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CHAPTER |

Estimation of Time-Dependent Cross-Ratio for Bivariate Falure Times

1.1 Introduction

Statistical methods for analyzing bivariate correlateldifa time data are of increasing need in many
medical investigations. In the analysis of such data, mhigartant to measure the strength of association
among the correlated failure times. Several global depsreleneasures have been proposed, such as
Kendall's T and Spearman’s correlation coefficient (Hougaard 2000p.chp and weighted average
reciprocal cross-ratio (Fan, Hsu, & Prentice 2000a; Faentire, & Hsu 2000b). Local dependence
measures have also been proposed for bivariate survival dxte commonly used such measure is
the cross-ratio that is formulated as the ratio of two caadél hazard functions and thus measures the
relative hazard of one time component conditional on ardthee component at some time point and
beyond (Kalbfleisch & Prentice 2002, chap. 10).

Global measures, though quantitatively simple, are noagbdesirable because they can mask
important features of the data and often do not addresstgmeauestions of interest when the depen-
dence of two event times is time-dependent and modeling depandence is of major interest (Nan,
Lin, Lisabeth, & Harlow 2006). In such settings, the crogser function is of particular interest be-
cause of its attractive hazard ratio interpretation. @aytL978) considered a constant cross-ratio that
yields an explicit closed-form bivariate survival functighe Clayton copula model. Re-parameterizing

the Clayton model, Oakes (1982, 1986, 1989) analyzed bieafailure times in the frailty framework,



where a common latent frailty variable induces the con@tabetween survival times. Though such
bivariate distributions induced by frailty models generatrich subclass of archimedean distributions,
these models only provide restrictive approaches to mogléiime dependent cross-ratio, because the
time dependent cross-ratio in the archimedean distribati® completely dictated by the specification
of the copula as well as the marginal distributions. For tlayton model and the gamma frailty model,
many likelihood based estimating methods have been deselimp the parameter estimation, see e.g.
Clayton (1978), Oakes (1986), Shih & Louis (1995), GlidderS&lf (1999), and Glidden (2000),
among others. Such methods may also be applied to otheracomdels.

To estimate the cross-ratio as a function of time, Nan et20106) partitioned the sample space of
the bivariate survival time into rectangular regions widlges parallel to the time axes and assumed that
the cross-ratio is constant in each rectangular region.&ytGh type of model was established for the
joint survival function, and a two-stage likelihood baseethod similar to Shih & Louis (1995) was
used to estimate the piecewise constant cross-ratio. loathtext of competing risks, Bandeen-Roche
& Ning (2008) proposed a nonparametric method for estingetive piecewise constant time-varying
cause-specific cross-ratio using the binned survival dased on the same partitioning idea for the
sample space. In both methods, how to choose the partit@ngisble. Time-varying cross-ratio can
also be estimated from a copula model. Recently, Li & Lin @0&nd Li, Prentice, & Lin (2008)
characterized the dependence of bivariate survival dabaigfn the correlation coefficient of normally
transformed bivariate survival times. Such methods, heweequire assumptions of specific copula
models for the joint survival function, for which appropgaanodel checking techniques are lacking.

We are not aware of any method in the literature on estimahegcross-ratio as a flexible con-
tinuous function of both time components without modeling foint survival function. The methods
of estimating weighted reciprocal of cross-ratios propdsg Fan et al. (2000a,b) cannot be applied
to the estimation of the cross-ratio itself. In this artjohee consider a parametric model for the log

transformed cross-ratio, in particular, a polynomial fiime of the two time components, for censored



bivariate survival data. Other parametric models can atéscdmsidered similarly. Since a closed form
of the joint survival function is not available for the crasgio with a general polynomial functional

form of times, it is difficult to develop a likelihood basedpaipach for the cross-ratio estimation. In-

stead we construct an objective function for the cros®rrameters, which we call the pseudo-patrtial
likelihood, by mimicking the partial likelihood of the Coxgportional hazards model (Cox 1972).

Specifically, we treat whether an event happens at a time poibeyond along one time axis as a
binary covariate and the other time component as the suimitaome variable, and then construct the
corresponding partial likelihood function. Such a constinn does not need any model for either the
joint or the marginal survival function, thus is robust agdimodel misspecification. We obtain the pa-
rameter estimates by maximizing the pseudo-patrtial likedd function. We show that the estimator is
consistent and asymptotically normal. The proofs are heeslying on the modern empirical process
theory. The proposed methodology is readily extendabléecestimation of an arbitrary cross-ratio
function by using the tensor product splines. The work is tthiapter has been published recently in

Biometrika (Hu et al. 2011).

1.2 The cross-ratio function

Let (77, 75) be a pair of absolutely continuous correlated failure timise cross-ratio function of

T, andT; (Clayton 1978; Oakes 1989) is defined as

M| =t)  M(G|Ty =t)

_ _ , 1.1
/\2(t2|T1 > tl) /\1(t1|T2 > tg) ( )

0(t1,12)

where)\; and )\, are the conditional hazard functionsBf and T3, respectively. The second equality
in (1.1) can be verified via direct calculation using the Bayale. The two event timeg, and 7,

are independent if(¢,,t,) = 1, positively correlated i¥(¢,,t,) > 1, and negatively correlated if
0(t1,t2) < 1 (Kalbfleisch & Prentice 2002). Following Clayton (1978) aDdkes (1982, 1986, 1989),

model (1.1) is equivalent to the following second-ordetipadifferential equation:

Ph o Oh O _

o on _ 1.2
aron, T Vara, =0 (1.2)




whereh(ty,ts) = —log{S(t1,t2)}, S(t1, 1) is the joint survival function of T}, T5) at (¢4, ).
Whend is constant, it can be shown that equation (1.2) has a unmugan (Clayton 1978), which

is given by the following Clayton copula model:

;

{Sl(t1>_(9_1) -+ Sg(tg)_(e_l) — 1}70_il , 0 > 1,

S<t17t2> = Sl(tl)SQ(tg), 0= 1,

| ma ({S1(6) 700 + Sy(82) 700 =1} 77T 0), o<1,

whereS; and.S, are the marginal survival functions @ and7;. When# is piecewise constant on a
grid of the sample space 617, 73), equation (1.2) is also solvable (Nan et al. 2006). The &wius
similar to the above Clayton model within a rectangularoedi;,ts) € [u1, us) X [v1,vs), but with

left truncation at the pointuy, v;):

S(ty,t2)
{S(t1,00)" O + S (ur, 1)~ — S(Uh’l}l)_w_l)}il/(eil) ; 0>1,
B S(tr,v1)S(ur, t2) /S (ur, v1), 0=1,
max <{S(t1’fvl)7(971) + S(ul’t2>*(9*1) _ S(ul’vl)f(efl)}—l/(e—l) ,O) ’ 9 < 1.

\

It is clearly seen that all the pieces of the joint survivaidtion are interconnected through survival

functions on the edges of the grid. Once the analytical forthe joint survival function is available,

it becomes possible to develop a likelihood based apprda@hexample, Nan et al. (2006) extended

the two-stage approach of Shih & Louis (1995) to the estiomedif the piecewise constant cross-ratio.
In fact the Clayton copula belongs to an important familyafalas known as Archimedean copulas

which have a simple form with a variety of dependence strestuArchimedean copula model has the

following representation:

H<u7 U) = (bil((b(u) + ¢(U))7 (uv U) € [07 1]2

whereo : [0, 1] — [0, +00] is a function satisfying (1) = 0, ¢(0) = oo, ¢'(z) < 0 and¢”(z) > 0.



ThenH (u,v) is a distribution function o0, 1]* with uniform marginals.

Commonly used Archimedean copula models include:

e Clayton copula, where(u, ) = v~ -1 — 1,

e Frank copula, where(u, ) = log 11—_997” and

e Gumbel copula, wheré(u, ) = (—logu)’.

Like Clayton copula, Frank and Gumbel copula are paranz@tyy a single parameter which dictates
the dependence structure.

On the one hand, likelihood based approach to estimétimguld require knowing the solution of
(1.2). However, obtaining an explicit analytical solutiohequation (1.2) for an arbitrary cross-ratio
functiond is impossible, even whethis a simple function of; andi,, for example, a linear function;
On the other hand, computing the cross-rétithhrough directly modeling the joint survival function
S(t1,t2) using, for example, a copula model may not be desirable Isecdne model assumption can
be very sensitive and rigorous model checking tools arengckAlternatively, we propose a pseudo-
partial likelihood approach with details given in the fallimg section to estimate the cross-raithat

is a continuous function gf, t2). In particular, we consider a parametric model:

ﬁ(t17t2;’7> = log{e(t17t2;7)}7 (13)

where~ is a finite dimensional Euclidean parameter. It is stramfwhrd to extend the parametric
model to a nonparametric model using tensor product splissfocus on parametric model in this
article because it can approximate a smooth function ariitrwell in practice and is advantageous in
theoretical investigation. More discussions of nonpatameegression can be found in the discussion

section.



1.3 The pseudo-patrtial likelihood method

Consider a pair of correlated continuous failure tinfiEs 73) that are subject to right censoring by
a pair of censoring time&’,, C;). Assume censoring times are independent of failure timemg- S
pose we observe independent and identically distributed copieq &f, X5, A;, As), where X, =
min (71, C), Xo = min(Ty, Cy), Ay = I(T} < Cy), andA, = I(Ty, < Cy). Herel(-) denotes the
indicator function. We further assume that there is no tresrag observed times for each of the two
time components.

In view of the difficulty in directly solving the differentigquation (1.2) analytically, we propose
in this section a simple pseudo-partial likelihood methgdriroducing the Cox’s partial likelihood
idea into the cross-ratio regression framework by treating time component as the covariate. To
motivate the idea, we connect the cross-ratio definitioriifh)(with the Cox model partial likelihood
for the two-group regression problem. Specifically, usimg épidemiological terminology, if we treat
{j : Th; = t1} and{j : T1; > t;} as the “exposure” and “non-exposure” groups, respectiviegn
from the first equality in (1.1), the cross-rati¢t, t;) becomes the hazard ratio 8§ between these
two groups. Givert; = Xy;, for subjectsk with X, > ¢;, his/her conditional hazard &t = Xj;
is simply Ao (Xo;| X1, > X1:)0( X1, Xoy) Xue=X10) By mimicking the partial likelihood idea, we can

construct a similar objective function as follows basedlmse two groups categorized hy= X;:

- [ A2()(2j|‘)(1.7 > Xli)e(Xll‘, X2j)I(le:Xli)
J=1

2o xa; L (X = X1i) Ao (X5 X1y > X13)0( X1y, Xgp)T(X=Xa0)

] I(X1;>X14)A2;A15

] I(X1;>X14) A2 Aq;

ﬁ 0(X 1z, Xoj)! (X1=X10)
ZX2k2X2j I( Xy, > X145)0(Xys, ij)l(xlk:Xli)

j=1
The indicators/ (X;; > Xj;) in the outer exponent anf{ X, > Xj;) in the denominator exclude
the subjects not belonging to either the “exposure” or then“exposure” group. Under the “no-tie”

assumption, only whek = i can the indicatod (X, = X;) take valuel. The risk set condition

{k : Xor > X,,} together withk = i is equivalent taX,;, > X,;. Thus the denominator inside the



bracket is equal t&V (X1;, Xo;), whereN (t1,to) = > 7 I(Xuy > t1, Xox > to), If Xo; < X, which
implies that all subjects in the risk set belong to the “napeasure” group. If7(X,; < Xy) = 1, the
denominator become¥(X;;, Xo;) — 1+ 6(Xy;, X5;). So we can re-write the above objective function
as

I(X1;2X15) A2 A1

(1.4)

ﬁ [ 0(X1y, Xy)! =510
N(Xq;, Xoj) — 1(Xoj < Xoi)(1 — 0(Xq4, Xa5))

j=1
Considering the symmetric structure of the definitiod@f, ¢,) determined by the second equality

in (1.1), we can construct the same objective function a§) {dy switching the roles ok; and X.
By multiplying such constructed two objective functionsoall possible ways of creating the “expo-
sure” and “non-exposure” groups, i.e. all subjects, we ialttee following pseudo-partial likelihood

function:
L,=]]L"L?, (1.5)

=1
whereL!" is given in (1.4) and.\” is given in the following:

@ _T 0(X1y, Xg;) X2 =20) [ 22080 S
L2 — Js i
' li[l [N(leaX%) — I(Xy; < X)) (1 = 0(Xy;, Xo))

1=

(1.6)

The maximizer of (1.5) is then called the pseudo-partialifood estimator.
To proceed, we repladeby 3 through model (1.3) and denate= n"'log L,,. Let ﬁ'v(tl, to;y) =
0p(t1,t9;y) /0. Differentiatingl, () with respect toy and assuming no ties among observed times,

we obtain the following estimating function fer.

Un(v) = 0l,(7) /07 =UP(v) —UP(v) + UL (7) ~UP (),

1« :
Ul = UP(y) = EZAMA%BW(XM,X%’Y),

1 ApLA (Xl > Xl)](XQ < X2 )eﬁ(Xll X))
U;Q) - - 19225 J i j ﬁ X Z’X : ’
() n ;; N(Xqi, X)) — I(Xg; < Xoi){1 — oB(X1:, X257y } 7( 1 X253 7Y)
(4) = 15 22 2] = A2 15 > 14 ‘ .
= HZZ N (X Xa) — 1%, < Xy {1 - ey (i 22t )



Then an estimatof,, can be obtained by solving the equation () = 0 using the Newton-Raphson

algorithm.

1.4 Asymptotic properties

We consider a polynomial parametric model with finite numddfeerms for3(t,, t5; ) in (1.3). In

particular, we assume

Bt ta;y) = Z’Ykztlftlz = z(t1,t2)"v, (1.7)
kel

where~ is the vector of coefficient§yy }. It is easily seen that, (t,,ts,v) = 2(t1,t,) and is free of
~. We have found that a cubic model with< k£ + [ < 3 in (1.7) often yields satisfactory estimates
for smooth cross-ratio functions. In this section, we pdevaisymptotic results for the estimatiompf
in (1.7). Other parametric models can also be consideredhaetical calculations can be proceeded
similarly with modified regularity conditions to guarantdat both3(¢,, to; ) andﬁ‘w(tl, ts,~y) belong

to Donsker classes. For model (1.7) we consider the follgwagularity conditions:

C1.1. The failure times are truncated(at, 7»), 0 < 7, 2 < oo, such thapr(77 > 7, Cy > 7, Tp >

TQ,OQ > 7'2) > 0.
C1.2. The parameter spacas a compact set and the true vatyds an interior point of".

C1.3. The matrixs{A; Ay z( X1, X5)®?} is positive definite. Here®? = z2'.

Theorem I.1. Under Conditions C1.1-C1.3, the solutionldf,(~) = 0, denoted byy,,, is a consistent

estimator ofy,.

The proof of Theorem 1.1 proceeds in following steps. We fitstw thatU () converges to a
deterministic functiorns(~) uniformly, then show that(+) is a monotone function with a unique root
at+,. Then consistency follows easily. The calculation heawilylves the modern empirical process

theory (see e.g. van der Vaart & Wellner 1996). Details ao®iged in Appendix.



Theorem 1.2. Under Conditions C1.1-C1.3, we have that?(4, — ~,) converges in distribution
to a normal random variable with mean zero and variadcey,) '3 (v,)I(v,) "', whereI(v,) =

2E{A1Asz(X1, X5)®?} and 3(v,), which is given in the Appendix, is the asymptotic variante o

U.n(7o)-

The asymptotic normality in Theorem 1.2 can be achieved lrygthe Taylor expansion d¥ ,,(¥,,)
around-y,. Again the detailed calculation involves empirical pracéseory and is deferred to Ap-

pendix. The asymptotic expression®f~,) also provides a variance estimatornodf?(4,, — v,).

1.5 Numerical examples

1.5.1 Simulations

We conduct simulations to assess the performance of thepeodgmethod. Directly generating data
from a bivariate distribution with a cross-ratio functiomen in (1.7) is technically formidable because
the second order nonlinear partial differential equatibr2) does not have a closed form solution.
Instead, we generate data from given joint distributiorcfions of (7, 73). Thus our method is an
approximation to the true cross-ratio function.

We consider the Frank family as in Fan et al. (2000a,b). Wenbegh generating independent
Uniform (0,1) random numberg; anduy. Then lett; = — log u; so that7; follows unit exponential
distribution. Finally letts = —log (log,[a/{a + (1 — a)us}]) Wherea = o™ + (a — a*')us. Such

generated;, also follows exponential distribution. The cross-ratiadtion is

t

(o — 1) log(a)a?—c e
(@~ — ) x (al=¢" — )

+ log, {1 L@ el - H

[— l+e ™ 4e ™2

a—1
Following Fan et al. (2000a,b), we choase= 0.0023 and generate censoring timé€g andC’, from

a Uniform (0, 2.3) distribution, yielding a censoring rate of 40%. The estmdatross-ratio is obtained

using the cubic polynomial model (1.7) with< £+ < 3 by maximizing the pseudo-partial likelihood
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function (1.5) with respect to coefficients Results are averaged over 1000 simulation runs, each with
a sample size of 400.

We plot the estimated surface together with the true crass-surface in the top panel of Figure
1.1. The bottom panel gives the cross-ratio as a functiomeftome component fixing the other time
component front = 0.25 to¢ = 1.50 with 0.25 time unit increment. Based on the empirical vazeaof
4, we calculate the confidence bandsfofMhen by exponentiating, we obtain the empirical confidence
bands for. Figure 1.1 show that the proposed method estimates therwas-ratio of the Frank family
very well, despite the fact that model (1.7) is only an appr@tion of the true(t;, t»).

To check the performance of proposed variance estimatacthaese nine points based on the quar-
tiles of the observed time distribution, and calculate tmpieical standard error and the average of the
model based standard error estimates at those points évgeith the coverage probabilities. Results
given in Table 1.1 show that our proposed variance estinvaboks well with coverage probabilities
close to 95% at most surveyed grid points. We use bootstrabt@in variance estimators as well.

