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ABSTRACT

Joint Composite Estimating Functions in Spatial and Spatio-Temporal Models

by

Yun Bai

Chair: Peter Xuekun Song

Spatial or spatio-temporal data are frequently encountered in many scientific

disciplines. One major challenge in modeling these processes is the high dimen-

sionality of such data; that is, the number of observations is usually enormous.

The first part of the dissertation proposes an efficient approach to analyzing

spatio-temporal processes. We proposed a new method called joint composite es-

timating function (JCEF). It reduces the likelihood dimension by utilizing lower-

dimensional marginal likelihoods in estimation and inference. This method allows

us to account for high-order spatio-temporal dependences through Hansen’s gen-

eralized method of moments. Simulation experiments show favorable improve-

ment in estimation efficiency over the conventional composite likelihood methods

when applied to estimating the spatio-temporal covariance functions. Large sam-

ple properties of the proposed JCEF estimator are derived under more realistic

settings than what is available in the current literature.

xii



The second part of the thesis presents a much needed review of existing co-

variance estimation methods parallelly developed for massive spatial data sets. To

thoroughly investigate their relative performances in spatio-temporal data analy-

sis, we conduct extensive simulation experiments to compare estimation bias and

efficiency among the most popularly used methods, including conventional pair-

wise composite likelihood, JCEF, Stein’s conditional pseudo-likelihood, tapering,

weighted least squares, and maximum likelihood, which is served as the golden

standard.

The third part of the thesis develops a new modeling and estimating frame-

work for high-dimensional spatial-clustered data, termed as GeoCopula. Marginal

distributions are assumed to be the generalized linear models, so that the new

method can handle both discrete and continuous outcomes. The within-cluster

and between-cluster spatial correlations are modeled by a multivariate Gaussian

copula, which results in a fully parametric model for dependent data. This class

of models generates population-level regression parameter estimates similar to

GEE, while explicitly models the dependence structures separately from the mean

model. Estimation and inference are achieved by applying the JCEF method. Through

simulation experiments we show efficiency improvement over conventional pair-

wise composite likelihoods. The proposed model and method are illustrated by an

analysis of the Gambia malaria data set.

xiii



CHAPTER I

Introduction

Spatial and Spatio-temporal data are frequently encountered in many scien-

tific disciplines, such as environmental sciences, e.g. daily air pollutant records

across the country (Paciorek et al., 2009); economics, e.g. real estate transactions

over space and time (Gelfand et al., 2003); epidemiology, e.g. infectious disease

outbreaks in space and time (Lawson and Song, 2010), among others. Through

data analysis, scientists are interested in identifying important factors that asso-

ciate with the underlying outcome processes and in predicting such processes at

locations and time points at which observations are not available.

One of the major challenges in spatio-temporal statistical analysis is the high di-

mensionality of the data; that is, the number of observations from spatio-temporal

processes is usually enormous. For example, the well-known Irish wind speed

data (Haslett and Raftery, 1989) includes 12 synoptic meteorological stations dur-

ing the period of 1961-1978. For every day of the year, daily means of the wind

speed of every station are available, leading to an approximately 80,000 observa-

tions in total. Studying the dependence structures of these processes poses great

computational difficulties in spite of the fast-growing computing capacities. One

1
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problem that motivated this dissertation research was the need to model 20-year

monthly concentration records of airborne particulate matter with diameter less

than 10 microns, or PM10, from 2474 monitors across the United States (Diez Roux

et al., 2008). The total number of observations from this PM10 spatio-temporal

process is more than 860 thousands, which makes the joint modeling of the spatio-

temporal process computationally prohibitive.

On the other hand, in social and health sciences, research studies usually in-

volve subjects that are randomly selected within a large number of clustered geo-

graphical units. For example, among the studies of place effects on health, Chaix

et al. (2005) investigated individual and contextual factors that determine the health

care utilization in France, where 10955 people are randomly surveyed within 4421

municipals in France. To study the association of neighborhood environmental risk

factors with cardiovascular diseases, Mujahid et al. (2007) used a sample of 5988

subjects selected from 576 census tracts from three states in USA. Grady (2010)

assessed the impact of racial residential segregation on low birth weight from a

pool of 10277 cases nested in 1092 census tracts in Michigan. In civil and envi-

ronmental engineering studies, Sener et al. (2011) analyzed the physical activity

participation levels of individuals in a family unit based on data drawn from the

2000 San Francisco Bay Area Household Travel Survey, in which individual and

household socio-demographic as well as all activity and travel episodes informa-

tion were recorded for subjects in 15000 households.

These spatial data examples are just a glimpse of a growing number of re-

search projects that collects data in spatial dimensions, thus necessitate the eminent

need to generalize the multilevel data analysis to incorporate the spatial depen-

dences among the clustering units. In classic multilevel models, data from clusters
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are assumed to be independent, and the focus dwells on appropriately account-

ing for within-cluster correlations while making statistical inferences. However,

when clusters are spatially correlated, such as neighborhoods or census tracts, sub-

jects from clusters are likely to be correlated due to location proximity, hence the

between-cluster independence assumption is no longer valid. Statistical analysis

ignoring the spatial effect can lead to wrong standard errors of the regression co-

efficient estimates, which in turn biases hypothesis testing (Anselin and Griffith,

1988). As a result, in order to draw valid statistical inference, it is of critical impor-

tance to account for the between-cluster spatial correlation as well as the within-

cluster correlation.

The first part of my dissertation develops an efficient yet computationally fea-

sible approach for analyzing high-dimensional spatio-temporal processes. The

proposed joint composite estimating function (JCEF) approach aims to reduce the

likelihood dimension, to expedite computation, and to minimize the loss of esti-

mation efficiency by utilizing merits of the composite likelihood method and gen-

eralized method of moments (GMM Hansen (1982)). The novelty of the proposed

method lies in that it first decomposes the high-dimensional process into lower-

dimensional components, and then accounts for correlations among the compo-

nents by using a weight matrix similar to that is used in GMM. As a result, the

JCEF approach is expected to significantly improve estimation efficiency over ex-

isting composite likelihood methods. Large-sample properties of the JCEF estima-

tor have been derived under a more general setting than those already given in the

literature. A comprehensive simulation experiment with varying spatio-temporal

dependence structures is carried out to assess the small-sample properties of the

proposed JCEF method in terms of covariance function estimation. Moreover, sub-
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sampling techniques are reviewed and applied to estimate the weight matrix and

parameter standard errors. Effects of different subsample sizes on standard error

estimation are also studied via simulations. The proposed method is then used to

analyze the dependence structure of the PM10 data for Northeastern United States.

