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ABSTRACT 

With advanced age comes a decline in fine motor control affecting the ability of 

older adults to perform activities of daily living and limiting their independence.  

Specifically, older adults show pronounced deficits in the ability to perform bimanual 

tasks.  Consider tying your shoes, one of the most automatic daily acts.  Each hand works 

independently during this task to accomplish a unified goal.  In my dissertation, I 

investigated whether age-related declines in corpus callosum microstructural integrity 

(assessed with diffusion weighted imaging) and interhemispheric inhibition (assessed 

with the transcranial magnetic stimulation induced ipsilateral silent period) contribute to 

age differences in the ability to perform such tasks.  

In the first study I determined the relationship between corpus callosum 

microstructural integrity and interhemispheric inhibition in young adults.  I found that 

individuals with greater microstrucutral integrity of interhemispheric fiber tracts 

connecting the primary motor cortices had greater capacity for interhemispheric 

inhibition.  My second study revealed that young adults with greater interhemispheric 

inhibition had reduced motor overflow during a unimanual force production task; 

however these same individuals had the poorest performance during a bimanual task in 

which the two hands produced different force trajectories.  I suggest that a high capacity 

for interhemispheric inhibition from one motor cortex to another can effectively prevent 

motor overflow during unimanual tasks.  However, it also limits the ability for optimal 

control during independent bimanual tasks, possibly due to a reduced capability for 
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interhemispheric cooperation.  In my third study I determined whether age reductions in 

callosal structure and inhibitory function underlie impairments in independent bimanual 

control.  I found that better microstructure of callosal tracts connecting the two primary 

motor cortices was positively related to bimanual task performance in older adults, but 

negatively related to performance in young adults.  Further, increased interhemispheric 

inhibition was related to poorer bimanual task performance in older adults across all 

tasks, whereas this relationship was only observed in young adults for the independent 

bimanual task.   

Collectively, the results of my dissertation have identified age reductions in 

callosal structure and their resultant impact on neurophysiological function and manual 

motor control.  These studies provide a mechanistic understanding that can be leveraged 

for the design of targeted training interventions that will allow individuals with 

dysfunction of interhemispheric inhibition, such as those living with a stroke or multiple 

sclerosis, to maintain independence and improve their quality of life. 
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CHAPTER I 

General Introduction 

 

Motivation 

In 2030, nearly one in five U.S. residents is expected to be 65 or older (henceforth 

referred to as older adults).  This age group is projected to increase to 88.5 million in 

2050, more than doubling the current number (38.7 million, US Census data).  The 

Congressional Budget Office estimates that expenditures on long-term care for older 

adults totaled more than $120 billion in 2000 (Congressional Budget Office 1999). 

Conservative estimates suggest total long-term care expenditures for older adults will 

increase at a rate of 2.6 percent per year above inflation over the next twenty years, to a 

staggering $270 billion in 2030 (Knickman and Snell, 2002).   

With advanced age comes a decline in sensorimotor control and functioning 

(Seidler et al., 2010).  These declines in fine motor control, gait and balance affect the 

ability of older adults to perform activities of daily living and maintain their 

independence.  The causes of these motor deficits are multi-factorial, with central 

nervous system declines and changes in sensory receptors, muscles and peripheral nerves 

playing a role (Seidler et al., 2010).  Emerging evidence indicates that both the structure 

and neurophysiologic function of the corpus callosum decline with advancing age and 

have significant behavioral implications (cf. Fling et al., 2011; Raz et al., 2010; Sullivan 
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et al., 2010).  In my dissertation, I investigate the effects that age decreases in callosal 

microstructural integrity and inhibitory capacity have on uni- and bimanual control.  This 

chapter will address the background and rationale for the current investigations. 

Bimanual Control 

Coordinated bimanual actions are ubiquitous in everyday life. Consider tying your 

shoes in the morning, one of the most automatic movements an adult performs. Each 

hand works independently during this task to achieve a unified goal. How the nervous 

system accomplishes this goal is not always as simple as it appears; the action of each 

hand must be independently controlled, yet the two hands must also be temporally and 

spatially linked. Bimanual movements involve coordinated motion in time and space, but 

also rely on the ability of movements performed with each hand to be different without 

interfering with the other (Franz 1997; Perrig et al., 1999). The neurophysiological 

mechanisms underlying the production of such orchestrated behaviors remain unclear.  

Since the seminal work of Kelso and colleagues (1979a; 1979b), bimanual 

movement control has gained increasing research attention for several reasons. First, 

complex bimanual skills provide accessible examples for the study of cognitive motor 

control. Second, they represent a special case of multitasking, informing us about how the 

central nervous system orchestrates the organization of multiple command streams. 

Third, bimanual tasks can be used as tools to reveal motor dysfunctions and features of 

lateralization and asymmetry of brain function (Swinnen, 2002). 

Neuroimaging studies in humans have provided information about brain areas 

active during bilateral hand movements including the inferior parietal lobule, dorsal 

lateral premotor cortex, medial prefrontal area, pre-cuneus, primary motor (M1) cortex, 
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somatosensory cortices, and the superior temporal gyrus, with particular involvement of 

the left (dominant) hemisphere (Andres et al., 1999; de Jong et al., 1999; Disbrow et al., 

2001; Goerres et al., 1998; Immisch et al., 2001; Jancke et al., 1998; Nair et al., 2003; 

Sadato et al., 1997; Toyokura et al., 2002; Ullen et al., 2003; Urbano et al., 1998).  Lesion 

studies have shown that although damage to the basal ganglia, cerebellum, corpus 

callosum, superior parietal lobule, supplementary motor area (SMA), and cingulate motor 

area negatively affects different aspects of bimanual movements, they do not abolish 

them completely (Brown et al., 1993; Cardoso de Oliveira et al., 2001; Doody and 

Jankovic, 1992; Eliassen et al., 2000; Franz et al., 1996; Geffen et al., 1994; Jackson et 

al., 2000; Leonard et al., 1988; Obhi et al., 2002; Serrien et al., 2001a; Serrien et al., 

2001b; Stancak et al., 2003; Stephan et al., 1999; Tanaka et al., 1996).  In sum, numerous 

electrophysiologic and functional imaging studies reinforce the notion that multiple brain 

regions are involved in the production of bimanual movements, and that activation of 

these regions during bimanual actions does not differ greatly from activation during 

unimanual movements (Kazennikov et al., 1999; Kermadi et al., 1997; 1998; 2000).  

Consequently, it appears that the same brain regions (and, indeed, the same neuronal 

populations) are active during unimanual and bimanual movements. The current 

dissertation will focus on primary and secondary sensorimotor cortical regions including 

the primary motor (M1) and somatosensory cortices (S1), the premotor cortices, and the 

supplementary (SMA) and pre-supplementary motor areas (pSMA) (Figure 1.1).  A large 

body of work indicates that both unimanual and bimanual movements rely heavily on 

transcallosal communication between these regions for movement control. 
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Figure 1.1 – Representative cortical structures involved in bimanual motor control. The primary 
motor cortex (red) is located in the frontal lobe along the central sulcus, and outputs commands 
for motor execution. Adjacent to it are higher order motor areas (SMA: purple, and premotor 
cortices: blue) involved in movement planning. In the parietal lobe along the central sulcus is the 
primary somatosensory cortex (yellow) (thebrain.mcgill.ca). 
 

Interhemispheric communication is primarily mediated via the corpus callosum, 

the principal white matter fiber bundle connecting the two hemispheres of the brain (cf. 

Wahl & Ziemann, 2008; Figure 1.2).  The majority of commissural cerebral fibers, 

which interconnect predominantly homologous cortical areas in the two cerebral 

hemispheres, traverse the callosum bidirectionally. The density of axons within the 

human CC ranges from approximately 300,000 to 400,000 axons per mm2, organized 

with thin, largely unmyelinated and densely packed fibers predominately in the genu and 

splenium (anterior and posterior CC), while larger diameter, highly myelinated and less 

densely packed fibers are concentrated in the posterior midbody of the CC (i.e. the 

transcallosal motor fibers) (Aboitiz et al., 1992a; 1992b; 1992c). The total number of 
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axons traversing the human CC is estimated as 200-260 million (assuming a midsagittal 

area of ~ 650mm2). Since the human cerebral cortex contains somewhere between 20-30 

billion neurons, it can be assumed that less than 1% of these neurons contribute axons to 

form the callosal structure (Aboitiz et al., 1992a; 1992b; 1992c).  

 

 

Figure 1.2 – Transcallosal white matter connections.  These connections comprise bundles 
projecting into the prefrontal lobe (coded in green), premotor and supplementary motor areas 
(light blue), primary motor cortex (dark blue), primary sensory cortex (red), parietal lobe 
(orange), occipital lobe (yellow), and temporal lobe (violet). Hofer and Frahm, Neuroimage 2006. 

 

Interhemispheric inhibition (IHI), the ability to stop the spread of neuronal 

excitability in the brain from one hemisphere to the other, is particularly important for 

performance of individuated unimanual actions and bimanual actions where each hand 

has its own independent goal (e.g. shoe tying).  Inhibition within the nervous system is a 

complex, multifaceted phenomenon that relies on multiple inhibitory circuits mediated by 
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different neurotransmitters.  Neurons mediating IHI arise in one hemisphere and send 

axons to the opposite hemisphere.  Considering that gamma-amino butyric acid (GABA)-

ergic neurons mainly serve local neuronal circuits (Somogyi et al., 1998), it appears that 

IHI is the result of excitatory axons crossing the corpus callosum and acting on local 

inhibitory neurons in the contralateral cortex mediated by GABA receptors (cf. Chen 

2003).  The fiber tracts that comprise the corpus callosum are integral for inhibiting the 

ipsilateral motor cortex during both unimanual movement (Giovannelli et al., 2009; Netz, 

1999; Sohn et al., 2003) and unimanual force production (Vercauteren et al., 2008).  In 

addition, IHI plays an important role during bimanual coordination (cf. Carson, 2005).  

Geffen et al. (1994) suggest that the CC may be involved in the smooth, feed-forward 

execution of bimanual control through the inhibitory or excitatory transfer of motor 

commands, in transmission of efferent information from one hemisphere to the other as 

part of an updating process, and in the transference of corollary output information when 

sensory feedback is necessary.  Thus, interhemispheric collaboration via the CC is 

necessary in regulating coordinated bimanual actions.  

The magnitude of IHI is modulated dependent upon task conditions in young 

adults.  For example, the amount of IHI relative to rest is significantly increased when the 

limbs (or hands) are moving asynchronously, whereas inhibition is minimal when the 

limbs move in synchrony (Stinear & Byblow, 2002).  Furthermore, repetitive bimanual 

finger tapping is stable and accurate when movements are performed with the hands 

moving either in-phase or anti-phase across a range of frequencies (Kelso, 1984; cf. 

Swinnen, 2002).  However, during asynchronous conditions split-brain patients make 

more pronounced errors reflecting stronger attraction to in-phase and anti-phase patterns 
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as compared to healthy controls.  These findings, along with those mentioned earlier (e.g. 

Sohn et al., 2003) indicate that transcallosal inhibitory control is important during 

unimanual and bimanual asynchronous movements presumably to prevent interference 

from the opposite hemisphere, or “motor overflow” (cf. Hoy et al., 2004).   

Motor overflow is a blanket term used to describe involuntary movement of the 

contralateral side, which sometimes accompanies the production of voluntary movement 

(Liederman & Foley, 1987).  The most prominent theory put forward to explain the 

occurrence of motor overflow is known as the bilateral activation theory (Hoy et al., 

2004).  This hypothesis states that activation of a cortical region (e.g. left primary motor 

cortex) resulting in voluntary movement facilitates activation of the same area in the 

opposite hemisphere (right primary motor cortex), via interhemispheric connections 

(Cernacek, 1961).  Such facilitation leads to motor overflow unless the contralateral 

hemisphere inhibits it via IHI (cf. Hoy et al., 2004).  Therefore, motor overflow involves 

a series of excitatory and inhibitory cortical processes leading to bilateral activation.  

These transcallosal processes, believed to occur during unilateral voluntary movements, 

are central to the bilateral activation theory of motor overflow.  When either the degree or 

spread of the cortical activation increases, facilitation is replaced by inhibition (Ferbert et 

al., 1992; Meyer, 1998).  Thus IHI ensures unilateral movements in these situations.  

According to the bilateral activation theory of motor overflow, lack of IHI would prevent 

suppression of the initial facilitation, which may then lead to unintended movements of 

the opposite hand (Liepert et al., 1998; Stinear & Byblow, 2003).  Such motor overflow 

can be readily observed when neurological damage is present (Cohen et al., 1991; Schott 

& Wyke, 1977), although motor overflow has also been documented in neurologically 
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normal adults (Armatas et al., 1996). 

It remains unknown whether motor overflow is reflective of cortical activity 

related to motor planning, motor execution, or both.  Furthermore it is unclear whether 

motor overflow occurs during bimanual actions that require independent manual control 

of temporal, spatial, or force production parameters.  For example, following callosotomy 

for relief from excessive seizures, significant spatial uncoupling of the hands is possible, 

allowing an individual to draw a circle with one hand while simultaneously drawing a 

square with the other (Franz et al., 1997).  However, this spatial uncoupling is offset by a 

loss of temporal coordination between the two sides of the body (Kennerley et al., 2002), 

suggesting that IHI may contribute to independent bimanual control in a task specific 

fashion. 

Age Effects on Motor Control 

With advanced age comes a decline in sensorimotor control and functioning. 

These declines in fine motor control, gait and balance affect the ability of older adults to 

perform activities of daily living and maintain their independence (cf. Seidler et al. 2010). 

Age differences in motor performance include reduced coordination (Seidler et al., 2002), 

increased variability of movement (Contreras-Vidal et al., 1998; Darling et al., 1989), 

slowing of movement (Diggles-Buckles, 1993), and difficulties with balance and gait 

(Woollacott & Tang, 1997) for older adults. 

Pertinent to this dissertation, older adults show pronounced deficits in bimanual 

coordination. As previously discussed, temporal bimanual coordination is most stable 

when movements are performed either in-phase or anti-phase (Kelso, 1984; cf. Swinnen, 

2002).  Young and older adults perform almost identically during in-phase bimanual 
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movements across a range of frequencies; however, older adults exhibit greater 

movement variability than their younger counterparts during anti-phase movements at 

increasing frequencies (Wishart et al., 2000). Furthermore, older adults demonstrate 

differentially poorer performance than young adults on temporally asynchronous 

bimanual tasks (Bangert et al., 2010). Motor performance impairments in older adults 

may arise from changes to peripheral structures in the neuromuscular system such as 

sensory receptors, muscles, peripheral nerves, and/or motor unit reorganization (Fling et 

al., 2009; Kaplan et al., 1985; Wright et al., 2011). In the past, the literature has focused 

primarily on peripheral mechanisms; in recent years, however, the focus has shifted to the 

investigation of more central mechanisms (for a recent review see Seidler et al., 2010).  

Age-Related Structural Brain Differences 

Structural brain changes with age may be causally related to motor deficits. 

Several studies have demonstrated decreases in gray matter volume with age (Courchesne 

et al., 2000; Good et al., 2001; Jernigan et al., 2001; Raz et al., 1997; Resnick et al., 

2003), with some studies reporting linear declines (cf. Ge et al., 2002) and others 

reporting nonlinear patterns (Sowell et al., 2003). These declines in gray matter volume 

often occur concomitantly with significant increases in ventricular (Good et al., 2001) 

and cerebrospinal fluid volume (Courchesne et al., 2000). Though it is clear that there are 

global declines in gray matter with age, the prefrontal cortex is particularly susceptible to 

gray matter atrophy (Good et al., 2001; Jernigan et al. 2001; Raz et al., 1997; Resnick et 

al., 2003). Additionally, several studies have shown that parietal cortex exhibits more 

gray matter decreases than either temporal or occipital regions (Good et al. 2001; Resnick 

et al., 2003). This differential loss in prefrontal and parietal cortices is likely relevant to 
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motor performance declines in old age because motor control is more dependent on these 

brain regions in older versus young adults (Heuninckx et al., 2005; 2008).  

 Given the previously described patterns of decreases in gray matter, with the 

prefrontal cortex seemingly the most affected region, a question of particular interest is 

whether or not the sensorimotor cortex shows the same differential volume loss as the 

rest of the frontal cortex. The overall pattern of neural tissue decline is consistent with a 

“last in, first out” hypothesis of atrophy. According to this hypothesis, brain regions that 

are last to develop are the first to atrophy (Bartzokis et al., 2004; Salat et al., 2004). This 

suggests that the sensorimotor regions of the brain would be relatively spared given that 

they are early to develop, both on a lifespan and evolutionary time scale (Jerison, 1976; 

Webb et al., 2001). Conflicting evidence currently exists in the literature as Raz et al. 

(1997) found that the primary motor and somatosensory cortices were both minimally 

affected with age. Conversely, other studies have shown that the sensorimotor regions of 

the brain indeed show age-related atrophy. Using voxel-based morphometry Good et al. 

(2001) found that there was gray matter loss in both the pre- and post-central gyri with 

age. Furthermore, in their study of cortical thinning, Salat et al. (2004) found significant 

thinning in both the primary motor cortex and the somatosensory cortex. In fact, the 

greatest overall rate of thinning of cortical regions was in the primary motor cortex. 

These studies indicate the vulnerability of the motor and somatosensory regions of the 

brain to age-related atrophy. Many of the studies described thus far did not test for 

relationships between brain structural declines and motor performance measures, but it is 

certainly plausible that primary motor cortex atrophy contributes to the movement 

slowing seen with age. Additionally, proprioceptive feedback is important for both 
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balance and motor coordination (reviewed in Goble et al., 2009). Thus, atrophy in the 

somatosensory cortex may be related to increased falls, poorer balance, and increased 

reliance on visual feedback for motor performance in older adults. For example, Rosano 

et al. (2009) recently reported that atrophy in the sensorimotor cortex, as well as regions 

associated with both visuospatial and cognitive processing, was associated with 

individual differences in gait in older adults.  

 Declines in white matter volume with age begin later and continue at a more 

accelerated rate than declines in gray matter volume (Courchesne et al., 2000; Ge et al., 

2002; Jernigan et al., 2001). Similar to the pattern for gray matter, the “last in first out” 

hypothesis may be applicable to white matter changes. Prefrontal areas undergo 

myelination last during development (Webb et al., 2001). Multiple studies have found 

regional effects on white matter microstructure occurring along an anterior to posterior 

gradient, such that white matter microstructure is poorest in anterior relative to posterior 

fiber bundles for older adults (Davis et al., 2009; O’Sullivan et al., 2001; Salat et al., 

2004; Sullivan et al., 2001; 2010; Zahr et al., 2009). Sullivan et al. (2010) reported that 

scores on a fine finger movement task were positively correlated with white matter 

microstructure in both the internal and external capsules and cerebellar white matter 

bundles, indicating the importance of these white matter tracts for maintaining motor task 

performance in old age. Pertinent to the studies in this dissertation, the relative 

contributions of white matter morphology to age-related changes in cortical recruitment 

are substantially more robust than those that result from gray matter decline (Colcombe et 

al., 2005). Colcombe and colleagues (2005) therefore suggest that impaired 
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interhemispheric communication may play a more significant role than the structure of 

local gray matter. 

Age Differences in Corpus Callosum Macro- & Microstructure 

Sullivan et al. (2001) noted that age-related changes in the corpus callosum were 

associated with declines in interhemispheric communication efficiency. This may be 

important for bimanual coordination and may result in difficulty with day-to-day 

activities requiring the coordinated use of both hands such as dressing and driving.  In 

this dissertation I investigate whether declines in bimanual coordination with age are 

related to microstructure of the corpus callosum, particularly given the role that this 

structure plays in bimanual movements for young adults (Kennerley et al., 2002; Stancak 

et al., 2003). In addition, it is known that older adults have slower interhemispheric 

transit times (Reuter-Lorenz and Stanczak, 2000; Jeeves and Moes, 1996). However, 

older adults show an advantage for bilateral transfer conditions for attentional (Reuter-

Lorenz and Stanczak, 2000; Reuter-Lorenz et al., 1999) and cognitive tasks (Fling et al., 

2011), suggesting that callosal declines with age have differential behavioral effects.  

Age differences in brain activation patterns are often posited to be the result of 

changes in brain structure.  Transcallosal fibers connect largely homologous cortical 

regions of the right and left hemispheres; thus, the corpus callosum mediates the transfer 

and integration of lateralized cognitive, motor, and sensory information between cortices 

(Aboitiz, 1992).  Structural magnetic resonance imaging (MRI) has demonstrated that 

there is substantial interindividual variability in callosal size and morphology for both 

young and older adults (Fling et al., in press; Raz et al., 2010; Sullivan et al., 2010; 

Stanczak et al., 2003).  Interestingly, less lateralized task processing during both 
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cognitive (Muller-Oehring et al., 2007) and motor (Langan et al., 2010) tasks has been 

shown to be associated with reductions in callosal cross-sectional area in older adults.  

Therefore, structural differences of the corpus callosum appear to impact cortical activity 

both at rest and during task performance, with significant implications for behavior.   

An emerging body of literature indicates that not only is the quantity of white 

matter reduced in older adults, but the quality of remaining white matter is compromised 

as well (reviewed in Seidler et al., 2010).  The use of conventional MRI allows for 

measurements of regional brain volume, while diffusion tensor imaging (DTI) allows 

assessment of white matter microstructure.  Thus, DTI may be more sensitive to more 

subtle age-related white matter changes than conventional volumetric MRI.  For example, 

some MRI investigations suggest that the corpus callosum does not undergo extensive 

volumetric declines with age (Raz et al., 2001), whereas several studies have shown 

declining callosal microstructure and volume with age (Fling et al., 2011; Langan et al., 

2010; Sullivan et al., 2010).  Numerous studies have identified associations between 

callosal macrostructure or microstructure and behavior (Fling et al., in press; Stancak et 

al., 2003; Sullivan et al., 2010).  Furthermore, recent studies utilizing fiber tractography 

have demonstrated relationships between interhemispheric motor fiber tract 

microstructure and task performance in both healthy participants (Johansen-Berg, et al. 