Based on our results not shown here, they generally worktae!l

Table 1.1: Comparison of empirical standard error and aeenaodel based standard error for the Frank family. The point
on both margins are the quartiles of the marginal distriamgiof X; and X,. The true log cross-ratio {8 and its estimator

is 3. In the parenthese#;,.SE is the empirical standard errav/.SE is the average model based standard error estimate,
andCP is the coverage probability of the 95% confidence interval.

X, 25% X, 50% X, 75%
X, B8 PBESE,MSECP) 3 [(ESE,MSECP) [ JB(E.SE,M.SE,CP)
25% 1.51 1.51(0.12,0.13,96%) 1.31 1.33(0.17,0.17,95%) 0.98.06(0.35,0.31,91%)
50% 1.31 1.33(0.17,0.17,96%) 1.20  1.19(0.16,0.16,96%)  0.94.95(0.24,0.24,94%)

75% 0.98  1.04(0.34,0.31,92%) 0.94  0.94(0.24,0.24,95%)  0.79.76(0.27,0.26,93%)

We also consider the following joint survival function toawine the proposed method for cross-

ratios close to 1 with a different curvature than the Framkilia

S(t,t2) = exp {c — at} — ath — ccos(at] + ath)} . (1.8)
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Figure 1.1: Cross-ratio for the Frank family. In the top pattee surface in gray is the true cross-ratio and the suiface
black is the estimated cross-ratio. In the bottom panely guaves are the true cross-ratio, black curves are the atgin

cross-ratio, and dot curves are the empirical pointwise 8686idence bands.

)}

= 0.5 in the following simulations. Random numbers@f can

b+ ath)
1 — csin(at? + at?
{ 1 2

ccos(at

(t1,t2)

We call it the cosine model that has the following crosserainction
0

We choose:r = 0.7, b = 0.7, andc

be generated from its marginal survival functi§t;) = exp {¢ — at} — ccos(at}) }. Conditioning on

is given by

T, the conditional distribution function df,

)

1 — csin(at} + at

1 —exp {—at — ccos(at}] + ath) + ccos(at?) }

1 — csin(at})
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from which we can generate random numberg:of

From the cosine model (1.8), we generate 1000 pairs of liteasurvival times, close to the sample
size of the Australian Twin study that we used for real daiyesis. Independent censoring times for
both components are generated from Uniform (0,3), whicliyaeensoring rate of 30%. We repeat all
the calculations done for the Frank family and obtain venyilgir results. The true cross-ratio surface
and its estimate are plotted in the top panel of Figure 1.8s€&ratio curves and their confidence bands
as a function of one time component while fixing the other toomponent are plotted in the bottom
panel of Figure 1.2. The comparison of model based standeodestimates to the empirical standard
error is given in Table 1.2. The simulation results show thatproposed method works well for cross-
ratios under or close to 1 that correspond to the cases ofinegad weak dependence betwé&érand

T5.

Table 1.2: Comparison of empirical standard error and a@eenaodel based standard error for the cosine model. Thespoint
on both margins are the quartiles of the marginal distrimgiof X; and X». The true log cross-ratio |8 and its estimator

is 4. In the parenthese#,.SE is the empirical standard erra¥/.SE is the average model based standard error estimate,
andCP is the coverage probability of the 95% confidence interval.

X, 25% X, 50% X, 75%
X, B8 PBESE,MSECP) 3 (B(ESE,MSE,CP) [ B(E.SE,M.SE,CP)
25% 0.55 0.54(0.09,0.09,94%) 0.61 0.61(0.12,0.12,95%) 0.53.53(0.21,0.21,95%)
50% 0.61 0.61(0.12,0.13,95%) 0.58 0.57(0.15,0.16,96%)  0.24.22(0.29,0.29,95%)

7% 0.53 0.51(0.22,0.21,93%) 0.24  0.20(0.29,0.29,96%) -0.68.80(0.65,0.54,93%)
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Figure 1.2: Cross-ratio for the Cosine model. In the top pahe surface in gray is the true cross-ratio and the suiface
black is the estimated cross-ratio. In the bottom panely guaves are the true cross-ratio, black curves are the atgin
cross-ratio, and dot curves are the empirical pointwise 8686idence bands.

To compare the efficiency of the proposed method with thedtage method of Nan et al. (2006),
we adopt the same simulation setup assuming that the catieg\t,) is piecewise constant over four
intervals:0(t;) = .9whent; € [0,.25),0(t,) = 2.0whent; € [.25,.5),0(t;) = 4.0whent; € [.5,.75),
andd(t;) = 1.5 whent,; > .75. The data are generated in the same mechanism as in Nan22@6) (
The comparison results are shown in Table 1.3 with both b@pistandard error and model based
standard error and their respective coverage probabiljien for our method. Though the two stage

method is more efficient, the loss in efficiency for our eston& minor, especially at the beginning of
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the follow-up. On the other hand, our method is not limitethi piecewise assumption.

Table 1.3: Comparison of the pseudo-partial likelihoodhodtwith the two stage sequential method. The true values are
6 = (.9,2.0,4.0,1.5) whent, is in intervals|0, .25), [.25,.5), [.5,.75), and above .75, the sample size is 500. The left
panel is taken from Nan et al. (2006ém,g is point estimate averagé;.SE, empirical standard errof3.SE, average

of the bootstrap standard error estimates using 100 baptsamplesj\/.SE, average of the model based standard error
estimatesB.C P andM.C P are95% coverage probability using.SE andM.SE respectively.

Two-Stage Piecewise Time Dependent

0 Ouwwg E.SE B.SE B.CP 0wy E.SE BSE BCP MSE M.CP
090 0.92 0.12 0.12 93% 092 0.12 0.12 97% 0.12 95%

200 204 031 0.29 93% 2.04 0.30 0.31 95% 0.31 94%
400 4.09 0.65 0.71 96% 413 0.76 0.78 96% 0.76 97%
150 151 0.25 0.25 94% 154 0.29 0.31 96% 0.33 96%

1.5.2 The Australian twin study

In this section, we present our real data analysis of ageppralectomy for participating twin
pairs in the Australian Twin Study (Duffy, Martin, & Mathew990). The same data were analyzed in
Prentice & Hsu (1997) and Fan et al. (2000a,b). Primarilg,Alustralian Twin Study was conducted
to compare monozygotic and dizygotic twins with respechgtrength of dependence in the risk for
various diseases between twin pair members, because strdegendence between monozygotic twin
pair members would be indicative of genetic effect in th& aEdisease of interest. Information was
collected from twin pairs over the age of 17 on the occurrenod the age at occurrence of disease
related events, including the occurrence of vermiform appetomy. Those who did not undergo
appendectomy prior to survey, or were suspected of undeggoophylactic appendectomy, gave rise
to right censored failure times. For simplicity, the studgsareated as a simple cohort study of twin
pairs. Based on the descriptive analysis of Duffy et al. 9% is noted that females were more
likely to undergo appendectomy across all ages and birtbrt®khan males. Moreover, monozygotic
female twins were found to be more concordant for appendectduring their lifetime than their
dizygotic counterparts. As the sample size for the femalésice as large as that for the males and the
zygotic effect is more pronounced, we will focus on femaletpairs. By doing so, we also avoid the

difficulties of modeling sex differences for the opposite dezygotic pairs.
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As in Prentice & Hsu (1997), analyses presented here areneahfo 1953 female twin pairs with
available appendectomy information. The data are congpo$&218 monozygotic twin pairs and 735
dizygotic twin pairs. Out of the monozygotic twin pairs, te@re 144 pairs in which both twins were
appendectomized, 304 pairs in which one twin underwentragigaetomy and 770 pairs in which neither
twin received the procedure. The corresponding numberthédizygotic twin pairs are 63, 208 and
464, respectively.

Since the order of twin one and twin two is arbitrary in the &akan Twin Study, we can take
advantage of such symmetry to improve the estimation effogi®y using the following reduced model

from (1.7):
Bty ta;7) =70 + 71t + t2) + %5 + 13) + atats + va(tite + t183) + 755 + £3). (1.9)

We have observed that the analysis without such restrigiieids similar results to the restricted
analysis. Here we only report the restricted analysis. Welaot separate analyses for monozygotic
and dizygotic twins.

The estimated cross-ratio surfaces for both monozygoticcirygotic twins are plotted in the top
panel of Figure 1.3. In the same figure, we also plot the diffee between the two estimates. To
clearly present the variability of the estimates, in thetdrotpanel of Figure 1.3 we also provide the
pointwise 95% confidence bands for the estimated crossaathree different values @i, which are
close to the estimated quartilesBf The confidence bands for the cross-ratio differences asereul
from separate analyses of 100 bootstrap samples from tHegpomnozygotic and dizygotic data.

Figure 1.3 suggests that at a younger age the associatiapfpendicitis risk between monozygotic
twin pair members as well as dizygotic twins is strong, gattrly in monozygotic twins, suggesting
a genetic component to the disease. This finding is consigtiéim Fan et al. (2000a). Also both
monozygotic and dizygotic twin pairs are more likely to urgeappendectomy around the same time.
Top right plot in Figure 1.3 identifies the region shaded sxcklwhere the difference in the strength of

association between monozygotic and dizygotic twins igssieally significant based on the pointwise
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confidence band. The plots on the top panel also show thatdeméndence diminishes over time.
This suggests that later in life environmental causes maydre important in the development of the
disease. From the pointwise confidence bands we can sed¢hassociation between monozygotic
twins is significantly positive in a larger age range. In éiddito testing the difference locally, we can
also test whether the difference is significant globallyisikrg methods had to assume that cross-ratio
is a constant for a global test. Our method, without assuntiagstructure of cross-ratio surface, can
test whether the cross-ratio surface is the same for momdzytyvins and dizygotic twins by testing
Hy : ~,,, = 74, Where~,, . and~, denote the coefficients in (1.9) for monozygotic twins and
dizygotic twins respectively. Using @ statistic(¥,,. — ¥4.)" (Var(3,..) + Var(3.)) Hm. — Yas)»

we obtain a insignificant p value 6f13 ata = 0.05.

1.6 Discussion

Nonparametric estimation of the log cross-rati¢, t;) is of interest, particularly when it is a
smooth function ofty, t5), for which the regression spline method using the tensafyriosplines can
be implemented. When the number of knots are fixed, the measisentially a parametric model and
asymptotic properties can be derived in a similar way. lithmber of knots is allowed to grow with the
sample size, then a completely different approach needs tieeloped for the proofs of asymptotic
properties, which is usually a challenging problem. We hlareducted the regression spline method in
simulations under different combinations of number of kremtd degree of smoothness, and observed
slightly more variable results that are not presented is &nficle. Such an observation is likely due
to the fact that the cross-ratio surfaces in both simula#ttings only change with time gradually, i.e.
they tend to be too flat to apply the regression spline method.

The proposed estimator is based on pseudo-partial likedilmoethod instead of the true likelihood,
and thus likely not to be the most efficient estimator. If weevi® construct the true likelihood as a

function of arbitrary cross-ratio, we would need to solve /¢, t2) in (1.2) whenf = 0(t,t,) to
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Figure 1.3: Estimated cross-ratio function for the AusaralTwin Study. Figures on the left panel are for monozygotic
twins, figures in the middle are for dizygotic twins, and figsion the right panel are for the difference between mondiygo
twins and dizygotic twins. The shaded areas in the top ledt tap middle plots are regions where the association is
statistically significant for monozygotic twins and dizygawins respectively. The shaded area in the top right iglthe
region where the difference in the strength of associatietwben monozygotic and dizygotic twins is significant based
on the pointwise confidence band. In the bottom panel, thd Bpés represent the cross-ratio estimate and dotted line
represent pointwise 95% confidence bands.

obtain the joint distributior¥'(t, ;). Unfortunately, closed form solution does not exist forretiee
simplest non-trial functional forms faX¢,, ¢,), for example, linear functions. Our method, however, is
robust because it bypasses modeling the joint and margstakbditions of the bivariate survival times.
Another interesting extension of the proposed approachaiaw the cross-ratio to vary with some
covariatelV. Prentice & Hsu (1997) proposed regression approach fardhariate effect on both the

marginal hazard functions and cross ratio. Their crogs;rabwever, is not allowed to be dependent
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on time. The comparison of monozygotic and dizygotic twimghie Australian Twin Study presented
in Figure 1.3 is equivalent to the estimation from an inteeecmodel: 5(t1, to, W) = z(t1,t2) vy, +
W z(t1,t2)' 74, WherelV is a binary{0, 1} covariate. In contrast, i/’ is not binary, we get a more
parsimonious model than doing analysis separately at eset &f 1/, which may be important for
efficiency and for modeling the functional form &F. Yes, the most intuitive and straightforward
model for the cross-ratio with covariates would ®@;,t,, W) = z(t1,t2)'v + W'a for a covariate
vectorW, which is simpler than the above model with interactioniSextension will be investigated
in Chapter II.

Due to the partial likelihood type of construction in (1.4he proposed approach can be easily
modified to handle left truncation in addition to right cenisg. Let (Uy;, Us;) be the truncation times
for subjecti, then (1.4) can be replaced by

ﬁ |: 9<X1Z'7X2j)[(X1j:X1i)Alj
N(X1i7X2j) - I(UQZ < ij < X2z)(1 — 9<X1i7X2j)) R

I(X1;>X1;2U15)A2; A1

j=1
where N (ty,t2) = >0 I(X1, > t1 > U, Xop > t2 > Usg). This extension will be explored in

Chapter 111

1.7 Appendix: Proofs

1.7.1 Proof of Theorem I.1

Let (X7, X5, At, A¥) be an independent copy 0K, X2, A1, A,). Define the deterministic func-

tionu(y) = uM(y) = u®(v) + u®(v) — u(v), where

uV(y) = u®(y) = B{A Az(X1, X))},

I(Xy > XT)I(Xy < X5) exp{B(XT, Xo;7)}

'U,(2)(")/) - u(4)(7):E ATAQZ(X;X?) SX X (X* XQ) )
1,42 1»

andSy, x,(-,-) is the bivariate survival function of the observation tifgé,, X,). We will first show
thatU'®) (v) converges uniformly ta.*) (), k = 1,...,4, then show thai(~) = 0 has the unique
solution atvy,, and finally show the consistency §f, that is the solution oV ,(v) = 0. Due to the

symmetric construction, we only need to show the convergent’ (") andU .
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Define the following simplified notation:

OF (t1,t OF (ty,1 O*F(t,t
O F(ty,t2) = %, 0o F (t1,1) = #, O 2F (t, 1) = ﬁ’

OG(ty,t OG(ty,t P*G(ty,t
81G(t1,t2) = #, aQG(t17t2) = %7 a1,2C:(tl7t2> = ﬁ’

whereF andG denote the joint survival functions @1}, 73) and(C1, Cs), respectively. Then the joint

density function of X;, X5, A;, Ay) can be written as

p(ti,ta, 61,09) = OraF (L1, t9) 2 {01 F(t1, 10) }1 102 0y F(ty, 1y) } 10102
F(tl, 152)(1—61)(1—52)3172(;(7517 752)(1—61)(1_62){_31@(7517 tZ)}(l—al)(sQ

{—0aG(ty, 1) Y12 G 1y, 1)1 (1.10)

Following the notation of van der Vaart & Wellner (1996), weel?,, andQ,, to denote the em-
pirical measures of. independent copies @fX;, X;, A}, A¥) and (X, Xo, Ay, Ay) that follow the
distributionsP and(@), respectively. Although these two samples are in fact ideht.e.,P, = Q, and
P = @, we use different letters to keep the notation tractablgtferdouble summations, which will
soon become clear in the following calculations.

For model (1.7)UV (7) = Q, A1 Az 2(X1, X5) that is free ofy, andA,, A, andz(X,, X,) are all

bounded, hence by the law of large numbers, it is trivial ttawb

sup [UW —uW| = [(Q, — Q) A1 Avz(X, X5)| — 0

Y
either almost surely or in probability. Convergence in @iaibty should be adequate here for the proof.

To show the uniform convergence &1 (), we first define the following quantities:

Atz (XY, Xo)I(X1 > X)X, < X5)elXiXa)
LN(X7, Xa) — 1(X; < X3){1 — KT Xam})
A DNoz(X}, Xo) (X, > X1)I(Xy < X3)ePXTX2)
Sx,.x, (X7, Xa) :

g(n)(A27 Xla X27 Ai Xik7 Xéka 7)

§<A27X17X27A>{7XT7X§;’7> =

The only difference between the two expressions is in thewhmators of the two fractions. By fixing
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(AT, X7, X5) at (1, 1, o), we also define

hgz(éhl"l’@;’?’) = @ng(n)(AQ,Xl,X2,51,91317332;’7)a

hQ(517$17$2§’)’) = Qg(A2>X1>X27517$1,9€2;’)’)-
Similarly, fixing (Aq, X, Xs) at(dz, x1, z2), define

hI%’Z)<527x17x2;’7> = ]P)ng(n)<527x17x27A>{7Xik7X§;’7)7
hgb)((saxl,xz;’?’) = Pg(n)(52,$17$27ATaXfaX§§’7)a

hP(527$1,5E2;’)’) = P§(52,$17$27ATaXfaX§§’Y)-

Then we havely? (v) = P,h) andu®(y) = Phe. Itis clear that, under Conditions AC1.1 and
C1.2, the summation and integration are interchangeamé;m\yieldsPhgz = @nhgf). Thus by

Phg = PQg andQh = QPg™, applying the triangle inequality we obtain
sup [U® —u@| = sup |IP’nh&3 — Phy
il il
< sup [Pk — PhY)| + sup | Ph) — QhYY| + sup |QhY — QPg|
il Y Y

n

< sup |Pnh&3 - Ph(gl)\ + sup \thﬁ;” - Qh$)| + sup [¢™ — g,
il Y W,y

wherew represents all the arguments of functig® andg. For model (1.7), it is straightforward
to argue that, under Conditions C1.1 and C1.2, functigisand j are Donsker. Then by Theorems
2.10.2 and 2.10.3 in van der Vaart & Wellner (1996), we knoa\tkzr&? andhgf) are Donsker, and hence
Glivenco-Cantelli. Thus the first and second terms on thiet tignd side of the above last inequality
converge to zero in probability. For the third term, it isyetssee that

At Aoz (X7, Xo)[(Xy > XDI(Xy < X3)eP0GX2)
LIN(XF, Xo) — I(Xy < X35){1 — P00} Sy, x, (XF, Xo)

is bounded, say by, that has a finite limit, and(X, < X;){1 — ?X1X217)} is also bounded, say by

K*. Then

— 0

- _ K, K*
sup [¢" — §| < K, sup [n 7 N (t1,t2) — Sxy x, (t, )| +
w,y t1,t2 n
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in probability. ThenUﬁf) (~) converges uniformly ta.(?) (~) in probability. Thus we have shown that
U, () converges uniformly tas(~) in probability.