The second part of my thesis comprehensively reviews and compares the ex-

isting methods of estimating dependence structures for massive spatio-temporal

data. This is a much needed research work in the field of the spatio-temporal

data analysis. In spatial statistics, two types of approaches have been developed

to facilitate computation. The first approach is based on simplifying covariance

structures. Cressie and Jahannesson (2008) proposed fixed rank kriging for very

large spatial data sets, where the covariance matrices were specially designed so

that the matrix manipulations were of fixed magnitude. A similar idea was ex-

ploited in Banerjee et al. (2008). Another approach is based on likelihood approx-

imations, where simplified versions of the full likelihood are considered. For ex-

ample, Curriero and Lele (1999); Heagerty and Lele (1998); Li and Lin (2006) used

pairwise marginal densities to build composite likelihood estimation functions.

Also Vecchia (1988) and Stein et al. (2004) suggested approximating the likelihood

by a product of conditional densities with truncated conditioning sets. Apart from

composite likelihood approaches, Furrer et al. (2006) and Kaufman et al. (2008)

used covariance tapering method to shrink small values of covariance entries to

zero, so that the sparse matrix algorithm could be used to speed up computation.

Fuentes (2007) proposed an approximation by modeling the covariance structures

in the spectral domain, which appears to be more involved and hence is of less

popularity in application. The performances of some of these estimation methods

will be evaluated and compared through extensive simulation experiments. This
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aims at providing a set of much needed numerical evidences to guide the method

selection in practice, which to our knowledge is not currently available.

The third part of the thesis develops a new model and extends the JCEF pro-

cedure to spatial-clustered data, where subjects are sampled within clusters which

are correlated in space. A unified framework of the GeoCopula regression model

is proposed to analyze such data. It not only provides population-level regres-

sion parameter estimates similar to GEE, but also models the within-cluster and

between-cluster spatial correlation structures separately from the mean regression

model. Estimation is carried out using the JCEF approach. Specifically, given this

nested data structure, two types of pairs can be identified: pairs within clusters

and pairs between clusters. The former group is more informative of the within-

cluster variations and the latter is more relevant to between-cluster variations.

Thus we can form two group-based composite estimating functions, and then ap-

ply the JCEF procedure to improve estimating efficiency. Asymptotic properties

of this new JCEF estimators for spatial-clustered data are derived similarly as in

the spatio-temporal settings, under the assumption that the spatial dependence

decays at an appropriate rate with an increasing domain. In addition to extensive

simulation experiments, an analysis of the malaria data set (Diggle et al., 2008) is

presented as an illustration.

The dissertation is structured as follows. In Chapter 2, we present a review of

composite likelihood methods. We provide all details concerning the development

of the JCEF estimator in the spatio-temporal setting in Chapter 3. Extensive com-

parisons of our proposed method with currently popular approaches are made

through simulation experiments in Chapter 4. Chapter 5 is devoted to the devel-

opment of the GeoCopula model and an estimation approach for spatial-clustered
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data, followed by an outline of future work in Chapter 6. Appendix lists some

technical details of the theoretical proofs.



CHAPTER II

Composite Likelihood Methods

Composite likelihood methodology refers to, in general, a type of pseudo likeli-

hood method that utilizes marginal or conditional distributions of lower-dimensional

components from a fully specified parametric distribution. This idea was first pro-

posed by Besag (1974) to make statistical inference and estimation in spatial ran-

dom fields, and later was termed as ”composite likelihood” by Lindsay (1988). It

has received increasing popularity in estimation and inference for parametric and

semiparametric models where full likelihood functions are numerically difficult to

evaluate due to complex dependence structures of the data. In this chapter, I will

begin with an introduction of the two main types of composite likelihood methods

frequently used in the literature, and then review their applications to spatial or

spatio-temporal models. Emphasis will be given to research work developed to

improve the efficiency of composite likelihood estimation. More comprehensive

reviews can be found in Varin (2008); Varin et al. (2011) and references therein.

7
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2.1 Definition

Consider an m-dimensional random vector Y = (y1, . . . , ym) with a joint multi-

variate probability density function f (Y|θ), where θ ∈ Θ is an r-dimension param-

eter vector of interest. Let {A1, . . . ,AK} be a set of conditional or marginal events

with associate likelihoods Lk(θ; y) ∝ f (y ∈ Ak|θ). The composite likelihood is con-

structed by treating these component likelihood functions as independent (Lind-

say, 1988).

CL(θ, Y) =
K

∏
k=1

Lk(θ; y)ωk ,

where ωk, k = 1, . . . , K are weights assigned to each component in order to improve

estimation efficiency. Usually ωk is a 0-1 binary variable, indicating whether the

k-th component is included in the estimation or not.

There are two main ways to construct composite likelihoods, depending on

whether conditional or marginal events are used.

Composite conditional likelihood This type of composite likelihood method

was first proposed by Besag (1974) in order to conveniently formulate models for

spatial random processes. The idea is to specify the joint probability distribution

by conditional probability functions,

LC(θ; Y) =
m

∏
i=1

f (yi|yj ∈ ∂yi; θ),

where ∂yi denotes the set of observations neighboring yi. This kind of model-

ing approach is intuitively plausible for correlated data and has been further ex-

ploited by many researchers. For example, Vecchia (1988) and Stein et al. (2004)

used blocks of observations for conditional events in spatial data analysis, and
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Molenberghs and Verbeke (2005) in longitudinal studies, Liang (1987) in stratified

case-control studies, and Mardia et al. (2008) in bioinformatics.

Composite marginal likelihood This class of composite likelihood is constructed

by compounding lower-dimensional marginal densities. The simplest way is to

form pseudo likelihoods under the working independence assumption, the so-

called onewise composite likelihood:

Lind(θ; Y) =
m

∏
i=1

f (yi|θ),

where correlations among the observations are ignored, and estimation involves

only marginal parameters.

The most popular form in the current literature is the pairwise composite like-

lihood based on bivariate marginals:

LP(θ; Y) =
m−1

∏
i=1

m

∏
j=i+1

f (yi, yj|θ)ωij ,

It contains the minimal modeling blocks of marginal and dependence parameters,

essential for correlated data analysis.

In some circumstances, one may also consider larger subsets such as triples or

quadruples of observations (Varin and Vidoni, 2005). It is also possible to combine

Lind and LP in some optimal way (Reid and Cox, 2004), or one can form a pseudo-

likelihood by a mixture of conditional and marginal component density functions.

The method to be proposed in the dissertation is based on the pairwise com-

posite likelihood method, motivated by its substantial computational advantages,

its ability to incorporate parameters related to both the mean and the dependence
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structures and, above all, its relatively high estimation efficiency as demonstrated

by many authors.

2.2 Pairwise Composite Likelihood

This section acquaints readers with the basic notations and quantities which

are the building blocks for composite estimating equation methods.

Denote the log-likelihood function based on pairwise composite likelihood by

lP. Then

lP(θ; Y) =
m−1

∑
i=1

m

∑
j=i+1

ωij log f (yi, yj|θ).