2007) and in those with white matter dysfunction (Bartels et al., 2008; Bonzano et al., 

2008; Kern et al., 2010).  While individual differences in callosal quantity and quality 

have shown to be behaviorally relevant in both young and older adults, it appears there 

may be a fundamental shift with age in these relationships. 

Interhemispheric communication can have either net facilitatory or inhibitory 
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effects on the cortex (Chen, et al. 2003).  Multiple lines of research indicate that 

interhemispheric connections between the sensorimotor cortical regions have primarily 

inhibitory effects (De Gennaro et al., 2004; Lenzi et al., 2007; Netz, 1999).  This IHI is 

presumably to prevent interference from the opposite hemisphere, or motor overflow (cf. 

Hoy et al., 2004).  This is thought to allow for simultaneous but independent control of 

the two hands, such as required for shoe tying.  Intriguingly, I have recently reported that 

young adults with increased microstructural quality of callosal regions connecting 

sensorimotor cortical areas perform with more variability on unimanual and 

asynchronous bimanual motor tasks (Fling et al., In press).  Conversely, larger size and 

better microstructure of these same callosal regions was associated with better 

performance in older adults.  Moreover, we recently reported that older adults exhibit 

greater recruitment of ipsilateral primary motor cortex during unimanual motor task 

performance, which was associated with longer reaction times (Langan et al., 2010).  

Additionally, greater recruitment of ipsilateral primary motor cortex in older adults was 

correlated with reduced resting state interhemispheric connectivity and a larger corpus 

callosum.  I posit that reduced interhemispheric motor connectivity may be associated 

with a loss of the ability to inhibit the ipsilateral hemisphere during unimanual motor task 

performance for older adults, which has a negative impact on response time.  These data 

provide evidence for a link between callosal structural and physiological changes with 

age, lending credence to the de-differentiation hypothesis.  Specifically, interhemispheric 

interactions require a balance between excitatory and inhibitory processes; taken together 

the aforementioned studies suggest that this overall balance is likely shifted in the aging 

brain, with reductions in IHI in particular. 
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Age Differences in Interhemispheric Neurophysiological Function 

Experiments conducted with individuals with callosal pathology (e.g. partial 

callosotomy or multiple sclerosis) demonstrate that while the total number of callosal 

fibers connecting the two primary motor cortices is relatively few in number, 

communication between these homologous areas has the capability to strongly influence 

motor behavior (Bonzano et al., 2008; Eliassen et al., 1999; Eliassen et al., 2000; 

Kennerley et al., 2002; Lenzi et al., 2007).  The fiber tracts that comprise the corpus 

callosum are integral for inhibiting the ipsilateral motor cortex during both uni- and bi-

manual control (Netz, 1999; Perez and Cohen, 2008; Vercauteren et al., 2008).  

Monosynaptic connections between primary motor cortices (Porter & Lemon, 1993), 

along with densely transcallosally-connected secondary motor areas, have been shown to 

significantly influence IHI and neuromotor control.  Although full characterization of the 

transcallosal inhibitory sensorimotor network is still lacking, neuroimaging data suggest 

that it includes the supplementary and pre-supplementary motor areas (Grefkes et al., 

2008; Serrien et al., 2002), the dorsal premotor cortices (Giovannelli et al., 2006; van den 

Berg et al., 2010) and the somatosensory cortices (Ni et al. 2009).  

Callosally-mediated IHI is a complex process that has traditionally been measured 

in humans using paired-pulse transcranial magnetic stimulation (TMS) to each primary 

motor cortex at an interstimulus interval of i) 8-12 ms (short-interval IHI [SIHI]) or ii) 

~40 ms (long-interval IHI [LIHI]) (cf. Chen, 2004).  Paired-pulse TMS utilizes two 

magnetic stimulation coils to investigate the effect of a supra-threshold conditioning 

stimulus over one primary motor cortex (M1) on the size of a test motor evoked potential 

elicited by stimulation of the opposite M1.  Although both SIHI and LIHI are reflective 
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of transcallosal inhibition, they do not appear to rely on the same physiological 

mechanisms, nor are the two values correlated with each other across individuals (Chen, 

et al., 2003).  Although both measures reflect inhibition of synchronized activation of the 

corticospinal system induced by the conditioning stimulus (the first stimulus applied), a 

pharmacological experiment suggests that LIHI is likely mediated by postsynaptic 

gamma-aminobutyric acid type B (GABA)B receptors, whereas SIHI is potentially 

mediated by GABAA receptors, although this remains to be fully elucidated (Irlbacher et 

al., 2007).   

In line with my hypothesis of reductions in interhemispheric inhibitory 

interactions with age, accumulating evidence demonstrates reduced inhibition within the 

nervous system of older adults, both at the cortical (Talelli et al., 2008a, 2008b) and 

spinal levels (Kido et al., 2004).  A discussion of age-related changes in inhibition at the 

spinal level is beyond the scope of the current review, and thus I will focus on cortical 

inhibition.  Paired-pulse TMS studies have shown that healthy older adults display 

decreased excitability of intracortical inhibitory circuits within the motor cortex while at 

rest (Peinemann et al., 2001).  Task-related increases in LIHI also diminish with 

advancing age and are correlated with the degree of ipsilateral primary motor cortex 

recruitment during unimanual motor tasks (Talelli et al., 2008a, 2008b).  In agreement 

with Talelli and colleagues, Fujiyama et al. (2009) found that older adults have a reduced 

ability to modulate inhibitory function in a task-dependent manner in comparison to 

young adults.  Specifically, older adults exhibited a reduced ability to increase inhibition 

during coordination of the arm and leg on the same side of the body.  These age-related 

declines in IHI and in the ability to modulate inhibitory function to meet task demands 
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may be associated with bimanual movement deficits observed in older adults. 

It is interesting that cortical inhibition is less effective in musicians, individuals 

with extraordinary control of independent finger movements.  Surprisingly, both inter- 

and intra-hemispheric inhibition are reduced in musicians (Nordstrom & Butler, 2002; 

Ridding et al., 2000) relative to nonmusicians.  However, it is unclear whether these 

effects represent an adaptive change related to exceptional control of finger movements 

or a maladaptive change brought about by overuse of the hand from extensive training 

(Nordstrom & Butler, 2002).  Training experiments may shed some light on the 

counterintuitive finding that musicians with superior bimanual control and larger callosal 

size have reduced IHI.  Shim and colleagues (2005) were the first to investigate the 

effects of practice on callosal physiology; following just two days of practice of a novel 

bimanual force production task, participants demonstrated task-selective reductions in 

IHI.  In accord with this finding, Hortobagyi et al. (in press) reported a significant 

decrease in IHI and a concomitant increase in ipsilateral primary motor cortex excitability 

following 20 sessions of unimanual submaximal force production.  These studies, taken 

together with those in trained musicians, suggest that interhemispheric inhibitory 

projections can show plastic changes that favor the execution of a practiced task, likely 

through a cooperative action of the two hemispheres (Shim et al., 2005).  In other words, 

although IHI is integral for the performance of coordinated bimanual tasks, it appears that 

high levels of inhibition may have a negative impact on performance.   

 

Declines in callosal size and integrity, coupled with decreases in the inter-

connectedness of the two hemispheres of the brain suggest that age-related cognitive and 
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motor impairments may be due, at least in part, to reductions in IHI.  I will critically 

evaluate this hypothesis in the current dissertation. 

The Current Investigation 

The overarching goal of my dissertation is to determine whether age-related 

declines in callosal structure and interhemispheric inhibition contribute to previously 

described age deficits in uni- and bimanual control. To gain a thorough understanding of 

the contributions of fiber tract structure to motor control, I collected diffusion tensor 

imaging to identify interhemispheric connections between homologous primary and 

secondary sensorimotor areas.  Paralleling my previous work, I hypothesized that fiber 

tract structure would be related to motor control differently in young and older adults.  In 

the same individuals, transcranial magnetic stimulation was used to assess 

interhemispheric inhibitory capacity while participants performed uni- and bimanual 

force production tasks.  I hypothesized that there would be a shift with age in the 

relationship between interhemispheric fiber tract microstructure and inhibitory function. 

That is, I predicted that increased interhemispheric inhibition would be associated with 

greater fiber tract microstructural integrity in young adults, whereas the inverse 

relationship would be true in older adults.  The dissertation is comprised of three studies 

addressing the following questions: 

Question 1 (Chapter 2). How do individual differences in microstructure of 

sensorimotor callosal fiber tracts relate to IHI in young adults?   

I hypothesized that there would be a relationship between interhemispheric 

inhibition and fiber tract microstructure.  I expected this relationship to be specific to 
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fiber tracts connecting the bilateral primary motor cortices.  I evaluated this hypothesis by 

analyzing callosal fiber tract microstructure and inhibitory function in neurologically 

intact young adults (18-30 years old).  Using DTI I mapped mutually exclusive 

transcallosal connections between homologous somatosensory, motor, and premotor 

regions and provide a comprehensive callosal spatial atlas of these fiber tracts. In addition 

I utilized TMS to elicit the ipsilateral silent period, a technique used to measure IHI of 

volitional cortical activity. 

Question 2 (Chapter 3). Do individual differences in IHI have task-dependent effects 

on motor control in young adults? 

I hypothesized that IHI would be inversely related to motor performance on both 

unimanual and bimanual independent tasks, but not for bimanual simultaneous tasks.  I 

tested this hypothesis on a subset of participants from Chapter 2. Participants performed 

three force production tasks: 1) unimanual (right hand) constant force, 2) bimanual 

constant force, (bimanual simultaneous) and 3) bimanual with right hand constant force 

and left hand sine wave tracking (bimanual independent).  

Question 3 (Chapter 4). Do age differences in IHI and callosal fiber tract 

microstructure underlie declines in manual motor control? 

I evaluated the hypothesis that age-related degradation of callosal structure and 

inhibitory function contribute to the selective difficulty older adults have with performing 

asynchronous actions.  I evaluated this hypothesis by having a cohort of older adults (65-

76 years old) perform the tasks previously described in Chapters 2 and 3.  
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CHAPTER II 

 

Transcallosal sensorimotor fiber tract structure-function relationships 

Published with stylistic modifications as - Fling BW, Benson BL, Seidler RD (In press). 
Transcallosal sensorimotor fiber tract structure-function relationships. Human Brain 
Mapping. 
 

Abstract 

Recent studies have demonstrated neuroanatomically selective relationships 

between white matter tract microstructure, physiological function and task performance.  

Such findings suggest that the microstructure of transcallosal motor fibers may reflect the 

capacity for interhemispheric inhibition between the primary motor cortices, although full 

characterization of the transcallosal inhibitory sensorimotor network is lacking.  Thus, the 

goal of the current study was to provide a comprehensive description of transcallosal 

fibers connecting homologous sensorimotor cortical regions and to identify the 

relationship(s) between fiber tract microstructure and interhemispheric inhibition during 

voluntary cortical activity.  To this end, I assessed microstructure of fiber tracts 

connecting homologous sensorimotor regions of the cortex with diffusion tensor imaging.  

I also quantified interhemispheric inhibition by eliciting the ipsilateral silent period (iSP) 

within the same participants.  I mapped mutually exclusive transcallosal connections 

between homologous sensorimotor regions and computed quantitative metrics of each 

fiber tract.  Paralleling work in non-human primates I found the greatest interhemispheric 
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sensorimotor connections to be between the medial motor areas.  Additionally, I provide 

a mid-sagittal callosal atlas in normalized MNI space for future studies to use when 

investigating callosal fiber tracts connecting primary and secondary sensorimotor 

cortices.  Finally, I report a strong, positive relationship (r = 0.76) between strength of 

interhemispheric inhibition (iSP) and microstructure of interhemispheric fibers that is 

specific to tracts connecting the primary motor cortices.  Thus, increased fiber 

microstructure in young adults predicts interhemispheric inhibitory capacity. 
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Introduction 

Execution of unimanual or asymmetric bimanual movement relies on cortical 

activity that is independently localized within each hemisphere (Carson 2005).  Multiple 

lines of research indicate that the corpus callosum (CC) plays an integral role in this 

lateralization of control (Kennerley, et al., 2002; Kobayashi et al., 2003; Tuller and 

Kelso, 1989).  One standard approach to studying callosal function involves parsing the 

callosum into seven segments using a geometric scheme (Witelson 1989).  These seven 

sub-regions approximately correspond to distinct anatomical connections of the 

caudal/orbital prefrontal cortices (rostrum; region 1), prefrontal cortices (genu; 2), 

premotor cortices (rostral truncus; 3), cingulate motor, pre-supplementary and 

supplementary motor areas (anterior intermediate truncus; 4), primary motor cortices 

(posterior intermediate truncus; 5), primary sensory cortices (isthmus; 6), superior 

temporal and posterior parietal cortices and occipital and inferior temporal cortices 

(splenium; 7) (Hofer & Frahm, 2006).  Numerous studies relying on this approach have 

identified associations between CC macrostructure (i.e. volume or cross-sectional area), 

microstructure and behavior (Fling et al., In press; Fling et al., 2011; Luders et al., 2010; 

Stancak et al., 2003; Sullivan et al., 2010b).  Tractography analyses of diffusion tensor 

imaging (DTI) data may allow for a more fine-grained approach to investigate regional 

specificity of callosal function.  Recent studies utilizing fiber tractography have 

demonstrated relationships between specific interhemispheric fiber tract microstructure 

and task performance in both healthy participants (Johansen-Berg, et al. 2007) and in 

those with white matter dysfunction (Bartels et al., 2008; Bonzano et al., 2008; Kern et 

al., 2010). 
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Interhemispheric communication can have either net facilitatory or inhibitory 

effects (Chen, et al. 2003); however multiple lines of research indicate that callosal 

connections between the two motor cortices have primarily inhibitory effects (De 

Gennaro et al., 2004; Lenzi et al., 2007; Netz, 1999).  Callosally-mediated 

interhemispheric inhibition is a complex process that has traditionally been measured in 

humans using one of the following methods: i) the transcranial magnetic stimulation 

(TMS)-induced ipsilateral silent period and ii) paired-pulse TMS to each primary motor 

cortex at an interstimulus interval of 8-12 ms (cf. Chen, 2004; short interhemispheric 

inhibition, or SIHI).  Although both the ipsilateral silent period (iSP) and SIHI are 

reflective of transcallosal inhibition, they do not appear to represent the same 

phenomenon, nor are the two values correlated with each other across individuals (Chen, 

et al. 2003).  The iSP is elicited by focal TMS of the primary motor cortex ipsilateral to 

the hand making a voluntary contraction, leading to a brief suppression of voluntary 

activity in the electromyogram (EMG) signal of this muscle (Ferbert et al., 1992; Meyer 

et al., 1995).  Therefore, the iSP represents interruption of voluntary cortical activity and 

likely relies upon γ-aminobutyric acid (GABA)B receptors (Werhahn et al., 1999).  Also 

relying upon GABA-ergic neurotransmitters, SIHI is mediated by GABAA receptors 

(Hanajima, et al. 1998) and reflects inhibition of synchronized activation of the 

corticospinal system induced by the conditioning stimulus (the first stimulus applied).  

Due to the fact that the iSP reflects inhibition of volitional motor activity, it appears to be 

particularly well-suited to investigate interhemispheric control of voluntary cortical 

motor output (Giovannelli et al., 2009).  The relationship between iSP and 

interhemispheric microstructure has yet to be well-defined. 
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Experiments conducted with individuals with callosal pathology (e.g. partial 

callosotomy or multiple sclerosis) demonstrate that while the total number of callosal 

fibers connecting the two primary motor cortices is relatively few in number, 

communication between these homologous areas has the capability to strongly influence 

motor behavior (Bonzano, et al. 2011; Eliassen, et al. 1999; Eliassen, et al. 2000; 

Kennerley, et al. 2002; Lenzi, et al. 2007).  It is important to note that, in addition to the 

primary motor cortex (M1), multiple secondary motor regions also appear to be involved 

in this interhemispheric inhibitory network (Grefkes, et al. 2008).  For example, although 

full characterization of the transcallosal inhibitory sensorimotor network is still lacking, 

neuroimaging data suggest that it includes the supplementary and pre-supplementary 

motor areas (Grefkes, et al. 2008; Serrien, et al. 2002), the dorsal premotor cortices 

(Giovannelli et al., 2006; van den Berg et al., 2010) and the somatosensory cortices (Ni, 

et al. 2009).  While several studies have suggested that callosal fiber tracts connecting 

these cortical regions play a role in interhemispheric inhibition, there has not been a 

comprehensive study examining the relationship between microstructure of fiber tracts 

connecting the sensorimotor cortical regions and interhemispheric inhibition during 

voluntary cortical activation. 

Recent work suggests that the microstructure of transcallosal motor fibers, 

assessed with diffusion tensor imaging, reflects the capacity for interhemispheric 

inhibition between the primary motor cortices.  Wahl and colleagues (2007) report a 

positive relationship between microstructural integrity of transcallosal motor fibers and 

strength of inhibition as measured with SIHI in adults.  Similarly, a positive relationship 

between interhemispheric inhibition (assessed by iSP area and duration) and callosal 
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microstructure across development (range: ~7-26 yrs.; Koerte et al., 2009) has been 

shown.  However, further analysis of Koerte and colleagues’ dataset is warranted; it is 

clear that the observed relationship is strongly driven by the child group in their study 

(mean age: 8.4 yrs).  In fact, it appears that the relationship between iSP and fiber 

microstructure may well be in the opposite direction in their adult group (mean age: 25.9 

yrs).  Thus, as opposed to the relationship described by Wahl and colleagues (2007) when 

participants were at rest, it is possible that adults with better white matter microstructure 

(as assessed by fractional anisotropy) have reduced interhemispheric inhibition during 

volitional cortical activity.  This hypothesis is supported by recent work from our 

laboratory demonstrating that higher CC microstructural integrity is associated with 

poorer performance on bimanual tasks requiring a large degree of interhemispheric 

inhibition (Fling et al., In press).  Furthermore, it has previously been shown that 

musicians (experts in bimanual control) have reduced interhemispheric inhibition 

compared to non-musicians (Ridding, et al. 2000). 

The goal of the current study was to elucidate the relationship between CC 

structure and neurophysiological function, and their respective roles in motor control.  

Here I provide a comprehensive description of transcallosal fiber tracts connecting 

homologous sensorimotor cortical regions, as well as a mid-sagittal callosal atlas in 

normalized MNI space for future studies to use when investigating callosal macro- and 

microstructure.  Additionally, I determined the relationship(s) between 

neurophysiological function of volitional interhemispheric inhibition and the 

microstructure of these fibers.  Based upon our recent work (Fling, et al. In press) and 

that of others (Koerte et al., 2009) I hypothesized that there would be a negative 
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relationship between microstructure of fiber tracts connecting primary motor cortices and 

volitional interhemispheric inhibition.  

 

Methods 

Participants 

 Twenty-one young adults (range: 19-28 yr of age; mean: 22.1 ± 2.8 yr; 10 males 

and 11 females) participated in the current study.  All individuals were right-hand 

dominant as assessed by the Edinburgh Handedness Inventory (mean: 77.0 ± 0.08; 

Oldfield, 1971).  This experiment was approved by the Medical Institutional Review 

Board (IRBMED) of the University of Michigan.  Participants gave their informed 

written consent prior to beginning the experiment and were compensated for their time. 

 I performed testing on 2 days, separated by less than one week.  On the first day 

of testing I acquired structural magnetic resonance (MR) and diffusion weighted (DW) 

images (detailed in the following section).  On the second day of testing I acquired iSP 

data from the first dorsal interosseous (FDI) muscle of the dominant hand as described 

below. 

Image acquisition 

 Whole brain high-resolution structural MR images were collected on a 3T MRI 

scanner (General Electric, Waukesha, WI, USA) using a spoiled gradient echo sequence 

(124 slices, field-of-view: 24 cm, voxel size: 0.94 x 0.94 x 1.4 mm, TR: 10.2 ms and TE: 

3.4 ms).  Diffusion weighted images were collected using a single shot echo-planar 

sequence (39 slices; TE/TR: 82.8 ms/9000 ms; field of view: 220 mm x 220 mm; voxel 

size 3 x 3 x 3 mm; b-value = 800 s/mm2; 15 diffusion-sensitizing directions).  Images 
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were motion and eddy-current corrected.  Using the averaged images with b = 0 and b = 

800 s/mm2, the diffusion tensor was calculated and fractional anisotropy (FA) images 

were constructed off-line using ExploreDTI (Leemans et al., 2009).  Diffusion tensors 

were calculated from the 15 DW images based upon a simple least squares fit of the 

tensor model to the diffusion data (Basser, et al. 2000).  Diagonalization of the tensor 

yields three voxel-specific eigenvalues (λ1 > λ2 > λ3) representing diffusivities along the 

three principle directions of the tensor.  The three principal eigenvectors were then used 

to construct fiber tracts and the resultant diffusion properties as described below.  

Tractography 

Each participant’s resultant FA map was co-registered into MNI space, aligned 

along the anterior/posterior commissure line with the coordinate 0, 0, 0 placed at the 

brain’s center of mass, and voxel size was re-sampled to 2 x 2 x 2 mm through the use of 

ExploreDTI (Leemans et al., 2009).  The Human Motor Area Template (HMAT; Mayka 

et al., 2006), transformed from its original Talairach space, was co-registered to each 

individual’s MNI-normalized FA image and subsequently used as a mask (Figure 2.1A).  