To showu(~,) = 0, it suffices to showV (v,) = u®(v,). We now calculate:? (v,) directly.
Recall that( X, X5, Ay, Ay) and (X7, X5, A}, A}) are independent and identically distributed with a

density function given in ( 1.10). Thus

u(2)(70) = PQ@(Ale,XQ,AT>XT>X§;70)

= {/ / Z Z 527t1,t2,A1,Xik,X;7’70> (tl,tz,él,ég)dtldtz}

=0 o=

2 Z(Xf,tQ)eﬁ(letQ;'Vo) /
= PA A {0y F (11, t2)Ci(t1, o)} | dt
1 {/0 SX17X2(Xik7t2) ¥ 1{ 2 <1’ 2) (1’ 2)} 2

o 2( X7, ty)ePXit270)
1{ 0 le,XQ(Xf,tz) b FI(XT, 1) G(XT, ta)dty

Here we usel; to denote the infinitesimal change with respecttiat = 1, 2. From definition (1) we

can obtain that
O12F (t1,t2) F(t1,t2)
81F(t1, tz)azF(tl, tz) )

Together withSx, x,(t1,%2) = F(t1,t2)G(t1, t2) and integration by parts, we have

X3 .
wi) = pap{- [Caonn GG

9(t17t2;’70) = €’B(t1’t2;70) —

O F(XT, 1)
81,2F(31, tg)
— / /0 2052(51{ / 17t2)mdt2 p(81,32,51,52)d82d31
_ O12F (s1,t2)

= / / Z(Sl, 82)8172[7(81, 82)G(81, 32)d31d32
0 JO

= E{A1Az(X1,X5)}.

Note thatu () is in fact free ofy for model (1.7). We thus have showiy,) =
To show~, is the unique solution ofi(v) = 0, it suffices to show that (a) the matrix(v) =

du(~y)/d~ is negative semidefinite for alf € I', and (b)i(~) is negative definite af,. To see (a), let
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a be an arbitrary vector with the same dimensionagie have

2)
a'u(y)a = —2a'dud77<’7)a

— —2dE {A*{Agz(Xf, X,)®2

I(X, > X (Xy < X3)ePXDXz)
Sxx: (X7, X) }a

(X1 > X)Xy < X3)ePXTX2)
Sxy.x, (X7, Xa) }

1
= - ZE{ATAQ{G,/Z(XT,XQ)}Q

IN

0.

To see (b), by going through a similar calculation 6P (v,) showingu® (v,) = u(~,), we have

du® (7o)

= —2E {A*AQZ(X* X2)®2I(X1 > XPI(Xs < X;)eﬁ(Xin;vo)}
- 1 1>

SX17X2(XT7X2)
= —2F {AlAQZ(XhXQ)@Q} )

which is negative definite by Condition C1.3. Thygis the unique solution ta(v) = 0.
We are now ready to show the consistencyypf Given the fact thal/,,(%,,) = 0 andsup |U ,(7y) —

u(y)| = o0,(1), we have
()| = Un(¥,) — u(¥,)] < Sup Un(v) = u()] = 0p(1).
Since~, is the unique solution ta(~) = 0, for any fixede > 0, there exists @ > 0 such that
pr (|9, — Yol > €) < pr(|u(¥,)| > 6).

The consistency of,, follows immediately.

1.7.2 Proof of Theorem [.2

DefineU ,(v) = dU ,,(v)/d~. By the Taylor expansion d¥/,,(¥,,) aroundy,, we have

13— y0) =~ T} ), (1.11)
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where~* lies betweeny, and~,. By a similar calculation as in Appendix A showing the unifor
consistency o/ ,,(vy), we can show thatip., \U () —1t(7)| = 0,(1). Thus by the consistency &f,,
which implies the consistency 6f, and the continuity of(~), we obtainl,, (v*) = w(v*) +0,(1) =
(o) + 0,(1), whereu(y,) = —2E{A; Ayz(X1, X5)®?} = —I(~,) is invertible by Condition C1.3.

Hence based on the fact that continuity holds for the invepsgator, (1.11) can be written as

025, — o) = {I(v0) " + 0,(1)}n" U (). (1.12)

We now need to find the asymptotic representation'éfU,, (v, ). We only check it fol7 () (~,) —

U (5,). The calculation fol7®) (~,) —UY (~,) is virtually identical and yields the same asymptotic

n

representation. It is easily seen that
7ﬂﬂvwwy—wwm&=GdAAﬂu¢&n, (1.13)

whereG,, = n'/?(P,, — P) = n'/?(Q,, — Q). We then focus on each term of the following decomposi-
tion:
2 {U D () = u® (o) }
n'2 (B,hG) — Pha)
= Gu (ng)) +n"2(PQug™ ~ PQg)
= Gu (hg)) +Gu (AE)) +n2(PQg™ — PQg). (1.14)
For the first term on the right hand side of (1.14), we hajj/é = <hgn) — 71@”> + (ﬁ@n — EQ> +hg.
It is straightforward to verify that
n = 2 n N2 ) 2
P (hf@,f —~ h@n) = P (Qug™ —Q,9)" <sup (¢ —§)” = 0,(1),
- N2 . o
P (ha, —hg) =n"'P{Gu(3)} = 0,(1);
Together with the fact that}”, iq,, andhq are Donsker, we have

Guhl) = G (hG) = ha, ) +Ga (hg, — hq) + Guhq = Gahg + 0,(1). (1.15)
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For the second term on the right hand side of (1.14), we vhﬁlﬁe < hp) + hp. It can also
be verified that
Q <h( " ) = Q{P(gm - )’ < sup (9™ = §)° = 0,(1).
Together with the fact thdtﬁ?’ andh p» are Donsker, we obtain that
Guh) =Gy (AE) = hip) + Guop = Gulip + 0,(1). (1.16)

We now calculate the third term on the right hand side of (L.1dirst we define the following

function:

8t 0g2(ak, 1) I (21 > %) (29 < %)eP@172:7%0)
{SXl,X2 (xhlka :L'Q)}Q

f(517x17x2a525$1a$;)

Then we have

n'/? (PQg™ — PQg)

R
l{N (2%, m9) — I(zo < 3)(1 — PETm270)) )} Sy, x, (2%, 29)
51’ L1, L2, 527 xla x2){SX1 Xa ($‘1, :L‘g)}QdP((ST, 557 l‘l, $2)dQ(517 527 X1, T2, )

- TL //{ :L‘17x2 SX17X2(:L‘>{7$2)} f(51a$17x27557x1<a$§)

dp<5ik76;7x17x2)dQ(517527x17x2) +A+B
:_Gn{/ [(Xl ZxT7X2 ZxQ)f<517xlax276>2kax>{7x;)

dP(5i‘,5§,x’{,x§)dQ(51,52,91:1,3:2)} + A+ B, (1.17)

where, by Conditions C1.1-C1.3,

A = pl/2 // 1 _ 1
LIN(zy, 22) — I(zo < a8) {1 — ePEia2m0) ] LN (a7, 22)

517 Ty, T2, 55’ xl? xQ){le X2 (l‘la xQ)}2dP(5ra 5>2ka 1'17 $2)dQ(51, 52, Z1, 1'2)

_ // n712I (g < a3) {1 — ePeteaio))
- .%’1,1'2 - [(ZUQ < .%’2 {1 — Bt @; ’YO)H (xylga «732)

f(517 X1, T2, 5; 9517 x2>{SX1,X2 (91717 $2)}2dp(5fa 5; 9517 xz)dQ((sl, 02, 21, iUQ)

= op(1), (1.18)
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and

1 2 1
n n (x17x2) X1,X2(l‘17~r2) %N(xLxQ){SXLXQ(xT,33'2)}2
f((slaxlax275571.){7x;){sxl,)Q(xTax2)}2dp(5>1k75§7x>{7x§)dQ(517527x17x2)

_ g / (G (X1 > 20 Xp > 22) PP I(X1 > 27, Xy > 22)} )
f((sla X1, T2, 557 l‘;, x;)dp(&lka 5;7 .%’T, x;)dQ(élv 527 I, .%’2)

= 0p(1). (1.19)
Then by equations (1.13)-(1.19), we obtain

nl/zUn(’Yo) = ”1/2{Un(’7’0) —u(vp)}
= ”1/2{U7(11)(’70) - u(l)(’Yo)} - ”1/2{U7(12) (7o) — ul? (7o)}
+ ”1/2{U7(13) (Y0) — u® (7o)} — ”1/2{U7(14) (7o) — u® (7o)}

= QGn{A1A2Z(X1,X2) - BQ(Ath,XQ;’Yo) — EP(A2,X1,X2;’)’0)
T //1<X1 > 2}, Xy > @) f(B1, 20, 20,65, 27, 23)

dP((Ylka 5>2ka lﬂ{a x;)dQ(éh 02, T1, :L‘Q)} + OP(]')

— N(0,%(v,)) (1.20)

in distribution. Thus from (1.12) we obtain the desired aptatic distribution ofn!/2(%,, — v,). Now
replacinghq (A, X1, Xa;,) by hgﬁ(Ath,Xz;%), hp(Ag, X1, Xa;7y,) by h&)(Ale,Xz;%)’
dP by dP, andd@ by dQ, and pluggingy,, for «, in (1.20), we can estimat®(~y,) via sample
variance. Together with/,,(¥,,) or P, { A1 Ay z( X1, X,)#2}, both of which are an estimator fdK~,,),

we can easily obtain a model based variance estimatoy,for



CHAPTER I

Cross-Ratio Regression

2.1 Introduction

In female reproductive aging research, there has beendmrasie interest in identifying marker
events for the onset of menopausal transition and investgyéheir utility for predicting the age at
menopause. Developing a staging system for female reptigduaging based on marker events is
useful because it can help assess a woman’s need for cgsttcacand initiation of interventions such
as bone density screening. One important component of angtagstem is bleeding criteria, since
bleeding patterns are readily observable.

In the Tremin study, conducted as part of the Menstrual arardReictive Health Study (Treloar,
Boynton, Behn, and Brown 1967), scientists are interestathderstanding several bleeding pattern
change criteria that have been proposed as potential mewkeats for the early stage of menopausal
transition. For instance, it has been suggested that agesat of experiencing a menstrual cycle length
of at least 45 days might be a good marker for the early mersgbpdransition (Lisabeth, Harlow,
Gillespie, Lin, and Sowers 2004). However, the validityloése proposed bleeding markers and their
associations with age at menopause have not been adeguaesiigated, and sophisticated statistical
analysis tools are lacking in this area.

Statistically, this problem can be formulated as estinggtie dependence between censored bivari-

ate survival times. However, formal analysis is challeggine to the fact that the 45-day cycle marker

26
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might not be useful before age 40 but might be a good marker afje 40, noted by Lisabeth et al.
(2004). In other words, the dependence between these twib &vees varies with age at the 45-day
cycle marker.

To formally assess the utility of a proposed bleeding marian et al. (2006) analyzed the asso-
ciation between age at a marker event (defined as age at drsapecific bleeding pattern change)
and age at natural menopause (defined as the final menstrical (lEMP), with FMP confirmed after
at least 12 months of amenorrhea). They proposed using-mteso measure their dependence by
assuming the cross-ratio to be a piecewise constant functiage at onset of the marker event. They
focused on the age at which a woman first experienced a mahsyrcie at least 45 days in length,
which has been proposed as a marker event for entry into thereanopausal transition stage.

One advantage of using cross-ratio as the dependence raéathat it has an attractive hazard ratio
interpretation comparing two groups of practical interestich is simple to understand for practitioners
and provides a convenient way to evaluate the marker. Incp&t, the cross-ratio can be interpreted
as the relative hazard of menopause comparing women whoexpezienced the marker event at a
certain age with women who have not yet experienced the maxsant. However, in their proposed
model, the piecewise constant assumption on the crosseaai be difficult to implement when prior
knowledge in cut-off points is lacking.

This chapter is partially motivated by a direct applicatafrthe proposed method in Chapter | to
the Tremin data. To bypass the difficulty in determining théeaff points in the piecewise constant
model, we estimate the cross-ratio as a smooth function ahd¢,. Moreover, in the Tremin Trust
data, since the cross-ratio of menopause and the 45-dag myaker event are likely to be affected by
age at menarche, we are interested in extending the proposeel to accommodate covariates in the
cross-ratio function directly.

It is well known that when covariates exist, cross-ratiotfoe failure times of the two members of

a pair should be estimated with some adjustment for knowrackexistics of the pair (Clayton 1978).
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For example, in the Australian twin study of appendicitigiffip et al. (1990) discovered significant
concordance rate with respect to appendicitis within twairg It was also found that monozygotic
twins exhibited higher concordance rate than dizygotimsyilikely due to shared genetic factors.
Therefore, it is of interest to quantify this genetic effect cross-ratio within twin pairs. It is also
appropriate to characterize the dependence within twirs@s a function of both times controlling
for zygocity effect, since such dependence is partiallytdushared environment and exposure to such
shared environment is a time dependent process.

In the literature, the covariate effect is often modeledtigh marginal distributions. Shih & Louis
(1995) proposed a model that incorporates covariates vigina Cox regression model, assuming
cross-ratiod is constant. Likewise, whe# is piecewise constant on a grid of the sample space of
(T1,T3), Nan et al. (2006) proposed a sequential two stage methorewlogariates are modeled via
marginal Cox regression model. Its estimation is similathi® two stage method of Shih & Louis
(1995) for the Clayton copula model, but with left truncatet lower left corner of each strip. Fan and
Prentice (2002) adjusted their previously proposed clasemhted dependence measures for bivariate
failure times to accommodate covariate effects on mardiaaard rates as well.

However, when the cross-ratio function itself is of majdenmest, modeling the covariate effect via
marginal models does not answer explicitly how covariateange the cross-ratio or by how much.
Mimicking the Cox proportional hazards model, we proposamaogous model where the covariate
effect is multiplicative on cross-ratio. One novelty of¢imodel lies in linking the covariate effect to
the cross-ratio explicitly.

For estimation, we construct an objective function, whi&hoall the local pseudo-partial likelihood,
by mimicking the partial likelihood of Cox proportional hexzls model (Cox 1972). Specifically, when
covariate is discrete with finite levels, we group obseoratiinto distinct strata by covariate values. We
then treat whether an event happens at a time point or beyong ane time axis as a binary covariate

and the other time component as the survival outcome variabld construct the corresponding partial
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likelihood function. When covariate is continuous, kersm@loothing is applied to the estimating equa-
tions. We obtain the parameter estimates by maximizingdbal lpseudo-partial likelihood function.
Such construction does not need any model for either thé goithe marginal survival function, and
thus is robust against model misspecification. We show Heaptoposed parameter estimator is con-
sistent. We also establish asymptotic normality of oumestor. The proposed methodology is readily
extendable to the estimation of an arbitrary baseline eraiss function by using the tensor product

splines.

2.2 The cross-ratio function

Let (71, 73) be a pair of absolutely continuous correlated failure timasthe Tremin Trust data,
T) is time to the 45-day cycle marker afid is time to menopause. Without covariate, the cross-ratio

function of T; andT; (Clayton 1978; Oakes 1989) is defined as

X(ta]Ty =t1)  M(t|Tz =ty)
O(t1,ty) = = 2.1
( b 2) )\Q(tQ‘Tl > tl) Al(tl‘Tz > tz)’ ( )

where); and\, are the conditional hazard functions@fandT5, respectively.
When covariate exists, e.g., age at menarche, cross-eadoguantity conditional on covariate.

Specifically, the definition of cross-ratio becomes:

)\2(t2|T1 = tl, W = U}) _ Al(tl‘Tz = tz, W = w)
)\2(t2|T1 >t1,W:UJ) Al(tl‘Tz > tQ,W:w)'

G(tl,tg,w) = (22)

Mimicking the Cox proportional hazards model, we proposaa@ogous model where the effect of

covariate is multiplicative on cross-ratio:
O(t1, b2, w) = Oo(t1, t2) exp(war), (2.3)

whereb,(t1, t2) is the baseline cross-ratio, i.e.

Q (t " ) _ )\2(t2|T1 — tl,W - O) _ Al(tl‘TQ - tQ,W - O)
O\ 72 )\2(t2|T1 >t1,W:O> Al(tl‘TQ >t2,W:0)'
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Model (2.3) effectively separates the baseline cross-fatiction and the covariate effect, so that we
can model each piece individually. We consider a parametadel for 5y(t1, te; v) = log 6y (t1,t2)
parameterized by a finite—dimensional Euclidean paramet#ris straightforward to extend the para-
metric model to a nonparametric model using tensor produloctes. For covariatél’, we consider a
linear function parameterized by a finite—dimensional Eléein parametex. We call model (2.3) the
proportional cross-ratio model. We considered a parametddel for thes, (1, t2; ) without covari-
ates in Chapter I. When there is no covariate, model (2.3)aeslto the proposed model in Chapter
|. For notational simplicity, we consider one-dimensioo@ariatelV hereafter. Results developed in
this article hold for any finite-dimensional discrete coate1l/. However, due to the implementation
of kernel smoothing, the developed asymptotic propertmdsonly for a single continuous covariate

w.

2.3 Estimation

To estimate the baseline cross-ratio function and coeag#ect jointly, we first focus on discrete
covariate with a finite number of levels, by creating a dumiayable for each level or assuming a linear
trend across levels. We then extend this method to contsyaowuariate using smoothing techniques,
in particular, applying kernel smoothing to estimating &iipn obtained for discrete covariate.