The composite score function (CSF) is given by the first order derivative of lP with

respect to θ, specifically,

ΨP(θ; Y) = ∇θlP(θ; Y) =
m−1

∑
i=1

m

∑
j=i+1

ωij∇θ log f (yi, yj|θ),

which is a linear combination of component score functions, log f (yi, yj|θ). Note

that CSF ΨP is an unbiased estimating function as long as the two-dimensional

marginals are correctly specified. According to Godambe and Heyde (1987), the

condition of unbiasedness is essential for estimation consistency.

The maximum composite likelihood estimator θ̂P is defined as a solution to the

following CSF:

ΨP(θ; Y) = 0.

The standard theory of estimating equations (Song, 2007, Chap 3) suggests that,



11

the information matrix of the composite likelihood is quantified by

G(θ) = H(θ)J−1(θ)H(θ), (2.1)

where H(θ) = Eθ (−∇ΨP(θ; Y)) is the sensitivity matrix, and J(θ) = Varθ (ΨP(θ; Y))

is the variability matrix. G(θ) is known as the Godambe information or sandwich

information matrix (Godambe, 1991). In the classic maximum likelihood setting

where the full likelihood f (y1, . . . , ym) is used, the second Bartlett identity holds,

i.e., H(θ) = J−1(θ), and G(θ) becomes the Fisher information matrix. However,

composite likelihood may be seen as a likelihood under a misspecified model,

where high-order model structures (for example, 3-way dependence) are not as-

sumed. As a result, the second Bartlett identity does not hold, H(θ) ̸= J−1(θ),

leading to the loss of efficiency compared to the maximum likelihood estimation

(Song, 2007, Chapter 3).

2.2.1 Asymptotic Framework

Given settings to which composite likelihoods are applied, two types of asymp-

totic scenarios are considered for the derivation of the large-sample properties of

θ̂P. The first scenario corresponds to situations where the increase in sample size is

achieved by an increase in the number of independent data replicates. For exam-

ple, in the longitudinal analysis, subjects are assumed to be independent, and the

sample size increase is a result of the inclusion of more subjects. Also for clustered

data analysis, observations are usually correlated within clusters, but observations

from different clusters are then assumed to be independent. Thus the sample size

increases as more clusters are sampled. The other scenario corresponds mostly to
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spatial or spatio-temporal settings, where oftentimes only one realization of the

underlying process is observed. This is analogous to time series data. The increase

in sample size is achieved by expanding the process to more observations, and

the newly-added data are likely to be correlated with existing observations. Un-

der this sampling scenario, two types of asymptotic arguments have to be distin-

guished. One is the ’infill asymptotic’ (Stein, 1995; Zhang, 2004), where more data

are sampled within a fixed spatial domain, resulting in a denser sampling layout.

The other is the so-called ’increasing-domain asymptotics’(Mardia and Marshall,

1984), where more data are included in the analysis as a result of expansion in the

spatial domain. Refer to Chapter III for details.

I will outline the asymptotic properties of θ̂P for the first scenario in the follow-

ing section 2.2.2, where independent replicates are available, and leave the discus-

sion of the asymptotic derivations in the second spatial/ spatio-temporal scenario

to Chapter III.

2.2.2 Asymptotic Properties with Independent Replicates

Now label Y(i) as the realized values of Y for the i-th subject, i = 1, . . . , n. The

data from subjects are assumed to be mutually independent. Then the pairwise

composite score function is of the form:

ΨP(θ) =
n

∑
k=1

m−1

∑
i=1

m

∑
j=i+1

ωij∇θ log f (y(k)i , y(k)j |θ).

The asymptotic results (e.g. consistency and asymptotic normality) for the com-

posite likelihood estimator can be derived using the same arguments for the classi-

cal maximum likelihood estimation. Relevant regularity conditions can be adapted
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from Lindsay (1988) and Molenberghs and Verbeke (2005).

Thus, the asymptotic normality is postulated as:

√
n(θ̂P − θ) ∼ Nr(0, G−1(θ)),

where G(θ) is the Godambe information given in (2.1). As Zi (2009) points out

that in general, by using Cramer-Rao inequality, the difference between G−1(θ)

and, I−1(θ), the inverse of the Fisher information matrix, is positive semi-definite,

which means that θ̂P is usually more variable than its MLE counterpart. G(θ) =

I(θ) if and only if ΨP(θ) is a linear function of the score function (Lindsay, 1988).

The component-wise ratios of the main diagonal elements of G(θ) over I(θ) de-

scribe the asymptotic relative efficiency of the composite likelihood estimator and

the MLE.

2.3 Efficiency Improvement

In exceptional cases, pairwise likelihood estimators can achieve full efficiency

as the maximum likelihood estimators. For example, Mardia et al. (2007) showed

that composite conditional estimators are identical to maximum likelihood estima-

tors in the multivariate normal distribution with arbitrary means and unstructured

covariances. Zi (2009) gave the same results based on pairwise likelihoods. Reid

and Cox (2004) noted that the likelihood function derived from the quadratic expo-

nential distribution for multivariate binary data (Cox, 1972) is equal to the pairwise

likelihood function for binary data generated by a probit link. Pairwise likelihood

estimators for two-way contingency table is also equally efficient to the maximum

likelihood estimators (Mardia et al., 2009).
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The popularity of composite likelihood methods has been boosted by these and

other similar findings showing a considerable attainment in efficiency. However,

for most other general models, composite likelihood methods are expected to be

less efficient than the maximum likelihood methods, because models are misspeci-

fied when lower-dimensional components are assumed to be independent or high-

order dependences are ignored.

Lindsay (1988) gave some theoretical treatment of this issue. He showed that,

for scalar parameters, the Godambe information is proportional to the Fisher in-

formation by a factor of squared correlation between the CSF ΨP and the score

function from the full likelihood ΨMLE:

G(θ) = I(θ)corr2(ΨMLE(θ; Y), ΨP(θ; Y)),

Thus, the attainment of full information is associated with a linear relationship be-

tween ΨMLE and ΨP. The optimal weight wij of the component composite scores is

possible for scaler parameters; however, for vector parameters, the optimal choice

of weight is not globally attainable.

Efforts to improve efficiency of composite likelihood methods in the existing

literature can be mainly categorized into four types. The first type of work tries

to find an optimal combination of composite likelihoods based on different sizes

of lower dimensional components, which have been mainly studied in the context

of onewise composite likelihood Lind and pairwise composite likelihood LP. Reid

and Cox (2004) showed that it is possible to improve efficiency by constructing
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estimating functions in an optimal combination of Lind and LP:

l(θ; Y) =
m−1

∑
i=1

m

∑
j=i+1

ωij∇θ log f (yi, yj|θ)− a
m

∑
i=1

∇θ log f (yi|θ),

where a is a constant to be chosen as a solution subject to an optimality criterion.