The HMAT is the result of a meta-analysis examining cortical activity assessed by 

functional MRI; strict inclusion criteria were used to identify six sensorimotor regions: 

dorsal and ventral premotor cortices (PMd and PMv, respectively), supplementary and 

pre-supplementary motor areas (SMA and pre-SMA, respectively), M1, and the primary 

somatosensory cortices (S1).  Due to the large interindividual variability of the central 

sulcus location combined with the difficulty of normalizing this highly variable 

landmark, Mayka and colleagues (2006) suggest that the HMAT only serves as a 

functional guide in distinguishing between M1 and S1 cortical regions.  Potentially as a 
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result of this variability, I could not reliably identify interhemispheric fiber tracts 

connecting S1 regions in all participants using the HMAT.  Given this I included the 

cortical masks of Brodmann’s areas (BA) 1, BA2, and BA3 provided by ExploreDTI 

(Figure 2.1B); I will refer to tracts identified by these masks as S1 tracts for the 

remainder of this paper.  Fiber tracts were constructed based upon deterministic 

streamline tractography using the method of Mori and colleagues (cf. Mori and van Zijl, 

2002).  Tractography between seed and target regions of interest was performed using 

threshold parameters including a minimum fiber tracking threshold of 0.2 (e.g. 0.2 is the 

minimum FA of a voxel allowable in a fiber tract; this value is comparable to what has 

been used in other studies, Davis et al., 2009; Hofer and Frahm, 2006), a minimum fiber 

length of 50 mm, and a maximum deviation angle of 30° between contiguous voxels.  

Interhemispheric fiber tracts were identified by placing seed and target ROIs in 

homologous cortical regions identified by the HMAT (e.g. right and left M1; Figure 

2.1C).  Fiber tracking was performed for all regions identified by the HMAT plus the 

additional S1 masks, resulting in six possible interhemispheric tract bundles connecting 

homologous cortical regions (Figure 2.1D).  
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Figure 2.1 – Interhemispheric fiber tracts connecting homologous sensorimotor cortical regions. 
A) Human motor area template (HMAT; Mayka et al., 2006).  The HMAT was co-registered to 
each individual’s fractional anisotropy map and used as a mask to map homologous 
interhemispheric fiber tract connections.  B) Masks of BA1, BA2, and BA3 used to identify 
interhemispheric tracts connecting S1 cortical regions (Z = 48).  Masks are shown overlaid on 
one representative subject’s fractional anisotropy map.  C) One representative example of 
interhemispheric fiber tracts projecting between the bilateral primary motor cortices (0, -2, 30).  
D) All interhemispheric fiber tracts identified with the HMAT for one representative participant.  
Fiber tracts are color-coded to match the HMAT (Figure 1A) and represent fibers connecting S1 
(green), M1 (red), SMA (yellow), PMd (blue) and pre-SMA (orange).  No interhemsipheric tracts 
between PMv were identified in any participants.  
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Interhemispheric Inhibition 

 On day 2 a subset of 16 participants from the initial imaging session underwent a 

TMS procedure to assess volitional interhemispheric inhibition.  Five participants from 

the first day of testing were unable to undergo the TMS procedure based on screening (4 

individuals were taking prescription medication with possible contraindications and 1 

individual had a familial history of epilepsy; for screening questionnaire see Appendix 1).   

Participants were seated in a chair with both their dominant and non-dominant forearms 

resting on a table.  Shoulders were abducted at approximately 45°, the elbows were 

flexed at approximately 90°, and forearms were pronated with the palms of the hand 

lying flat on the custom apparatus (Figure 2.2).  The wrist, third, fourth, and fifth fingers 

were constrained from moving, isolating force production to the index finger.  A pre-

amplified force transducer (OMEGA LC509-015 Beam Load Cell) was positioned at the 

lateral aspect of the proximal interphalangeal joint of the isolated index finger to record 

compressive isometric force (output: 0.5-9.5 Vdc; excitation: 24 Vdc ± 4 Vdc). 

 

Figure 2.2 – Depiction of the force 
production set-up used in the 
current experiments. 
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 Surface electromyography and motor evoked potentials (MEPs) were recorded 

from the FDI muscle of both hands using 4 mm Ag/AgCl- electrodes placed on the 

muscle in a belly-tendon arrangement.  Surface EMG and MEP data were recorded using 

Biopac hardware and AcqKnowledge software (BIOPAC Systems Inc., Goleta, CA).  

The raw EMG signal was collected and digitized at 2000 Hz, amplified and band pass 

filtered (10-1000 Hz).  Data were collected at 2kHz as it has previously been shown to 

produce the most accurate estimate of mean consecutive difference (MCD) of pre-

stimulus EMG activity, necessary to accurately calculate the iSP (Garvey et al., 2001). 

Estimation of the maximal voluntary contraction (MVC) and resting motor threshold 

(RMT) 

 Participants were instructed to press as hard as possible on the load cell using 

index finger abduction of the dominant hand for three consecutive 6-second trials (Fling 

et al., 2009).  The force applied to the load cell was displayed on the video monitor, 

providing online visual feedback during the MVC trials.  The highest force sample in 

each trial was averaged across three MVC trials, providing an estimate of the 

participants’ MVC.  A 60-second rest period was provided in between each MVC trial.  

Prior to performing the experimental paradigm, I used a Magstim Rapid magnetic 

stimulator (The Magstim Company Ltd, Spring Gardens, Whitland, Carmarthenshire, 

UK) and a focal figure of eight coil (diameter of each wing 70 mm) to identify the right 

M1 hotspot.  The coil was placed tangential to the scalp with the handle pointing 

backwards and 45° away from the midline (Chen et al., 2003; Figure 2.2).  The optimum 

site in the right M1 (hotspot) for eliciting motor responses in the left FDI was identified 

at supra-threshold intensity.  This location was utilized to elicit iSPs from the right FDI as 



  

40 
  

it has previously been shown that the topography of the contralateral MEP and the iSP 

correspond closely (Wasserman et al., 1991).  Resting motor threshold (RMT) was 

determined to the nearest 1% of the maximum stimulator output.  Using the standard 

protocol, the RMT was defined as the minimum stimulus intensity which elicited MEPs > 

50 µV in at least 5 out of 10 consecutive trials (Triggs et al., 1994). 

Experimental Task 

 The force target levels used in the experiment were scaled to 20% of each 

individual participant’s MVC.  Participants viewed a yellow, horizontal target line that 

spanned the width of a video monitor (placed at 20% of MVC).  Force output was 

sampled at 200 Hz; for each instant in time that force was sampled (.005s), a green pixel 

appeared on the monitor corresponding to the amount of force produced providing the 

participant with on-line, real-time visual feedback of their performance.  Using their 

dominant hand, participants were instructed to overlay their green force trace onto the 

yellow target line for three 40-second trials (Figure 2.3; colors changed for presentation 

purposes).  Once participants reached the target force level, an iSP was elicited from the 

dominant hand by stimulation given at 120% of resting motor threshold to the right motor 

cortex (Giovannelli et al., 2009).  During each 40-second trial, five iSPs were evoked 

with an interstimulus interval jittered between 5-8 seconds resulting in a total of 15 iSPs 

per participant (Garvey et al., 2001; Jung & Ziemann, 2006).  Participants were provided 

rest breaks of five minutes in between each trial.  EMG data were also collected and 

monitored from the non-dominant, left hand to ensure that the TMS coil was always in 

the appropriate location over the right M1.  During one trial in two different participants, 

MEPs ceased to be elicited from the left FDI.  On each occasion data collection was 
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halted and the right M1 hotspot for the FDI was re-located.  

 

 

Figure 2.3 – An example force trace during the unimanual force production task. The 
horizontal red line is the target force goal. 
 

Data Analysis 

Fiber Tractography 

Multiple descriptive metrics were calculated for each fiber tract including the 

number of identifiable points composing fiber tract streamlines connecting each 

homologous sensorimotor ROI pair (henceforth referred to as number of interhemispheric 

fiber tract connections), FA, and radial diffusivity ((λ2 + λ3) / 2).  Fractional anisotropy, a 

rotationally invariant index that ranges from 0 (isotropic) to 1 (anisotropic), is a 

composite measure of the tensor ellipsoid derived from the tensor’s eigenvectors on an 

intravoxel basis (Sullivan et al., 2010a).  Therefore, higher FA values are interpreted as 

reflecting better white matter microstructure (Basser and Pierpaoli 1996).  Conversely, 

lower radial diffusivity is interpreted as being indicative of better tract microstructure 

(Basser et al., 2000).  Mean values of the aforementioned metrics were calculated for all 

identified interhemispheric fiber tracts within each participant.  Additionally, the average 

coordinate position of each interhemispheric fiber tract within the corpus callosum was 
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identified on a mid-sagittal slice (X = 0) for all participants. 

 Ipsilateral Silent Period (iSP) 

 The iSP was calculated by using an objective, graphical method described in 

detail by Garvey and colleagues (2001).  Single EMG trials (15 total per participant) were 

rectified and averaged across trials.  Using a custom MATLAB program (The 

MathWorks Inc., Natick, MA), upper and lower variation limits of the EMG signal were 

calculated by determining the mean consecutive difference (MCD) of EMG data points 

100ms prior to stimulation: mean pre-stimulus EMG ± (|MCD| x 1.77).  These limits 

encompassed 95% of possible pre-stimulus EMG data points (equivalent to two standard 

deviations).  Onset and offset of iSP were identified using the following criteria: (1) time 

of onset was the first of 5 consecutive data points to fall below the lower variation limit; 

(2) all subsequent data points were considered part of the iSP until there was a return of 

sustained EMG activity; (3) time of offset was defined as the first data point to rise above 

the lower variation limit if 50% or more of the data points in the following 5 ms window 

were also above the variation limit (See Figure 2.4: Garvey et al., 2001).  In addition to 

measuring the onset, offset and duration of the iSP, the depth of the iSP was defined in 

two ways as previously described by Jung and Ziemann (2006): (1) the minimum EMG 

level during the iSP (diSP-max), and (2) the average EMG level during the iSP (diSP).  

The diSP and diSP-max were expressed as percentages of the mean prestimulus EMG.  

Therefore the greater the suppression of ipsilateral EMG activity during the iSP, the 

larger the diSP (and diSP-max).  This is interpreted as increased interhemispheric 

inhibition (Garvey et al., 2001). 
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Figure 2.4 – Representative example of an ipsilateral silent period.  Data displayed are the 
rectified average of 15 iSPs (stimulation applied at time 0) obtained during 20% MVC isometric 
contraction.  The horizontal solid line represents mean pre-stimulus EMG activity (0.86 mV).  
The horizontal dotted line represents the lower variability limit (0.62 mV).  Vertical dotted lines 
encompass the ipsilateral silent period. 

Force data 

The initial 5 seconds of each force time series was removed to eliminate the 

transitory period prior to force target attainment.  Force data were digitally filtered using 

a 4th order Butterworth filter with a low-pass cutoff frequency of 20 Hz. All data 

processing and subsequent time and frequency analyses were performed using software 

written in MATLAB (The MathWorks Inc., Natick, MA).  Similar to previous work, the 
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amount of force output variability was assessed by calculating the within-trial mean and 

the root mean square error (RMSE) from the target (Vaillancourt et al., 2003). 

 
Statistical analysis 
 

A repeated measures analysis of variance was used to analyze metrics of 

interhemispheric fiber tracts with fiber tract treated as a within-subject variable and 

significance set at an alpha of 0.05 (SPSS 17.0).  The Huyn-Feldt epsilon was computed 

to test for sphericity; I interpreted corrected P values in cases of violation.  Significant 

main effects were subjected to post-hoc paired t-tests and corrected for multiple 

comparisons (α = 0.05/4).  Additionally, I used linear regression analysis to investigate 

relationships between diSP and interhemispheric fiber tract microstructure (as assessed 

by FA), while correcting for multiple comparisons (α = 0.05/5).  Presented values are 

mean ± standard deviation unless otherwise noted. 

 

Results 

The spatial distribution and ordering of fiber tracts depicted for the representative 

participant in Figure 1D was observed in all participants. 

Sensorimotor Fiber Tractography 

 No interhemispheric fiber tracts were found between homologous ventral 

premotor cortices for any of the participants.  Descriptive metrics of the five remaining 

interhemispheric fiber tracts are shown in Table 2.1.  A main effect of fiber tract was 

found for fiber tract connections (F4,76 = 64.2, P < 0.001), fractional anisotropy (F4,76 = 

21.4, P < 0.001), and radial diffusivity (F4,76 =  20.77, P < 0.001). 
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 Fiber Tract 
Connections 

FA Radial Diffusivity  

(x 10-3 mm2/s) 

S1 6657.5d 

(922.8) 

0.52c 

(0.03) 

0.57c 

(0.05) 

M1 13559.9c 

(1428.1) 

0.54b 

(0.02) 

0.54b 

(0.03) 

SMA 32377.7a 

(2226.8) 

0.56a 

(0.02) 

0.509a 

(0.03) 

PMd 7468.7d 

(1365.7) 

0.56a 

(0.03) 

0.53a 

(0.04) 

pre-SMA 21598.9b 

(1206.9) 

0.54b 

(0.02) 

0.52b 

(0.03) 

 

Table 2.1 – Interhemispheric sensorimotor fiber tract metrics.  Data for fiber tract connections are 
mean (± s.e.m.), while all other data are presented as mean (± standard deviation).  Significant 
differences between fiber tracts were assessed by paired t-tests - the same letter within each 
column indicates tracts that were not significantly different from each other. 

 

Fiber Tract Connections 

Paired t-tests revealed that there were significantly more fiber tracts connecting 

homologous SMA regions than M1, S1, PMd and pre-SMA (P < 0.001).  There were also 

significantly more fibers connecting pre-SMA than M1, S1 or PMd (P < 0.001).  Lastly, 

fibers connecting M1 were significantly greater in number than those connecting S1 or 

PMd (P < 0.01).  No difference was noted in the number of fiber tracts connecting S1 or 

PMd (P > 0.51).   
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Fiber microstructure 

Similar to previous work in young adults (Fling et al., in press), radial diffusivity 

and FA were highly correlated within all interhemispheric fiber tracts (r > 0.8).  As a 

result I only discuss fiber microstructure in terms of FA; however, metrics of radial 

diffusivity within each fiber tract can be viewed in Table 2.1.  Post-hoc paired t-tests 

revealed that FA values connecting the homologous SMAs were significantly greater 

than pre-SMA, M1 and S1 (P < 0.001 in all cases).  No difference was found between 

SMA and PMd fiber microstructure (P > 0.12).  The mean FA of fiber tracts connecting 

PMd was significantly greater than those connecting pre-SMA, M1 and S1 (P < 0.01 in 

all cases).  Lastly, no differences were noted in microstructural integrity between tracts 

connecting pre-SMA and M1 cortical regions (P > 0.77), however both were significantly 

greater than fibers projecting between homologous S1s (P < 0.01 in both cases).  

Homologous interhemispheric sensorimotor fiber tract locations within the CC  

I identified the average y- and z- coordinate of each fiber tract on a mid-sagittal 

slice of the CC (X = 0) both at the individual- and group-level.  The individual and mean 

group locations of these tracts are shown in MNI-space in Figure 2.5.  The average 

location on the CC where each of the five interhemispheric sensorimotor tracts crosses 

can be viewed in Table 2.2.  It should be noted that although there are gaps on the CC 

where no fiber tracts are displayed (e.g. between SMA and M1 fibers) this does not 

indicate that no fibers were identified within the CC at those specific locations.  The 

depiction in Figure 2.5 is solely providing the average tract location; a complete example 

of identified fiber pathways can be viewed in Figure 2.1D. 
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Figure 2.5 – Individual participants’ average y- and z- coordinates of transcallosal fiber pathways 
(X = 0).  Average tract locations are depicted by symbols outlined in black.  Data are displayed 
on a representative fractional anisotropy map normalized to MNI space with 0, 0, 0 placed at the 
brain’s center of mass.  Fiber locations are color-coded to match the HMAT (Figure 1A) and 
represent fibers connecting S1 (green), M1 (red), SMA (yellow), PMd (blue) and pre-SMA 
(orange). 

 Average y (mm) Average z (mm) 

S1 -8.0 (-15 – 1) 2.45 (-5 – 9) 

M1 -1.64 (-9 – 8) 5.76 (1 – 11) 

SMA 9.05 (-5 – 23) 8.1 (3 – 13) 

PMd 13.1 (1 – 25) 7.45 (3 – 13) 

Pre-SMA 24.6 (13 – 35) 5.86 (1 – 13) 

 

Table 2.2 – Average interhemispheric fiber location on a mid-sagittal slice of the corpus 
callosum (X = 0).  Data are reported in MNI space with 0, 0, 0 placed at the center of mass of the 
brain.  Values are the group mean and ranges across participants are provided in parentheses. 

Force Data 

 The group mean maximal voluntary contraction value from the FDI was 18.9 N (± 

5.7).  Participants were able to perform the unimanual isometric task in a consistent 

manner; force was maintained at 93.7% (± 5.4%) of the target force goal.  Further, the 

mean RMSE of 0.031 (± 0.02) indicates that variability was low across all participants. 
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TMS - Ipsilateral Silent Period 

Ipsilateral silent periods were reliably produced in all 16 participants.  I 

performed an average of 15.2 stimulations (range = 15-18 stimulations) to produce the 15 

silent periods that I used to average iSP data per participant.  Quantitative metrics of the 

iSP can be viewed in Table 2.3.  Duration of iSP and diSP were significantly correlated 

with each other (r = 0.70; P < 0.01); therefore I use diSP to refer to strength of 

interhemispheric inhibition for the remainder of the chapters. 

Relationships between sensorimotor fiber microstructure and interhemispheric inhibition 

I found a significant relationship between metrics of M1 transcallosal fiber 

microstructure (FA) and diSP (r = 0.76; P < 0.0001; Figure 2.6).  A trend was observed 

for a relationship between diSP and FA of fiber tracts connecting S1 (r = 0.55; P < 0.05) 

and PMd (r = 0.54; P < 0.05); however, neither association was significant after 

correcting for multiple comparisons.  No relationships were noted between fiber 

microstructure of either SMA (r = 0.28) or pre-SMA (r = 0.08) with diSP (P > 0.3 in both 

cases; Figure 2.7).  

 

RMT (%) 63.6 (4.9) 

iSP Onset latency (ms) 38.4 (3.4) 

iSP Duration (ms) 27.7 (8.8) 

diSP (%) 73.6 (6.2) 

diSP-max (%) 91.9 (4.6) 

 

Table 2.3 – Resting motor threshold (RMT; relative to maximal stimulator output) and ipsilateral 
silent period (iSP) metrics. Values are mean (± standard deviation). 
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Figure 2.6 – Positive linear relationship (**p < 0.001) between strength of interhemispheric 
inhibition (diSP) and microstructure of fiber tracts connecting bilateral primary motor cortices 
(assessed by FA). 

 

Figure 2.7 – No relationship (p >0.3) was observed between strength of interhemispheric 
inhibition (diSP) and microstructure of fiber tracts connecting bilateral supplementary or pre-
supplementary motor areas (SMA and pSMA, respectively). 
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Discussion 

In the current study I mapped distinct transcallosal sensorimotor connections and 

identified quantitative metrics for each fiber tract.  Additionally, I have provided a mid-

sagittal callosal atlas in normalized MNI space for future studies to use when 

investigating callosal macro- and microstructure of sensorimotor connections.  Finally, I 

observed a positive relationship between volitional interhemispheric inhibition and 

microstructure specific to fibers connecting homologous M1 regions. 

 

Interhemispheric Sensorimotor Fiber Tractography 

Interhemispheric Fiber Tract Connections 

Several key findings from the current study provide information about 

sensorimotor connections that are in agreement with previous work in non-human 

primates as well as fiber tractography studies in humans.  Anatomical tracer work in non-

human primates has demonstrated that the main callosal connections of M1, SMA, PMd 

and PMv are with homotopic sites in the contralateral hemisphere (Dancause et al., 2007; 

Fang et al., 2009; Rouiller et al., 1994).  Similar to anatomical tracer work performed in 

galagos (Fang et al., 2008) and macaque monkeys (Rouiller et al., 1994), the largest 

quantities of interhemispheric tracts in the current study were found between homologous 

SMA and pre-SMA cortical regions.  Conversely, the fewest connections were observed 

in fiber tracts connecting PMd and S1 cortical areas.  Again, this is in agreement with 

previous work demonstrating consistent, but relatively sparse transcallosal connections 

between homologous PMds (Fang et al., 2008) and S1s (Pandya and Vignolo, 1968).  

While I was unable to identify interhemispheric PMv connections in any individuals, 
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previous work has found meager transcallosal homotopic PMv fibers (Dancause et al., 

2007; Fang et al., 2008).  It is possible that due to the lateral location of PMv within each 

hemisphere, deterministic fiber tractography is unable to reliably identify fibers 

projecting to these cortical areas.  That is to say, there are major crossing fiber pathways 

(e.g. the superior longitudinal fasciculus) that may result in too much diffusion signal loss 

for the current study to identify these lateral PMv connections. 

 A significant body of literature has identified transcallosal connections between 

homologous M1 regions, both in humans and other primates.  While dense connections 

between right and left M1 face representations have reliably been identified, M1 forelimb 

and hand representations typically have scant callosal connections (Fang et al., 2009; 

Rouiller et al., 1994).  These callosal connections appear to be fairly homotopic, although 

it should be noted that M1 appears to also have limited callosal connections with 

additional contralateral cortical regions including SMA and PMd (Fang et al., 2009).  The 

current study demonstrates relatively dense M1 callosal connections, and although I do 

not identify the specific cortical target of these fiber tracts (e.g. hand, face or other 

regions of the precentral gyrus), the relationships with physiological function discussed 

below provide strong evidence that the M1 fiber pathways I have identified play a 

significant role in interhemispheric inhibitory function during volitional motor output to a 

finger muscle.  The cortical termination sites of identified interhemispheric fiber tracts 

are relatively medial (Figure 1C), which is in agreement with previous research both in 

human and non-human primates (Bonzano et al., 2008; Fang et al., 2009; Rouiller et al., 

1994; Sullivan et al., 2010a; 2010b; Wahl et al., 2007). 
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Fiber Microstructure 

I report significant microstructural integrity differences of fiber tracts connecting 

homologous sensorimotor cortical regions.  Previous studies have inferred metrics of 

interhemispheric microstructure from the data obtained solely within the CC (Fling et al., 

In press; Koerte et al., 2009; Wahl et al., 2007).  However, it is likely that integrity of the 

entire interhemispheric tract influences transcallosal communication.  For example, 

recent work has demonstrated that distal callosal fibers projecting to sensorimotor 

cortical areas show greater degradation than those within the body of the CC in healthy 

older adults (Sullivan et al., 2010a).  Here I report metrics of transcallosal microstructure 

based upon the entirety of interhemispheric tracts.   