Suppose we observeindependent and identically distributed copie$®f, X», Ay, Ay, W), where
X7 = min(7y, Cy), Xo = min(Ty, Cy), Ay = I[(T) < Cy), andA, = (T, < Cy). Herel(-) denotes
the indicator function. The pair of correlated continuoasuire times(7},7;) are subject to right
censoring by a pair of censoring timgs;, Cy). Assume censoring times are independent of failure
times conditional on covariaté’. We further assume that there is no ties among observed fones

each of the two time components.
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2.3.1 Discrete covariate with finite levels

To motivate our idea, we connect the cross-ratio definitior§2.2) with the Cox model partial
likelihood for the two-group regression problem for obsgions within the stratum with covariate
W = w. Using the epidemiological terminology, if we tret : 7}; = t;} and{j : T}; > t;} as
the “exposure” and “non-exposure” groups respectivebntiiom the first equality in (2.2), the cross-
ratio (¢, , t2, w) becomes the hazard ratio Bf between these two groups within the stratim= w.
Denotey(Xy;|X1; > X1, Wi, = W;) by AY, andf(Xy;, Xo;, W;) (Xus=X1) by BE respectively. By
mimicking the partial likelihood idea, we can constructm@itar objective function as follows based on

these two groups categorized hy= X;;:

I(W]‘:Wi)I(le ZXli)AQjAli

ﬁ Al B
177 1)
Sl I(Wh = W)l (X > Xu) Al B,
KXok > X2
I(W;=Wi)I(X1;>X15)A2;Avs
11 By
S| > I(We =Wl (Xy > Xy,) B,

Xop>Xoj
whereA{j cancels witmfj in the above equation because of the restrictior= 1W;, which is achieved
by indicators/ (W, = W;) in the outer exponent ant{1W,, = W;) in the denominator. Following a
similar argument as in Chapter I, the denominator in thekmiacan be simplified a&' (X1;, X;, W;) —
I( Xy < X9i)(1 = 0(Xqs, Xoj, W;)), WhereN (ty, to,w) = > ) I( X1 > t1, Xog > to, Wi = w). SO

we can re-write the above objective function as

I(W;=W)I1(X1;>X14)A1:A2;

n X Xos N (X15=X14)
H |: 9( 12 2]7‘/1/1) (24)

e N (Xii, Xoj, Wi) — I( X < Xoi)(1 — 0(X14, Xoj, W)
Now denote (2.4) aﬂgl). Considering the symmetric structure of the definitio@f , ¢, w) de-
termined by the second equality in (2.2), we can construgtndlas objective function as (2.4) by

switching the roles oX; and X5, and denote it aﬁf). By multiplying such constructed two objective
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functions over all possible ways of creating the “exposuar& “non-exposure” groups, i.e. all subjects,

we obtain the following local pseudo-patrtial likelihoodfttion:
L, =L (2.5)
=1

The estimator obtained by maximizing (2.5) is then calledrttaximum local pseudo-partial likelihood
estimator.

Denotel,, = n~'log L, & = (v, @) andf(ty, ts, w; &) = 9B(t1, to, w; €) /€. Differentiatingl, (&)
with respect to€ and assuming no ties among observed times, we obtain treviot) estimating

function foré:

3]
U.(€) = —5¢ = U (©) ~U2(©) +UYE) - U Q).
where
1 < :
UL € =UP(€) = - ZAuAQz‘ﬁ(Xu,X% Wi; €) (2.6)
1=1
and
UP (&) = . ii I(W; = W) Ay Ag; 1 (X1, > X1i) (X < X;)efXeX2s Wist)
" e N( X5, Xoj, W) — I(Xoj < Xo;)(1 — eFX10:X25,Wisd))
Xﬁ(Xu,XQj,VVi%E) (2.7)
UW(g) = L X”:z”: LW = Wi) Ay Ayl (Xo; > Xoi) (X1 < X)Xy XanWiit)
P T L TN, X, W) — (X < X)(1— PO )
X B(X1;, Xoi, Wi €). (2.8)

Note that by switching indicesandy, (2.7) and (2.8) only differ in the second term of their demom
nators, which is a negligible term asymptotically. Then atimsatorén can be obtained by solving the

equationlU,,(£) = 0 using the Newton-Raphson algorithm.

2.3.2 Continuous covariate

When covariate is continuous, the “grouping” idea by restrg observations with the same co-

variate values into distinct strata is no longer applicablewever, based on the estimating equations
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obtained for discrete covariate, we replace the groupidgator function/ (WW; = W;) by a kernel
functionK,, (W, — W;) in (2.7) and (2.8), wher&,,(-) = 1/hK(-/h) andh is a bandwidth. Function
K(-) is usually chosen to be a symmetric probability density fiamc In the numerical study presented
later, we use the standard normal kernel. Specifically, wpgse the following estimating function for

& when the covariate is continuous:

U.(6)=UP (&) -UP &) +UP &) -UY),

whereU'Y andU®) are the same as in (2.6) and

(&) = ZZ Ky (W) — W) Ay A 1( Xy > Xpi)1(Xgy < Xo)eP XX Wid)
B 1= N (Xui, Xoj, Wi) — Kp(0)1(Xo; < Xo;)(1 — eP(X1i, X25,Wist))
Xﬁ(Xu,XQj,VVi%E)

Uy = : ii K5 (W) = W) Ay Qg I(Xgy > Xoi) [(Xy; < X)eX0a %20 Wit)
B X1]7X227 W) — Kh(U)I(le < Xy)(1— €ﬁ(X“’X2“W“§))

i=1 j=1
Xﬁ(le',XQi, Wi;5)7
whereN (t1,to,w) = > "7 I(Xu > t1, Xog > t2)K, (W), —w). Then an estimat(ﬁ'n can be obtained

by solving the equatiol/,,(£) = 0 using the Newton-Raphson algorithm.

2.4 Asymptotic properties

We consider a parametric model #(¢1, t2) in (2.3). In particular, we assume

Bt 2, w; §) = Z’Yklbkz(tla ta) + wa, (2.9)
ol

where¢ is the finite dimensional vector of coefficienfts;;} and«, and{b;,} are the basis functions
of t; andt, that do not involve the parametér In this section, we provide asymptotic results for the
estimation of¢ in (2.9). In particular, we consider functions of boundedations for{b,} such that
both 3(t1, to, w; €) and 3(t1, t,, w) belong to Donsker classes. Note thiafor model (2.9) is free of
&. Such property plays an important role in the proofs of tHe¥dang theorems. We consider the

following regularity conditions for model (2.9):
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C2.1. The covariatél’ is either continuous or discrete with finite levels, whosegle space/V is

bounded with) < inf,,¢)y f(w) andsup,,yy, f(w) < co. Heref is the density function ofl’.

C2.2. The failure times are truncatedat, 7»), 0 < 7, 7» < oo, such thakup,,¢,, Pr(Ty > m,Cy >

71, Ty > 79, Co > 1|W = w) > 0.

C2.3. The parameter space §fdenoted by, is a compact set, and the true va§jgeis an interior

point of I'.
C2.4. The matridE{A; A, 5(X1, X,, W)®2} is positive definite. Herg®? = 34
C2.5. (11, T,) and(C4, Cy) are independent conditional .

In order for the kernel smoothing technique to work, follogriconditions are further warranted in
addition to the regularity conditions previously spec#er for continuous covariate with functions

h(), t() andS() defined in the Appendix equations (2.17), (2.18) and (2.19):

C2.6. Forsome, 0 < e <1, E(V; £) < oo is uniformly locally Lipschitz of ordet,

sup sup |h(l‘1,l’2,51,52,w;5) —h($1,$2,51,52,wl;€)| S ME|W_W/|€7

x1,22,01,02 |W—W'|<8¢

t(v*v;€)
S(XT7X27W*)

AN 1/
C2.7.F ( ) < oo forsome), 2 < \ < oo,

C2.8. Bandwidthh satisfies (i) < h — 0, (i) nh/logn — oo, (iii) n'/*h — 0, and (ivn/logn)'~2/*h —

00,
C2.9. The kerneK is bounded and of bounded variation.

Details on conditions C2.6-C2.8 can be found in Hardlesdan and Serfling (1988), and conditions

C2.8 (i), (i) and C2.9 can be found in Nolan and Pollard (1987

Theorem 11.1. Suppose Conditions C2.1-C2.5 hold for disciéfeand Conditions C2.1-C2.8 hold for

continuoug¥’, the solution of/,,(¢) = 0, denoted by, is a consistent estimator gf,.
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The proof of Theorem II.1 is treated separately for disciétevith finite levels and continuous
W, but follows similar steps. We first show thét, (&) converges to a deterministic functiar(£)
uniformly, then show that:(&) is monotone and has a unique rootégt Then consistency follows

easily. Details are provided in the Appendix.

Theorem I1.2. Suppose Conditions C2.1-C2.5 hold for discréteand Conditions C2.1-C2.9 hold
for continuousiV’, we have than!/2(€, — £,) converges in distribution to a normal random variable
with mean zero and variancE(&,) '3 (€,)I(£,) ", whereI (€,) = 2E{A;Ay3(X1, Xo, W)} and

3.(&,) is the asymptotic variance &f,,(£,), which is given in the Appendix.

The asymptotic normality in Theorem 11.2 can be achieveddigaithe Taylor expansion &f ()
around¢,. Again the detailed calculation which centers on the lirzion of U, (€,) — u(&,) is

deferred to the Appendix. The asymptotic expressioX(§,) also provides a variance estimator of
n1/2 (én - 50)

2.5 Simulations

2.5.1 Discrete covariate with finite levels

We conduct simulations to assess the performance of th@pedpmethod. Generating data from
a bivariate distribution with an arbitrary cross-ratio €tion is impossible because there is no corre-
sponding closed form survival function in general. Morepwmlike in Chapter I, we can no longer
generate data from Frank family when we have covariate dinaek family does not accommodate
multiplicative covariate effect. Nevertheless, we areedblgenerate data from the clayton model and
piecewise constant cross-ratio model. For simplicity, sguanelV is a binary random variable from
Bernoulli(0.5). We generate data foi, (¢, t2;v) = 0.25 anda = 0.5. Such setup is equivalent to
generating data from two Clayton models with= ¢%2° whenW = 0 and@ = ™ whenW = 1.
The basis functions used for the estimation Br&; and X5, though only the intercept term is needed

in the true model. The results based on sample sizes of 40@@h@re summarized in Table 2.1,



36

whereq is the true covariate effect ancs are the true coefficients for the basis functianX’; and X,
respectively. Simulation results based on 1000 replioatghow that our estimators work well. The
model based variance estimator also works well since therealpcoverage probabilities are all close

to the95% nominal value.

Table 2.1: Cross-ratio regression for discrete covariatie & = 0.5 and constant baseline cross-ratio with= 0.25. &
and+, point estimate averag#;.SFE, the empirical standard errokf.SF, the average of the model based standard error
estimates)M.C P, the95% coverage probability.

n=400 n=800
o & FESE MSE MCP & ESE MSE MCP
050 051 0.19 0.18 95% 0.50 0.12 0.13 96%
v ¥ ESE MSE M.CP ¥ ESE MSE M.CP
0.25 024 0.19 0.19 96% 0.25 0.13 0.13 96%
0 002 0.23 0.22 96% 0.01 0.15 0.15 96%
0 002 0.22 0.22 95% 0.01 0.14 0.15 95%

Table 2.2: Cross-ratio regression for discrete covariate w = 0.5 and the piecewise constant baseline cross-ratio.
and g, point estimate averagé;.SFE, the empirical standard errob/.SE, the average of the model based standard error
estimates)M.C P, the95% coverage probability.

n=400 n=800

o) @) ESE MSE M.CP @) ESE MSE M.CP
050 050 0.21 0.21 95% 0.50 0.14 0.14 96%

0 B B ESE MSE M.CP B ESE MSE M.CP
090 -0.11 -0.10 0.18 0.18 95% -0.10 0.13 0.13 94%
200 069 0.72 0.20 0.19 94% 0.70 0.13 0.13 95%
400 139 141 0.23 0.24 96% 141 0.16 0.16 95%
150 041 041 0.26 0.25 94% 042 0.17 0.17 94%

To mimic the analysis results of the Tremin Trust data, We sisiulate data using algorithm in Nan
et al. (2006) with a binary covariaté’ ~ Bernoulli(0.5) anda = 0.5. ForWW = 0, the cross-ratio
is piecewise constant over four intervats:= .9 whent; € [0,.25), 6 = 2.0 whent; € [.25,.5),
0 = 4.0 whent; € [.5,.75), andd = 1.5 whent; > .75. ForWW = 1, the cross-ratid@ is equal to
0.9 x €%9,2.0 x €25, 4.0 x e*® and1.5 x €% in the above intervals. The results in Table 2.2 show that

our estimators as well as their model based variance estimall work well.
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2.5.2 Continuous covariate

Like the simulations for the discrete covariate, we sineulddta withiV ~ wunif(—0.5,0.5) and
a = 0.5 assuming the same Clayton model and piecewise constant foodee baseline cross-ratio.
To save computing cost, we simply chodse- 100n~'/3. Simulation results with sample sizes equal
to 400 and 800 are summarized in Table 2.3 and 2.4. We plotmeal Q-Q plot ofé’ in Figure 2.1 for
the piecewise constant cross-ratio model with n=1600 basetD00 replications. The plot supports

our conclusion thag is asymptotically normal.

Table 2.3: Cross-ratio regression for continuous covamath o = 0.5 and constant baseline cross-ratio with= 0.25.
& and4, point estimate averagé;.S FE, the empirical standard erra¥/.SE, the average of the model based standard error
estimates)M.C P, the95% coverage probability.

n=400 n=800
o« & ESE MSE M.CP & ESE MSE M.CP
050 0.48 030 029  94% 048 020 021  95%
v 4 ESE MSE MCP 5  ESE MSE MCP
025 024 017 017  94% 025 011 011  95%
0 002 022 021  95% 001 015 014  95%
0 002 022 021  96% 000 014 015  95%

Table 2.4: Cross-ratio regression for continuous covamiath o = 0.5 and the piecewise constant baseline cross-ratio.
andg, point estimate averagé;.SF, the empirical standard errob/.SE, the average of the model based standard error
estimates)M.C P, the95% coverage probability.

n=400 n=800

o & ESE M.SE M.CP & ESE M.SE M.CP
050 046 033 0.34  96% 046 024 024  94%

0 3 3 ESE M.SE M.CP 3 ESE M.SE M.CP
090 -0.11 -0.10 0.5 015  95% 010 0.11 010  94%
200 0.69 071 017 017  95% 070 012 012  95%
400 139 1.40 021 023  96% 1.40 015 015  96%

150 041 041 0.23 0.23 95% 041 0.5 0.16 96%
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Figure 2.1: Normal Q-Q plot of parameter estimages (&,4) when the covariatél is continuous fom = 1600 based
on 1000 replications.

2.6 Data Analysis

2.6.1 The Tremin study

The Tremin Trust data were collected as part of the Menstandl Reproductive Health Study
(Treloar et al. 1967). This longitudinal cohort study feled participants throughout their repro-
ductive life span. It provides a unique opportunity to inigete the process of female reproductive
aging and menopausal transition. The study sample cod$tghite college students enrolled at the
University of Minnesota. Data collection started in 19386l @nrolled a sample of 1,997 women over
4 years. Study participants were followed for up to 40 yeBech woman was asked to use menstrual
diary cards to record the days when bleeding was experier@ate covariate information (e.g., age

at menarche) was available.
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Nan et al. (2006) used a subset of the Tremin Trust data tg sigelat onset of a 45-day cycle as the
bleeding pattern change criteria for the early and lateest@af menopausal transition. They estimated
the cross-ratio as a piecewise constant function. Here agzathe same subset that consisted of 562
women in the original study cohort who were age 25 or youngeneollment, had information on age
at menarche, and who were still participating in the studggst 35 (which they used as the baseline
age in their study). Both time to a marker event and time toopanse were subject to right-censoring
in the Tremin Trust data. For each individual, the censotimg was the same for both events. A total
of 193 (34%) women were observed to experience natural naersap and a total of 357 (64%) women
were observed to experience a 45-day cycle marker. The magmat menopause was 51.7 years, the
median age at the 45-day cycle marker was 42.7 years and tamege at menarche is 12.

To be able to compare the results with Nan et al. (2006) anthéoease of interpretation, we model
the cross-ratio as a quadratic functiontpbnly, i.e. age at onset of 45-day cycle, based on the same

data. Assuming a multiplicative effect of menarche on cra$i®, we model the log cross-ratio as:
B(ty, ta, w;y) = 7o + Yit1 + at; + wa, (2.10)
wherew is age at menarche and compare model (2.10) with model

B(ty, ta, w;y) = 7o + Yit1 + 7ot (2.11)

and the piecewise constant model in Nan et al. (2006). Forein@dl0), we further consider three
functional forms for the age at menarche: a continuous cateawith linear effect, ordinal covariate
with 5 levels(< 10 = 1,11 = 2,12 = 3,13 = 4, > 14 = 5) with linear effect and nominal covariate
with the same 5 levels. When age at menarche is treated astiaummrs covariate, bandwidth is
chosen to be&00n /% ~ 10.

We compare the results of (2.10) fitted at median age at meaérc= 12) with (2.11). The general
pattern of the estimated cross-ratio curvatures are opam-@arabola for both model (2.10) and model

(2.11). This finding is consistent with piecewise-constasult in Nan et al. (2006). However, we also
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caution that the age at menarche is not significant in anyeftihree covariate models, which yields
similar results in terms of both covariate effect and basetiross-ratio. So interpretation with respect

to menarche effect should proceed with caution.

2.6.2 The Australian twin study revisited

In Chapter I, we analyzed the Australian twin study of appatid for monozygotic twin pairs and
dizygotic twin pairs separately. It was found that monoziygtwins exhibited higher concordance
rate than dizygotic twins. It is therefore of interest to qifg the disparity between the different type
of twin pair. Additionally, it is desirable to characteritee dependence between twin pairs when the
effect of zygocity is controlled for.

Since the order of twin one and twin two is arbitrary in the #akan Twin Study, we can take
advantage of such symmetry to improve the estimation efitgicAssuming a multiplicative effect of

zygocity on cross-ratio, we model the log cross-ratio as:
Bt tz, wiy) = Yo + (b +t2) + 7926 +63) + stats +ya(tite + 0it3) +75(8] + 63) + wa, (2.12)

wherew is a binary variable that encodes monozygotic twins vs dggwins.