Zhao and Joe (2005) proposed using Lind for marginal parameters and LP for as-

sociation parameters. Kuk (2007) suggested a hybrid method using optimal score

functions for the marginal parameters and LP for association parameters. This

method is shown to be better than the alternating logistic regression (Carey et al.,

2003).

The second type of approach to improve efficiency is developed in the setting of

clustered data, where weights are given to cluster-specific component score func-

tions based on cluster sizes. Joe and Lee (2009) investigate the choice of weights

in this setting in detail. Specifically, let ni denote the cluster size for cluster i, the

weight 1/(ni − 1) recommended by Kuk and Nott (2000) and Zhao and Joe (2005)

work well when the dependence within cluster is weak. For stronger within-

cluster dependence, weight 1/(ni(ni − 1)) is suggested. It is also noted by sev-

eral authors, that unweighted pairwise likelihood (i.e. wij = 1) can be preferable

for inference about the association parameter, while in general weighted versions

improve the estimation of marginal mean parameters.

The third type of efficiency enhancement occurs mostly in the context of longi-

tudinal and spatial data analysis, where there is a distance metric associated with

observation pairs. The rationale is that pairs further apart usually contain less in-

formation than pairs within shorter distances, so should not be included in the

estimation for dependence parameters. This simply restricts ωij to be 0 or 1 de-
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pending on pairwise distances. For longitudinal data, Joe and Lee (2009) and Varin

and Vidoni (2006) showed that pairwise likelihood constructed from adjacent pairs

is preferable to that based on all possible pairs in the sequence. While in spatial

analysis, Heagerty and Lele (1998) used pairs that are within a fixed distance lag to

build their estimating functions, arguing that using pairs that are further separated

is less efficient both computationally and statistically. Recent work by Bevilacqua

et al. (2011) proposed to determine the distance lag optimally based on a certain

norm of the Godambe information, and showed that estimation based on the opti-

mal distance lag gains efficiency from the unweighted version.

The above outlined efficiency improvement methods are operationally appeal-

ing, however, they make no attempt to incorporate the correlations among the

pairs (i.e. some form of high-order dependence) into estimation. This is the key

source of information loss when using composite likelihood in place of the full

likelihood. The fourth type of endeavor is conducted in this direction. Nott and

Rydén (1999) proposed a way to account for correlations among paired observa-

tions when constructing the composite likelihood estimating equation in image

analysis. The idea is to draw a neighborhood (called ’mask’) around each obser-

vation, and then select pairs containing that observation to form composite score

functions. Then these component score functions within the mask are stacked into

a column vector. After that, a weight matrix is used to convert the column vector

into estimating equations. Note that this way of taking a weighted sum incor-

porates correlations among pairs, and is different from the usual formulation of

composite estimating equations. The weight matrix can be determined optimally

by the Godambe information matrix of the column vector. Simulations results, un-

fortunately, showed little improvement in efficiency of this weighted composite
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likelihood approach over the ordinary pairwise composite likelihood methods for

models considered in their paper.

2.4 Applications in Spatial or Spatio-Temporal Models

Composite likelihood methods have been applied to many practical situations

where the full likelihoods are difficult to evaluate. Usually these situations in-

volve correlated data which are either non-Gaussian or of high dimensions and

are frequently encountered in spatial and spatio-temporal settings. Curriero and

Lele (1999) used the composite likelihood method in spatial variogram estimation.

They demonstrated that this method yields consistent estimates and is superior to

likelihood-based methods in terms of weaker distributional assumptions and less

computational burden. Heagerty and Lele (1998) applied the composite likelihood

approach to binary spatial data via the probit model for pairwise observations.

Nott and Rydén (1999) developed a version of weighted composite likelihood to

incorporate correlations among pairs in image analysis. Pairwise composite like-

lihood methods have also been applied to model estimation of spatial point pro-

cesses by Guan (2006). Varin et al. (2005) investigated pairwise likelihood for gen-

eralized linear models with spatially-varying random effects, and demonstrated

that the proposed method yields estimators with high efficiency. Li and Lin (2006)

modeled spatially correlated survival data by Gaussian copulas and bypassed the

high-dimensional integration of the likelihood function by again considering the

composite likelihood with pairwise observations. More applications of compos-

ite likelihood methods in other settings can be found in Varin (2008); Varin et al.

(2011).
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Applications of composite likelihoods in spatio-temporal analysis have just be-

gun to be embraced by the research community, so are less abundant than related

literatures in spatial analysis. Porcu et al. (2007) used pairwise composite likeli-

hood method to estimate spatio-temporal covariance functions. Bevilacqua et al.

(2011) proposed the concept of ’optimal distance lag’ based on the Godambe in-

formation matrix for the selection of pairs and incorporated it into the pairwise

composite likelihood to improve efficiency. The first project of this dissertation will

treat it as a bench mark and aims to further improve efficiency of the pairwise com-

posite likelihood methods in the spatio-temporal context. A thorough treatment of

the asymptotic properties of the proposed estimators will also be postulated.



CHAPTER III

Joint Composite Estimating Functions in
Spatio-Temporal Models

3.1 Introduction

Spatio-temporal data arise from many scientific disciplines such as environ-

mental sciences, climatology, geology, epidemiology, among others. Through data

analysis, scientists are interested in understanding important factors that associate

with the underlying processes and in predicting such processes at unobserved lo-

cations and time points. Both of these tasks require modeling the intrinsic de-

pendency structure of the data, which is usually depicted by the spatio-temporal

covariance structure. During past decades, much effort has been made in devel-

oping valid yet flexible spatio-temporal covariance models. For example, Cressie

and Huang (1999) introduced a class of nonseparable, stationary covariance func-

tions that address space-time interactions. Gneiting (2002) later expanded their

work to larger classes of space-time covariance structures that do not depend on

closed-form Fourier inversions. Stein (2005) derived space-time covariance func-

tions that are spatially isotropic and not fully symmetric. Porcu et al. (2007) pro-

19
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posed another class of nonseparable space-time covariance structures that are spa-

tially anisotropic, based on which one can formulate temporally asymmetric co-

variance functions.

Unfortunately, most of these useful covariance models have been seldom ap-

plied in practical studies collecting large-scale data sets. This is largely due to

the tremendous computational burden in handling high-dimensional covariance

matrices for either likelihood-based or Bayesian approaches. To circumvent this

difficulty, people usually use simplified approaches to separately model spatial

and temporal dependencies (Sahu et al., 2007; Smith and Kolenikov, 2003) or to

use a separable spatio-temporal covariance function to ease computation (Zhu

et al., 2003). Although these, as well as other similar models, have many desir-

able properties, they all ignore a crucial model component: the spatio-temporal

interaction effect. Paciorek et al. (2009) attempted to capture the spatio-temporal

interactions for both PM10 and PM2.5 processes using monthly-varying spatial

surfaces. However, they assumed independence across spatial residual surfaces

at each time point to reduce computational complexity, which essentially hampers

their approach from quantifying the effect of spatio-temporal interaction.