 Previous work has shown white matter integrity (as assessed by FA) to be low in 

areas of the CC containing fibers connecting primary and secondary motor regions in 

comparison to values within the genu and the splenium (Fling et al., in press; Hofer and 

Frahm, 2006).  In the current study I show that there are significant differences in fiber 

microstructure even within the callosal midbody sensorimotor fiber tracts.  Fractional 

anisotropy was observed to be the greatest for tracts connecting SMA and PMd in the 

current study.  Importantly, fiber microstructure does not appear to be a function of the 

number of fiber connections; fibers connecting SMA were the most numerous whereas 

fibers connecting PMd were among the sparsest.  Further supporting this finding, fibers 

connecting S1 regions (less numerous than PMd fibers) were found to have the poorest 

microstructure of the five interhemispheric tracts identified. 
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Sensorimotor Fiber Location Within the CC 

A novel contribution from the current study is that I provide a mid-sagittal 

callosal atlas in normalized MNI space for future studies to use when investigating 

callosal macro- and microstructure of homologous sensorimotor connections.  Moving 

through the CC posteriorly to anteriorly, our results are in line with previous tractography 

work identifying S1 connections traversing the isthmus, and M1 fiber pathways within 

the posterior mid-body of the CC (Hofer and Frahm, 2006; Wahl et al., 2007).  

Conversely, white matter tracts connecting homologous SMA regions were identified to 

traverse the midpoint of the CC (anterior to posterior), slightly more posterior than 

previous geometric segmentation approaches have suggested (Hofer and Frahm, 2006).  

The same was observed for fiber tracts within the anterior mid-body of the CC projecting 

to PMd and pre-SMA, respectively.  Therefore, all of the fiber tracts projecting to 

secondary motor areas (SMA, PMd and pre-SMA) were identified as crossing more 

posteriorly within the CC than geometric segmentation approaches have suggested 

(Figure 2.8).  An additional novel finding from the current study is that tracts connecting 

PMd cortical regions cross the CC posterior to pre-SMA fiber tracts.  Again, this is at 

odds with previous geometric segmentation approaches reporting connections between 

premotor areas crossing the CC anterior to the SMA and pre-SMA fiber tracts (Witelson, 

1989). 

Previous studies have used a geometric segmentation scheme for parsing the CC 

when investigating relationships between behavior, physiology and callosal metrics.  

Oftentimes this geometric segmentation lumps together fibers projecting to multiple 

cortical targets; for example PMv, PMd, pre-SMA and SMA tracts are all included in one 
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CC segment by Hofer and Frahm (2006).  This leaves the interpretation of results subject 

to a fair amount of speculation as it is unclear which interhemispheric fiber tracts are 

driving the observed relationship(s).  Thus, solely using geometric segmentation to 

identify pertinent white matter tracts can result in the inclusion of multiple 

interhemispheric fiber tracts that may have little to no relevance.  I provide MNI 

coordinates (Table 2.2) for future studies to utilize as seed regions when investigating 

transcallosal fiber pathways with specific sensorimotor cortical targets.  I believe that 

using the seed regions identified with the current template will allow for more specific 

research questions to be addressed through the identification of relevant fiber tracts.  For 

example, if one were to use region III as described by Hofer and Frahm (2006), not only 

would fiber tracts projecting to homologous M1 cortical areas be included, but a large 

volume of fiber tracts connecting bilateral SMAs would be as well (Figure 2.8).  This is 

an important distinction as these cortical regions serve very different roles in the control 

of movement.  For example, the S1 receives afferent input providing information about 

somatosensation, whereas the M1 outputs efferent commands of motor execution.  

Moreover, the premotor cortices, the pSMA and the SMA are involved at the motor 

planning stage and provide significant intrahemispheric input to the M1 for motor 

execution (Liuzzi et al., 2011).  Finally, the PMd has been shown to facilitate the 

contralateral M1 prior to movement (Liuzzi et al., 2011; van den Berg et al., 2010).  

While the coordinates I provide give detailed locations of sensorimotor fibers within the 

CC, due to the large amount of overlap one likely cannot distinguish between fiber tracts 

connecting homologous SMA and PMd regions. 
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Figure 2.8 – Individual participants’ average y- and z- coordinates of transcallosal fiber pathways 
(color-coded to match Figure 3) with the geometric segmentation of Hofer and Frahm overlaid.  
The segmented regions are purported to contain fibers that project to Region I (anterior 1/6): 
prefrontal; region II (anterior 1/2 minus region I): premotor and supplementary motor; region III 
(posterior 1/2 minus region IV and V): motor; region IV (posterior 1/3 minus region V): sensory; 
region V (posterior 1/4): parietal, temporal, and occipital.  It is clear from the current data that 
while this geometric segmentation provides a general rubric, the fibers projecting to sensorimotor 
cortical regions require a more specified approach. A, anterior; P, posterior.  

 

Ipsilateral Silent Period 

Giovannelli and colleagues (2009) have recently shown that the iSP is 

characterized by substantial topographical, temporal and neuronal circuit specificity.  

They also demonstrate the functional significance of the pathway(s) mediating iSP as 

they likely play pivotal roles in suppressing mirror activity during unimanual actions.  

While it is possible that the iSP relies on direct descending oligosynaptic pathways from 

the ipsilateral cortex, the most likely mechanism underlying the iSP involves 
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interhemispheric connections through the corpus callosum projecting to the contralateral 

motor cortex. This is supported by the fact that iSPs are preserved in patients with 

subcortical cerebro-vascular lesions that interrupt the corticospinal tract but not the 

corpus callosum (Boroojerdi et al. 1996). Furthermore, iSP is delayed or prolonged in 

neurological disorders affecting the CC such as multiple sclerosis (Schmierer et al. 2000) 

and no detectable iSP is found in preschool children who have yet to develop a 

functionally competent corpus callosum (Heinen et al. 1998), nor in patients with callosal 

agenesis (Meyer et al., 1995; 1998). Thus, the iSP has been proposed as a simple, clinical 

diagnostic tool for assessing callosal function (Meyer et al. 1999). 

Contrary to our hypothesis, results from the current study show that the strength 

of interhemispheric inhibition (as assessed by diSP) is strongly positively correlated with 

FA of interhemispheric fibers.  This relationship was restricted to transcallosal fibers 

connecting the primary motor cortices, although fiber tracts between homologous S1 and 

PMd cortical targets showed a similar trend.  Previous work investigating similar 

relationships across early development revealed positive associations between iSP 

duration and microstructure of the posterior mid-body (Koerte et al., 2009), an area of the 

CC now reliably shown to contain fibers connecting bilateral M1 (Hofer and Frahm, 

2006; Wahl et al., 2007).  However, this relationship does not appear to exist in the subset 

of mature adults within Koerte and colleagues’ (2009) data sample.  

Why then, did I observe a positive relationship between M1 fiber tract 

microstructure and diSP?  The current study provides information about transcallosal 

microstructure along the entire fiber tract, not just from a mid-sagittal slice.    

Furthermore, I did not use a callosal geometric segmentation approach; therefore our 
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results are not confounded by including transcallosal fibers that may be irrelevant to the 

relationships being studied (e.g. fibers connecting bilateral SMAs).  Additionally, Koerte 

and colleagues (2009) provided stimulation to all participants at an absolute intensity 

(80% of stimulator output) as opposed to a relative intensity of each participant’s motor 

threshold.  Previous work has demonstrated that stimulator intensity has a significant 

effect on both iSP duration and area (Chen et al., 2003).  Thus, not adjusting stimulator 

intensity to an individual’s relative motor threshold poses a significant confound for 

Koerte and colleagues’ results.  Based upon the current work and taking into account the 

findings of Wahl et al., (2007), increased microstructure of transcallosal fibers connecting 

M1s appears to allow for an increased ability to inhibit the contralateral hemisphere in 

young adults.  Thus, while SIHI and iSP reflect differing phenomena, both appear to be 

related to M1 callosal tract FA in a similar manner.  It is worth noting that increased 

interhemispheric inhibitory capabilities (and increased callosal FA) may not always be 

beneficial for uni- and bimanual motor control (cf. Fling et al., 2011), whereas previous 

work suggests that increased interhemispheric inhibition is beneficial to prevent 

interference on cognitive tasks requiring cortical lateralization (Muller-Oehring et al., 

2007). 

 Finally, I note a relationship, although not significant, between diSP & PMd tract 

microstructure.  Multiple lines of research implicate the PMd in regulating 

interhemispheric communication, with particular emphasis on inhibitory projections to 

the contralateral M1 (Giovannelli et al., 2006; Koch et al., 2006; van den Berg et al., 

2010).  Recently, it was shown that functional connectivity between the left dorsal PMC 

to the right dorsal PMC and M1 is state dependent, such that its influence on the other 
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hemisphere is modulated as a function of motor task demands (Bestmann et al. 2008).  

Specifically, the interhemispheric coupling of PMd with the contralateral M1 appears to 

be more readily apparent during movement preparation.  Therefore it is perhaps not 

surprising that in the current study where force production was constant, I do not report a 

significant relationship between PMd microstructure and strength of interhemispheric 

inhibition.  Because motor planning demands are quite low, participants are likely 

operating under feedback control. 

Conclusions and Future Directions 

 I have demonstrated the ability to map transcallosal sensorimotor fiber pathways 

and have provided an atlas in MNI space for future use.  In addition I report a positive 

relationship between interhemispheric fiber microstructure and strength of volitional 

interhemispheric inhibition.  Future work is still required to describe how modulation of 

these interhemispheric inhibitory effects relates to motor control.  As there are sparse 

interhemispheric connections between the homologous hand M1 areas future work would 

also benefit by further describing muscle specificity of the iSP.  For example, it may be 

that the iSP is stronger in more proximal muscles with more interhemispheric 

connections.  Future work investigating topographical specificity of stimulation location 

on iSP would also be beneficial.  For example, it would be of interest to identify whether 

stimulation of areas with known inhibitory effects on the contralateral M1, such as the 

ipsilateral SMA or PMd, also evokes an iSP. 
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CHAPTER III 

Task-dependent effets of interhemispheric inhibition on motor control 

Published with stylistic modifications as - Fling BW & Seidler RD. (In press). Task-
dependent effects of interhemispheric inhibition on motor control. Behavioural Brain 

Research 

 

Abstract: 
Interhemispheric inhibition (IHI) is the ability to mitigate the spread of neuronal 

excitability between cortical hemispheres.  Previous work has demonstrated that IHI is 

increased during both unimanual and independent bimanual movements of the upper 

limbs in comparison to synchronous bimanual movements, likely to minimize 

interference between the hands.  The goal of the current study was to investigate the 

relationship(s) between motor performance and individual differences in inhibitory 

capacity of the corpus callosum.  To assess IHI, I utilized the ipsilateral silent period 

technique (iSP; evoked by suprathreshold transcranial magnetic stimulation), which 

elicits inhibition of volitional motor activity.  Participants performed three force 

production tasks: 1) unimanual (right hand) constant force, 2) bimanual constant force, 

(bimanual synchronous) and 3) bimanual with right hand constant force and left hand 

sine wave tracking (bimanual independent).  I found that individuals with greater IHI 

capacity demonstrated reduced mirror EMG activity in the left hand during unimanual 

right hand contraction.  However, these same individuals demonstrated the poorest 

performance during the bimanual independent force production task.  I suggest that a 
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high capacity for IHI from one motor cortex to another can effectively prevent “motor 

overflow” during unimanual tasks, but it can also limit the ability for optimal control 

during independent bimanual tasks, possibly due to a reduced capability for 

interhemispheric cooperation.   
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Introduction 

Imagine a concert pianist with exceptional bimanual coordination yet exquisite 

individuated finger control.  This skillful act requires that hand movements are 

coordinated in time and space, while minimizing intermanual crosstalk or interference.  

The ability of the brain’s two hemispheres to coordinate such movements relies heavily 

upon callosally mediated communication.  Interhemispheric communication consists of a 

complex balance of facilitatory and inhibitory interactions.  Decades of research has 

provided insight into the role of the corpus callosum and interhemispheric 

communication for a wide array of cognitive, motor, sensory, and perceptual tasks.  

Previous work in the cognitive literature has demonstrated that the degree to which 

interhemispheric cooperation underlies performance varies with the complexity of the 

task being performed.  Specifically, interhemispheric interaction aids the performance of 

complex tasks more than simpler ones (e.g., Banich & Belger, 1990; Reuter-Lorenz et al., 

1999).  The results of Weismann & Banich (2000) demonstrate that even when within- 

and across-hemisphere processing are equally possible, the hemispheres couple their 

processing when tasks are complex but not when they are relatively simple. 

The ability to minimize interference between hemispheres, often referred to as 

“motor overflow”, is termed interhemispheric inhibition (IHI; cf. Hoy et al. 2004).  IHI is 

the suppression of activity of a brain region by the contralateral cortex with impulses 

transmitted via the corpus callosum.  While some degree of IHI is necessary to prevent 

interference of control processes between the two cortices (cf. Bloom & Hynd 2005; 

Fling et al. 2011), emerging work has begun to indicate that low levels of IHI may be 

beneficial for the performance of some complex bimanual tasks (Ridding et al. 2000; 

Shim et al. 2005). 
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Interhemispheric inhibition has been shown to increase during tasks when the 

upper limbs have different movement goals.  For example, during unilateral movement 

IHI increases to suppress unwanted motor (or mirror) activity in the opposite limb (cf. 

Cincotta & Ziemann, 2008; Vercauteren et al. 2008).  Furthermore, several studies report 

increased IHI during multi-limb movements where each effector has different movement 

goals as compared to movements where the limbs move symmetrically (Stinear & 

Byblow, 2002; Fujiyama et al. 2009; Giovannelli et al. 2009).  Thus it stands to reason 

that by increasing IHI during such movements, individuals are able to maintain 

partitioned cortical activity resulting in less interference between the right and left motor 

cortices.  Giovannelli and colleagues (2009) demonstrated that IHI (assessed by inducing 

an ipsilateral silent period (iSP)) is modulated across task conditions.  Specifically, the 

amount of IHI (assessed by iSP of the dominant hand during maximal contraction) 

increased as non-dominant index finger movement changed from i) full relaxation to ii) 

maximal isometric contraction; iii) repetitive thumb-to-index tapping, and iv) sequential 

tapping of different targets.  While the authors demonstrate that IHI is modulated across 

task conditions, no motor performance metrics were analyzed.  Thus it remains unclear 

how the amount of IHI, or individual differences in the capacity to modulate IHI across 

conditions, is related to performance.  

Although IHI is increased during bimanual independent tasks, emerging work in 

musicians as well as training interventions in neurologically healthy young adults have 

begun to indicate that the relationship between IHI and performance on such tasks may 

follow an inverted-U relationship.  That is to say there may be an optimal amount of IHI 

above which performance begins to decline in a similar fashion to those individuals with 
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compromised inhibitory capacity such as children with premyelinated interhemispheric 

fibers (Koerte et al. 2009) or patients with multiple sclerosis (Boroojerdi et al. 1998).  In 

accordance with this notion, IHI is reduced in musicians compared to non-musicians 

(Ridding et al. 2000).  While it is unclear whether this reduction in IHI represents an 

adaptive change related to exceptional control of finger movements or a maladaptive 

change brought about by overuse of the hand from extensive training (Nordstrom & 

Butler, 2002), recent training interventions appear to support the former hypothesis 

(Hortobagyi et al. in press; Shim et al. 2005).  These studies demonstrate that 

interhemispheric inhibitory projections can show plastic changes that favor the execution 

of a practiced task by decreasing the amount of IHI.  Based on the literature reviewed 

here I believe it is possible that increased levels of IHI are beneficial during unimanual 

movement to prevent motor overflow, whereas greater IHI may be detrimental to motor 

performance during asymmetrical bimanual tasks due to “over-inhibition” of the 

contralateral cortex.  To my knowledge this has yet to be investigated. 

The capacity for IHI is highly correlated with the microstructure of callosal fibers 

connecting bilateral M1’s in young adults (as reported in Chapter 2 and in Wahl et al. 

2007).  Recent work investigating corpus callosum microstructure (assessed with 

diffusion tensor imaging) has lent insight into the relationship between callosal structure 

and motor performance across a range of unimanual and bimanual tasks.  Johansen-Berg 

and colleagues (2007) reported that young adults with increased microstructure of 

callosal fibers connecting primary and secondary motor cortices were better able to 

coordinate the two hands during a synchronous tapping task (a task requiring relatively 

low IHI).  Conversely, I have recently shown that young adults with increased 
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microstructural quality of callosal regions connecting sensorimotor cortical areas perform 

more poorly on unimanual and asynchronous bimanual finger tapping tasks (which 

require relatively high IHI) (Fling et al., in press).  Although neither of the 

aforementioned studies measured IHI, it appears that interhemispheric connections and 

inhibition are integral for the performance of both unilateral and coordinated bilateral 

tasks.  The relationship of these variables to motor performance may be task dependent. 

There is a gap in the current literature describing the relationship(s) between 

interhemispheric inhibitory capacity and motor performance.  The use of individual 

differences approaches to study the neural bases of motor behavior has recently been 

touted as a fruitful avenue for understanding how brain structural and neurophsyiological 

characteristics affect motor performance (Kanai and Rees, 2011).  Here I utilized such an 

approach to investigate the relationship(s) between inhibitory capacity of the corpus 

callosum in young adults and performance on three different force production tasks: 1) 

unimanual (right hand) constant force production, 2) bimanual constant force production 

(bimanual synchronous), and 3) bimanual with the right hand performing constant force 

and the left hand tracking a sine wave target (bimanual independent).  Capacity for IHI 

was assessed by eliciting iSPs in the dominant hand during all force production 

conditions.  Regardless of any condition effect I hypothesized that individuals with 

greater IHI capacity would be able to inhibit motor overflow during unimanual 

contraction to a greater extent.  However, I predicted that these same individuals would 

demonstrate poorer performance on the bimanual independent task. 

Methods 

Participants 
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 Sixteen young adults (range: 19-28 yr of age; mean: 22.1 ± 3.1 yr; 8 males) 

participated in the current study.  All individuals were right-hand dominant as assessed 

by the Edinburgh Handedness Inventory (mean: 77.4 ± 0.09; Oldfield, 1971).  Any 

individuals with a history of neurological insult (e.g. stroke, epilepsy) or those taking 

medications with contraindications for transcranial magnetic stimulation were excluded, 

as were any individuals with musical training greater than 3 years (see screening 

questionaire in Appendix 1).  This experiment was approved by the Medical Institutional 

Review Board (IRBMED) of the University of Michigan.  Participants gave their 

informed written consent prior to the experiment and were compensated for their time. 

Experimental Task 

 Participants were seated in a chair with both their dominant and non-dominant 

forearms resting on a table.  Shoulders were abducted at approximately 45°, the elbows 

were flexed at approximately 90°, and the forearms were pronated with the palms of the 

hand lying flat on the custom apparatus.  The wrist, third, fourth, and fifth fingers were 

constrained from moving, isolating force production to the index finger.  A pre-amplified 

force transducer (OMEGA LC509-015 Beam Load Cell) was positioned at the lateral 

aspect of the proximal interphalangeal joint of the isolated index finger to record 

compressive isometric force (output: 0.5-9.5 Vdc; excitation: 24 Vdc ± 4 Vdc). 

Surface electromyography and motor evoked potentials (MEPs) elicited with 

transcranial magnetic stimulation (TMS) were recorded from the first dorsal interosseous 

(FDI) muscle of both hands using 4 mm Ag/AgCl- electrodes placed on the muscle in a 

belly-tendon arrangement.  Task-related surface EMG and MEP data were recorded using 

Biopac hardware and AcqKnowledge software (BIOPAC Systems Inc., Goleta, CA).  
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The raw EMG signal was collected and digitized at 2000 Hz, amplified and band pass 

filtered (10-1000 Hz).  Data were collected at 2kHz as it has previously been shown to 

produce the most accurate estimate of mean consecutive difference (MCD) of pre-

stimulus EMG activity, which is used to calculate the iSP (Garvey et al. 2001).  To assess 

maximal voluntary contractile (MVC) force of the FDI, participants were instructed to 

press as hard as possible on the load cell using index finger abduction of the dominant 

hand for three consecutive 6-second trials.  The force applied to the load cell was 

displayed on the video monitor, providing online visual feedback during the MVC trials.  

The highest force sample in each trial was averaged across three MVC trials providing an 

estimate of the participants’ MVC.  A minimum 90-second rest period was provided in 

between each MVC trial.  The same procedure was subsequently performed on the non-

dominant hand. 

Participants performed three different force production tasks: 1) unimanual 

isometric force of the dominant hand at a constant force target level (Figure 3.1A), 2) 

bimanual synchronous isometric force with both hands producing the same constant force 

target level (bimanual synchronous task; Figure 3.1B), and 3) dominant hand isometric 

force at a constant force target level while the non-dominant hand matched a 1 HZ sine 

wave (bimanual independent task; Figure 3.1C).  Thus, in all conditions the dominant 

hand always performed the same constant force production task while the non-dominant 

hand’s involvement varied across the three conditions.  The order of conditions was 

counter-balanced across participants.  For all conditions the force target levels used in the 

experiment were scaled to 20% of each individual subject’s MVC (during the bimanual 

independent task the peak force of the non-dominant sine wave-matching hand was also 
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20% MVC).  Thus the dominant hand always produced a constant isometric force at 20% 

MVC across the three conditions while the varying role of the non-dominant hand (i.e. 

the right M1) was expected to modulate IHI demands.  Feedback windows were 

presented on one video monitor and were aligned parallel on top of each other with the 

upper window providing feedback of the non-dominant hand force trace while the lower 

window provided feedback for the dominant hand.  During the unimanual and bimanual 

synchronous force production tasks participants viewed a yellow, horizontal target line 

that spanned the width of a video monitor (placed at 20% of MVC for each respective 

hand).  During the bimanual independent movement condition the target for the dominant 

hand was identical to the other two conditions while the target for the non-dominant hand 

was a yellow 1-Hz sine wave target line with the peak force of each sine wave placed at 

20% of MVC.  Force output was sampled at 200 Hz; for each instant in time that force 

was sampled (.005s), a green pixel appeared in the center of the respective feedback 

window corresponding to the amount of force produced.  This provided participants with 

on-line, real-time visual feedback of their performance with minimal horizontal saccades 

required.  For each condition participants were instructed to match their green force trace 

to the respective yellow target line for three 35-second trials per condition.  Participants 

were provided five minute rest breaks in between each trial (a total of 9 trials) in an 

attempt to minimize fatigue. Fatigue minimization is supported by the fact that no 

behavioral differences were noted across trials within a given condition. 
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Figure 3.1 – Representative force traces for the: A) dominant hand unimanual force condition, B) 
non-dominant (upper panel) and dominant hand (lower panel) during a bimanual synchronous 
force production trial and, C) non-dominant (upper panel) and dominant hand (lower panel) 
during the bimanual independent force production task. For all isometric force conditions the 
horizontal dotted line indicates the force target, during the bimanual independent force task the 
gray line indicates the 1 Hz sine wave target for the non-dominant hand.  Dom = dominant hand; 
Non-Dom = non-dominant hand. 