Implementing our proposed estimating method, we obtairsimator ofa at0.39, (95% CI: 0.08
- 0.70), suggesting a genetic component to the disease. eSardlss-ratio of monozygotic twins is
estimated to be 1.47 times higher than that of dizygoticswifigure 2.2 suggests a stronger association
for appendicitis risk between either monozygotic twinsiaydotic twins at a younger age. This finding
is consistent with existing literature, e.g., Fan et al. 0O@4). Also both monozygotic and dizygotic twin
pairs are more likely to undergo appendectomy around the sane. The figure also shows that such
dependence diminishes over time. This suggests that latée ienvironmental causes may be more
important in the development of the disease.

In Figure 2.3, we compare the cross-ratio as a functidh dfy fixing 75 at 20, 25 and 30 estimated

either by the proposed joint analysis or by the separateg/sisatonducted in Chapter I. The estimates
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1

Figure 2.2: Comparison of estimated cross-ratio functionmonozygotic twins and dizygotic twins in the Australimin
female dizygotic twins.

Study based on the joint analysis of model (2.12). The lafepes for female monozygotic twins and the right panel is for

are similar, supporting the proportional cross-ratio agstion. The joint analysis, however, is more
efficient.

2.7 Discussion

A gquestion of significant interest in female reproductivénggs to identify bleeding criteria for
menopausal transition. The Tremin Trust data provide aush@pportunity for evaluating the utility
of a bleeding criterion-based marker event by assessingdbeciation between age at onset of the
bleeding marker and age at onset of menopause. Formaltistdtisnalysis of this dependence is
challenging due to the facts that both the marker event ambpaise are subject to right-censoring
and that their association depends on age at the marker. éwehis chapter, we consider a cross-ratio

regression model estimating the dependence between tlikemeaent and the event of primary interest

adjusting for age at menarche, where the log cross-ratgsisraed to be a smooth polynomial function
of the marker event time and covariate.

In the cross-ratio regression, we essentially separaggoktbeline log cross-ratio and covariate effect
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Figure 2.3: Comparison of estimated cross-ratio funct@mionozygotic twins and dizygotic twins in the Australiamii
Study based on the separate analysis and joint analysispldtgeon the top panel are for monozygotic twins, and on the
bottom panel are for dizygotic twins. The black solid curaes the cross-ratio as a function Bf estimated from the
separate analysis and grey curves are estimated from titeajoalysis. The black dotted curves are the confidence bands
for cross-ratio estimated from the separate analysis.

by mimicking the Cox proportional hazards model, where liaséog cross-ratigh, (¢, t2) is parame-
terized by a finite-dimensional Euclidean parameter. Whernrue baseline log cross-ratio is a smooth
function of unknown functional form, regression spline hwat using the tensor product splines can
be implemented. When the number of knots is fixed, the modedsentially a parametric model and
asymptotic properties can be derived in a similar way. Ifrtbenber of knots is allowed to grow with
the sample size, the sieve M-estimation theory may be usdtidalevelopment of asymptotic theory,
see e.g., Shen and Wong (1994) and Shen (1997).

The proposed estimator is based on a pseudo-partial ldadimethod instead of the true likelihood.
If we were to construct the true likelihood for an arbitrampgs-ratio, we would need to solve for

h(ti,t2) in (1.2) to obtain the joint survival functio®’(¢,,¢,) for every fixedw. Unfortunately, a
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closed-form solution does not exist for even the simplest-mial functional forms ford(t,, t), for
example, a linear function. Our method is robust becausgpid$ses modeling the joint and marginal
distributions of the bivariate survival times.

The proposed model requires proportionality of covaridtece on cross-ratio, which is a rather
strong an assumption. A richer class of model for covaritieeethat does not rely on the proportion-

ality assumption would be
Bti, e, W) = z(t, t2) vo + Wa(ti, t2)'y. (2.13)

If W is a binary{0, 1} variable then the model (2.13) is equivalent to just doirgahalysis separately
in those withiW = 1 andW = 0 in terms of estimation; In contrast, W is not binary, we get a
more parsimonious model than doing analysis separatelgcét level ofi//, which may be important
for efficiency and for modeling the functional form @f. In general W can be a vector and we can

further extend the above formulation to

k
ﬁ(tl, t2, W) = Z(th tg)/’yo -+ Z WjZ(tl, t2)/’7j7 (214)

j=1
wherek is the dimension o#//. However, model (2.14) involves a lot of parameters andirequ
substantial amount of data for estimation. Instead, wectoohsider a reduced model of (2.13)
k
Bltr,ta, W) = 2(t1,ta)vo + Z Wymy(ty, t2)'y;, (2.15)
j=1
wherem is a sub-vector function of. In particular, ifm; = 1 for all j, model (2.15) reduces to the

proportional cross-ratio model being proposed.
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2.8 Appendix: Proofs

2.8.1 Proof of Theorem Il.1

Let V* = (X7, X5, A}, A5, W*) be an independent copy bf = (X1, X5, Ay, Ay, W). Define the
deterministic functions(¢) = u™®(¢) — u@ (&) + u®(€) — u®(¢), where
u(€) = () = B {Aidaf(Xs, X W)}

I(Xy > X)DI(Xy < XDO(XT, Xo, W;S)}
S(XikaXﬂW*) ’

u®() = uV(€) = E {A’{AQB(XT, X, W)

whereS(xq, zo|w) = Pr(X; > x1, Xo > 2|V = w).
We will first show thatl7*) (¢) converges uniformly ta*), k = 1,2, then show that(¢) = 0 has
the unique solution &,, and finally show the consistency &f whereU,,(¢,) = 0.

Define the following simplified notation:

o 8F(t1,t2\w) _ 8G<t17t2‘w>
81F(t15t2|w) - 3t1 ) 81G(t1,t2|w) - 3t1 )
OF (tq, ta|w OG(ty1, ta|w
82F(t1,t2\w) = %7 82G<t17t2‘w) = <81t22‘ >7
82F(t1,t2|w) azG(t17t2|w)
F — -\ Al =
01 2F (11, tao|w) 060ty O 2G(t1, ta|w) Ot10t,

where F' and G’ denote the survival functions ¢f3, 7,) and (Cy, Cs) conditional onW = w, re-
spectively. Then the conditional density function(df;, X», Ay, As) given W = w can be written

as

q(tla t2a 51, 52|w)
= 6172F(t1, t2|w)6162{—81F(t1, t2|w)}61(1_62){—82F(t1, t2|w)}(1_51)52
F(tl, tQ |w)(1*51)(1762)8172G(t1, tQ |w)(1*51)(1*52) {—81G(t1, tQ |w)}(1*51)62

{—82G(t1, tQ |w)}51(1*52)G(t1, tQ ‘UJ)(;I(;Q,
and the joint density of X, Xo, A1, Ag, W) is

p(t1,ta, 01,02, w) = q(t1, 2,01, 02|w) frr(w) (2.16)
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where fy, (w) denotes the distribution function of".

Following van der Vaart and Wellner (1996), we Beand@Q,, to denote the empirical measures of
n independent copies diX}, X;, Aj, A5, W*) and (X, X, Ay, Ay, W) that follow the distributions
P and@), respectively. Although these two samples are in fact idaht.e.,P,, = Q, andP = @, we
use different letters to keep the notation tractable fordingble summations, which will soon become
clear in the following calculations.

For model 2.9V (¢) = QA A3(X1, Xy, W) is free of¢, and3(X:, X,, W) is bounded from

Conditions C2.1-C2.2. Hence by the law of large numbers, awe h
sup U (&) —uV(€)] = [(Qn — QA1 A6(X1, Xo, W)| — 0

either almost surely or in probability. Convergence in @bty should be adequate here for the proof.

To show the uniform convergence bt (£) to u(? (), the proof is treated separately for discrete
W with finite levels and continuoud’. WhenV is discrete with finite levels, the proof is similar to
that provided in Chapter I. Here we focus on continudus

For simplicity, defind/ = (X, X», Ay, Ay, W) and also define the following quantities:

t(Vi, Vi &) = Al 1(Xq; > Xq)I( Xy < XQz‘)eﬁ(X“’XQj’W“'S)B(Xlz‘aX2j> W), (2.17)

WV Vi) = HIN(Xo Xap, W) — Kn(O)T (X, < Xa)(1 — (X Xy, Wi ),

n e K (W =WV, Vis €)
Ky, (W — Wi)t(V;, Vj; €)
Sh(X1i, Xoj, Wi)
Ky (W; — Wi)t(V;, Vj; )
S(Xqi, Xoj, Wi)

o (Vi, V€)=

gV, Vi3 €) =

t(Vi, Vi; €) } (2.18)
) .

h(ng) = Ele7X2j7Alij2j|Wj:W17X117X217A117A2i[S(Xl‘ X2-|W-
s j i

h (V;? E) - EXli7X217A1i7A2i|Wi:Wj7X1j7X2ij1ij2j [S(Xl )(JQ |W):|
) J J

U(Q)(ﬁ) = EX1i7X2i7A1i7A2i7WiiL(‘/’i;6)7
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where

S(t17t27w) - PT(Xl Z tlaXQ Z t2|W = w)fW(w)’ (219)

Sh(tl,tg,’w) = F [[(Xl 2 tl,XQ 2 tz)Kh(W — w)] .

Clearly, we have

S(tl, tg, w) = 1}551 Sh(th tg, w)

By Hardle, Janssen and Serfling (1988),

1 1 &
—N(ty,t = — I( X5 > t, Xop > ) K, (W, —
o (17 27’60) n; ( 1k = U1, Aok = 2) h( k w)

Yo I( X, > th, Xog > to) Kp (Wi — w) " Yoo Kn (W, —w)
> het Kn(Wy — w) n
= E([(Xl > tl, X2 > tg)‘W = UJ)f(UJ) + 0p(1)

= S(tl, tg, w) + Op(l)'

Also note that the difference betweef?) and§™ is their denominators wherein we replace the de-
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nominator ofg™ by its limit. We then have the following:

sup\—ZZg Vi, Vi € ZZ Vi, Vi €

11]1 11]1

< —Zsup|—Zg(" (Vi, V5; €) ——Z Vi, Vi€
B ZSU ’ V;,V],E) (Xu,X2jaVVz‘) * (Vi) S(XIZ’XQJ’VVZ))’
B t(Vi, V;;€)
= _Z ZKhW WS | e S X 7

X(U(Vi,Vj;E)— (X1uX2jaW'))‘

n 1
o K (W —W5) t(Vi, Vi; €) 1

= _Zn XJh,XwaWz)JrOp(l) Sgp’S(XuaX%Wz‘) (Sup’m N (X Xy, W)

—S(Xlz‘,X2j, VVZ)) + Slglp }n_lKh(O)I(ng < XQi)(l - Q(XliaX2ja VVuE))D
< %;%(U%(U(SUP (7 N (X1, Xoj, Wi) — S( X, Xoj, Wi))| + Op((nh)_l))
< 0y(1)(Opfmax{(nh/logn) 2, k) + Oy((nh) ™))

= 0,(1).

In the last inequality, we used the result of strong unifomnsistency for conditional functional esti-
mators of Hardle, Janssen and Serfling (1988).
Next, we want to show that difference betweer) " Dy 1gl(]”( £ andi >, h(Vi; €) is 0,(1).

Again using the result of Hardle, Janssen and Serfling (L&88howing the second last equality in
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the following calculation, we have

1 n n
sup - Zg(n ‘/27‘/}75 Zh V;vE '
13 n =1 j=1
1 n
i=1
1 n
< =) sup —Zg”) Vi, Vi &) — h(Vi; €)
n i=1 EVZ
1 n
= sup|— Zg(” (Vi,Vj;:€) — (‘/wS)‘
Evi |"

= Op(max{(nh/logn) Y2 heY)
= o0y(1).

Last, we want to show that difference betweeh ! h(Vi: €) and its deterministic limit(? (&)
is 0,(1) uniformly in £&. For model (2.9) under C2.1-C2.3, it is straightforward ée shat all the
component functions af V;, V;; £) are Donsker. ThugV;, V;; §) is Donsker. Then by Theorem 2.10.2
in van der Vaar and Wellner (1996)(V;; £) is also Donsker. Hencé(V;; ) is Glivenko-Cantelli. We

then have
1 e -
sup > RV — u®(&)] = 0,(1).
=1

Thus we have shown th&f,, (&) converges uniformly ta:(£) in probability. To showu(§,) = 0, it
suffices to show that(V) (¢,) = u? (¢&,). Recall that X, X5, A1, Ay, W) and (X, X3, AL, A5, W*)
are independent and identically distributed with a derfsityction given in (2.16). Let/, denote the

infinitesimal change with respect g, k£ = 1, 2. Note that

8172F(t1, t2|w)F(t1, tz‘U))

9 t t N — ﬁ(tthvw;gO) — .
( 15 2711)7‘50) € 81F(t1,t2\w)82F(t1,t2‘w)
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andS(ty, ta|w) = F(t1, t2|w)G(t1, t2|w) by Condition C2.5. Then we have

U(Z)(Eo)

AAT(Xy > X (Xy < X3)ePOTX2W580) 3(XF Xy, W)

X* *
5265)( Lo, W™ 50)5()( t W)
_E * A* 1> ) t 1 5 5 W* dt dt
1% { / /1 5_0522 ijtﬂW*) q( 1,02,01, 2| ) 1019

— EV* A* /Xé‘ ﬁ(Xikat%W*)H(Xikat%W*;‘SO)
! 0 S<Xik7t2|W*)
X [/ dl{aQF(tl,t2|W*)G(t1, tQ‘W*>}] dtz}

S BN /Xi‘ BOXt o, WO(X 1, W55 &)
Y " Jo S(X7, 1] W)

X82F<Xik, t2|W*)G(Xik, t2|W*)dt2}

X5 ; * *
:Ev*{—Aj/2 X, 12, W) 812F(Xf,t2|W*)dt2}
0

O F (X7, 12| W)

/// 225*{ / e t’{t,ltft; )612F(t1,t2|w )dtQ}

07=063
Xp(tb t27 5; 5;7 *)dt;dt*dw*

t*
2 BtT7t27 )
F(t5. t dt
/ // { ; (tl,tg\ )312 (1> 2|w) 2
><d2{al (t1>t2|w) (tl,t2|w*)}f(w*)dt’1‘dw*
t*’t*7 * * * * * * * * * *
/ / / UL ) o piee, eglut)on (L t5lw)GUEL )
81 tlat2| )
X f(w*)dtydtdw*
_ / / / B(t5, 15w ) O F (£, 6w G (£, ™) f (")t dtsduw”
—00J0 0
= B{A18aB(X1, X, W) }

= u(l)(Eo)-

To show¢,, is the unique solution ofi(§) = 0, it suffices to show that (a) the matrix(&)

du(&)/d€ is negative semidefinite for a € I', and (b)u (&) is negative definite a§,. Similar to
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Chapter |, it can be shown by straightforward calculatidmet t'%(£)a < 0 for any vectora and
u(€,) = —2F {AlAQB(Xl, Xo, W)®2} is negative definite by Condition C2.4. Thgpis the unique
solution tou(€&) = 0. We are now ready to show the consistencg afGiven the fact thak/,, (€,) = 0

andsup |U ,(§) — u(§)| = 0,(1), we have

Sinceg, is the unique solution ta,(§) = 0, for any fixede > 0, there exists @ > 0 such that

Pr <|é’n — & > e) < Pr <\u(%n)| > 5) .
The consistency cﬁn follows immediately.

2.8.2 Proof of Theorem I1.2

DefinelU (&) = dU ,,(¢)/d€. By the Taylor expansion df/,, (£,) around¢,, we have

n(E, ~ &) =~ {U.€)) 0 UL (&), (2.20)

where¢” lies betweerén and§,. By a similar calculation as in the proof of Theorem 1 showing
the uniform consistency o/, (¢), we can show thasup |U (&) — @(€)| = o,(1). Thus by the
consistency of,,, which implies the consistency ¢f, and the continuity ofi(¢), we obtairl/,,(£*) =
w(€,) + 0,(1), whereu(&,) = —2F {AlAQB(Xl,XQ, W)®2} — _I(¢&,) is invertible by Condition

C2.4. Hence based on the fact that continuity holds for therse operator, (2.20) can be written as

n'2(&, — &) = {I(&) ™" +0,(1)} n'2U . (&). (2.21)

We now need to find the asymptotic representation'éfU,,(€,). We only check it forUS)(EO) —
U (&,). The calculation fol7 ¥ (¢,) — UM (&,) is virtually identical and yields the same asymptotic
representation.

