSNP selection problem in the region to an easier

problem of selecting tagSNPs in much smaller clusters. We applied our method to

select tagSNP for chromosome 2 in HapMap. Compared to the greedy algorithm for

tagSNP selection, our method required 5% fewer tagSNPs at an r2 threshold of 0.5

and 2% fewer tagSNPs at an r2 threshold of 0.8.

Since the LD measure r2 is directly related to the power of indirect association,we

have used r2 to define the ability of one marker to act as a proxy for another. Our

method can easily be applied to any other measure for connectedness, such as D′.

Our method identifies equivalent sets of tagSNPs for each precinct. A potential

improvement would be to further optimize the tagSNP set based on an external cost

function, such as genotyping error rate for each marker, based on the neighboring

80



sequence. From a computation standpoint, the search for tagSNPs in the disjoint

clusters are independent processes and can be carried out concurrently. A parallel

computing approach would further alleviate the computational burden.

We provided additional constraints, such as inclusion/exclusion of selected variants

in the tagSNP set, minor allele frequency threshold for tagSNPs, minimum distance

between tagSNPs and robust coverage using two tagSNPs to cover each variant. We

have implemented our method in a publicly available software package.

In chapter 3, I developed a Gibbs sampling algorithm for identifying the true ge-

nomic location of multiply mapped reads. We used a simulation study to test the

performance of our algorithm. In a chromosome wide simulation study, our method

placed ∼87% of multiply mapped reads to their true location. Adding re-aligned

multiply mapped reads led to an additional 3% variants being discovered.

The same algorithm that was used for identifying a unique alignment for each multiply

mapped read can provide the posterior distribution of their alignments. Obtaining

multiple samples from the posterior distribution would allow robust quantitative anal-

ysis.

In this project, we have focused on single end reads. An extension to our algorithm

would be to incorporate paired end reads. The underlying framework would remain

unchanged, since we model the counts of bases at location in the reference region and

this is unaffected by the sequence study design. A simple solution to accommodate

paired end reads would be to adjust the prior to reflect the distance between the read

pair.
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In chapter 4, we explore the feasibility of admixture mapping to identify rare disease

susceptibility variants. We used a simulation study to test the power of admixture

mapping to identify regions harboring rare susceptibility loci. We simulated African-

American case-control data under settings that result in low power for single marker

association tests. For cumulative risk allele frequencies greater than 1%, admixture

mapping had considerable power to detect association of the region to disease.

In this work, we focused on Africans and Europeans as the founding populations

for the admixed population due to the high divergence between the two populations.

We would extend the study to include Native American populations. Recent studies

suggest a strong bottleneck event in the Native American founding population before

the peopling of the Americas. Combined with the serial founder effect, it might result

in a large difference in the number of rare variants.

There are many admixture mapping studies underway in African-American and Latino

populations. Most of these studies consist of relatively small sample sizes, or the or-

der of 1000 cases and controls each. Our simulation studies suggest that such small

sample sizes are inadequate to detect the presence of rare susceptibility loci.

The admixture and marker association signals provide orthogonal information. Tang

et al [101] proposed a framework to combine the two signals into a single test of

association. I would like to explore this idea further with respect to burden tests.

Combining the admixture association signal with the burden test might improve the

power to detect associated regions. Conversely, since both, burden tests and ad-

mixture mapping, collapse information across the region, they may not represent

independent signals.
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In chapter 5, we presented a maximum likelihood estimate of the site frequency

spectrum(SFS) obtained from low coverage short read sequence data. The count-

ing estimate of the SFS obtained from estimated genotypes from all three callers,

viz., individual based, population based and LD-aware, significantly underestimate

the number of singletons and doubletons in the sample. In simulation studies, our

method overestimates the rare part of the SFS. The upward bias in our estimate of

the SFS is much smaller than the downward bias observed in the counting estimates.

We applied our method to estimate the SFS in Iberian samples from the QPOC study.

Both our method and the counting estimate underestimated the SFS.

The upward bias in our estimate of the SFS can lead to biased estimates of vari-

ous functions of the SFS such as tajima’s D, Fay and Wu’s H and estimates of the

mutation rate, θ. In addition, it can lead to incorrect inferences about demographic

history and selection parameters. As a follow up to this project, I would like to quan-

tify the effects of the bias in SFS on these population genetics estimates. The SFS

estimation framework can be extended to other functions of the genotypes, such as

heterozygosity, inbreeding coefficient, two-population SFS etc.

In summary, in this dissertation, I have addressed several methodological issues in a

wide array of problem in statistical and population genetics. It is my hope that the

methods elaborated in this dissertation provide statistical tools in our efforts to gain

a better understanding of genomic architecture.
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