 

Interhemispheric Inhibition 

Interhemispheric inhibition was measured by evoking an ipsilateral silent period 

(iSP) in the dominant hand FDI.  The iSP is elicited by focal TMS of the M1 ipsilateral to 

the hand making a voluntary contraction, leading to a brief suppression of voluntary 
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activity in the electromyogram signal of this muscle (Meyer et al. 1995).  The iSP reflects 

transcallosal inhibition of volitional motor activity, and appears to be particularly well-

suited to investigate interhemispheric control of voluntary cortical motor output 

(Giovannelli et al. 2009). 

Prior to performing the experimental paradigm, I used a Magstim Rapid magnetic 

stimulator (The Magstim Company Ltd, Spring Gardens, Whitland, Carmarthenshire, 

UK) and a focal figure of eight coil (diameter of each wing 70 mm) to identify the right 

M1 hotspot for the left FDI.  The coil was placed tangential to the scalp with the handle 

pointing backwards and 45° away from the midline (Chen et al. 2003).  The optimum site 

in the right M1 (hotspot) for eliciting motor responses in the left FDI was identified at 

supra-threshold intensity.  This location was utilized to elicit iSPs from the right FDI as it 

has previously been shown that the topography of the contralateral MEP and the iSP 

correspond closely (Wasserman et al. 1991).  Resting motor threshold (RMT) was 

determined to the nearest 1% of the maximum stimulator output.  Using standard 

protocol, the RMT was defined as the minimum stimulus intensity which elicited MEPs > 

50 µV in at least 5 out of 10 consecutive trials (Triggs et al. 1994). 

During the unimanual and bimanual synchronous force conditions, iSPs were 

elicited from the dominant hand once participants reached the target force level by 

stimulation given at 120% of resting motor threshold to the right motor cortex (See 

Chapter 2).  During the bimanual independent condition stimulations were always applied 

during the upward phase of the non-dominant hand sine wave force production task.  

During each 35-second trial, a minimum of five iSPs were evoked with an interstimulus 

interval jittered between 5-8 seconds (Garvey et al. 2001; Jung & Ziemann, 2006).  
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During the unimanual condition, EMG data were also collected and monitored from the 

non-dominant hand to ensure full relaxation and that the TMS coil was always in the 

appropriate location over the right M1.  During one trial in two different participants, 

MEPs ceased to be elicited from the left FDI.  On both occasions data collection was 

halted and the right M1 hotspot for the FDI was re-located. 

 

Data Analysis 

Force data 

The initial 5 seconds of each force time series was removed to eliminate the 

transitory performance in achieving the force target.  Force data were digitally filtered 

using a 4th order dual pass Butterworth filter with a low-pass cutoff frequency of 20 Hz. 

All data processing and subsequent time and frequency analyses were performed using 

software written in MATLAB (The MathWorks Inc., Natick, MA).  Similar to previous 

work, the amount of force output variability was assessed by calculating the within-trial 

mean (normalized to the force target goal and expressed as a percentage throughout the 

remainder of this chapter) and the root mean square error (RMSE) from the target 

(Vaillancourt et al. 2003).  I also performed a power spectral density analysis to assess 

peak frequency of the non-dominant hand during the bimanual independent condition to 

ensure that individuals were adhering to the 1 Hz frequency.  

Finally, the structure of force variability was assessed by calculating the 

approximate entropy (ApEn) of the dominant hand’s force output in each condition.  

ApEn returns a single value (between 0 and 2) that reflects the predictability of future 

values in a time series based on previous values and has been used to assess force 
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production during both constant isometric and 1 Hz sine wave tasks (Slifkin and Newell, 

1999; Vaillancourt and Newell, 2003).  An increase in the ApEn of a signal reflects 

increased noisiness or complexity in its time domain structure (Pincus, 1991).  Thus, for a 

completely random signal (e.g. white Gaussian noise) each value in the time series is 

independent from the previous value and the ApEn trends toward 2.  The algorithm and 

parameter settings (m = 2; r = 0.2 * standard deviation of the signal) used in the current 

study reflect previous work (Slifkin and Newell, 1999; Vaillancourt and Newell, 2003).  

A detailed description of the multi-step algorithm is available elsewhere (see Appendix of 

Slifkin and Newell, 1999). 

 

Ipsilateral Silent Period (iSP) 

 The iSP was calculated by using an objective, graphical method described in 

detail by Garvey and colleagues (2001).  Single EMG trials (15 total per participant) were 

rectified and averaged across trials.  Using a custom MATLAB program (The 

MathWorks Inc., Natick, MA), upper and lower variation limits of the EMG signal were 

calculated by determining the mean consecutive difference (MCD) of EMG data points 

100ms prior to stimulation: mean pre-stimulus EMG ± (|MCD| x 1.77).  These limits 

encompassed 95% of possible pre-stimulus EMG data points (equivalent to two standard 

deviations).  Onset and offset of iSP were identified using the criteria described in 

Chapter 2.  In addition to measuring the onset, offset and duration of the iSP, the depth of 

the iSP was defined in two ways as previously described by Jung and Ziemann (2006): 

(1) the minimum EMG level during the iSP (diSP-max), and (2) the average EMG level 

during the iSP (diSP).  The diSP and diSP-max were expressed as percentages of the 



  

78 
  

mean prestimulus EMG.  Therefore, the larger the diSP and diSP-max, the greater the 

suppression of ipsilateral EMG activity during the iSP.  This is interpreted as increased 

interhemispheric inhibition (Garvey et al. 2001). 

 

Statistical Analysis 

Separate repeated measures analyses of variance were used to analyze measures 

of IHI and dominant hand force production with iSP onset, iSP duration, diSP, diSP-max, 

RMSE, ApEn, and normalized mean force production treated as within-subject variables 

across the three conditions.  Significance was set at an alpha of 0.05 (SPSS 18.0) and the 

Huyn-Feldt epsilon was computed to test for sphericity; I interpreted corrected P values 

in cases of violation.  Significant main effects were subjected to post-hoc paired t-tests 

and Bonferroni-corrected for multiple comparisons.  I performed linear regression to 

investigate the relationship between diSP and dominant hand variability (RMSE) on the 

three different force production tasks.  I also correlated non-dominant hand EMG activity 

during the unimanual force condition (i.e. motor overflow) with diSP.  Motor overflow 

was calculated by taking the integral of non-dominant hand EMG during unimanual 

dominant hand contraction.  All correlation analyses using diSP as a predictor were 

corrected for multiple comparisons.  Additionally, I used linear regression to test for 

associations between each hand’s force output during the bimanual synchronous and 

bimanual independent force production tasks.  Thus, I correlated force output between the 

dominant and non-dominant hand within each participant for the two bimanual 

conditions.  All data are presented as mean ± S.E.M. unless otherwise noted. 
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Results 

Force Data 

The maximal voluntary contraction values from the dominant and non-dominant 

FDI were 4.3 ± 0.6 lbF and 3.9 ± 0.5 lbF, respectively.  While a paired t-test revealed a 

trend towards higher MVC in the dominant hand, no statistical difference was observed 

(t1,15 = 2.1; P < 0.07). 

Participants’ force production parameters including accuracy, variability (RMSE) 

and ApEn can be viewed in Table 3.1.  Additionally, during the bimanual independent 

condition participants’ non-dominant hand average frequency was 0.93 ± 0.01 Hz, 

indicating that they were able to adhere to this relatively difficult bimanual force 

production task (Figure 3.1C). 

A repeated measures ANOVA revealed a significant main effect of condition on 

dominant hand force variability (F2,30 = 45.8; P < 0.001), mean normalized force (F2,30 = 

31.8; P < 0.001), and ApEn (F2,30 = 41.8; P <  0.001).  Post hoc tests for dominant hand 

force variability revealed a significant difference between all conditions (t1,15 > 5.0; P < 

0.001; Table 3.1), such that variability was greatest during the bimanual independent task 

and lowest during the unimanual task.  Post hoc paired t-tests for normalized dominant 

hand mean force revealed that force production was significantly lower during the 

bimanual independent condition than either the unimanual (t1,15 = 6.7; P < 0.001) or the 

bimanual synchronous conditions (t1,15 = 5.3; P < 0.001).  No difference in normalized 

mean force was observed between the unimanual and bimanual synchronous conditions 

(t1,15 = 1.7; P > 0.15; Table 3.1).  Paired t-tests for dominant hand ApEn also revealed a 

significant difference between all conditions (t1,15 > 5.6; P < 0.001 for all conditions; 
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Table 3.1), such that ApEn was lowest during the bimanual independent condition and 

highest during the unimanual task.  Further, I note that dominant hand force variability 

and ApEn were significantly correlated in all conditions in an inverse fashion, i.e. higher 

variability was related to lower ApEn (r > -0.6; P < 0.01 for all conditions). 

Force  
Condition 

Normalized Mean 
Force (%) 

Variability 
(RMSE) 

ApEn B/w Hand 
Correlations (r) 

Unimanual 93.7 ± 1.5a 0.031 ± 0.004a 0.53 ± 0.06a - 
Bim. 

Synchronous 
90.9 ± 2.0a 0.048 ± 0.005b 0.47 ± 0.08b 0.69* 

Bim. 
Independent 

74.2 ± 3.4b 0.088 ± 0.008c 0.36 ± 0.06c 0.34 

 

Table 3.1 – Constant isometric force production variables describing dominant hand performance 
across the three conditions.  The dominant hand was most accurate (normalized mean force) and 
demonstrated the least variability (RMSE) during the unimanual condition.  Conversely, 
dominant hand approximate entropy was lowest during the bimanual independent task.  The force 
output timecourse was significantly correlated between the two hands during the bimanual 
synchronous condition, but not during the bimanual independent condition. Values are mean ± 
standard deviation.  Bim. = bimanual; ApEn = approximate entropy; B/w = between.  The same 
letter within each column indicates metrics of force performance that were not significantly 
different from each other. *P < 0.01. 
 

iSP Data 

Resting motor threshold (RMT) was 63.6% ± 4.9% of maximal stimulator output, 

thus average stimulation intensity to elicit iSPs was 76.3% ± 5.7% (i.e. 120% of RMT).  

Ipsilateral silent periods were reliably produced in all 16 participants.  An average of 15.6 

stimulations (and a maximum of 19) were required to elicit the 15 iSPs used for data 

analysis within each condition.  Participants’ IHI characteristics including iSP onset, iSP 

duration, diSP and diSP-max can be viewed in Table 3.2.  A repeated measures ANOVA 

revealed no significant main effect of condition on iSP onset (F2,30 = .37; P > 0.68), iSP 

duration (F2,30 = 0.02; P > 0.96), diSP (F2,30 = 1.3; P >  0.27), nor diSP-max (F2,30 = .45; 

P > 0.62).  Due to the fact that no differences were observed, I used the iSP metrics 
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obtained during the unimanual force production task for the remainder of this chapter as a 

measure of individual differences in IHI capacity. 

Force  
Condition 

iSP  
Onset (ms) 

iSP  
Duration (ms) 

diSP (%) diSP-max (%) 

Unimanual 38.4 (3.2) 27.4 (8.7) 73.6 (6.3) 91.9 (4.4) 
Bim. 

Synchronous 
37.9 (2.6) 27.1 (10.1) 71.4 (9.6) 92.4 (4.2) 

Bim. 
Independent 

38.2 (2.7) 26.9 (7.5) 70.0 (9.2) 91.2 (5.4) 

Table 3.2 – Characteristics of dominant hand iSPs across the three force production conditions.  
No differences were noted among any of the dependent measures.  Values are mean ± standard 
deviation.  Bim. = bimanual. 
 

Relationships between EMG activity, force variability and IHI 

 I first performed linear regression relating the capacity for IHI, as assessed by 

diSP, to the amount of non-dominant EMG activity (motor overflow) observed during the 

dominant hand unimanual force production task.  Although non-dominant hand EMG 

activity was relatively small in all participants (0.19 ± 0.008 mV*s), motor overflow and 

IHI were significantly negatively correlated (r = -0.76; P < 0.001).  This suggests that 

during unimanual contraction those participants with greater IHI capacity were able to 

more effectively inhibit activity in the contralateral M1 and as a result had less muscle 

activity in the non-dominant hand (Figure 3.2).  In addition, I regressed diSP against 

dominant hand force variability during the three different conditions.  I found no 

relationship between diSP and dominant hand variability during the unimanual (r = -0.13; 

P > 0.4) or the bimanual synchronous condition (r = -0.19; P > 0.25).  In contrast, a 

significant relationship was observed between diSP and dominant hand variability during 

the bimanual independent condition (r = 0.59; P < 0.01; Figure 3.3) indicating that 
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individuals with increased inhibitory capacity were poorer at maintaining steady force 

during this particular task. 

 

 

 

Figure 3.2 – Scatterplot of interhemispheric inhibition, as assessed by diSP, and non-
dominant hand EMG (motor overflow) during unimanual dominant hand contraction. A 
significant, negative association was found (r = -0.76; P < 0.001) indicating that 
individuals with greater IHI were able to suppress activity in the resting non-dominant 
hand (motor overflow) during unimanual dominant hand force production. IEMG = 
integral of the rectified EMG. 
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Figure 3.3 – Scatterplot of interhemispheric inhibition, as assessed by diSP, and dominant hand 
variability during all conditions.  A significant, positive relationship was observed for the 
independent condition indicating that individuals with greater IHI had greater dominant hand 
force variability during the bimanual independent task (r = 0.59; P < 0.01). No relationship was 
observed for the unimanual or the bimanual synchronous task. Bim; = bimanual; Indep = 
independent; Synch = synchronous; Uni = unimanual; DOM = dominant hand. 

 

For both bimanual tasks I also performed linear regression to describe 

associations between dominant and non-dominant hand force output.  The time course of 

force produced by each hand was significantly correlated during the bimanual 

synchronous condition (r = 0.69; P < 0.01), but not during the bimanual independent 

condition (r = 0.34; P > 0.1).  For each of these correlations I performed an r-to-Z 

transformation and regressed dominant hand force variability (RMSE) against between-

hand force relationships (as assessed by their Z-score) within each bimanual condition.  

The extent to which the time course of force production was correlated between the two 

hands during the bimanual synchronous condition was significantly inversely related to 

dominant hand variability (r = -0.7; P < 0.001; Figure 3.4).  That is, participants with 

greater linked bimanual force output performed the task with less dominant hand 



  

84 
  

variability during the synchronous condition.  A similar trend was observed for the 

bimanual independent condition, however the relationship was not significant (r = -0.33; 

P > 0.1). 

 

Figure 3.4 – Scatterplot of dominant hand force variability (RMSE) during the bimanual 
synchronous force production task and between-hand force coupling (assessed with a Fisher r-to-
Z transformation).  A significant, inverse association (r = -0.70; P < 0.01) was observed 
demonstrating that individuals performed the task better when they coupled the output of the two 
hands to a greater extent.  Biman = bimanual; Simul = synchronous; DOM = dominant hand. 

 

Discussion 

 In the current study I observed task-dependent relationships between manual 

motor performance and interhemispheric inhibitory capacity.  I found a continuum of 

variability in dominant hand force production across the three conditions investigated.  

Specifically, dominant hand variability increased (with a concomitant decrease in mean 

force production) when the non-dominant hand was required to produce either an 

identical or an independent force trajectory as compared to the unimanual task. In 

agreement with the results of Slifkin and Newell (1999) I also found that increases in 
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force variability were accompanied by decreases in approximate entropy.  Contrary to my 

hypothesis, I found no modulation of IHI across the three force production tasks.  Despite 

the lack of condition effects on the iSP, I found several relationships with motor 

performance.  Consistent with my hypotheses, during unimanual force production, 

individuals with greater IHI capacity were able to more effectively reduce motor 

overflow activity from the active to the resting hand.  Conversely, those individuals with 

greater IHI were poorer at the bimanual independent task.  I interpret this to mean a high 

level of IHI is detrimental during tasks where the two hands are performing independent 

movements.  

 Interhemispheric interactions vary with task conditions (Verstynen and Ivry, in 

press).  Inhibition between the primary motor cortices is a necessity for the skilled 

performance of unimanual and bimanual motor control, particularly for tasks that require 

independent spatio-temporal paths for each hand.  While some level of IHI is necessary, I 

show that greater inhibitory capacity is negatively associated with the ability to maintain 

steady force production when the contralateral hand is performing an independent action.  

This is in agreement with previous work demonstrating that interference related to 

bimanual force production arises from callosal interactions (Diedrichsen et al., 2003).  

These results suggest that individuals with greater IHI likely have a reduced capacity for 

interhemispheric cooperation, resulting in poorer performance on indpendent bimanual 

motor tasks.  That is to say, these individuals may be “over-inhibiting” the contralateral 

cortex, thereby preventing each hemisphere from accurately activating its respective 

neuronal circuitry.  Thus, while some level of IHI is required to coordinate movement, it 
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appears that the ability to suppress IHI and increase interhemispheric cooperation favors 

the execution of bimanual tasks. 

Studies conducted with highly trained (and developing) musicians support the 

hypothesis that reduced IHI is beneficial for bimanual tasks where the two hands have 

independent movement goals (Nordstrom & Butler 2002; Ridding et al. 2000).  Long-

term training within critical developmental periods has the potential to induce regionally 

specific neural adaptations, both at the anatomical and functional level.  The anterior half 

of the corpus callosum is larger in adult musicians who began training prior to the age of 

7 when compared to control participants (Schlaug et al. 1995).  In addition to structural 

changes in the corpus callosum, representations within the sensorimotor cortices are 

significantly altered by musical or athletic training (Schwenkreis et al. 2007; Tyc et al. 

2005).  Whereas musical training appears to increase the size of anatomically specific 

regions in the brain, IHI is reduced in musicians (Ridding et al. 2000).  Thus, as I show in 

the current study, reduced IHI appears to lend itself to better individuated bimanual 

control.  While it is informative that long-term musical training has the capability to 

induce such plastic changes, rehabilitation protocols would benefit from shorter 

interventions or through the use of non-invasive stimulation protocols. 

Studies using non-invasive stimulation paradigms such as repetitive TMS 

(Meehan et al. 2011), transcranial direct current stimulation (Vines et al. 2006) or cortico-

cortical paired-associative stimulation (Rizzo et al. 2009) have demonstrated that 

interhemispheric interactions can be transiently altered with resulting behavioral 

consequences.  An exciting, though meager, body of literature indicates that 

interhemispheric physiology is also malleable over a relatively short time-course by 
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manual training.  Shim and colleagues (2005) investigated the effects of practice on 

callosal physiology.  Following just two days of practice on a novel bimanual force 

production task, participants demonstrated task-selective reductions in IHI.  Furthermore, 

Hortobagyi et al. (in press) reported a significant decrease in IHI and a concomitant 

increase in ipsilateral primary motor cortex excitability following 20 sessions of 

unimanual submaximal force production.  A recent study revealed a reduction in 

asymmetry of cortical activity, assessed by functional MRI, following just five 1-hour 

training sessions in older adults (mean age = 66.1 years old), suggesting that the 

capability for plasticity of interhemispheric interactions remains even with advanced age 

(Erickson et al. 2007).  The question of what modulates this inhibitory capacity still 

requires further investigation. 

Interhemispheric inhibition is mediated by transcallosal glutamatergic pathways 

that synapse onto pyramidal tract neurons through gamma-aminobutyric acid (GABA) 

inhibitory interneurons (Werhahn et al. 1999).  Stagg and colleagues (2011) reported that 

participants with higher baseline levels of GABA in M1 had slower reaction times.  

Furthermore, a positive correlation was observed between transcranial direct current 

stimulation (tDCS)-induced GABA decrease in M1 and degree of motor learning, such 

that subjects who demonstrated a greater decrease in M1 GABA following stimulation 

showed faster short-term learning (Stagg et al., 2011).  It is possible that training-related 

decreases in IHI (Shim et al., 2005; Hortobagyi et al., 2011) and GABA levels (Stagg et 

al., 2011; Floyer-Lea et al., 2006) represent a change in the balance of interhemispheric 

facilitatory and inhibitory communication.  In the current study, individuals who coupled 

the force output of the two hands to a greater extent, potentially via greater 
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interhemispheric facilitation, performed the bimanual simultaneous task with less force 

variability.  Future work would benefit from exploring an apparent increase in 

cooperative action between bilateral motor cortices as a result of manual training and/or 

non-invasive stimulation. 

It was somewhat surprising that I did not observe modulation of IHI across the 

different force production tasks in the current study as has previously been shown 

(Giovannelli et al. 2009).  The current study and that of Giovannelli utilized identical 

stimulation parameters (120% of resting motor threshold) and both elicited iSPs from the 

dominant hand FDI.  However, there is a clear difference in the force production tasks 

between the two studies.  Participants in the Giovannelli study were required to produce 

maximal force with the dominant hand FDI across all conditions, whereas participants in 

the current study were only producing force at 20% of their maximal output.  This was 

necessary to ensure that fatigue did not contaminate condition effects in the current study.  