It is easily seen that

w2 (UD (€)= u(€)) = GafA1AaB(X1, Xo, W)}, (2.22)
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whereG,, = n'/?(P, — P). We then focus om'/? (Uﬁf) (&) —u® (50)), whose linearization differs
vastly for discrete covariate and continuous continuowsgate, largely because we could no longer
rely on Donsker Theorem for continuous covariate case wieemek functions are involved. Thus the

two cases are treated separately in the proof.
Linearization of n'/2 (Uﬁf) (Vi, Vi3 &) — u(2)(£0)) for Discrete Covariate

First we introduce the following notation:

G Ag, X1, Xo, W, A, X X5, W™ €)

LW = WATAB(XT, Xo, WXy > XDI(Xs < X5)0(X7, Xo, W™, €)
S(XT, X, W¥) '

By fixing (A}, X7, X5, W*) at(dy, 21, x2, w), we also define
ﬁé(él,xl,xg,w;ﬁ) = Qi (Ag, X1, Xo, W, 01, 21, 9, w; €).
Similarly, fixing (Aq, X, Xo, W) at(ds, 21, x2, w), define
W (8y, 1, 9, w3 &) = PG (g, 21, 29, w, AF, X7, X5, W™ €).
Following similar calculation as in Chapter |, we can shoatth
W2 {UD(g) - u® (&) }
= Gn{ﬁé(Al, X1, Xo, Wi &) + hb(Dg, X1, Xy, W3 €p)
—// I(X1 > 27, Xo > 2o, W = w")r(6y, z1, X2, w, 05, 7, T3, W")
dP((Sik,55,$>{,$§,w*)dQ((51,5g,l‘1,ZE2,w)} + 0,(1), (2.23)
where
r(d1, 21, X2, w, 05, X7, x5, W)

B I(w= w*)éfégﬁ(xf,xg, w*; &) (z1 > af)I(xe < xg)eﬁ(’”?“’w*;fo)
{S(.%‘T,.%‘Q,W*)}Q .
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Then we obtain

n'’U, (&)
= n'*{U (&) — u(&)}
= 02U (&) — u (&)} — n'H{UD (&) — u® (&)}
+ U (&) — u® (&)} — n'H{UD (&) — ulV (&)}
— an{AlAgﬁ’(Xl,Xg, W) — hiy(Ar, X1, Xo, W3 &) — hip (Ao, X1, Xo, W3 &)

+ // I(Xl Z xLXQ Z :L‘27W = w*)r(élaxlax%w75§axi7l‘;7w*)

dP((SI,(S;‘,:c”{,x;,w*)dQ(51,5273317332aw)} + 0p(1)

—a N(0,%(&))-

Thus from (2.21) we obtain the desired asymptotic distiitsuof n'/2(¢, — &,).
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Linearization of n!/2 (U2 (V;, V;; €,) — u®(&,)) for Continuous Covariate
n J 0 0

We focus om!/2 (U2 (V;, Vi: £,) — u@(&,) ) with following decomposition:
n 7180 0

n/2 (U Vi) — u(&)

(3 g Vi) — uE)

ilj 1
(LY ) - 5 30 S Vgy)
i=1 j=1 = 1] 1
S GO LUATIIEES SULCEN)
=1 j=1

+n'/? (% Z ﬁ(‘/i; &) — ul? (50)>
i=1

=02 SO (0 Vis) — o (Vi Vi)

iljl

—|—n1/2 Z( (Vi, Vi &) — ( 0> ],50)>

=1 j=1
1 &K1 A
+—7 Z <E Zg(”’(%, Vi; &) — h(Vi; §o)>
i=1 j=1
1 &/
o 3 (RVig) - u()))
=1

=—-A-B+C+D

Now we will look at the four terms separately. Firstly, tefins a sum ofiid items:

D = # i (7%(50) - u(z)(go))

=1

= Gu (hl&n)-
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Secondly, tern' can be decomposed as follows:

C

n

- Y (% >V igo) - ﬁ(%@))
= a2 (BIRG(V, V" &) — PLR(V", )
= 0! (BB (V. V" &) — PRLG(V. V' &) + B PG (V. V' &) = B A(V7. &)
= G, (B V.V, &) = PTGO(V.V &) + PTGV V&) = (V. 60) + 1 (V. &)
+n'2B;, (PGV, V", &) = h(V", &)
= G (Pg"(V, V", &) = PGV, V",60)) + G (PTG (V, V7, 60) = B (V. &)
G, (F(V.£0)) + "B, (PGV(V. V7€) = (V™. &)

= C1+Cy+Cs3+Cy

For the last equality of the above equation, we want to shawv@h = o,(1), C; = o,(1) and
Cy = 0,(1), so thatC' = C3 + 0,(1). First, by lemma A.2 of Ichimura (19935 (V,V*,&,) —
h(V*, €&) = O(h?). ThusCy = n*/20(h?) = 0,(1) for h satisfying C2.8.

Likewise, P*3™ (V,V*,&,) — h*(V, €&,) = O(h?), and therefore?, = n'/20(h?) = o,(1) for h
satisfying C2.8.

Finally, we need to show that, = G, ((]P);; — PHK,(W* — W)M> — 0,(1). First

S(X7,X2,W+E,)

set
wr-—w t(V*, V&)
r(V,V*) = K ,
WV V) ( h ) S(X7, X5, W &)
and
(V. V) =1y (V,V*) — Prp(V,V*) — P*rp(V,V*) + PP*r,(V, V"),
and

T.(f) = > ™V V).

1<i#j<n
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Then we have
Cy = h'G, (P, — P)rp(V,V¥))
= b n((P, — P)(P;, — P*)ri(V, V"))

_ hl\/ﬁ% (mfh) +Zn:fh(vi,vi)>

1 R
= T = S (Vi Vi
Vvnhn (rh)—i_nh\/ﬁ;m( )
= Cp+Chp

Applying the central limit theorem, it is easy to see thgt = o,(1). To show that’}; = o,(1), we
need the following defintion and theorem from Nolan and Pdi(&a987). We keep the same numbering
for the definition and theorem as in the original paper foraase of reference.

Definition 8. Call a class of functiong Euclidean for the envelop F if there exist constants A and
V such that

Ni(e,Q,F,F) < AeV, for0 < e <1,

whenevel < QF < oo.
Thoerem 9. Lef be a Euclidean class of P-degenerate functions with eneelop.etiV' (n, z) be

a bounded weight function that is decreasing in both argumand satisfies
00 1
Z/ n W (n,x)(1 + log(1/z))dx < oo
n=1 0
If v(-) is a function onF for whichv(f) > sup, P|f(z,-)|, then
n”H[W (n, o ()T — 0

In our case, each, is P-degenerate; that Br,(V,-) = 0. The class of alf,, is a candidate for the

above theorem. Following Nolan and Pollard (1987) page i#95,easy to check that there exist a
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constant for which

sup |7n(z,y)| < C,
z,y,h

sup P*|7(z,-)] < C(1 A h), forall h > 0.

We can rescale to make equal to 1.

If kernel K is of bounded variation, e.g. standard normal density, thigh is a Euclidean class.
For details of establishing Euclidean property in a paléicalass, please refer to Section 5 of Nolan
and Pollard (1987).

Invoking Thoerem 9 of Nolan and Pollard (1987), we obtain
nHIW (n, o()) )T ()] = 0p(1),
wherev(r,) = 1 AhandW(n,x) = (1 + nz'%)~L. SinceWW is bounded by 1 and
1
/ W (n,z)(1+ log(1/z))dz = O(n " logn)
0

the conditions of Thoerem 9 are satisfied.

Returning to the calculation far,

1 _
Cn = an(’f’h)
1

VihW (n,v(f)!?)
1+ n(lAh)?
= Jnh op(1)

14+ nh®

Jnh op(1)
= 0,(1) + v/nh'o,(1).

[l W (, v () 2) T ()|

ThusCy; = o,(1) for h satisfying C2.8.

Thus, we obtair”’; = Cy; + Ci3 = 0,(1) andC' = G, <7z*(V, 50)> + 0,(1).
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Thirdly, term B is 0,(1) and hence negligible because

B

- K, (W; — W)t(V;, Vi; &)
= S XZ’X,WZ _SXZ,X’WZ
nin~ Z]ZS (X4, Xoj, Wi)Sn(Xqi, Xoj, W, )( 0 (X1, Xoj ) (X14, Xo; )

n

(

(
o 1 _2 Kh W Wﬂ(‘/;vVngO) 2
= ijsxh,x%, W) Sh( X1, Xoj, W, )O(h )

The inner summation divided byis bounded by the density & at W, timesO(h?), because

e Ky (W = W)V, Vs &)
1 h » Y1) S0 2
E O(h
S (X14, Xoj, Wi)Sh(Xui, Xoj, Wi) (%)

_1 Kh W W) (V;a‘/jago) 2
Z S (X Xay, WS (X, X W)+ o(1)) O

N

O(h?) ‘1ZKh W, — W;)
j=1

FW)O(h?)

Q

= O(n?)

where “<” denotes “less than up to some constant”. Therefdte= n'/?0(h?) = o,(1), for h

satisfying C2.8.
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Lastly, termA can be decomposed as

A

n

1 . K( Z)t( @y 75)
2 AN 7> S0
= w2y Y Wi — Wo)evi, b Vi Si( X1, Xoi, Wi

i=1 j=1 v(V;, ijago)sh(xlwx%a i) vl i o) = Sl N )

zanaéo Sh X127X2ja
_ KW, —Wi)t(Vi, Vi &) K

4 2 ) ]a
;; Z) ];€O>Sh(Xlz7X2]7 )

_ ) h i» V3180
- ZZ Sh X117X237W)

=1 j5=1

1
(EN(XU’XQJ" Wz) - Sh(X1i7X2j7 VI/Z)) + 0p<1)

1 Ky, (W, — Wi)t(V;, Vi; &)
_ 3 h » V3180
;zzljzl Sh XlzaX2]>W)
([( Xk > Xuiy Xog > Xoj)Kp (Wi, — W) — Sp( X1, Xoj, Wi)) + 0,(1)
Ky(W —W)t(V*,V; &)
Sh(X7, Xo, W)2
Kn,(W =W t(V*,V; &)
Sh(XT, Xo, W)2
Ky(W — W*)t(V*, V; &)
Sh(XikaXZaW*)2
Ky(W — WHt(V* V5 &)
—P*P 1
Sh(Xik7X27W*) +Op( )

1 = W(W; — WHV;, Vis€,) (1
= 222 V ! Lo0 (EN X127X2J7 ) Sh(XlzaX2]aW))
s

) 1(Xs; < Xo)(1 — 6(Xys, Xy, Wi £4)

- é(PT]P*K (W= WP, < I(X] > X}, X] > X»)

—PPIK,(W! — WP, x I(X] > X7, X > X,)

+PIPIK, (W — WP, x I(X] > X7, X] > X,)

t(V*a V?ﬁo)
Sp(XF, Xy, WH)2
K (W = Wt(V*,V; &)

Sh(XF, Xo, W)2
Kp(W = WHt(V*, Vi &)
Su(XT, Xo, W)

= Al + A2 — Ag + Op(l).

= G} (B (W — WK, (W - W) I(x] 2 Xi. X} > X))

+n2 PIPEK, (W — WP, x I(X] > X7, X} > X))

1
= T*
—nzP P,

+ 0p(1)
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Term A, can be further decomposed as

A1
t(V* V&)
= G PK,(W* - WHP, K, (W — W* 050 pxt > xr x> X
n< n h( ) h( )Sh(Xik’X27W*)2 ( 1 = 1)»<*2 — 2))
t(V*, V&)
- GHPK,(W*—WHP, K, (W — W* 0S80 (x> X X > X
GTL( n h( ) n h( )Sh(Xf,XQ,W*)2 ( 1 = 1)»<*2 — 2)
t(V*, Vi &)

—P K (W* — WHPK, (W — W) 1(X] = X7, x] > X5))

Sh(X5, Xo, W)2
t(V=,V; &)
Sp(X5, X, W¥)
—Evwe—wi Eviw=w~ HV2, Vi) FW
Sh(XT{, Xo, W¥)

t(V* V&) (WD)
Sp(X5, Xo, W)2

+ Gl <P*Kh(W* —WHPKL(W — W) SI(X] > X7, X5 > Xo)

21(x] = X1, x0 = x0) 1)

+ G, <EV*|W*:WTEV\W:W* I(X]> X7, X) > X2)f(WT)>

= A+ A+ Ags.
We will show thatA,; = 0,(1) andA;; = 0,(1) separately. First of all,

A12

LV, V&)
Sh(Xik7X2>W*)2
—FEyeyee TEVW—W*t(V*’V;‘SO)f(W*)

VHWH=W W= Sp(X7, Xy, W*)?

I(X] > X7, X] > Xy)

~- G <P*Kh(W* —WHPKL(W — W)

1(x] = X7, X} > %) (1))

LV, Vi &)
Sh(Xik7 X27 W*)Q
LV, Vi) f(WX)

Sp(X7, Xy, WH)2
LV, Vi €0) S (W)
Sp(X5, Xy, W)2

I(X] > X7, X) > Xo)

- G <P*Kh(W* — WHPK, (W — W)

—PK,(W* = W Ey o I(X] > X5 X1 > X))

I(X]> X7, X3 > X)

+PKy(W* — W Ey -

—Eyejw et By W—W*t(v*’v3€0)f(W*)
VHWH=W W= Sp(X7, Xy, WH)?

1(x] = X7, xf = X) f(v))

Sh(Xik7 X27 W*)2

- G! <P*Kh(W* - WT){PKh(W — W) I(XT> X5, XD > X)

g LV (1)
Sp(X5, Xo, WH)2

(V5 Vi &) f(W
Sh(XfaXQaW*)
B By LV V&) FOV)
[Wx=wtLV|wW=Ww Sh(Xf,Xz,W*)z

1(x] > X7, X] > X))

t *
+P KW = W Eyjw—w- Q)I(XlT > X!, X1 > X,)

1(X] > X7, X > X) f(W))
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Note that by Lemma A.2 of Ichimura (1993),

Sp(X7, Xo, Wr)?
> VL Vi €0) f(W)
V=G (X, X, WH)2

PK (W —W*) I(X] > X7, X] > Xy)

I(X{ > X7, X] > X3) + O(h?)

and

LV, Vi&o) f (W)
Su(X7, Xo, W)?
- V*‘W*ZWT VIiW=w+ Sh(Xf,XQ,W*)Q

P Ky(W* = W) Eyjw—w- I(XT > X7, X1 > X,)

1(X] > X;, X] > X,) f(W1)) + O(2).
So termA;, = n'/20(h?) = 0,(1) for h satisfying C2.8.

To show termA;; = o,(1), first for fixed VT set

mu(V,V*, V)

e — Wi W—We\ (VL ViE)
= *1K — 1 K s V' Q0 I XT > X* XT S x
h ( h ) ( h )Sh<Xi"7X2’W*)2 (X1 > X, X5 > Xy)

and
i, (V, V5 VD) = my(V,V VT — Py, (V,V*, V) = Prmy,(V, V5, V1) + PP*my,(V,V*, V),

and

L) = 3 (Vi V3, V).

1<izj<n

Then termA;; can be decomposed into:
G! (R 'P:P,my, — R~ P*Pmy,)
= Gl (W '"PiP, iy, + (Ph — P*)h™ ' Pmy, + (P, — P)h™' P*my,) .
Note thatP; IP,,7, is again a U-process. Using proof similar to one that shGws: o,(1), we have

Gl (W 'PiPainn) = 0,(1)

n

for h satisfying C2.8.
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Similarly, it can can be argued th@f (P; — P*)h~' Pmy, = 0,(1) andG! (P,,— P)h~' P*my, = 0,(1)
following a calculation for showing'; = o0,(1).

Now focusing onX{, XI, W and their probability measure!, we have

Ay

Kp(W = Wt(V*,V; &)
Sp(X5, Xo, W)2
Kp(W = WiL(V*,V; &)
Sp(X5, Xy, W¥)2
Kn(W =Wt(V*, V; &)
Su(X7, Xo, W)
Kp(W = W*)t(V*,V; &)
Sh(XikaX%W*)

= Ag + Op(l)

= PIPK, (W' — WP, < I(X] > X7, X > X,)

- PP, X (Su(X7, Xo, W7) + O(h?))

KW = WV, V&)

= PP,
" Sp(X7, Xo, W)2

O(h?)

+ PP,

= PP, +0,(1)O(h?)

By combining, we have

A

= Az +0,(1)

LV, Vi §o) f (W)
S(XT, Xo, W*)2

= G (Ev*|w*:WTEV\W:W* I(XlT > XfaXQT > X2)f(WT)> + 0,(1).

Thus we obtain

n'2U (o)
= nH{U,(v) — u(vo)}
= nHUY (7o) — u (79)} = n'2{UP (7)) — u® ()}
+ U (7o) — ul® (7))} = 02U (7) — u ()}
~ 2GH{A1A2B<V> — (V&) = MV &)

t(V*, Vi &) f(W) .
+ By jwe—wt Bviw—w- SMXT’XOQ’W*)Q I(XT > X7, X1 > Xo) f(W1) b + 0,(1)

—d N<07 2(‘50))
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Thus from (2.21) we obtain the desired asymptotic distiiuof n'/2(&, — &,)
n 0/



CHAPTER IlI

Cross-Ratio Regression for Bivariate Failure Times with Radom Truncation

3.1 Introduction

Like in univariate survival analysis, observations in bigge survival applications are sometimes
subject to delayed entry also known as left truncation. Wg ohserve pairs in which both failure
events occur after the corresponding left-truncation eve8uch data are very common in the cohort
studies, and random truncation models have gained greaésttin recent years.

Van der Laan (1996) described data comprising regular bedspsits of hemophilia patients be-
tween 1978 and 1995. Suppose tiatis lag time between human immunodeficiency virus (HIV)
infection and manifestation of acquired immune deficiengydsome (AIDS) andl; is lag time be-
tween HIV infection and death. Thdh is left-truncated if HIV infection occurs before 1978. Ihet
word, we observéT), Ty, Us,), only if T, > U,, whereU; = max(0, 1978-time at infection). One
might be interested in the dependence betwBeandT5, because high dependence would suggest the
utility of 77 in predictingTs, the overall survival time of AIDS patients. The failure &rof interest,
Ti, is not left-truncated. Taking its corresponding trunmatime to be), these data are a special case
of bivariate left truncated data. Clearly, this is a caseiaé&d sampling since patients with a short
survival timeT; are less likely to be part of the dataset than patients witingT5.

Like left truncation, right truncation could also arise iHDS incubation cohort study of HIV-

positive subjects without AIDS. One well known such dat@s@&ransfusion related AIDS (TR AIDS)
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data (Lagakos et al. 1988; Kalbfleisch and Lawless 1989%eGli®96). For patients who were thought
to be infected with HIV by blood or blood—product transfusithe data record the age of the patient
Ti, the date the patient is infected with H\and the date of AIDS diagnosis The observation period

is terminated at;, same for all patients. Only those individuals for whom theubation time (the time
from HIV infection to the manifestation of AIDS), = s — t < U, = u — t can be observed, whelg

is left truncated by/,. The primary interest here is in the distribution of incubatime and its depen-
dence on age at infection, because one would suspect tieaisdiprogression differs across different
age groups. The established inference procedures fortamigitated sample focus on the reverse-time
transformation. Specifically, let= max(U,) be the largest observed time in the truncated sample. The
transformed variablé; = 7 — 75 is left truncated by/; = 7 — U,. Methods developed in the context
of left truncation can be readily extended to right trunmativith reverse-time transformation. For the
TR AIDS data, wher& is of primary interest, Lagakos et al. (1988) studied thérithistion function

on the reverse time axis. Kalbfleisch and Lawless (1989dsed the Cox regression analysis on the
reverse-time hazard.