In another area of spatial data research, people have tried to reduce data di-

mension using composite likelihood (CL) methods (Lindsay, 1988), which is a gen-

eral class of pseudo-likelihoods based on likelihoods of marginal or conditional

events (see Chapter II for details). To name a few, Curriero and Lele (1999) used

CL method in spatial variogram estimation. They demonstrated that this method

yields consistent estimates and is superior to likelihood-based methods in terms

of weaker distributional assumptions and less computational burden. Heagerty

and Lele (1998) applied CL approach to binary spatial data via the probit model
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based on pairwise observations. Li and Lin (2006) modeled spatially correlated

survival data by Gaussian copulas and bypassed the high-dimensional integration

of the likelihood function by again considering CL with pairwise observations.

Varin (2008) and Varin et al. (2011) provide comprehensive reviews of marginal

CL methods and their applications.

The CL approach is known to yield estimators with sound asymptotic prop-

erties, however, it is noticeable that most of CLs are based on pairs of observa-

tions, resulting in less efficient estimates than the full likelihood. Moreover, the

number of pairs can be enormous in cases where the number of correlated ob-

servations is large. To deal with the large number of pairs, people usually select

subsets of pairs within a certain distance lag (Heagerty and Lele, 1998; Varin et al.,

2005). Recently, Bevilacqua et al. (2011) proposed an optimal distance lag in their

weighted CL method, where the optimal lag was determined by minimizing a

certain norm of the Godambe information (i.e. sandwich asymptotic covariance)

matrix. They showed that through this optimal subset selection, a more efficient

estimator could be obtained. They also found that estimation based on shorter lags

generally yielded more efficient estimates than those based on larger lags.

A shortcoming of their CL estimation method is that correlations among pairs

are completely ignored, which could cause some loss of estimation efficiency. This

motivates Nott and Rydén (1999) and Kuk and Nott (2000) to formulate optimal

composite estimating equations by accounting for correlations among the pairs.

However, the method proposed in Nott and Rydén (1999) did not show much ef-

ficiency improvement for image data, while Kuk and Nott’s method applies only

to longitudinal data of moderate lengths or clustered data with moderate cluster

sizes.
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The objective of this chapter is to develop a more efficient CL estimation method

for a joint analysis of spatio-temporal processes. Our approach is proposed to

account for correlations among composite pairs in a feasible manner. To do so,

we first divide all pairs into spatial, temporal and spatio-temporal cross groups,

and then form group-based estimating functions respectively. This often results

in over-identified estimating functions. To circumvent this, we construct a joint

inference function through a weight matrix, in a similar spirit to the generalized

method of moments (GMM) (Hansen, 1982) and the quadratic inference function

(QIF) by Qu et al. (2000). The weight matrix is designed to give larger weights to

more informative pairs and down weight noisy pairs, hence estimation efficiency

can be improved.

The rest of the chapter is structured as follows. In section 2, we present the

joint composite estimating function approach for spatio-temporal processes. In

section 3, large-sample properties of the proposed estimator are discussed. Simu-

lation studies comparing our method with the conventional composite likelihood

method are detailed in section 4. We illustrate an application of our method to

study the spatio-temporal dependence structure of PM10 particles in northeastern

United States in section 5, followed by a discussion in section 6. Some technical

details are listed in the Appendix.
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3.2 Methodology

3.2.1 Model

Consider a realization of a spatio-temporal process {Y(s, t): s ∈ S , t ∈ T ,

S ⊂ R2, T ⊂ R+}, where S denotes the set of spatial locations and T stands

for the collection of time points. Assume that Y(s, t) can be decomposed into a

deterministic mean function µ(s, t), and a random component X(s, t) as follows:

Y(s, t) = µ(s, t) + X(s, t), s ∈ S , t ∈ T .

Suppose X(s, t) can be further modeled as

X(s, t) = α(s, t) + ϵ(s, t), s ∈ S , t ∈ T ,

where the process α(s, t) characterizes the spatio-temporal variations, and ϵ(s, t)

is a normally distributed measurement error with mean zero and variance σ2
ϵ , in-

dependent of each other and independent of α(s, t). Variance σ2
ϵ is termed as the

nugget effect in Geostatistics. Assume {α(s, t): s ∈ S , t ∈ T } follows a multivari-

ate Gaussian process with mean zero and a covariance function C, which is given

by, for any two observations at spatio-temporal coordinates (s1, t1) and (s2, t2)

Cov(α(s1, t1), α(s2, t2)) = C(s1, s2, t1, t2; θ
′
).

Let θ = (θ
′
, σ2

ϵ ) be an r-element vector of parameters of interest. We will focus on

estimating the covariance structure of X(s, t) in the rest of the paper, provided that
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the observed process has first been properly de-trended; otherwise, it is relatively

straightforward to extend the proposed method by including a mean model for

µ(s, t) (Cressie, 1993).

3.2.2 Composite Estimating Functions

To apply the method of composite likelihoods based on pairs of observations to

reduce data dimension, we consider pairwise differences following Curriero and

Lele (1999). Let

d(k) ≡ d(s1, t1, s2, t2) = X(s1, t1)− X(s2, t2), k ∈ Dn(p, q), (3.1)

where

Dn(p, q) =


(s1, t1, s2, t2) :

s2 ≥ s1, ||s1 − s2|| ≤ p,

t2 ≥ t1, |t1 − t2| ≤ q,

t1 ̸= t2 if s1 = s2,

s1 ̸= s2 if t1 = t2


⊂ S × T × S × T ⊆ R2 × R+ × R2 × R+.

Here n is the length of the realized process X(s, t), and || • || is the Euclidean

distance between two points in a d-dimensional space with d ≥ 2. The order-

ing of spatial locations is defined as follows: for two locations s1 = (a1, b1), and

s2 = (a2, b2), we say s1 > s2 if a1 > a2 or if a1 = a2 and b2 > b1, where (a, b) are

the coordinates for a location. The set Dn(p, q) contains all pairs of observations

within p units of space and q units of time lags in the coordinate space S × T .
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When both p and q equal infinity, the set includes all possible pairs of observa-

tions. For simplicity of exposition, we drop the two indices, and write Dn(p, q) as

Dn.

The values of p and q may be determined according to different criteria. They

can be chosen by practical considerations, such as sample size or boundary lim-

its. They can also be determined by some preliminary evaluations (e.g. empir-

ical variograms) of the spatial and temporal dependence decay rates, and be set

to ranges that sustain fairly high level of correlation. Or we may choose such p

and q that maximize the Godambe information (Godambe and Heyde, 1987) of the

corresponding composite estimating functions, so that the resulting estimator will

have minimum variance. Clearly, the latter approach requires the evaluation of

the sandwich information matrix for different combinations of these cutoff lags,

which is computationally demanding. Many simulation results reported in the lit-

erature (e.g. Varin et al., 2005; Bevilacqua et al., 2010; Davis and Yau, 2011), have

suggested choosing p and q to include only pairs that are within shorter distances

for better estimation efficiency. This means that we can exclude a substantial num-

ber of pairs from set Dn that are further apart in either space or time to reduce the

computational burden.