It may be that extremely high levels of interhemispheric and descending motor output 

(associated with maximal force production) are required to see task-dependent 

modulation of IHI as reported by Giovannelli et al. (2009).  At sub-maximal contractions, 

such as those used in the current study, iSPs appear not to be modulated across tasks and 

may solely be an indicator of individual differences in inhibitory capacity. 

 An additional caveat to note is the attentional demand required to perform two 

tasks synchronously, particularly during the bimanual independent force production task 

in the current study.  It is well established that performing two tasks simultaneously often 

degrades performance of one or both tasks, potentially due to competition for shared 

attentional resources (Hiraga et al. 2009).  In the current study performance of the 
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dominant hand became more variable as the involvement of the non-dominant hand 

increased.  Therefore, while the increase in dominant hand variability may be due to 

interhemispheric M1 interactions, it is also quite possible that the dual-task nature of the 

bimanual condition played a significant role.  This concern is somewhat tempered by the 

fact that I did not observe any association between IHI and dominant hand force 

variability during the bimanual synchronous condition.  

 

Conclusions 

Skillful bimanual control requires that hand movements are coordinated in time 

and space, while minimizing intermanual interference through interhemispheric 

inhibition.  Our current findings revealed that isometric dominant hand force variability 

was increased when the non-dominant hand was required to produce either an identical or 

an independent force trajectory as compared to the dominant hand.   Our results shed 

light on the task-specific nature of interhemispheric inhibition for tasks with different 

movement requirements.  As shown in the current chapter, IHI is necessary for the 

performance of unimanual movements to reduce motor overflow.  Furthermore, although 

some level of IHI is necessary for the performance of bimanual tasks where each hand is 

performing an independent movement (Kennerley et al., 2002), it is clear that reduced 

IHI is beneficial to performance in this context.  Conversely, interhemispheric 

communication and IHI are not a necessity for the performance of bimanual movements 

where the two hands have identical movement goals (Kennerley et al. 2002).   
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CHAPTER IV 

Fundamental differences in callosal structure, neurophysiologic function, and 
bimanual control in young and older adults 

Currently under review with stylistic modifcations as - Fling BW & Seidler RD (Under 
review). Fundamental differences in callosal structure, neurophysiologic function, and 
bimanual control in young and older adults. Cerebral Cortex 

 

Abstract: 
 Bimanual actions involve coordinated motion in time and space, but often rely on 

the movements performed with each hand to be different.  Older adults exhibit 

differentially greater variability for bimanual actions in which each hand has an 

independent movement goal.  Such actions rely on interhemispheric communication via 

the corpus callosum including both facilitatory and inhibitory interactions.  Here I 

investigated whether age differences in callosal structure and interhemispheric 

interactions contribute to this selective movement difficulty.  Participants performed 

three force production tasks: 1) unimanual 2) bimanual simultaneous and 3) bimanual 

independent.  Older adults had significantly greater interhemispheric facilitation and 

trended towards less interhemispheric inhibition during voluntary muscle activation.  I 

also report a fundamental shift with age in the relationship between callosal tract 

microstructure and interhemispheric inhibition.  Specifically, older adults with greater 

callosal tract microstructure have less interhemispheric inhibition.  Further, greater 

interhemispheric inhibition was related to poorer bimanual performance in older adults 

on all tasks, whereas this relationship was only observed in young adults for the bimanual 
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independent condition.  These findings indicate changes in interhemispheric 

communication with advancing age such that older adults may rely on bilateral cortical 

cooperation to a greater extent than young adults for manual actions. 
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Introduction 
Many activities of daily living require the two hands to perform movements with 

independent sub-goals to accomplish a unified goal.  Consider buttoning your shirt; each 

hand works independently to accomplish a mutual goal.  Such movements involve 

coordinated motion in time and space, but also rely on independent control of each hand 

(Perrig et al., 1999).  Interhemispheric transfer via the corpus callosum plays a key role in 

the production of such coherently integrated behavior, assuring the appropriate balance of 

excitatory and inhibitory processes.  My recent work suggests that this interhemispheric 

excitatory / inhibitory balance may be altered in older adults (cf. Fling et al., 2011a).   

Both the size (Fling et al., in press; 2011b) and white matter integrity (Davis et 

al., 2009; Sullivan et al., 2010a) of the corpus callosum are reduced in older adults.  

These differences are typically reported as being specific to the anterior regions of the 

corpus callosum; however, a recent study by Sullivan and colleagues (2010b) 

demonstrated age-related declines in white matter microstructure (assessed with diffusion 

tensor imaging) of callosal fiber tracts connecting more posterior cortical regions such as 

the primary and secondary sensorimotor areas.  Furthermore, recent work from our 

laboratory has demonstrated that the size and microstructure of callosal regions 

connecting these sensorimotor cortical targets are related to motor performance in a 

differential fashion for young and older adults.  Specifically, on an asynchronous 

bimanual timing task better callosal microstructure was related to poorer performance in 

young adults, yet better performance in older adults (Fling et al., 2011b).  A change in 

neurophysiologic function, specifically interhemispheric inhibition, as a result of poorer 

callosal tract structure is one potential mechanism underlying this age-related difference. 
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Interhemispheric inhibition is mediated by transcallosal glutamatergic pathways 

that synapse onto pyramidal tract neurons through gamma-aminobutyric acid (GABA) 

inhibitory interneurons (Werhahn et al., 1999).  Structural integrity of callosal tracts 

connecting the primary motor cortices is predictive of interhemispheric inhibition in 

young adults (see Chapter 2).  A decline in interhemispheric inhibition with age has been 

reported (Talelli et al., 2008), however relationships between inhibition and callosal 

structure have yet to be described in older adults.  Thus, while a converging body of 

literature indicates declines in both interhemispheric inhibition and callosal tract 

microstructure with advancing age, relationships between callosal structure and function 

and their collective impact on bimanual control have yet to be studied in combination.   

Here I used diffusion tensor imaging (DTI) and transcranial magnetic stimulation 

(TMS) to quantify the integrity of callosal sensorimotor fibers and interhemispheric 

inhibition in young and older adults.  I hypothesized that better microstructure of callosal 

tracts connecting the two primary motor cortices would be positively related to bimanual 

independent task performance in older adults, but negatively related to performance in 

young adults.  Further, I hypothesized that less interhemispheric inhibition would be 

related to better bimanual independent task performance in both young and older adults. 

Finally, I expected to find less interhemispheric inhibition and greater interhemispheric 

facilitation in older adults.  This pattern of results would provide support for the notion 

that callosal structure-function relationships, as well as the balance of interhemispheric 

inhibition and facilitation, undergo a fundamental shift with age. 
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Materials and Methods 

Participants 

 Twenty-one young adults (10 males; mean age 22.1 ± 2.8 years; range 18-28 

years) were recruited from the population at the University of Michigan.  Eighteen 

community-dwelling older adults (8 males; 67.2 ± 5.2 years; range 65-76 years) also 

participated in this study (all older adults had a minimum high school education).  This 

experiment was approved by the Medical Institutional Review Board (IRBMED) of the 

University of Michigan.  Participants gave their informed written consent prior to 

beginning the experiment and were compensated for their time.   

I performed testing on 2 days, separated by less than one week.  On the first day 

of testing I acquired structural magnetic resonance (MR) and diffusion weighted (DW) 

images (detailed in the following section).  I also administered the Edinburgh 

Handedness Inventory (Oldfield, 1971; all participants were strongly right-handed, (mean 

= 0.89) and the Montreal Cognitive Assessment (MoCA) to assess general cognitive 

function.  To assess dexterity using both clinical and functional tasks, all participants 

completed the unimanual (dominant and non-dominant hand), bimanual and assembly 

tasks on the Purdue Pegboard as well as timed tasks of shoelace tying and buttoning a 5-

button dress shirt using a custom-built board composed of a dress shirt and a set of 

shoelaces.  On the second day of testing I assessed interhemispheric inhibition through 

the use of the ipsilateral silent period (iSP) technique during three different force 

production paradigms. 

Image acquisition 

 Using identical procedures to those previously reported (Chapter 2), whole brain 
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high-resolution structural MR images were collected on a 3T MRI scanner (General 

Electric, Waukesha, WI, USA) using a spoiled gradient echo sequence (124 slices, field-

of-view: 24 cm, voxel size: 0.94 x 0.94 x 1.4 mm, TR: 10.2 ms and TE: 3.4 ms).  

Diffusion weighted images were collected using a single shot echo-planar sequence in the 

axial plane (39 slices; TE/TR: 82.8 ms/9000 ms; field of view: 220 mm x 220 mm; voxel 

size 0.9 x 0.9 x 3.1 mm; b-value = 800 s/mm2; 15 diffusion-sensitizing directions).  

Images were motion and eddy-current corrected to account for drifts in scanner 

acquisition.  Using the averaged images with b = 0 and b = 800 s/mm2, the diffusion 

tensor was calculated and fractional anisotropy (FA) images were constructed off-line 

using ExploreDTI (Tournier et al., 2011).  Diffusion tensors were calculated from the 15 

DW images based upon a simple least squares fit of the tensor model to the diffusion data 

(Basser, et al. 2000).  Diagonalization of the tensor yields three voxel-specific 

eigenvalues (λ1 > λ2 > λ3) representing diffusivities along the three principle directions of 

the tensor.  The three principal eigenvectors were then used to construct fiber tracts and 

the resultant diffusion properties as described below.  

Fiber Tractography 

Interhemispheric fiber tractography between sensorimotor regions of interest was 

performed using a previously described technique (Chapter 2).  Briefly, each participant’s 

FA map was co-registered into MNI space, aligned along the anterior/posterior 

commissure line with the coordinate 0, 0, 0 placed at the brain’s center of mass, and 

voxel size was re-sampled to 2 x 2 x 2 mm through the use of ExploreDTI (Tournier et 

al., 2011).  The Human Motor Area Template (HMAT; Mayka et al., 2006) was co-

registered to each individual’s MNI-normalized FA image and subsequently used as a 
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mask of the primary motor cortex (M1).  Interhemispheric fiber tracts were identified by 

placing seed and target ROIs in homologous M1 regions as identified by the HMAT.  

Fiber tracts were constructed based upon deterministic streamline tractography using the 

method of Mori and colleagues (cf. Mori and van Zijl, 2002).  

Interhemispheric Inhibition & Facilitation 

Five young adults and three older adults from the first day of testing were unable 

to undergo the TMS procedure based on screening (Appendix A, 6 individuals were 

taking prescription medication with possible contraindications and 2 individuals had a 

familial history of epilepsy).  Thus, on day 2 a subset of 16 young adults and 15 older 

adults from the initial imaging session underwent a TMS procedure to assess 

interhemispheric inhibition.   

Experimental Task 

Participants were seated in a chair with both their dominant and non-dominant 

forearms resting on a table.  The shoulders were abducted at approximately 45°, the 

elbows were flexed at approximately 90°, and the forearms were pronated with the palms 

of the hand lying flat on the custom apparatus.  The wrist, third, fourth, and fifth fingers 

were constrained from moving, isolating force production to the index finger.  A pre-

amplified force transducer (OMEGA LC509-015 Beam Load Cell) was positioned at the 

lateral aspect of the proximal interphalangeal joint of the isolated index finger to record 

compressive isometric force (output: 0.5-9.5 Vdc; excitation: 24 Vdc ± 4 Vdc). 

Surface electromyography and motor evoked potentials (MEPs) were recorded 

from the first dorsal interosseous (FDI) muscle of both hands using 4 mm Ag/AgCl- 

electrodes placed on the muscle in a belly-tendon arrangement.  Surface EMG and MEP 
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data were recorded using Biopac hardware and AcqKnowledge software (BIOPAC 

Systems Inc., Goleta, CA).  The raw EMG signal was collected and digitized at 2000 Hz, 

amplified and band pass filtered (10-1000 Hz).  Data were collected at 2kHz as it has 

previously been shown to produce the most accurate estimate of mean consecutive 

difference (MCD) of pre-stimulus EMG activity, necessary to accurately calculate the iSP 

(Garvey et al. 2001).  To assess maximal voluntary contractile (MVC) force of the FDI, 

participants were instructed to press as hard as possible on the load cell using index 

finger abduction of the dominant hand for three consecutive 6-second trials.  The force 

applied to the load cell was displayed on the video monitor, providing online visual 

feedback during the MVC trials.  The highest force sample in each trial was averaged 

across three MVC trials providing an estimate of the participants’ MVC.  A minimum 90-

second rest period was provided in between each MVC trial.  The same procedure was 

subsequently performed on the non-dominant hand. 

Participants performed three different force production tasks: 1) unimanual 

isometric force of the dominant hand at a constant force target level, 2) bimanual 

simultaneous isometric force with both hands producing the same constant force target 

level (bimanual simultaneous task); and 3) dominant hand isometric force at a constant 

force target level while the non-dominant hand matched a 1 Hz sine wave (bimanual 

independent task; Figure 4.1).  The order of conditions was counter-balanced across 

participants.  For all conditions the force target levels used in the experiment were scaled 

to 20% of each individual subject’s MVC (during the bimanual independent task the peak 

force of the non-dominant sine wave-matching hand was also 20% MVC).  Thus, in all 

conditions the dominant hand always produced a constant isometric force at 20% MVC 
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Figure 4.1 - Bimanual independent force production performance for a representative 
young (A) and older adult (B).  For each participant the top panel represents the non-
dominant hand attempting to produce a 1 Hz sine wave, whereas the bottom panel 
represents the dominant hand attempting to maintain a constant isometric force.  The 
horizontal dotted line indicates the force target of the dominant hand (20% MVC), 
whereas the gray line indicates the 1 Hz sine wave target for the non-dominant hand 
(peak = 20% MVC).  Non-Dom = non-dominant hand; Dom = dominant hand; lbF = 
pound-force. 
 

while the activity of the non-dominant hand (i.e. the right M1) was expected to modulate 

inhibitory demands.  Feedback windows were presented on one video monitor and were 

aligned parallel on top of each other with the upper window providing feedback to the 

non-dominant hand while the lower window provided feedback for the dominant hand.  

During the unimanual and bimanual simultaneous force production tasks participants 

viewed a yellow, horizontal target line that spanned the width of a video monitor (placed 

at 20% of MVC for each respective hand).  During the bimanual independent movement 

condition the target for the dominant hand was identical to the other two conditions while 

the target for the non-dominant hand was a yellow 1-Hz sine wave target line with the 

peak force of each sine wave placed at 20% of MVC.  Force output was sampled at 200 

Hz; for each instant in time that force was sampled (.005s), a green pixel appeared in the 
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center of the respective feedback window corresponding to the amount of force produced.  

This provided participants with on-line, real-time visual feedback of their performance 

with minimal horizontal saccades required.  For each condition, participants were 

instructed to match their green force trace to the respective yellow target line for three 

35-second trials per condition.  Participants were provided rest breaks of five minutes in 

between each trial (a total of 9 trials) in an attempt to minimize fatigue. 

Ipsilateral Silent Period (iSP) 

Interhemispheric inhibition (IHI) was measured by evoking an ipsilateral silent 

period (iSP) in the dominant hand FDI.  The iSP is elicited by focal TMS of the M1 

ipsilateral to the hand making a voluntary contraction, leading to a brief suppression of 

voluntary activity in the electromyogram signal of this muscle (Meyer et al. 1995).  The 

iSP reflects inhibition of volitional motor activity, and thus is particularly well-suited to 

investigate interhemispheric control of voluntary cortical motor output (Giovannelli et al. 

2009).   

Prior to performing the experimental paradigm, I used a Magstim Rapid magnetic 

stimulator (The Magstim Company Ltd, Spring Gardens, Whitland, Carmarthenshire, 

UK) and a focal figure of eight coil (diameter of each wing 70 mm) to identify the right 

hemisphere M1 hotspot for the left FDI.  The coil was placed tangential to the scalp with 

the handle pointing backwards and 45° away from the midline (Chen et al. 2003).  The 

optimum site in the right M1 (hotspot) for eliciting motor responses in the left FDI was 

identified at supra-threshold intensity.  This location was marked on the scalp and 

subsequently utilized to elicit iSPs from the right FDI as it has previously been shown 

that the topography of the contralateral MEP and the iSP correspond closely (Wasserman 
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et al. 1991).  Resting motor threshold (RMT) was determined to the nearest 1% of the 

maximum stimulator output.  Using standard protocol, the RMT was defined as the 

minimum stimulus intensity that elicited MEPs of 50 µV in at least 5 out of 10 

consecutive trials (Triggs et al. 1994). 

Once participants reached the target force level during the unimanual task, I 

applied stimulation at 120% of resting motor threshold to the right motor cortex to elicit 

dominant hand iSPs.  During each 35-second trial, a minimum of five iSPs were evoked 

with an interstimulus interval jittered between 5-8 seconds (Garvey et al. 2001; Jung & 

Ziemann, 2006).  During the unimanual condition, EMG data were also collected and 

monitored from the non-dominant hand to ensure full relaxation and that the TMS coil 

was always in the appropriate location over the right M1.  During one trial in four 

different participants (two young adults and two older adults), MEPs ceased to be elicited 

from the left FDI.  On these occasions data collection was halted and the right M1 

hotspot for the FDI was re-located. 

 

Interhemispheric Facilitation 

Interhemispheric facilitation was assessed by measuring the motor evoked 

potential in the resting non-dominant hand during unimanual isometric contraction.  On-

going activity of one motor cortex has previously been shown to transcallosaly facilitate 

the contralateral M1 (Carson et al., 2004; Sohn et al,. 2003), which is reflected by an 

increase in the size of the contralateral MEP (i.e. the non-dominant resting hand in this 

context). 
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Data Analysis 

Fiber Tractography 

Descriptive metrics were calculated for the microstructure of M1 fiber tracts 

including fractional anisotropy and radial diffusivity ((λ2 + λ3) / 2).  Fractional anisotropy 

(FA), a rotationally invariant index that ranges from 0 (isotropic) to 1 (anisotropic), is a 

measure of the magnitude and orientation of principle eigenvectors on an intravoxel basis 

(Sullivan et al., 2010a).  Therefore, higher FA values are interpreted as reflecting better 

white matter microstructure (Basser and Pierpaoli 1996).  Conversely, lower radial 

diffusivity is interpreted as being indicative of better tract microstructure (Basser et al., 

2000).  

Force data 

The initial 5 seconds of each force time series was removed to eliminate the 

transitory performance in achieving the force target.  Force data were digitally filtered 

using a 4th order Butterworth filter with a low-pass cutoff frequency of 20 Hz. All data 

processing and subsequent time and frequency analyses were performed using software 

written in MATLAB (The MathWorks Inc., Natick, MA).  Similar to previous work, the 

amount of force output variability was assessed by calculating the within-trial mean 

(normalized to the force target goal and expressed as a percentage throughout the 

remainder of this chapter) and the root mean square error (RMSE) from the target 

(Vaillancourt et al. 2003).  I also performed a power spectral density analysis to assess 

peak frequency of the non-dominant hand during the bimanual independent condition to 

ensure that individuals were adhering to the 1 Hz frequency target.  
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Interhemispheric Inhibition 

 The ipsilateral silent period (iSP) was calculated by using an objective, graphical 

method described in detail by Garvey and colleagues (2001). EMG trials were rectified 

and analyzed offline using a custom MATLAB program (The MathWorks Inc., Natick, 

MA).  For each iSP (15 total per participant), upper and lower variation limits of the 

EMG signal were calculated by determining the mean consecutive difference (MCD) of 

EMG data points 100ms prior to stimulation: mean pre-stimulus EMG ± (|MCD| x 1.77).  

These limits encompassed 95% of possible pre-stimulus EMG data points (equivalent to 

two standard deviations).  Onset and offset of iSP were identified using the following 

criteria: (1) time of onset was the first of 5 consecutive data points to fall below the lower 

variation limit; (2) all subsequent data points were considered part of the iSP until there 

was a return of sustained EMG activity; (3) time of offset was defined as the first data 

point to fall above the lower variation limit if 50% or more of the data points in the 

following 5 ms window were also above the variation limit (Garvey et al. 2001).  In 

addition to measuring the onset, offset and duration of the iSP, the depth of the iSP was 

defined in two ways as previously described by Jung and Ziemann (2006): (1) the 

maximum amount of EMG suppression during the iSP (diSP-max), and (2) the average 

EMG level during the iSP (diSP).  The diSP and diSP-max were expressed as percentages 

of the mean prestimulus EMG.  Therefore the larger the diSP (and diSP-max), the greater 

the suppression of ipsilateral EMG activity during the iSP.  This is interpreted as 

increased interhemispheric inhibition (Garvey et al. 2001). 

 Similar to previous work, “motor overflow” was assessed for both groups during 

the unimanual dominant hand force production condition by taking the rectified integral 
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of the non-dominant (resting) hand EMG normalized to baseline measures of EMG 

activity for the same hand (Carey et al., 1983). Thus motor overflow is expressed as a 

percentage of the baseline EMG to decrease the chance of higher inter-subject variability 

due to differences in skin-electrode impedance, background noise, or arousal. 

 Interhemispheric Facilitation 

 Peak-to-peak amplitude was quantified for each MEP elicited from the non-

dominant hand during the unimanual force production task (15 total per participant).  

Because MEPs were standardized to 50 µV when identifying the resting motor threshold, 

those elicited during the task result in a normalized value comparable across participants. 