Thus, in this chapter, we focus on the models for bivaridtetiencated data. Without censoring,
bivariate left-truncated data are of the fofffi, U)|T" > U, whereT = (7,T) is a bivariate failure
time, U = (U, Us) is a bivariate left truncation time, arid > U is a coordinatewise inequality. We
consider the more general setting of bivariate failure titag, subject to both left truncation and right
censoring, where each observation is of the fotm Us, X, Xo, Ay, Ay), whereX; = min(7}, C1),

Xy = min(Ty,Cy), Ay = (T} < C4), andA, = I(T, < C,). Each pair of correlated continuous
failure times(77,75) are subject to left truncation and right censoring by a péitruncation time
(U1, Us) and censoring time&’, C5) respectively. For instance, consider a bivariate leftxtaied,
right-censored dataset (Ino et al. 2001) comprising sahtime pairs for 50 brain tumor patients.
Time from diagnosis to initiation of radiation therapy aimdé from diagnosis to tumor progression are

left-truncated by time from diagnosis to chemotherapy aglaticensored by the time of last follow-up.
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To be precise, lef; be the time from diagnosis to initiation of radiation theyap, be the time from
diagnosis to tumor progression afidbe the time from diagnosis to chemotherapy. The failuregime
(T3, T,) are observed only if; > U andT; > U. Several authors (van der Laan (1996), Gurler (1997),
Quale and van der Laan (2000)) have investigated modeliédbpivariate distributions function when
observed data is bivariate random truncated. Martin andrid&ly (2005) proposed a test statistic for
Quasi-Independence of bivariate failure and truncatimes via conditional Kendall's tau.

This chapter is partially motivated by TR AIDS data and thechéo study the dependence of in-
cubation time for AIDS on the age at infection of HIV in the peace of right truncation. This is a
scenario where cross-ratio is extremely useful. We firselbgvmodels for left truncated data without
covariate. For completeness, we extend the method to haodégiate. When covariate is discrete
with finite levels, we group observations into stratum byar@ate values. We treat whether an event
happens at a time point or beyond along one time axis as aylioaariate and the other time compo-
nent as the survival outcome variable, and then constraadiresponding partial likelihood function.
We modify the risk set and relevant indicators to handlettefications. When covariate is continuous,
kernel smoothing is applied to the estimating equations.o¥fain the parameter estimates by maxi-
mizing the pseudo-partial likelihood function. Such coastion does not need any model for either the
joint or the marginal survival function, and thus is robugaimst model misspecification. We show the
proposed parameter estimator is consistent. We also estattlasymptotic normality of our estimator
. The proposed methodology is readily extendable to thenasion of an arbitrary baseline cross-ratio
function by using the tensor product splines. We assumetthiatation times, censoring times and
failure times are mutually independent and that there atges@among observed times for each of the

two time components.
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3.2 Estimation

3.2.1 Cross-ratio with left truncation

The problem here is to estimate the cross-ratio funcfi@n, ¢,) based om i.i.d. random draws
from the conditional distribution ofU;, Us, X1, X5, Ay, Ag) given that(X; > Uy, Xe > Us). In
other words, we only obsen(@/;, Us, X1, Xo, Ay, Ag) if (X7 > Uy, Xy > Us). Our idea is motivated
by the connection between cross-ratio definition in (1.1 e Cox model partial likelihood for the
two-group regression problem, treatifig: 71, = t;} and{;j : 71; > ¢, } as the “exposure” and “non-
exposure” groups andl,; as the survival outcome. The cross-ratie,, t,) becomes the hazard ratio
of T; between these two groups. It is also well know that inconeptitta induced by left truncation
yield bias in estimation. A common technique to account & truncation is to redefine the at risk
process taking into account the truncation information.nidgnicking the partial likelihood idea and
accounting for left truncation through modified at risk sed #éhe relevant indicators, we can construct

a similar objective function as follows:

n

Ly = H Lz(l)Lz('Q)a (3.1)
i=1
with
(1) n 0(X; XQj)I(Xllj:XMZUlj) I(X1;>X1;>U15) A0 AL
L. = (3]
' ]H1 |:N(X117X2]) + (G(th X2_]) - 1)[<U2Z S XQ] S X2Z>:|
- 25 =X2i2U2j I(X2;>X2;>Uz;)A1;Ao;
r? = 1] { 0(X1;j, Xo;)! (X =X22Uz) } |
i e N(X1J7 X2z) + ((9(X1j,X2Z') — 1)[<Ulz < le < Xlz)

whereN (t1,t) = >y I( X1y >ty > Uk, Xop >ty > Usg). The estimator obtained by maximizing
(3.1) is then called the pseudo-partial likelihood estonat

To proceed, we replacg by 5 and denoteBV(tl,tQ;'y) = 0f(t1,ts;y) /0. Taking logarithm of
the objective functiorl.,, and differentiating it with respect tg, we obtain the following estimating

function for~y:
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where
Uf,bl)( ) U(3 Z AleQZﬁ’Y (Xl’M X2zv 7)7

and

1 Z Z A A I( Xy > Xy > Uyj) (U < Xoj < X))
N(X15, Xgj) — I(Us; < Xoj < Xy;)(1 — ePX10:X257))

i=1 j=1
Xeﬁ(XU’XQj;’Y)B’V (Xlia X2j7 7)7

i - A1‘7A2z X2] Z XQZ 2 UQ])[<U11 S le S Xlz)
N le,XQZ — ](Ulz < le < Xlz)(]- — eﬁ(Xlﬂ Xai). ")’)

=1 j5=1
Xeﬁ(X”’XQi”Y)ﬁv (X1, Xoi3)-
Then an estimatoy,, can be obtained by solving the equation () = 0 using the Newton-Raphson

algorithm.

3.2.2 Cross-ratio regression with covariate and left trunation

When covariates exist, cross-ratio is a quantity condiiem covariates. Specifically, the definition
of cross-ratio becomes:

)\Q(tQ‘Tl = tl, W = w) _ )\1(t1|T2 = tQ, W = U})
)\Q(tQ‘Tl >t1,W:w) )\1(t1|T2 >t2,W:U}>’

Q(tl,tg,w) = (32)

wherew denotes the covariate. Mimicking the Cox proportional hdzaodel where the effect of
covariates is assumed to be multiplicative, we propose alogaous model where the effect of covariate

is multiplicative on cross-ratio:
0(t1, ta, w) = b(t1, t2)exp(w'er), (3.3)

where 6y(t1,t,) is the baseline cross-ratio far = 0. Here we consider a parametric model for
Bo(t1,te;y) = log Oy(t1, t2) parameterized by a finite—dimensional Euclidean parametlfimicking
the estimating equations for the case without covariateprepose the following for covariate with

finite levels:

U, (€) =UM(€) - U (€ + U (€) - UM 9,
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where
1 — :
*(1) _ 77*3) — A 4 ) .
Un (5) - Un (6) = n ;AhAmﬁE(Xlema Wzv£)7
and
U*(g ii IT(W; = W) Ay Ao 1( Xy > X4 > Upj)I(Uy < Xoj < Xy))
= n X N Xlz, XQJ, W) I(UQZ S ng S XQZ)(]_ — eﬁ(Xli’X%’Wi))
x e (Xi: X2, W) 5‘5 (X1i, Xoj, Wi ),
U*(4 i “ T(Wy = W) A AT (Xgy > Xoy > Upi) I (Ui < Xy < X15)
pucirmril (R N*(Xy;, XoW;) — I(Uy; < X1; < X1;) (1 — e80505:X20.W0))

Xeﬁ(levX% i ﬁé (le, X2i, Wi; 5)7

whereN*(ty,to,w) = p_, I(Xup > t1 > Urg, Xog > to > Uy, Wi, = w).
When the covariate is continuous, grouping observatiottsdistinct groups does not work any-

more. However, replacing the grouping indicators with kérsmoothing functions, we obtain the

following kernel smoothed estimating equations:

Ul(¢) =UIMN () - UIP ) +UIP (&) —UIM(¢),

where
UI0(€) = UIP(©) = - 37 Ay b f(Xri X W),
=1
and
Ui (¢ 2”:2”: K (W; = W) ApAgI( Xy > Xy > Uyy)I(Uy < Xoj < Xoy)

11 n X NT X117X2]7 W) [(UQZ S X2] S Xzz)(l — €ﬁ(X1i’X2j’Wi))
' 5€(Xu7X2j,Wi;5)a

UT(4 ZZ K (W; — Wi)AyjAg I ( Xy > Xo; > Usgj)I(Uy; < Xy < Xy;)
" — = x NT(Xyj, Xog, Wi) = I(Us; < Xo5 < Xy)(1— eB(X15, X200, Wi))

’ iﬁg(le,X%,VVi;E),

Xeﬁ(X127X2jy

Xeﬁ(le,XQz'

whereNT(ty,to, w) = >0 I(Xix > t1 > Urg, Xog > to > Ugp) Kp (Wi — w).
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3.3 Asymptotic properties

Here we discuss the asymptotic properties for the with-Gat@case, because without-covariate
case is equivalent to the with-covariate case where theried®ehas only one level. We consider a
parametric model with finite number of terms féy(¢,, t2; ). In particular, we assume

Bty ta, w; &) =Y bty t2) + w'ex, (3.4)
k,l

where¢ is the vector of coefficient§y,, } anda, and{b,} are the basis functions ¢f andt, that do
not involve the parameted. In this section, we provide asymptotic results for thersation of£ in
(3.4). In particular, we consider functions of bounded atioins for{b,; }, €.g. indicators functions or
polynomial functions on a compact set. Such regularity @@rs guarantee that both(t;, ¢, w; &)
and BE(tl,tz,w) belong to Donsker classes. For model (3.4) we consider th@aiag regularity

conditions:

C3.1. The covariatél’ is either continuous or discrete with finite levels, whosegle spacéV is

bounded with) < inf,ey f(w) andsup,,¢yy, f(w) < co. Heref is the density function ofl’.

C3.2. The failure times will be truncated(@t, 72), 0 < 7, » < oo, such thatPr(7y > n, > Uy, Cy >

7 > Uy, Ty > 1 > Uy, Cy > 19 > Us|W = w) > 0 foranyw € W.
C3.3. The parameter spaceQfl’, is a compact set, and the true vajjes an interior point of".
C3.4. The matrixz?{A, AoB(X1, Xo, W)®2} is positive definite. Her@”” = 33 .
C3.5. (T3, Ty) (C4,Cy) and(Uy, Uy) are mutually independent conditional &in.

Theorem Ill.1. Under Conditions C1-C5, the solution bf, (&) = 0, denoted by, is a consistent

estimator ofg,.

The proof of Theorem lll.1 is treated separately for disefét with finite levels and continuous

W, but follows the same steps. We first show tbat(£) converges to a deterministic functiarn&)
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uniformly, then show that:.(&) is monotone and has a unique roo€gt The consistency will follow

easily. Details are provided in the Appendix.

Theorem 111.2. Under Conditions C1-C5, we have that!/2(¢, — &,) converges in distribution
to a normal random variable with mean zero and variaddg,) '>(&,)I(&,) !, whereI(¢,) =
2E{A1NB(X1, Xo, W)€%} and (&,) is the asymptotic variance & ,(¢,), which is given in the

Appendix.

~

The asymptotic normality in Theorem 111.2 can be achieved&ing the Taylor expansion &f,(&,,)
around¢,. Again the detailed calculation is deferred to the Appendike asymptotic expression of

3(&,) also provides an variance estimatonof?(&, — &,).

3.4 Simulations

We consider the Frank family as in Fan et al. (2000a,b). Wenbleg generating independent
Uniform (0,1) random numberg; andu,. Then lett; = — log u; so that7; follows unit exponential
distribution. Finally letts = —log (log,[a/{a + (1 — a)us}]) Wherea = o + (a — o )u,. Such

generated;, also follows exponential distribution. The cross-ratiadtion is

(o — 1) log(a)a?c e
(al=¢"" —a) x (al=¢"? — )

al =t — 1) (ot 1) H

a—1

[— l+e 42

+ loga{1+(

We follow the same simulation setup as in Chapter |. Adddlbnwe generate truncation timés and
U, from Uniform (0, 1) distribution. The estimated cross-ratio is obtained usirggcubic polynomial
model by maximizing the pseudo-partial likelihood funat{@.1) with respect to coefficients Results
are averaged over 1000 simulation runs, each with a sanga@&400.

The top panel of Figures 3.1 compares our estimator withenastimator which ignores the trunca-

tion. It can be seen that our estimator corrects the biasplo he bottom panel gives the cross-ratio
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Table 3.1: Comparison of empirical variance and model baaédnce for the Frank family. The points on both margins
are the quartiles of the marginal distributions’f and X, which are different from the quartiles in Table 1.1 of Cleapt
due to left truncation. The true log cross-ratigfisnd its estimator i The first value in the parentheses is the empirical
standard error, the second value is the mode based standar@stimator, and the third value is the coverage rate ®f th
95% confidence interval.

X
25% 50% 75%
X, B g g g g p
25% 1.01 0.99(0.19,0.19,96%)  0.82 0.82(0.20,0.20,95%)  0.63%7(0.30,0.30,94%)
50% 0.82 0.81(0.20,0.20,96%)  0.70 0.67(0.18,0.18,94%)  0.565(0.26,0.27,96%)
75% 0.63 0.67(0.30,0.30,95%)  0.56 0.55(0.25,0.26,97%)  0.4646(0.28,0.30,96%)

as a function of one time component fixing the other time camepbfromt = 0.25 to ¢t = 1.50 with
0.25 time unit increment. Based on the empirical variancg,afe calculate the confidence bands for
(. Then by exponentiating, we obtain the empirical confiddrareds ford. Figure 3.1 shows that the
proposed method estimates the true cross-ratio of the Faamiky very well, despite the fact that the
working model is only an approximation of the trég, t,).

To check the performance of the model based variance estinved choose nine points based on
the percentiles of the failure time distribution, and cédtel the empirical variances based on 1000
replications and the average of the model based varianseadss. Results are given in Table 3.1,
showing that the model based variance estimator works well.

We also simulated data using algorithm in Nan et al. (200@&) wbinarylW ~ Bernoulli(0.5) and
a = 0.5. ForiW = 0, first we assume that the cross-rat{o, ) is piecewise constant over four intervals:
0(t1) = .9 whent, € [0,.25), 6(t;) = 2.0 whent, € [.25,.5), 6(t,) = 4.0 whent, € [.5,.75), and
0(t,) = 1.5 whent; > .75. ForWW = 1, the cross-ratid(¢,) is equal t00.9 x €°?, 2.0 x €°?, 4.0 x €%°
and1.5x %% in the above intervals. Additional, we generated truncetimes; andU, from Uniform
(0,1). The results based on sample size of 400 and 800 suredanitable 3.2 show that our estimators
work well. The proposed variance model based variance agimalso works well since the coverage

probabilities are all close to the nominal coverage prdigd5%.
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Figure 3.1: Cross-ratio for the Frank family. In the top patiee surface in gray is the true cross-ratio and the suriface
black is the estimated cross-ratio. The figure on the lefiésststimator accounting for truncation. The figure on thitiiig

the naive estimator, ignoring truncation. In the bottomedagray lines are the true cross-ratio, the black solidsliaee the
estimated cross-ratio, the dotted lines are their poisev5% confidence bands and the black dashed lines are tkee naiv
estimates, ignoring truncation.
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Table 3.2: The true baseline cross ratios ére (.9,2.0,4.0,1.5) whent, is in intervals|0, .25), [.25,.5), [.5,.75), and
above .75. The true is 0.5 andiW ~ Bernoulli(0.5). The sample size is 400 and 8(Zi‘,)point estimate averagé.SFE,

the empirical standard errof/.SE, the average of the model based standard error estimafgsP the 95% coverage
probability usingM.SE.

n=400 n=800

o & ESE MSE M.CP & ESE MSE M.CP
050 050 023 025 96% 050 0.16 0.17 96%

0 & 3 ESE M.SE M.CP 3 ESE MSE M.CP
090 -0.11 -0.10 0.41 0.40 95% -0.11 026 026  95%
200 069 071 028 0.28 95% 070 019 0.9 95%
400 139 142 028 0.29 96% 141 019  0.19 96%
150 041 041 020 0.21 96% 041 014 014  96%

3.5 Data Application

3.5.1 Transfusion related AIDS

First we give a brief example of the implementing our methfaaisbivariate truncated TR AIDS
data, which is uncensored. In this dataset, we observe 2@5dopies of recorded age at transfusion
and time from transfusion to AIDS. However, only those satgevho had received a diagnosis of
AIDS prior to July 1986, the end of the study, were includedhe study. Thus, if we defin&; as
age at transfusior, as time from transfusion to AIDS arid, as time from transfusion to July 1986,
we are only able to obsen@, Ty, U,) if T, < U,. This is a special case of randomly right truncated
bivariate survival data, by taking, = co.

We discarded one questionable observations in this data$et observation we discarded had a
T, value of zero, which means that this subject most likely @oted AIDS from a source other than
the blood transfusion and is thus not of interest here. lemwoia apply the method developed for left
truncated data, we reverse the time axigpby subtracting it from the maximurfi,. Specifically,
let 7 = max(U,) be the largest observed time in the truncated sample. Theftrened variable
Ty = 7 — Ty is left truncated by/; = 7 — U, (Figure 3.2).

With this transformation and applying the proposed metlalfit the following model and obtain
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T

_— ///'\\;,
X HIV Infection AIDS July1986
T T T~ N\ Us
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U2

Figure 3.2: lllustration of TR AIDS datal; = Age at HIV infection, T; = Incubation time, and/; = Time from HIV
infection to July 19867 = max(Uz), Us =7 — Uz andTy = 7 — Tb.

an estimate of the cross-ratio for age and reversed inasbamne:

Blt1, t5;7) = Y0 + Y1ts + Yath + YatT + ath? + ystits.