It is easy to see that the difference process d(k) in equation (3.1) follows a uni-

variate normal distribution with mean zero and variance given by

Var {d(k)} = C(s1, s1, t1, t1; θ) + C(s2, s2, t2, t2; θ) + 2σ2
ϵ − 2C(s1, s2, t1, t2; θ)

≡ 2γk(θ).

Denote the composite score function (CSF) for the observed d(k) as fk(d(k); θ).
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Then

fk (d(k); θ) =
γ̇k(θ)

2γk(θ)

{
1 − d2(k)

2γk(θ)

}
,

where, for any function f , ḟ denotes the vector of gradients of function f with re-

spect to the parameter vector θ. It is clear that fk (d(k); θ) is an unbiased estimating

function for θ since it is derived from a valid density function.

According to the CL literature (Reid and Cox, 2004; Varin et al., 2011), a com-

mon version of composite estimating functions is,

ΨCL(θ) = ∑
k∈Dn

fk (d(k); θ) ,

where d(k) are implicitly treated as being independent.

Alternatively, one may stack the individual CSF terms into a column vector

ν(θ) = { fk (d(k); θ)}k∈Dn , from which the estimating function is given by

{E (ν̇(θ))}T {Cov(ν(θ))}−1 ν(θ) = 0.

As pointed out by Kuk (2007), this version of composite estimating equations ef-

fectively accounts for the correlations among the differences. However, the cal-

culation of Cov(ν(θ)) and/or its inverse is computationally prohibitive when the

number of pairs (or differences) is large.

To improve over the existing CL methods and to incorporate correlations among

the pairs in the estimation, we propose a new approach. That is, we construct three

sets of estimating functions with the utility of spatio-temporal characteristics of the

data. Specifically, we first partition Dn into three subsets, namely DS,n, with pairs

differing only in locations; DT,n, with pairs differing only in time; and DC,n, with
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pairs differing both in locations and time. Hence Dn = DS,n ∪ DT,n ∪ DC,n. Figure

3.1 displays such partition with these three types of pairs, (a) for spatial pair, (b) for

temporal pair, and (c) for spatio-temporal cross pair, in a typical spatio-temporal

setting with four locations observed at two time points.

Figure 3.1: Configurations of spatio-temporal pairs. Upper plane represents four
locations observed at time 1, lower plane represents the same four lo-
cations observed at time 2. (a) is the spatial pair, (b) the temporal pair,
and (c) the spatio-temporal cross pair.

Time 1

Time 2

(a)

(c)

(b)

Summing over all pairwise differences of spatial pairs across all time points,

we obtain the following spatial composite estimating function (CEF):

ΨS,n(θ) =
1

|DS,n| ∑
i∈DS,n

fi (d(i); θ) ,

where for any set A, |A| denotes the number of elements in A. In a similar fashion,

we construct the temporal CEF:

ΨT,n(θ) =
1

|DT,n| ∑
j∈DT,n

f j (d(j); θ) .
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Likewise, the third CEF is formed by using spatio-temporal cross pairs:

ΨC,n(θ) =
1

|DC,n| ∑
l∈DC,n

fl (d(l); θ) .

Note that the resulting estimating functions constructed using the group-specific

pairs characterize different profiles of the spatio-temporal process. The spatial

piece ΨS,n(θ) provides paramount information of the spatial dependency; the tem-

poral piece ΨT,n(θ) contains key information of the temporal dependency; and the

spatio-temporal cross piece ΨC,n(θ) is more relevant to information of the spatio-

temporal interaction. The total number of equations, when three pieces are com-

bined as (ΨT
S,n(θ), ΨT

T,n(θ), ΨT
C,n(θ))

T, is larger than the number of parameters. As

a result, parameters cannot be estimated by directly solving these equations due to

the issue of over-identification. We then form a weighted quadratic objective func-

tion in a similar spirit to the generalized method of moments (GMM) (Hansen,

1982), so that estimates can be obtained by minimizing the objective function.

Precisely, let W be a positive-definite matrix, and let

Γn(θ) = (ΨT
S,n(θ), ΨT

T,n(θ), ΨT
C,n(θ))

T.

A quadratic inference function takes the following form:

Qn(θ) = ΓT
n (θ)W

−1Γn(θ),

and the estimator is given by

θ̂n = argminθ∈ΘQn(θ). (3.2)
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We call this θ̂n the joint composite estimating function (JCEF) estimator.

The classic GMM theory indicates that the optimal weight matrix is the asymp-

totic covariance matrix of composite estimating functions, namely Cov(nΓn(θ)).

However, this result cannot be directly applied here, because our objective func-

tion Qn(θ) is special in two aspects. First, the three estimating functions, ΨS,n(θ),

ΨT,n(θ) and ΨC,n(θ), are constructed from different sets of observations, while in

the standard GMM, different moment conditions are based on the same set of ob-

servations. Second, the numbers of terms in the three composite estimating func-

tions are different due to the fact that the numbers of spatial, temporal and cross

pairs are different. When one CEF consists of significantly more pairs, it will gain

higher weight in the objective function due to its larger stratum size. So it is nec-

essary to adjust for such stratum effect by using a normalized weight matrix, in a

similar spirit to stratified sampling.

To proceed, let Ir be the r × r identity matrix. Write

√
N = diag(

√
|DS,n|,

√
|DT,n|,

√
|DC,n|)⊗ Ir,

where ⊗ denotes Kronecker product of two matrices. This defines a block diagonal

matrix with the first r diagonals being
√
|DS,n|, the next r diagonals

√
|DT,n|, and

the last r diagonals
√
|DC,n|. The normalized weight matrix is given by

W =
√
NCov {Γn(θ)}

√
N .

When |DS,n|, |DT,n| and |DC,n| are approximately the same, W and Cov {nΓn(θ)}

will play the same role in weighting. However, when one of |DS,n|, |DT,n| or |DC,n|
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is considerably larger than the rest, W will help adjust for the unbalanced stratum

sizes, so that the smaller stratum will make comparable contribution to the estima-

tion. Zhao and Joe (2005) used a similar approach to account for different cluster

sizes in their CL formulation for familial data. See also Joe and Lee (2009) for more

detailed discussion.