Statistical Analysis 

Independent t-tests were performed to compare between-group performance on 

the MoCA, timed shoelace tying and shirt buttoning, contralateral MEP amplitude 

(interhemispheric facilitation), and all metrics of IHI: iSP onset, iSP duration, diSP, and 

diSP-max.  A mixed-model repeated measures analysis of variance was used to analyze 

measures of fiber tract microstructure, manual dexterity and dominant hand force 

production with FA, radial diffusivity, RMSE, normalized mean force production, and 

number of pegs for each condition of the Purdue Pegboard treated as within-subject 

variables and age group treated as the between-subject variable.  Significance was set at 

an alpha of 0.05 (SPSS 18.0) and the Huyn-Feldt epsilon was computed to test for 

sphericity; I interpreted corrected P values in cases of violation.  Significant main effects 

were subjected to post-hoc paired t-tests and Bonferroni-corrected for multiple 

comparisons.  I have previously shown a fiber tract specific relationship between 

microstructure and inhibition (Chapter 2); thus within each age group I performed linear 
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regression to investigate the relationship(s) between microstructure of fiber tracts 

connecting the primary motor cortices, diSP, and dominant hand variability (RMSE) on 

the three different force production tasks.  Therefore M1 fiber tract microstructure was 

used as a predictor of diSP and behavioral performance, and diSP was also used 

separately as a predictor of behavioral performance.  I also used linear regression to 

investigate the association between interhemispheric facilitation and motor overflow.  All 

correlation analyses using either fiber microstructure or diSP as a predictor were 

Bonferroni-corrected for multiple comparisons (α = 0.05/4).  Finally, for all significant 

relationships I used a Fisher r-to-Z transformation to compare the strength of correlations 

between age groups.  All data are presented as mean ± standard deviation unless 

otherwise noted. 

 

Results 

Behavioral testing 

 Descriptive metrics of cognitive performance (MoCA), manual dexterity (Purdue 

Pegboard) and functional manual control tasks (timed shoelace tying & shirt buttoning) 

are shown in Table 4.1.  While both groups demonstrated similar MoCA scores and 

performance on the shoelace-tying task, young adults were significantly better at all 

manual dexterity tasks assessed with the Purdue Pegboard (a significant group and 

condition main effect, but no group x condition interaction; P < 0.001 for all 

comparisons), as well as significantly faster on the timed shirt-buttoning task (P < 0.01). 
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 Young Adults Older Adults 
MoCA 28.8 (1.3) 28.4 (1.3) 
Purdue Pegboard (# of pegs) 

Dominant 
Non-Dominant 
Bimanual 
Assembly 

 
16.0 (1.9)* 
14.9 (2.1)* 
12.6 (1.8)* 
39.8 (8.2)* 

 
12.8 (1.7) 
12.2 (2.1) 
9.9 (1.6) 
29.5 (3.8) 

Shirt Buttoning (s) 13.9 (2.3)* 18.8 (5.0) 
Shoelace Tying (s) 4.7 (0.9) 5.0 (1.0) 

Table 4.1 – Group performance on tasks assessing general cognitive performance, 
manual dexterity, and manual performance of daily functional tasks.  For the MoCA and 
Purdue Pegboard, higher values are indicative of better performance.  For timed shoelace 
tying and shirt buttoning, lower times are indicative of faster performance.  Young adults 
demonstrated significantly better performance on all components of the Purdue Pegboard, 
and were significantly faster on the shirt-buttoning task.  No group differences were 
noted for the MoCA or in timed shoelace tying.  Data are mean (standard deviation). 
MoCA = Montreal Cognitive Assessment; s = seconds. *P < 0.05. 
 

Behavioral Performance 

 Maximal voluntary contractile force was similar between groups for both the 

dominant (YA: 4.3 lbF; OA: 4.6 lbF) and non-dominant (YA: 3.9 lbF; OA: 4.3 lbF) FDI 

with no statistical differences noted.  As a result, during the force production tasks both 

groups were producing not only the same relative forces, but also similar absolute forces.  

A repeated measures ANOVA of dominant hand force variability across the three 

conditions revealed a significant main effect of RMSE for condition (F2,58 = 303.8, P < 

0.001) and for group, such that older adults had significantly more variability (F1,29 = 

23.7, P < 0.001).  Post hoc paired-sample t tests showed that dominant hand variability 

was significantly lower during the unimanual condition than for either bimanual 

condition (t > 6.6; P < 0.001 for both comparisons).  When comparing the two bimanual 

conditions (simultaneous & independent), dominant hand variability was significantly 

lower during the simultaneous condition (t1,30 = 8.3; P < 0.001).  Finally, I found a 

significant condition x group interaction for RMSE (F1,29 = 75.4, P < 0.001) such that 
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variability was differentially increased in older adults during the bimanual independent 

condition (t1,29 = 7.9; P < 0.001; Figure 4.2).  No differences were noted between groups 

for either the unimanual or bimanual simultaneous conditions (t1,29 < 0.7; P > 0.5 for both 

comparisons).   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 – Dominant hand variability during the two bimanual conditions.  Data show an age 
x task interaction with older adults disproportionately impaired at maintaining steady force 
production during the bimanual independent condition. ***P < 0.001. YA = young adult; OA = 
older adult; Dom = dominant hand. 
 

For dominant hand force accuracy (mean force output normalized to the target 

goal) I report a significant main effect of condition (F2,56 = 16.7, P < 0.001), but no group 

main effect (F1,28 = 0.9; P > 0.35) or group x condition interaction (F2,56 = 1.3; P > 0.26).  

No difference in accuracy was found between the unimanual (91.9%) and bimanual 

simultaneous (91.5%) force conditions.  Dominant hand accuracy on both these 

conditions was significantly better than during the bimanual independent task (77.6%; 

t1,29 > 4.0; P < 0.001 for both comparisons). 
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 Two additional behavioral metrics demonstrate that participants were able to 

adhere to each bimanual force condition.  During the bimanual simultaneous condition, 

non-dominant hand variability (RMSE = 0.057) and accuracy (89.06%) were similar to 

the dominant hand during the same task (RMSE = 0.054; accuracy = 91.5%).  

Furthermore, during the bimanual independent force condition, both groups were able to 

approximate a 1 Hz sine wave with the non-dominant hand (mean frequency YA: 0.93 

Hz; OA mean: 0.89 Hz). 

 

Interhemispheric Sensorimotor Fiber Tracts 

A significant age group difference was noted for FA (F1,30 = 21.5, P < 0.001) and 

radial diffusivity (F1,30 = 11.1, P < 0.001) with higher FA and lower radial diffusivity in 

young adults, both indicative of better fiber tract microstructure.  FA and radial 

diffusivity were highly correlated across individuals (r > 0.7); therefore I use FA as the 

sole measure of fiber tract microstructure for the remainder of the current chapter. 

 

Interhemispheric Inhibition (IHI) and Facilitation 

 All TMS measures can be viewed in Table 4.2.  Briefly, no difference in resting 

motor threshold (RMT) was noted between groups (P > 0.4); thus, stimulation intensity 

to elicit iSPs (120% RMT) was similar for young (76% of maximal stimulator output) 

and older adults (78% of maximal stimulator output).  To elicit the 15 iSPs necessary for 

analysis, an average of 15.3 stimulations and 15.5 stimulations were required for the 

young and older groups, respectively.  Although not significant, I report a trend for 

greater interhemispheric inhibition in young adults (t1,29 = 1.7; P = 0.07) compared to 
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older adults, as assessed by diSP (Figure 4.3A).  The age groups did not differ on diSP-

max, iSP onset or iSP duration (P > 0.25 for all comparisons). 

 

 Young Adults Older Adults 

RMT – % 63.6 (2.3) 64.9 (3.1) 

Pre-stim EMG – mV 1.03 (0.14) 0.93 (0.13) 

iSP Onset – ms 38.4 (0.8) 39.8 (0.9) 

iSP Duration – ms 27.4 (2.2) 27.9 (1.8) 

diSP – % 73.6 (1.6) 68.9 (2.3) 

diSP-max – % 91.9 (1.1) 91.5 (1.3) 

Contralateral MEP mV 3.98 (1.7) 10.3 (4.8)*** 

Table 4.2 – Measures evoked using transcranial magnetic stimulation.  No age group 
differences were noted for any measure, although a trend was observed towards 
decreased interhemispheric inhibition (assessed with diSP) in older adults (P < 0.08).  
Older adults had significantly greater interhemispheric facilitation (assessed by 
contralateral MEP).  Values are mean (S.D.). RMT = resting motor threshold; EMG = 
electromyography; iSP = ipsilateral silent period; diSP = depth of ipsilateral silent period; 
MEP = motor evoked potential. ***P < 0.001. 

 

 

Older adults had significantly larger contralateral MEPs than their younger 

counterparts (t1,29 = 7.2; P < 0.001) during the unimanual force production task, 

indicative of greater interhemispheric facilitation (Figure 4.3B).  Furthermore, 

interhemispheric inhibition (assessed with diSP) was inversely correlated with facilitation 

in young adults (r = -0.74; P < 0.001) indicating that those with greater interhemispheric 

inhibition had less facilitation.  This relationship between inhibition and facilitation was 

not present in older adults (r = -0.03; P > 0.5).   
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Figure 4.3 - Age-related differences in interhemispheric inhibition (A) and facilitation (B).  
There was a trend for greater interhemispheric inhibition in young adults (P < 0.08) and 
significantly greater facilitation in older adults (P < 0.001).  For both age groups a representative 
example of the ipsilateral silent period (mean of 15 stimulations) and contralateral MEP (one 
stimulation) are provided.  For each instance the young adult example is the top panel and the 
older adult example is the bottom panel.  In each of these instances stimulation is applied at time 
point 0.  diSP = depth of ipsilateral silent period; MEP = motor evoked potential. ***P < 0.001. 
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Non-dominant hand EMG activity (normalized to baseline levels) from the 

unimanual force production task was used as an index of motor overflow (Figure 4.4A 

presents representative examples for each age group).  An independent t test showed that 

older adults had significantly greater motor overflow than their younger counterparts (t1,29 

= 2.4; P < 0.03; Figure 4.4B).  Furthermore, greater interhemispheric facilitation (larger 

MEP amplitude) was significantly, positively correlated with motor overflow for both 

young (r = 0.57; P < 0.02) and older adults (r = 0.59; P < 0.01). 

 

Figure 4.4 - A) Rectified EMG activity during a unimanual force production trial from 
one representative young (top two panels) and older adult (bottom two panels) illustrating 
motor overflow for the older adult.  For each participant the top panel reflects EMG 
activity from the non-dominant resting hand’s FDI, whereas the bottom panel is EMG 
from the dominant, force producing hand’s FDI.  Observable spikes in each participant’s 
non-dominant hand EMG activity profile reflect stimulator artifact during iSP elicitation.  
Note that different scales are used on the y-axis for non-dominant as opposed to dominant 
hand EMG activity to better illustrate motor overflow. B) Average EMG during the 
unimanual force production task from the non-dominant FDI normalized to baseline 
EMG activity.  Older adults had significantly greater motor overflow than young adults.  
*P < 0.02. LH = left hand (non-dominant); RH = right hand (dominant). 
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Relationships Between Fiber Tract Structure, IHI, Facilitation, and Behavior 

 I performed linear regression using the microstructure (assessed with FA) of 

interhemispheric fiber tracts connecting the primary motor cortices as a predictor of IHI 

(assessed with diSP) within each age group.  Young adults demonstrated a significant 

relationship, such that individuals with better fiber tract microstructure have increased 

IHI (r = 0.76; P < 0.001).  Conversely, older adults with greater FA have decreased 

interhemispheric inhibition (r = -0.72; P < 0.002; Figure 4.5).  The strength of these 

relationships was significantly different between groups as assessed with a Fisher r-to-Z 

transformation (Z = 4.8; P < 0.001).  Thus I report what appears to be a fundamental shift 

with age in the relationship between interhemispheric fiber tract structure and IHI. 

 

Figure 4.5 - A) Age differences in the relationship between microstructure of 
interhemispheric fiber tracts connecting primary motor cortices and interhemispheric 
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inhibition.  While young adults demonstrate a significant linear relationship (r = 0.76; P < 
0.001; red), older adults show an inverse relationship (r = -0.72; P < 0.002; blue).  Using 
a Fisher r-to-Z transform, the strength of correlation is also significantly different 
between groups (P < 0.001).  The dashed line represents linear regression fit for young 
adults, while the solid line represents linear regression fit for older adults.  B) 
Interhemispheric fiber tracts connecting bilateral primary motor cortices in a 
representative young (red) and older (blue) adult.  Coordinates for both images are (x = 0, 
y = -2, z = 30) in normalized MNI space. 
 
   

I also evaluated measures of interhemispheric fiber tract structure and IHI as predictors of 

dominant hand variability for each of the three force conditions.  Fractional anisotropy 

was not significantly related to dominant hand variability on either the unimanual (r = 

0.02) or the bimanual simultaneous condition (r = 0.08) in young adults.  Although not 

significant, I observed a trend such that FA was negatively correlated with variability for 

older adults on both the unimanual (r = -0.33; P < 0.1) and bimanual simultaneous (r = -

0.34; P < 0.1) condition.  Finally, I found that during the bimanual independent condition 

FA was positively associated with dominant hand variability (r = 0.41; P < 0.06) in 

young adults at a level trending towards significance, but negatively associated with 

variability in older adults (r = -0.57; P < 0.01).  The strength of these correlations was 

also significantly different between groups when assessed using a Fisher r-to-Z 

transformation (Z = 2.7; P < 0.01; Figure 4.6).  Therefore I show that structural integrity 

of interhemispheric fiber tracts is related to complex bimanual motor performance in a 

differential fashion for young and older adults. 
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Figure 4.6 – Age differences in the relationship between microstructure of 
interhemispheric fiber tracts connecting primary motor cortices and dominant hand force 
variability during the bimanual independent force task.  In young adults, greater 
microstructure was related to poorer performance (r = 0.41; P < 0.06), whereas in older 
adults greater microstructure was related to better performance (r = -0.57; P < 0.01).  
Using a Fisher r-to-Z transform, the strength of correlation is significantly different 
between groups (P < 0.01).  The dashed line represents linear regression fit for young 
adults, while the solid line represents linear regression fit for older adults.  Bim. = 
bimanual; Indep = independent. 

 

Similar to the observed structural relationships, IHI was not related to 

performance in young adults during either the unimanual (r = -0.13) or bimanual 
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simultaneous (r = -0.19) condition.  Conversely, in older adults increased IHI was 

significantly related to poorer performance of both the unimanual (r = 0.59; P < 0.01) and 

the bimanual simultaneous (r = 0.55; P < 0.01) condition.  I also report that increased IHI 

is correlated with increased dominant hand variability during the bimanual independent 

condition for both age groups (YA: r = 0.59; OA: r = 0.63).  Thus, higher IHI is 

associated with poorer performance on only the most difficult bimanual condition in 

young adults.  Conversely, increased IHI is related to poorer performance across all 

conditions in the older adult contingent.  Finally, no relationship was observed in young 

or older adults between interhemispheric facilitation and motor performance (P > 0.1), 

nor between facilitation and fiber tract microstructure (P > 0.1).  

 

Discussion 

 This is the first study to simultaneously investigate the effects of age on 

interhemispheric microstructure and physiologic function along fiber tracts connecting 

the primary motor cortices.  I employed a comprehensive approach to investigate callosal 

sensorimotor fiber tract structure, interhemispheric inhibition (IHI), facilitation, and their 

combined impact on motor control in young and older adults.  I report that older adults 

exhibit disproportionately greater variability for bimanual actions when the two hands 

have independent force production goals.  Additionally, I have shown that IHI is 

negatively associated with performance on the bimanual independent condition in both 

age groups; however, interhemispheric fiber tract microstructure is related to 

performance in a differential fashion for young and older adults.  A novel finding of the 

current study is that higher radial diffusivity (i.e. poorer microstructure) is strongly 
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correlated with decreased IHI in older adults.  This is the opposite of what has previously 

been observed in young adults (Wahl et al., 2007), and opposite of what I report for 

young adults in the current chapter.  Thus this is the first work to report a qualitative shift 

in the relationship between sensorimotor fiber tract microstructure and IHI with age.  

Multiple studies report declines in callosal size and microstructure with advancing 

age (cf. Seidler et al., 2010), which are associated with significant behavioral deficits.  

For example, less lateralized task processing during both cognitive (Muller-Oehring et 

al., 2007) and motor (Langan et al., 2010) tasks is associated with reductions in callosal 

size in older adults.  In the current study I found that older adults exhibit differentially 

greater variability for bimanual tasks when the two hands have independent movement 

goals.  This was evidenced by increased dominant hand variability during the bimanual 

independent force production task, as well as poorer performance on clinical (Purdue 

Pegboard) and functional (timed shirt buttoning) tasks of manual dexterity in older adults.  

On the other hand, older adults demonstrated comparable performance to young adults 

during the unimanual and bimanual simultaneous force conditions.  Although previous 

studies report that increased callosal microstructure is beneficial to speeded, synchronous 

bimanual tasks in young adults (Johansen-Berg et al., 2007), recent work from our lab 

demonstrates that this relationship is task-specific.  Specifically, asynchronous bimanual 

performance and callosal microstructure are negatively related in young adults, whereas 

they are positively correlated in older adults (Fling et al., 2011b).  These findings 

strongly implicate age differences in size and integrity of callosal microstructure as key 

contributors to bimanual control deficits, potentially due to a reduced ability to inhibit 

motor overflow to the contralateral sensorimotor cortex.  
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These findings suggest a shift in the balance of interhemispheric inhibition and 

facilitation with advanced age.  A converging body of literature indicates there are 

reductions in cortical inhibition with advancing age.  Declines in both intrahemispheric 

(Peinemann et al., 2001; Sale and Semmler, 2005) and interhemispheric (Talelli et al., 

2008) inhibition have been reported in older adults, as well as a reduced ability to 

modulate intracortical inhibition to meet task demands (Fujiyama et al., 2009).  Age 

differences in IHI have not previously been investigated using the ipsilateral silent period 

technique, nor have there been reports of age differences in interhemispheric facilitation.  

I found that older adults had significantly greater interhemispheric facilitation, coupled 

with a trend for less interhemispheric inhibition.  Furthermore, whereas stronger 

inhibition was predictive of decreased facilitation in the young adults, no such 

relationship existed in their older counterparts.  Multiple studies have previously 

indicated that older adults have increased bilateral cortical activity (Ward and 

Frackowiak, 2003; Ward et al., 2008) and interhemispheric motor network connectivity 

(Langan et al., 2010; Zuo et al., 2010) potentially reflective of increased excitability 

within these motor regions, and a release from their typically inhibitory interactions.  

This study provides physiological evidence supporting this hypothesis; however the 

underlying mechanisms resulting in this potential shift in interhemispheric 

communication have yet to be fully elucidated. 

Interhemispheric inhibition is mediated through gamma-aminobutyric acid 

(GABA) inhibitory interneurons (Werhahn et al., 1999).  Older adults exhibit reduced 

glutamate levels in the motor cortex (assessed by 1H MR spectroscopy; Kaiser et al., 

2005), however less is known about changes in GABA with age.  A recent study of the 
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visual cortex in post-mortem human brains highlights both pre- and post-synaptic losses 

of GABAA signaling in the aging visual cortex (Pinto et al., 2010).  The authors report 

two significant shifts in GABAergic signaling that accompany advanced age: 1) older 

adults have a greater capacity to traffic GABAA to the synapse (more GABA vesicular 

transporter) while young adults have a greater capacity to produce GABAA (more 

glutamic acid decarboxylase 65); and 2) older adults have relatively more pre-synaptic 

(more glutamic acid decarboxylase 65) expression while young adults have relatively 

more post-synaptic (more Gephyrin) expression (Pinto et al., 2010).  Both of these 

changes point to alterations in functioning of GABAergic synapses in the visual cortex of 

older adults. To my knowledge, age-related differences in the concentration of GABAB 

receptors (such as those mediating the iSP) have yet to be explored, nor has GABAergic 

signaling been studied in the aging motor cortex.  Both phenomena could underlie 

decreased IHI in older adults. 

 Inter-individual variability in motor control is frequently treated as a source of 

'noise' and discarded by averaging data from a group of participants.  Kanai and Rees 

(2011) recently proposed that inter-individual differences can be used as a source of 

information to link human behavior to brain anatomy. Indeed, I report that increased IHI 

was related to poorer performance across all force production tasks in older adults, 

whereas increased IHI was only related to poorer performance during the bimanual 

independent task in young adults. Similarly, previous work has shown that older adults 

benefit from bihemispheric processing across all levels of task complexity on a divided 

visual field letter-matching task, whereas young adults only demonstrate similar benefits 

on the most complex tasks (Reuter-Lorenz et al., 1999).  Taken together these results 
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suggest that older adults benefit from bilateral cortical cooperation (decreased IHI) across 

all tasks, whereas young adults only benefitted from such cooperation during the 

bimanual independent task. 

While IHI is necessary to prevent interference of control processes between the 

two cortices (cf. Bloom & Hynd 2005; Carson, 2005), emerging work demonstrates that 

reduced IHI is beneficial for performance of asynchronous bimanual tasks (Shim et al. 

2005).  For example, musicians have decreased IHI compared to non-musicians (Ridding 

et al., 2000).  The fact that IHI and fiber tract microstructure are related to performance in 

a differential fashion for young and older adults strongly supports my finding of an age-

related shift in the relationship between interhemispheric fiber tract structure and IHI. 

While studies combining DTI and TMS have previously shown that fiber tract 

microstructure is a strong predictor of IHI capacity in young adults (Fling et al., in press; 

Wahl et al., 2007), I am unaware of any studies that have assessed this relationship in 

older adults.  Here I report a fundamental shift with age in the relationship between 

microstructure of fiber tracts connecting bilateral primary motor cortices and IHI such 

that older adults with increased microstructure have decreased IHI.  I suggest that these 

results implicate a change in the balance of interhemispheric excitatory and inhibitory 

communication with age.  Such a change may be a (nonconscious) strategic shift; that is 

to say, older adults who are able to maintain interhemispheric fiber tract integrity may 

rely more on interhemispheric facilitation and less on IHI in order to facilitate improved 

motor control.  It remains unclear whether this decreased IHI represents an adaptive 

change related to better motor control across the lifetime, or an explicit neural strategy 

adopted at a later point in life to facilitate improved performance.  Either explanation is 
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plausible, however it is important to note that even in those older adults with relatively 

decreased IHI, motor performance was still notably poorer than young adults.  Thus, this 

strategy alone would not insulate older adults from experiencing declines in performance.   