Intuitively, the dependence betweé&h and 75 is in the opposite direction of the dependencelbf
andT;. For the ease of interpretation, we further take the recgdrof the estimated cross-ratio so
that, with respect td}, the result can be interpreted as the dependencé&if@and7,. Based on
the estimated cross-ratio surface, we see that age and dbasdi incubation are highly associated
at a young age meaning that for children the disease in@rbai much faster than adults. Such
dependence diminishes quickly as the patient gets olddigating that incubation does not differ
much between the adults and the elderly. This finding is stesi with previous finding based on
discrete age groups (children (1-4), adults (5-59) andlgl{&0+)) determined according to immuno

competence (Lagakos et al. 1988; Kalbfleisch and Lawles8;188rler 1996).

3.5.2 Anaplastic Oligodendroglioma Study

We then illustrate the the proposed method with left truedatight-censored anaplastic oligoden-
droglioma dataset (Ino et al. 2001). The dataset containsafiénts treated at the London Regional
Cancer Center with histologically confirmed anaplastigadiendrogliomas in whom chemotherapy
was used as an integral part of an overall patient managestrategy from diagnosis. Thirty-four of
these patients received radiation therapy after chemeylgglas consolidation or at recurrence), 5 re-
ceived radiation therapy concurrent with chemotherapg,ldnwere not irradiated. Median follow-up

time from diagnosis was 107 months (minimum, 7 months).
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Figure 3.3: Reciprocal of estimated cross-ratio for agesaisfusioril; and reverse transformed incubation tiig

Time from diagnosis to initiation of radiation therapy and time from diagnosis to tumor progres-
sionT, are left-truncated by time from diagnosis to chemotherapy reght-censored by time from
diagnosis to end of study. Since the number of observationthe study is small, we start with a

quadratic polynomial basis functions f6(t,, t2; ), i.e.,

Blty,ta; ) = Yo + 7ty +ta) + (83 +13) + ystits

and use backward selection for variable selection. Tahl®) (Bustrates the selection history. The
final selected model i6(t1, ;) = exp(2.86 — 1.72 - 107! - ¢, + 2.10 - 1073 - £2) (Figure 3.4). ltis
interesting to see that the dependence betWwgemdT; is a function of7; only. Intuitively, the result
means for fast tumor progression (short tumor progressim®)t time from diagnosis to initiation of
radiation therapy is highly predictive of time from diagrei® tumor progression because of the strong
correlation between the two time components; when time fl@gnosis to tumor progression is long,
time from diagnosis to initiation of radiation therapy issepredictive because of the weak correlation

between the two time components.
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Table 3.3:Estimated cross-ratio for Time from diagnosis to initiataf radiation therap§; and time from diagnosis to tumor

progressioris, both left-truncated by time from diagnosis to chemothgi@apd right-censored by time from diagnosis to
end of study

Step 1 Step 2 Step 3 Step 4

coefficient Estimate P Estimate P Estimate P Estimate P

70(1) 2.59 0.67 2.65 < 0.05 2.87 < 0.05 2.86 < 0.05

71 (t1) 3.90-107' 0.93 3.46-107* 0.51

Y2 (t2) —-4.84-107! 088 —-453-100* 021 -1.73-100! <005 -1.72-107' <0.05

73 (1) —-260-107® 090 —-361-10% 0,51 —4.23-107* 0.16

Ya4(t3) 588-107% 0.92 5.03-1073 0.13 1.85-107* < 0.05 210-107% < 0.05
Vs (t1t2) 2.07-107%  0.98

Figure 3.4: Estimated cross-ratio for time from diagnosisnitiation of radiation therapy; and time from diagnosis

to tumor progressiofl,, both left-truncated by time from diagnosis to chemothgrapd right-censored by time from
diagnosis to end of study.

3.5.3 Australian Twin Study

The last dataset we analyze is again the Australian TwinySfataset for illustration purpose. The
original dataset is not left truncated, but we artificialgngrate bivariate truncation times to illustrate
how our proposed method can be applied to correct bias. Meresince we have results based on
complete data with which we can compare the new results, weasaess the performance of the

proposed method.
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Figure 3.5: The top left figure shows the estimated crose-citmonozygotic twins. The black mesh is the result of
complete data and grey mesh is based on 100 truncated dateset with 20% truncation rate. Fixifig at 10, 20 and 30,

in the three plots on the bottom left, solid curves are thesimatio estimated from complete data and grey curves are th
average of estimated cross-ratio based on 100 truncatasadat On the right, the plots show the results of dizyguotics.

Applying our method, we first compare the average of restdts fLOO truncated datasets with 20%
truncation rate with the complete data analysis for monotiggwins and dizygotic twins separately
(Figure 3.5). Fixing one time component at 10, 20 and 30,ataarly seen that our proposed method
successfully recovers the cross-ratio estimated fromadhgpbete data.

Pooling monozygotic twins and dizygotic twins and treataygocity as binary covariate, we also
perform the same comparison of the estimated baseline-caities(dizygotic twins) estimated from
complete data and the average of estimated cross-ratiawré=8)6 shows that our proposed method

satisfactorily corrects the bias resulting from randonm¢ation.
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Figure 3.6: The black mesh is the result of complete data aegrgesh is based on 100 truncated datasets, each with 20%
truncation rate. Fixing" at 10, 20 and 30, in the three plots on the right, solid curvegtse cross-ratio estimated from

complete data and grey curves are the average of estimateshi@tio based on 100 truncated datasets.
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3.6 Discussion

Most approaches to estimating cross-ratio as a measuregpehdence among correlated failures
times have been based on the assumption that cross-ratiidinns a constant or piece-wise con-
stant over time. With such assumption, it is possible to comeavith a likelihood based estimation
method for cross-ratio. However, it is not clear how flexithlese approaches are when left truncation
arises, which is very common in observational studies. im¢hapter, we show how a pseudo-patrtial
likelihood approach motivated by the Cox model can be aggleedoubly truncated data or bivari-
ate left-truncated, right-censored data, that cannot biéydeandled in existing method for estimating
cross-ratio. The use of risk sets as in the Cox partial kiagd function allows simple modification to
accommodate left truncation.

We analyzed TR AIDS data which is right truncated. A righttated variable can be converted to
a left truncated variable if one reverses the time axis. ¢anodel developed for left truncation with
reverse-time technique, we estimate the cross-ratio feraagl reversed incubation time. However,
interpretation of such result is awkward, and thereforigrences on the regular forward-time cross-

ratio for right truncated data warrants further investigat

3.7 Appendix

3.7.1 Proof of Theorem lll.1

Here we focus on the proofs for discrete covariate case drilg. proofs for continuous covariate
is analogous to the proof in Chapter Il, i.e. using resulisdtE (1988) to show consistency and using
U-process results in Nolan (1987) to obtain asymptotic raditsnof the parameter estimates.

First define the following simplified notation: Let, = Pr(X; > U}, Xy > Us|]WW = w) and
h(uy, usw), H(uq,us|w) be the bivariate pdf and cdf @t/;, U,|1V) conditional on = w, respec-

tively. Then the joint conditional density function @, Us, X;, X5, A1, Ay) conditional onlW = w
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can be written as

p(ur, ug, T1, T2, 01, 02|T1 > Uy, To > U, w)
= h(u17u2|w)l(u1 <z,uy < xg)/oz8172F(x1, [L‘2|w)6162{—81F(:L'17x2|w)}51(1_52)
{=0sF (21, 22| w) Y7002 F (11, 2| w) =)0, G (2, o w) -0 (1-02)

{—01G (21, mo|w) Y024 0, G (21, 20| w) Y A9 Gy, 2 w) 2. (3.5)

Let V* = (U7, Us, X7, X5, AT, As, W*) be an independent identically distributed copylof=
(U, Uy, X1, Xo, A1, Ay, ). Define the deterministic functiaw® (€) = w* ™" (£)—u* @ (&) +u*®) (&) —

u @ (€), where

w(€) =uwl() = B{MAH(, X, W)},

[(Xy > X7 > U)I(Us < Xy < X5) exp{B(X}, Xa, W*Sﬁ)}}
S(XF, Xo|W*) |

where

Sty talw) = Pr(Xq >t > Uy, Xo >ty > Up| Xy > Uy, Xo > Up, W = w)
= Pr(Xi >t 22U, X >t > Us|W =w) /o,
= PT(XlZtl,XgZt2|W:w)PT(t12U1,t2ZU2|W:w)/OZw

= F(tl,t2|w)G(t1,t2|w)H(t1,t2|w)/ozw (36)

We will first show thay**) (¢) converges uniformly ta*®), k = 1, ..., 4, then show thats* (¢) =
0 has the unique solution &, and finally show the consistency&f that is the solution of/* (£) = 0.
Following van der Vaart and Wellner (1996), we iBeand@Q,, to denote the empirical measures of
n independent copies &f* andV that follow the distributiong” and@), respectively. Although these
two samples are in fact identical, i.®,, = Q, andP = @, we use different letters to keep the notation

tractable for the double summations, which will soon becatear in the following calculations.
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For model (1.7)[7*M (£) = Q, A1 Ay B(X1, Xo, W) thatis free of, andA;, A, and( Xy, X, W)
are all boundedX;, X, andWW are bounded by Condition C3.1 and C3.2), hence by the lawgéla

numbers, we have

sup [UZV (&) — wW(&)] = [(Qn — Q)A1A28(X 1, Xy, W)| — 0

either almost surely or in probability. Convergence in @bty should be adequate here for the proof.

To show the uniform convergence W;L(Q)(E), we first define the following quantities:

g(n)(AQa Ula U27X17X27A>{a Uika U2*7Xik7X;a€)

I(X, > X7 > UNI(Up < Xy < X3)ePXTX2:0)
(N(X$, Xo) = I(Us < Xy < X3)(1 — ePXTX2:0)))

- ATAQB(XTJQ) 1

n

and

g(A27 Ula UQaXlﬂXQ’ Aﬂl(’ Uik’ UQ*’XT’X;7E)

(X1 > X7 > UNI(Us < Xy < X5)efXT0X258)
S(XfaXZ) '

= ATA2B(XT>X2)

The only difference between the two expressions is in thewhmators of the two fractions. By fixing

(AT, Ul, UQ, Xik, X;) at ((51, U1, U, T1, sz), we also define

hgg((shul,uaxhb;@ = @ng(")(Az,UlaU27X17X2751,Ul,u27331,9172;5)7
;l@n(517u1,u273317332;5) = Qni(Az, Uy, Uy, Xy, Xy, 01, U1, ug, 1, 725 §),

hg(01,u1, us, 21,29, &) = QG(Ag, U, Uy, X1, Xo, 01, u1, U2, T1, 22; §).
Similarly, f|X|ng (AQ, U17 UQ, Xl, Xz) at ((52, U1, U, T1, sz), define

h‘(:)(52,U1,U273317332;5) = ]P)ng(n)(527u17u27x17x27A>{7Uf7UgaXikaXék;g)v
hg)<527u17u27x17x2;£> = Pg(n)(éz,U17U2,x1,x2,ALUf,U;,Xik,X;;g),

hp((sg,ul,lbg,l'l,l'g;s) = P§(52,U1,U2,ZL‘1,ZL‘2,AT,Uf,U;,Xf,X;;&).
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Then we havd/; %) (€) = P,hy) andu*®(¢) = Phq. Itis clear that under Conditions C3.1 and C3.2

we can easily interchange summations and integrationsh\ehtave

sup [U;® (&) — w® (€]
= sup |IP’nh((53 — PﬁQ|
o (n) _ (n) (n) _ p7
= sup |[Pphg, — Phg + Phy — Phq|
< sup [Buhg) — Ph)| + sup [PQug™ — PQg|

n

= sup[B,hy) — PhY)| +sup |Q,Pg™ — QPg™ + QPg™ — QPg|

IN

sup [PohG) — PhY)| + sup [Q,h0) — Qh™| + sup |QPg™ — QPg|

n

< sup |IP’nh(gl) — Ph&3| + sup |thl()”) — Qh;,”)| +sup [¢"™ — g,

n

which converges t@ in probability following a similar proof in Chapter I. Thene/\haveU;@) ()
converges uniformly ta*(® () in probability. By the same calculation we can also show&fat) ()
converges uniformly tar*™® (~). Thus we have shown th&f* () converges uniformly tas*(~) in
probability.

To showu*(&,) = 0, it is sufficient to showu*™ (&,) = w*?(€,). We now calculatas*? (&)

directly. Recall thatU,, Us, X1, Xo, Ay, Ag) and(U7, Uy, X7, X5, A}, A}) are independent and iden-
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tically distributed with a density function given in (3.9)hus

u? (&o)

= PQQ(A%UMU%XMX%ATan Uf7U§7XT7X§7W*7£O)
0o poo 1 1 o0 00
22057 IV 1D 3D DY By A AR AINNN R B SR N
w 0 0 61=062=0 0 0
p(ula U2, tl) tQa 51, 52, w)duldUthldtQ}

= PA*{ /X5 B(X; ty, W*)ePXT 2 W75k0)
Uy S(Xf, o, W)a

fFwr)

[/Oo dl{H(tl,t2|W*)82F(t1,t2|W*)G(t1,t2|W*)}] dtg}

Xq

X3 B(X* ¢ ) pB(XT t2,W*i€0)
:PA“{{—/ BXT, b2, Wr)e fFWV™)

Uz S(XT, 62| W*)a
H(XE | WO F (X5, ta|WHG(X?, t2|W*)dt2}.

Here we usé, to denote the infinitesimal change with respeattd: = 1, 2. From definition (1.1) we

can obtain that

O(t1,ta,w; &) = efltntawibo) — DaF (b, to|w) F(ty, to]w) )
7TEr TR0 31F(t1,t2\w)82F(t1, tz‘U))

Together with (3.6) and integration by parts, we have
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u® (&)
X3,
_p; {_ IRCESTES

O F (X, 12|W™)

& 81 2F(81 tg‘w*)

= ) / B(s1,to,w ’ ’ dt

wz/o /0 Zoagz 1{ o v O F (s, tofur)
U1a“2>51,827517527 ") duiduydsydsy

S [ [ >f<w*>%§;jy;g;>dt2}

h(u, us|w*)da {0 F (sl,sg\w VG (81, so|w™) /a}dsiduydus

—Z// / [ Bor 20, vl )

012F (51, $2|w*)G (51, S2|w™) [ apdsidsaduydus

O (X3, 1ol W) }
2

= E{A1A2ﬁ(X1>X2>W)|(X1 > Uy, Xy > Us)}

= U*(l)(fo)-

Note thatu*™) (¢) is in fact free of¢ for model (1.7). We thus have showri(€,) = 0

To show¢,, is the unique solution ofi(§) = 0, it suffices to show that (a) the matrix’(§) =
du*(&)/d€ is negative semidefinite for afl € I', and (b)u*(£) negative definite ag,. Both (a) and
(b) are satisfied following a similar argument in the prooCbfapter I.

We are now ready to show the consistencg af Given the fact thalb/* (€,,) = 0 andsup |U* (&) —

u*(€)| = o0,(1), we have

[w*(€,)] = [U(€,) — w'(&,)] < sup [U;(€) — w(€)] = 0,(1).

Sinceg, is the unique solution ta* (&) = 0, for any fixede > 0, there exists @ > 0 such that
Pr(l, — &l >¢) < Pr(lu'(€,) > 9).

The consistency of,, follows immediately.
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3.7.2 Proof of Theorem I11.2

DefineU | (¢) = dU? (¢)/d€. By the Taylor expansion d* (€,,) around¢,, we have

*

W€, ~ &) = UL} 0 U E), 3.7)

where¢” lies betweerén and§,. By a similar calculation as in Appendix A showing the unifor
consistency otV (¢), we can show thatup |U (¢) — w*(£)| = 0,(1). Thus by the consistency &f,,
which implies the consistency gf, and the continuity of.*(£), we obtainl/ (£*) = @* (£*)+0,(1) =
w*(€y) + 0p(1), wherew*(€,) = —2E{A AsB(X;, X5)®2} = —1(&,) is invertible by Condition C3.5.

Hence based on the fact that continuity holds for the invepsgator, (3.7) can be written as

(&, — &) = {T(&) " + 0,(1)}n U (&y). (3.8)
We now need to find the asymptotic representation'6fU* (¢,). We only check it forU;;(l)(go) —
U2 (&,). The calculation folU*® (¢,) — U™ (¢,) is virtually identical and yields the same asymp-
totic representation.
It is easily seen that
2 (U0(&) — w0 (€)) = Gu{didaB(X1, X)), (3.9)
whereG,, = n'/?(P, — P).
It can also be shown that
2 (U32(g) - w(&)))
- Gn{iLQ(Ah U17 U27 X17 X27 Wa €O) + ;LP(A% U17 U27 X17 X27 Wa €0)
— //I(X1 > a7 > Uy, Xo > a9 > Uy, W =w")
f(517 Uy, U2, T1, T2, W, 6;7 UT, U;, 33'1(, l';, U}*)
dp(51k7 557 UT, U;, .TT, l';, w*)dQ<517 02, U1, Uz, X1, T2, U})} + 0p<1)

—a N(0,%(&)),
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* * * * * *
where (01, uy, ug, 1, To, w, &5, Uy, uy, T, T3, W)

81058 (a%, o, w) [(w = w*) (21 > 2t > up) I (uf < 2o < a3)eP w2 0)

S(a7%, xe, w*)?

Then we obtain the asymptotic linear representation'6fU* (£,):

n'?U;, (&)
= nl/z{U:;(‘fo) —u'(§)}
= U (&) —uw (&)} —n' U (&) —u® (&)}
+n! U (&) —uw@ (&)} — U (&) —u (&)}
= an{AlAgﬁ'(Xl,XQ, W)
—ho (A1, Uy, Us, X1, Xo, W3 €5) — hp(Do, Uy, Us, X1, Xo, W3 &)
+ //I(X1 >a] > U, Xo > 19 > Uy, W = w")
f(01,uy, ug, 1, T2, w, &5, Uy, usy, 7, T3, W)
dP((Sf,5§,u>{,u§,xf,x;w*)d@(él,ég,ul,ug,xl,xg,w)} + 0,(1)

—d N(07 2(50))

Thus from (3.8) we obtain the desired asymptotic distritutfn'/2(€, — &,).
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