3.2.3 Estimation of the Weight Matrix

Although Cov {Γn(θ)} can be derived analytically using multivariate Gaus-

sian quadrant probabilities, given the large number of possible pairs, computing

it based on analytic formulas is not practically feasible. Alternatively, in spatial

data analysis, estimation of this covariance matrix is mostly achieved by sub-

sampling techniques as done in Heagerty and Lele (1998); Heagerty and Lumley

(2000); Lee and Lahiri (2002); Li and Lin (2006). Specifically, let the sampling re-

gion An = S × T , where |An| = n. Under the assumption that, asymptotically,

|An|E
{

Γn(θ)ΓT
n (θ)

}
→ Σ, we can estimate Σ using sample covariance matrix of

statistics computed on subshapes of the sampling region An. That is,

Σ̂n = k−1
n

kn

∑
i=1

|Ai
l(n)|

{
Γi

n(θ)− Γ̄n(θ)
}2

, (3.3)

with Γ̄n(θ) = ∑kn
i=1 Γi

n(θ)/kn, where Γi
n(θ) is vector Γn(θ) evaluated in Ai

l(n), i =

1, . . . , kn, a collection of (non)overlapping subshapes of An, and kn is the number

of subshapes.

This subsampling method was first introduced by Carlstein (1987) for strictly

stationary time series. Sherman (1996) later showed that it could be used to esti-
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mate the moments of a general statistic for random fields on a lattice. Moreover,

Kunsch (1989) demonstrated that the use of overlapping replicates led to a more

stable variance estimate than non-overlapping replicates. The optimal subsample

size was given by Politis and Romano (1994) for a stationary random field on a

d-dimensional lattice as Mnd/(d+2), where M is a certain tunning constant. Hea-

gerty and Lumley (2000) studied the effect of different choices of M for regression

models. Sherman (1996) pointed out that it was useful to gather some empirical

evidence about the range of correlation in determining M. If the correlation decays

fast, small subsamples can be used; otherwise a large one should be considered.

We will apply this subsampling technique to estimate our weight matrix and

later investigate its performance in the standard error calculation. Other more

sophisticated resampling schemes in spatial data analysis can be found in Lele

(1991), Lahiri et al. (1999) and Zhu and Morgan (2004), among others. Note that to

calculate Cov {Γn(θ)} for each subsample, parameter values have to be given. We

propose to generate some simple consistent estimates by either setting the weight

matrix to the identity matrix in the JCEF method or using estimates from the em-

pirical variogram.

Many established numerical optimization methods can be used to obtain pa-

rameter estimates that minimize Qn(θ). However, given the complex nature of the

parametric covariance structures C(•; θ), algorithms that do not require calcula-

tions of the Hessian matrix are desirable in this case. Quasi-Newton, Nelder-Mead

and conjugate-gradient methods are possible choices. These optimization routines

are offered by many mathematical and statistical software such as MatLab and R.

To ensure that the true minimum of the target function is found, a set of good

starting values is very important, which in our case can be found by fitting the cor-
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responding parametric variogram to the empirical variogram (Cressie, 1993). The

related detail is illustrated in section 5.

3.3 Large Sample Properties

Asymptotic properties of the estimators based on composite likelihood have

been quite established in the context of longitudinal or clustered data settings,

where there exist independent replicates of the data, see, e.g., Lindsay (1988);

Molenberghs and Verbeke (2005); Zhao and Joe (2005). However, little research

work is available in literature to address the asymptotic properties of composite

likelihood estimators for spatially and temporally dependent data with no repli-

cates. The well-referenced papers by Heagerty and Lele (1998) and Guan et al.

(2004) are among the few sources of asymptotic properties for composite likeli-

hood estimators with spatial data. However, their results are limited either to

regular lattice data or strictly stationary random fields, and require the sampling

domain to expand in a certain fashion. In the following paragraphs, I will establish

the asymptotic properties of the JCEF estimator in more practical settings.

The asymptotic properties of the JCEF estimator defined in equation (3.2) are

mainly governed by asymptotic behaviors of Γn(θ). Once we establish a uniform

law of large numbers (ULLN) and a central limit theorem (CLT) for Γn(θ), the

consistency and asymptotic normality of θ̂n will follow from the standard GMM

arguments. We derive these large-sample results for fixed spatial and temporal

lags p and q under increasing-domain asymptotics. That is, the increase in sam-

ple size is achieved by the expansion of the sampling domain in space or time or
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simultaneously. As a result of fixing p and q, the numbers of pairs in the spatial,

temporal and spatio-temporal cross groups are proportional to the total number

of data points n for the observed random process, that is |DS,n|, |DT,n|, and |DC,n|

are of the same order O(n). For simplicity, we assume the weight matrix W is

known. Otherwise, a
√

n-consistent Ŵ would be sufficient for us to modify our

justifications.

3.3.1 Assumptions

Jenish and Prucha (2009) developed a set of limit theorems for random pro-

cesses under rather general conditions of nonstationarity, unevenly spaced loca-

tions, and general forms of sample regions. We tailor relevant regularity conditions

to establish large-sample properties for our JCEF estimator as follows:

Assumption 1 The (possibly unevenly spaced) lattice D ⊂ R2 × R+ × R2 × R+ is

infinitely countable. All elements in D are located at distances of at least d0 > 0

from each other. That is, ρ(i, j) ≥ d0, for all i, j ∈ D, where ρ(i, j) is a distance

metric for any two points i, j ∈ D. See a detailed definition of the distance metric

in the Appendix A.

Assumption 2 {DA,n : n ∈ N} is a sequence of arbitrary finite subsets of D, satis-

fying |DA,n| → ∞ as n → ∞, for A ∈ {S, T, C}.

Assumption 3 (Θ, υ) is a totally bounded parameter space with metric υ.

Assumption 4 (Uniform L2+δ integrability) Let qk = supθ∈Θ || fk(d(k); θ)||. Then

for some δ > 0, lime→∞ Eq2+δ
k 1(||qk|| > e) = 0, for all k ∈ Dn.

Assumption 5 E supθ∈Θ || ḟk(d(k); θ)|| < ∞, for all k ∈ Dn.

Assumption 1 ensures that the increase of sample size is achieved by an ex-
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panding domain, thus it rules out the in-fill asymptotics. Assumption 2 guarantees

that sequences of subsets DS,n, DT,n, and DC,n, on which the process is generated,

increase in cardinality. Assumption 3 regulates the parameter space. Assumptions

4 and 5 are regularity conditions for score functions. The uniform integrability con-

dition in Assumption 4 is a standard moment assumption postulated in CLTs for

one-dimensional processes. A sufficient condition for the uniform L2+δ integrabil-

ity of fk is its uniform Lγ boundedness for some γ > 2 + δ. A weaker assumption

of L1 integrability is sufficient for a LLN for fk. Assumption 5 is a Lipschitz-type

condition, implying that the score functions are L0 stochastically equicontinuous,

so that a ULLN can be obtained.

The difference process d(k) is usually not stationary. To regulate its dependence

structure, we impose some α-mixing conditions on d(k). Let U and V be two sub-

sets of Dn, and let σ(U) = σ {d(k); k ∈ U} be the σ-algebra generated by random

variables d(k), k ∈ U. Define

α(U, V) = sup {|P(A ∩ B)− P(A)P(B)|; A ∈ σ(U), B ∈ σ(V)} .