 Interhemispheric interactions between additional sensorimotor cortices (both 

homologous and non-homologous) were beyond the scope of the current paper, but are 

clearly worthy of further investigation.  For example, movement-related facilitation from 

the right PMd to the left M1 has recently been shown to predict performance during anti-

phase bimanual movements, suggesting that these connections contribute to independent 

yet coordinated control of the two hands (Liuzzi et al., 2011; van den Berg et al., 2010). 

 

Conclusions 

 I report a qualitative shift in the balance of interhemispheric communication with 

age.  This is evidenced by increased interhemispheric facilitation, increased motor 

overflow, and decreased interhemispheric inhibition in older adults relative to their 

younger counterparts.  Further, I report that older adults have significantly reduced 

microstructure of interhemispheric fiber tracts connecting primary motor cortices.  

Greater microstructure of fiber tracts connecting primary motor cortices was related to 

better performance on the bimanual independent force production task in older adults, but 

poorer performance in young adults on the same task.  Additionally, increased 

interhemispheric inhibition was related to poorer performance on all force production 

tasks in older adults, but only on the bimanual independent task in young adults.  Finally, 

I report an age-related shift in the relationship between interhemispheric inhibition and 

callosal fiber tract microstructure connecting bilateral primary motor cortices.  Increased 
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structural integrity was positively associated with interhemispheric inhibition in young 

adults, whereas the relationship was negative in older adults.  These findings suggest 

changes in interhemispheric communication with advancing age such that older adults 

rely on bilateral cortical cooperation to a greater extent than young adults on both 

unimanual and bimanual motor tasks.  
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CHAPTER V 

General discussion and conclusions 

 

Overview 

The overarching goal of my dissertation was to determine whether age-related 

declines in callosal structure and interhemispheric inhibition contribute to previously 

described age deficits in uni- and bimanual control.  I collected diffusion weighted 

images to identify homologous interhemispheric connections between primary and 

secondary sensorimotor areas to further our understanding of the contributions of callosal 

fiber tract structure to motor control.  I have generated a mid-sagittal callosal spatial atlas 

in normalized MNI space for future studies to use when investigating callosal fiber tracts 

connecting primary and secondary sensorimotor cortices.  Additionally, I found a positive 

relationship between strength of interhemispheric inhibition and microstructure of 

interhemispheric fibers that is specific to tracts connecting the primary motor cortices in 

young adults.  Thus, increased fiber microstructure in young adults predicted higher 

interhemispheric inhibitory capacity (Chapter 2).  In assessing the contributions of IHI to 

motor control I demonstrated that individuals with greater inhibitory capacity had 

reduced mirror EMG activity in the left hand during unimanual right hand contraction.  

However, these same individuals demonstrated the poorest performance during the 

bimanual independent force production task.  I suggest that a high capacity for IHI from 
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one motor cortex to another can effectively prevent “motor overflow” during unimanual 

tasks, but it can also limit the ability for optimal control during bimanual independent 

tasks, possibly due to a reduced capability for interhemispheric cooperation (Chapter 3).  

Finally, I showed that better fiber tract structural integrity was related to poorer 

independent bimanual motor control in young adults, but better control in older adults on 

the same task (Chapter 4).  Using TMS in the same individuals I have shown that 

increased interhemispheric inhibition was related to poorer bimanual task performance in 

older adults across all levels of uni- and bimanual control, whereas this relationship was 

only observed in young adults for the bimanual independent task.  Finally, I found a 

fundamental shift with age in the relationship between callosal fiber tract microstructure 

and inhibitory function.  Specifically, older adults with better callosal tract microstructure 

had reduced interhemispheric inhibition, potentially to facilitate performance on 

independent bimanual tasks.  Collectively, these findings contribute to a comprehensive 

understanding of structural connectivity and neurophysiologic function of 

interhemispheric sensorimotor fibers and their respective contributions to motor control.  

  

General discussion 

 In my first study I delineated mutually exclusive interhemispheric sensorimotor 

fiber tracts.  Following callosal fiber tract identification, I investigated the relationship 

between callosal tract microstructure and interhemispheric inhibition.  To accomplish this 

I utilized a multi-modal neuroimaging approach using DTI to assess structural 

connectivity and TMS to assess interhemispheric inhibition.  Based on previous work by 

myself (Fling et al., in press b) and others (Koerte et al., 2009) I hypothesized that 
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callosal microstructure would be negatively associated with interhemispheric inhibition 

in a young adult cohort.  This hypothesis is supported by my recent work demonstrating 

that higher CC microstructural integrity is associated with poorer performance on 

bimanual tasks requiring a large degree of interhemispheric inhibition (Fling et al., in 

press b).   

I mapped mutually exclusive transcallosal connections between homologous 

sensorimotor regions and computed quantitative metrics of each fiber tract (Chapter 2).  

Paralleling work in non-human primates (Dancause et al., 2007; Fang et al., 2009; 

Pandya and Vignolo, 1968; Rouiller et al., 1994) I found the densest interhemispheric 

sensorimotor connections to be between the SMA and pre-SMA.  Additionally, I 

provided a mid-sagittal callosal atlas in normalized MNI space for future studies to use 

when investigating callosal fiber tracts connecting primary and secondary sensorimotor 

cortices.  Contrary to my hypothesis, I report a strong, positive relationship between 

strength of interhemispheric inhibition and microstructure of interhemispheric fibers that 

is specific to tracts connecting the primary motor cortices in young adults.  These results, 

taken together with my previous work (Fling et al., in press b), suggest that greater 

interhemispheric inhibiton and fiber tract microstructure are detrimental to independent 

bimanual performance in young adults regardless of whether the independent manual 

control is focused on temporal replication (tapping) or force production. 

Previous work has demonstrated that IHI is increased during both unimanual and 

independent bimanual movements of the upper limbs in comparison to synchronous 

bimanual movements, likely to minimize interference between the hands (Fujiyama et al. 

2009; Giovannelli et al. 2009; Stinear & Byblow, 2002; Vercauteren et al. 2008).  Thus 
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my second study investigated the relationship(s) between motor performance and 

individual differences in inhibitory capacity of the corpus callosum (Chapter 3).  I 

hypothesized that individuals with greater IHI capacity would be able to inhibit motor 

overflow during unimanual contraction to a greater extent.  Furthermore, I predicted that 

these same individuals would demonstrate poorer performance on the bimanual 

independent task.  In agreement with these hypotheses I found that individuals with 

greater IHI capacity demonstrated reduced mirror EMG activity in the left hand during 

unimanual right hand contraction.  These same individuals demonstrated the poorest 

performance during the bimanual independent force production task.  I suggest that a 

high capacity for IHI from one motor cortex to another can effectively prevent “motor 

overflow” during unimanual tasks.  However, taken together, the results of Chapters 2 

and 3 suggest that increased callosal microstructure and IHI likely limits the ability for 

optimal control during independent bimanual tasks, possibly due to a reduced capability 

for interhemispheric cooperation. 

I have previously reported that older adults’ performance is differentially 

impaired during bimanual movements where each hand has an independent movement 

goal (Fling et al., in press b).  Such asynchronous bimanual actions purportedly rely on 

interhemispheric communication via the corpus callosum. Considering that callosal 

microstructure declines with advancing age (Fling et al., 2011a; b), I evaluated the 

hypothesis that age-related degradation of callosal structure and inhibitory function 

contribute to the selective difficulty older adults have with performing asynchronous 

actions (Chapter 4).  Specifically, I hypothesized that better microstructure of callosal 

tracts connecting the two primary motor cortices would be positively related to 
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independent bimanual task performance in older adults, but negatively related to 

performance in young adults.  Further, I hypothesized that increased interhemispheric 

inhibition would be related to poorer independent bimanual task performance in both 

young and older adults.  Consistent with my hypotheses, I found that better 

microstructure of callosal tracts connecting the two primary motor cortices was positively 

related to bimanual task performance in older adults, but negatively related to 

performance in young adults.  Further, increased interhemispheric inhibition was related 

to poorer bimanual task performance in older adults across all tasks, whereas this 

relationship was only observed in young adults for the independent bimanual task.  

Finally, I report a fundamental shift with age in the relationship between callosal fiber 

tract microstructure and inhibitory function.  Specifically, older adults with better callosal 

tract microstructure have reduced interhemispheric inhibition, potentially to facilitate 

performance on independent bimanual tasks.  

The series of studies in the current dissertation collectively demonstrates the 

differential contributions of interhemispheric inhibition and fiber tract structure to motor 

control in young and older adults.  Based upon the results of these studies, I suggest that 

in young adults, increased interhemispheric inhibitory function is associated with larger 

callosal size and increased fiber tract microstructure, whereas the inverse relationship is 

true in older adults.  Furthermore, a parsimonious and testable hypothesis that builds 

upon my recent findings is that performance on bimanual tasks falls along a continuum, 

which demonstrates a shared optimal region of callosal microstructure and IHI for young 

and older adults.  That is, young and older adults exhibit maximal performance for a 

comparable range of callosal microstructure and IHI values.  However, structure-
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physiological function-performance relationships differentially diverge from this range 

for the two age groups (Figure 5.1). 

 

 

Figure 5.1 - This diagram provides a graphic representation of my hypothesis that performance 
on bimanual tasks falls along a continuum which demonstrates a shared optimal region of callosal 
microstructure and interhemispheric inhibition for young and older adults (darker gray central 
zone).   Structure-physiological function-performance relationships differentially diverge from 
this range for the two age groups, with greater interhemispheric inhibition and reduced callosal 
structure associated with poorer performance in older adults and greater interhemispheric 
inhibition and greater callosal structure associated with poorer performance in young adults.  The 
black square data point at x, y=0 indicates that there is no capacity for interhemispheric inhibition 
in the complete absence of the corpus callosum. 

 

Caveats & Limitations 

 A few limitations should be taken into account when interpreting the findings of 

my experiments.  The most notable is my choice of deterministic tractography to identify 

interhemispheric callosal fiber tracts.  Currently, DTI is most commonly used to extract 
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fiber orientations from the diffusion-weighted signal as done in the current dissertation 

(Basser et al., 1994a,b).  However, in voxels containing multiple fiber orientations, this 

model has been shown to be inadequate (Alexander et al., 2002; Frank, 2001, 2002; Tuch 

et al., 2002).  Such voxels occur frequently throughout the white matter due to partial 

volume effects between adjacent tracts.  A recent study estimated that a third of the white 

matter voxels contain complex fiber architecture (Behrens et al., 2007).  This has 

important implications for fiber tractography, as most white matter tracts will traverse 

regions with multiple fiber orientations at some point along their path.  In such regions, 

the orientation extracted from the diffusion tensor is unreliable and may cause false 

negatives, in which tracking terminates (Behrens et al., 2007), or false positives, in which 

tracking switches to an unrelated adjacent tract (Pierpaoli et al., 2001).   

While it is true that deterministic tractography can be susceptible to a decreased 

signal-to-noise ratio as a result of crossing fiber tracts, this technique has been utilized 

extensively to describe organization and microstructure of large white matter fiber 

bundles such as the corpus callosum and the cortical-spinal tract (Davis et al., 2009; 

Hofer and Frahm, 2006; Sullivan et al., 2010).  Furthermore, I have made a concerted 

effort in the Discussion section of Chapter 2 to relate the results to previous anatomical 

studies performed in animal and post-mortem human brains to help support my 

interpretations of “relative density”.  My results align quite nicely with the existing 

literature in this respect.  Additionally, previous work using probabilistic tractography to 

assess interhemispheric sensorimotor connections has produced very similar results to 

those in the current study, demonstrating largely medial cortical projections to 

sensorimotor cortices (e.g. Bonzano et al., 2011; Johansen-Berg et al., 2007). 
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It should be noted that although I have demonstrated significant contributions 

from both interhemispheric structure and function to motor control, these studies are still 

indirect assessments of the true underlying neural mechanisms.  That is to say, the current 

dissertation is not able to describe causal effects at the neurotransmitter level, nor are the 

studies able to describe the mechanism of callosal microstructural decline.  For example, 

while the iSP is mediated through GABAB neurotransmitter receptors (Werhahn et al., 

1999), the current studies are unable to determine whether the observed declines in IHI in 

older adults are the results of reduced density of inhibitory neurotransmitters or a shift in 

the balance of inhibitory and excitatory interhmeispheric communication with age.  

Further, DTI is an indirect metric of white matter microstructure and while increases in 

radial diffusivity, as observed in older adults (Chapter 4), are suggested to reflect myelin 

deterioration (Gulani et al., 2001), this interpretation must be made with caution. 

An additional limitation of the current work is the use of a correlational approach 

utilizing both fiber tract microstructure and interhemispheric inhibition as predictors of 

manual motor performance.  That is to say, correlational anlaysis alone cannot infer 

causality of the observed relationships.  Future studies would benefit by incorporating 

more direct assessements at the neurotransmitter level to describe the underlying age-

related mechanisms responsible for the relationships observed in my dissertation.  For 

example MR spectroscopy can be used to identify the density of GABA and glutamate 

neurotransmitter receptors within the motor cortices.  Identifying age-differences in the 

density and availability of these neurotransmitter receptors in the aging motor cortex will 

provide a more direct explanation of the mechanisms underlying the age differences in 

interhemispheric facilitation and inhibition reported in my dissertation. 
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There are also limitations related to the force production tasks utilized in my 

dissertation.  The goal of my dissertation is to leverage the current results in a more 

applied sense to improve function on activities of daily living.  The force production 

tasks, specifically the bimanual independent task, may not be ideal for such an 

extrapolation.  While my previous work (Fling et al., 2011b) and the work comprising my 

dissertation report similar relationships between callosal microstructure and motor 

performance, the choice of motor tasks are quite different (discrete finger tapping versus 

continuous force production in the current investigation).  The tapping tasks I have 

previously used are an example of event timing, where individual are making discrete 

movements that are temporally coupled in some fashion (Zelaznik & Rosenbaum, 2010).  

Conversely the force production paradigm used in this dissertation is not temporally 

coupled; i.e. during the bimanual independent task the two hands do not share a mutual 

goal, each hand has its own distinct task goal.  Future studies using these same force 

production tasks may benefit from integrating visual feedback into a single display, such 

as a Lissajous plot (Kovacs et al., 2009).  Previous work has shown that moving the two 

limbs in a cyclical fashion 90° out of phase with each other is quite difficult, but 

performance can be improved if the limb trajectories are plotted in real time on a single 

angle-angle, or Lissajous plot, resulting in a circular trajectory (cf. Verschueren et al., 

1997; Lee et al., 1995; Swinnen et al., 1991, 1996).  Recent work by Kovacs and 

colleagues (2009) has shown that a variety of difficult out-of-phase bimanual actions can 

be performed with ease if participants are prevented from viewing the two hands moving 

and instead only view a single, integrated perceptual goal for the task (i.e., an angle-angle 

plot of the two moving limbs).  I hypothesize that presenting task goals and movement 
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feedback as a single integrated perceptual goal could reduce the IHI demands of 

bimanual control and result in improved performance for both young and older adults. 

An additional limitation pertinent to Chapters 3 and 4 is the attentional demand 

required to perform two tasks synchronously, particularly during the bimanual 

independent force production task.  It is well established that performing two tasks 

simultaneously often degrades performance of one or both tasks, potentially due to 

competition for shared attentional resources (Hiraga et al. 2009).  In the current studies 

performance of the dominant hand became more variable as the involvement of the non-

dominant hand’s task increased for both young and older adults.  Therefore, while the 

increase in dominant hand variability may be due to interhemispheric M1 interactions, it 

is also quite possible that the dual-task nature of the bimanual condition played a 

significant role.  Previous work has shown that older adults benefit from bihemispheric 

processing across all levels of task complexity on a divided visual field letter-matching 

task, whereas young adults only demonstrate similar benefits on the most complex tasks 

(Reuter-Lorenz et al., 1999).  Taken together these results suggest that older adults 

benefit from bilateral cortical cooperation (decreased IHI) across tasks of all complexity, 

whereas young adults only benefit from such cooperation during independent bimanual 

tasks. 

 

Implications and future directions 

 The current studies have important applied implications for understanding and 

counteracting age deficits in motor function, as well as theoretical importance for 

determining the neural bases of bimanual control.  These studies have provided an 
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integrated view of relationships between callosal structure, physiology, and functional 

motor behavior extending our current understanding of neuromotor control.  Moreover, 

the results from these studies have the potential to extend work productivity and prolong 

independent living for older adults. 

Future studies would benefit from exploring interhemispheric resting state 

functional connectivity (e.g. Langan et al., 2010; Jelsone-Swain et al., 2011), along with 

DTI to further our understanding of the interaction of these different measures, along 

with potential age-related differences.  Furthermore, incorporating MR spectroscopy to 

assess neurotransmitter concentration and density would be beneficial to answering 

questions raised by the current dissertation.  It is possible that there is a selective decrease 

in the concentration of GABA, as compared to glutamate, with aging.  Furthermore, by 

altering stimulation parameters, TMS can be used to assess interhemispheric excitation as 

well as IHI (Chen et al., 2003).  It would be beneficial to assess each of these metrics in 

the same older adult individuals to determine if there is a shift in the balance of 

interhemispheric communication as compared to young adults. 

These studies also have the potential to provide a greater understanding of clinical 

populations exhibiting altered interhemispheric interactions such as individuals with 

multiple sclerosis and those living with a stroke.  Individuals with multiple sclerosis 

demonstrate declines in motor control as well as decreased fiber tract microstructure 

between primary motor cortices (Bonzano et al., 2008; Wahl et al., 2010) and decreased 

IHI compared to neurologically healthy controls (Wahl et al., 2010).  These declines may 

be similar to those observed in older adults, however this has yet to be investigated.  It is 

quite possible that both healthy older adults and those living with multiple sclerosis 
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would benefit from training interventions designed to facilitate independent bimanual 

control. 

Increased IHI from the less affected hemisphere to the more affected hemisphere 

has been shown to be a significant contributor to post-stroke motor deficits (Hummel & 

Cohen, 2006; Murase et al., 2004).  This effect reduces the potential for neural plasticity 

and recovery in the more affected hemisphere due to the increased suppressive effect.  

Recent rehabilitation studies have demonstrated that through extrinsic constraints 

(constraint-induced therapy; Liepert et al., 2004) as well as non-invasive brain 

stimulation interventions (Harris-Love et al., 2011; Liepert et al., 2004), the balance of 

interhemispheric communication can be restored, although not to pre- neurological insult 

levels.  I am interested in combining metrics of structural sensorimotor network 

connectivity (assessed with DTI as in the current dissertation) with non-invasive 

stimulation protocols.  It is quite possible that interhemispheric structural (DTI) and 

functional (fcMRI) connectivity strength may serve as excellent predictors of the 

potential for neurophysiologic plasticity in individuals with chronic unilateral 

hemispheric stroke. 

 

Conclusions 

 The current dissertation provides a comprehensive description of interhemispheric 

sensorimotor structural connectivity and neurophysiologic function in young and older 

adults.  By combinatorial approaches of behavior, MRI, DTI, and TMS I have shown the 

following: I) a strong, positive relationship between strength of interhemispheric 
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inhibition and microstructure of interhemispheric fibers specific to tracts connecting the 

primary motor cortices in young adults.  II) Young adults with greater IHI capacity 

demonstrate reduced mirror EMG activity in the left hand during unimanual right hand 

contraction; however, these same individuals demonstrate the poorest performance during 

the bimanual independent force production task.  III) Finally, better microstructure of 

callosal tracts connecting the two primary motor cortices was positively related to 

bimanual task performance in older adults, but negatively related to performance in 

young adults.  Further, increased IHI was related to poorer bimanual task performance in 

older adults across all unimanual and bimanual tasks, whereas this relationship was only 

observed in young adults for the independent bimanual task.  I report a fundamental shift 

with age in the relationship between callosal fiber tract microstructure and inhibitory 

function.  These studies provide an integrated view of relationships between callosal 

structure, physiology, and functional motor behavior extending our current understanding 

of neuromotor control.  
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APPENDIX A – TMS Safety Screening Questionnaire 
 
 

Screening Procedure to Identify Contraindications for TMS 
 
Name: ______________________   Date: ___________________ 
Date of Birth: _________________ 
 
In order to rule out risk factors and contraindications for transcranial magnetic 
stimulation, I need to ask you a few questions.  It is important that you consider each 
question carefully and give an honest answer.  If you are unsure about anything, please 
let me know.    
 
1.  Do you currently have a serious medical condition?       

YES  _______   NO  _______ 
 
2.  Have you ever had a seizure of any sort?               

YES  _______   NO  _______ 
 
3.  Has anyone in your family ever had epilepsy or experienced seizures?  

YES  _______   NO  _______ 
 
4. Have you had active depression in the past 6 months?                           

YES  _______   NO  _______ 
 
5.  Have you had attention deficit or learning disorder?                               

YES  _______   NO  _______ 
 
6. Do you take any eleptogenic medications? 

YES  _______   NO  _______ 
  
7.  Have you ever had a neurological disorder?     

YES  _______   NO  _______ 
 
 7a.  Ever had a serious head trauma?     

YES  _______   NO  _______ 
 
 7b.  Ever have a stroke?       

YES  _______   NO  _______ 
 
 7c.  Ever had any form of brain surgery?     

YES  _______   NO  _______ 
 
8.  Do you have a history of migraine or other types of severe or frequent headaches? 
 YES  _______   NO  _______ 
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9.  Do you have any metal implants in your head, including in your mouth? 

YES  _______   NO  _______ 
 
10.  Do you have permanent eye liner or any tattoos above the neck?   
  YES  _______   NO  _______ 
 
11.  Do you have a pacemaker or any implanted medical devices?    

YES  _______   NO  _______ 
 
12.  Are you pregnant or is there any possibility that you may be?   

YES  _______   NO  _______ 
 
13.  Do you have high blood pressure that is not currently controlled by medication? 
  YES  _______   NO  _______ 

13a. If you are on medication for high blood pressure has it changed in the past 6 
months?        YES  _______       NO  _______ 

 
14. Do you have any hearing loss or hearing impairments?    

YES  _______   NO  _______ 
 
15.  Do you consume more than two alcoholic drinks per day?   

YES  _______   NO  ________ 
 
16.  Have you ever been treated for alcoholism?      

YES  _______    NO  ________ 
 
 
 
 
 
 

 