Then this α-mixing coefficient for the random field {d(k), k ∈ Dn} is defined as:

α(k, l, m) = sup {α(U, V), |U| < k, |V| < l, ρ(U, V) ≥ m} ,

with k, l, m ∈ N and ρ(U, V) the distance between sets U and V; see the Appendix

A for the definition of ρ. In addition, we need the following conditions similar to

those stated in Assumption 3 in Jenish and Prucha (2009).

Assumption 6 The process {d(k), k ∈ Dn} satisfies the following mixing conditions
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in an a-dimensional space:

(a) ∑∞
m=1 ma−1α(1, 1, m)δ/(2+δ) < ∞, for some δ > 0,

(b) ∑∞
m=1 ma−1α(k, l, m) < ∞ for k + l ≤ 4,

(c) α(1, ∞, m) = O(m−a−ϵ) for some ϵ > 0.

Assumption 6 requires a polynomial decay of the α-mixing coefficient, which can

be shown to hold for Gaussian processes, a special case of the Gibbs fields (Winkler,

1995; Doukhan, 1994).

3.3.2 Consistency

Consider a generic case of

ΨA,n(θ) =
1

|DA,n| ∑
k∈DA,n

fk(d(k); θ),

where A ∈ {S, T, C}.

Based on Theorems 2 and 3 in Jenish and Prucha (2009), Assumptions 1, 2, 4,

and 6 ensure a point-wise LLN for fk based on sub-series {d(k), k ∈ DA,n}; with

additional assumption 5 on stochastic equicontinuity of fk, a uniform version of

LLN is warranted. Thus, we have

Lemma 1. Given Assumptions 1-6,

sup
θ∈Θ

||ΨA,n(θ)− EΨA,n(θ)||
p→ 0, as n → ∞.
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Lemma 1 holds for ΨS,n(θ), ΨT,n(θ), and ΨC,n(θ), so we can show easily that

for any given positive-definite weight matrix W,

sup
θ∈Θ

|Qn(θ)− EQn(θ)|
p→ 0, as n → ∞.

Consequently, we establish the consistency of the JCEF estimator in Theorem 1.

Theorem 1. Under the same conditions stated in Lemma 1, if the true parameter value θ0

is the unique minimizer of EQn(θ), and θ̂n minimizes Qn(θ), then θ̂n
p→ θ0, as n → ∞.

3.3.3 Asymptotic Normality

To derive the asymptotic distribution of the JCEF estimator, the following ad-

ditional regularity conditions are needed.

Assumption 7 Let Σn(θ) = Var {Γn(θ)}, limn→∞ nΣn(θ) = Σ(θ), where Σ(θ) is a

positive-definite matrix.

Assumption 8 supθ∈Θ ||Γ̇n(θ) − EΓ̇n(θ)||
p→ 0. Write limn→∞ EΓ̇n(θ) = I(θ),

where I(θ) is a positive-definite matrix.

Assumption 7 assumes that the variance of Γn(θ) is of order O(n−1), which

is also a standard assumption for the subsampling estimation of the covariance.

Assumption 8 is a ULLN for Γ̇n(θ), which regulates the asymptotic variance of

the estimator and can be obtained with the same regularity conditions on Γ̇n(θ) as

those in Lemma 1.

Lemma 2. Given Assumptions 1-4, 6 and 7, we have

√
n Γn(θ)

d→ N(0, Σ(θ)), as n → ∞.
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A sketch of the proof for Lemma 2 is given in the Appendix B. Then based on

the standard GMM arguments (Hansen, 1982), we establish the following theorem:

Theorem 2. Given Assumptions 1-4, and 6-8, we have

√
n(θ̂n − θ0)

d→ N(0, Ω(θ0)Σ(θ0)ΩT(θ0)), as n → ∞,

where Ω(θ0) = −[IT(θ0)W−1 I(θ0)]
−1 IT(θ0)W−1.

Note that the above results are applicable to more general settings than those

considered in Heagerty and Lele (1998). Their asymptotic results are based on the

theory in Guyon (1995), which required the sample regions to form a strictly in-

creasing sequence on evenly-spaced lattices. In contrast, we do not impose any

restrictions on the geometry and growth behavior of the sample regions and al-

low for unevenly spaced locations, a situation frequently encountered in real data

analysis. Moreover, our results accommodate sampling domain expansions both

in space and time, while results in Li et al. (2007) only deal with the expansion

in time. In fact, our results are even applicable to processes with unbounded mo-

ments, which may arise in a wide range of real world applications. For more dis-

cussion, refer to Jenish and Prucha (2009). It is also worth pointing out that asymp-

totic results for infinite spatial or/and temporal lags are slightly different, because

convergence rates of ΨS,n(θ), ΨT,n(θ) and ΨC,n(θ) may be of different orders, due

to the differences in expansion rates in space and time.
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3.4 Simulation Experiments

To assess the performance of the proposed JCEF method, we conduct a simula-

tion study, in which we compare the proposed method with the weighted compos-

ite likelihood (WCL) method given in Bevilacqua et al. (2011). Following Bevilac-

qua et al. (2011), we form our composite estimating functions based on neighbor-

ing pairs for both cases of WCL and JCEF. It is noted that tuning the distance lag

according to a certain optimality criterion (e.g. minimizing the trace of the inverse

of the Godambe information) for each specific case can result in better efficiency.

However, using a common distance lag in the simulation study serves the purpose

of comparison, while the related computational burden appears manageable.

The spatio-temporal covariance function used in the data generation is a non-

separable spatio-temporal covariance structure proposed in Cressie and Huang

(1999):

C(h, u|θ) =


σ2(2β)

(a2u2+1)ν(a2u2+β)Γ(ν)

{
b
2

(
a2u2+1
a2u2+β

) 1
2 h
}ν

Kν

(
b
(

a2u2+1
a2u2+β

) 1
2 h
)

, if h > 0,

σ2(2β)
(a2u2+1)ν(a2u2+β)

, if h = 0,
(3.4)

where u = |t1 − t2| is the time lag and h = ||s1 − s2|| the Euclidean distance be-

tween two locations. Kν is the modified Bessel function of the second kind of order

ν (Abramowitz and Stegun (1972), p.374), where ν > 0 is a smoothness parame-

ter characterizing the behavior of the correlation function near the origin. If u = 0,

C(h, 0|θ) degenerates into a purely spatial covariance, which is the popular Matèrn

class used in spatial statistics. When ν = 0.5, this spatial correlation model is an

exponential function of h, when ν → ∞, the Gaussian correlation function. Let
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θ ≡ (a, b, β, ν, σ2). a > 0 is the scaling parameter of time, b > 0 is the scaling pa-

rameter of space, β > 0 is a space-time interaction parameter, and σ2 = C(0, 0) > 0,

the variance at the origin. Note that a separable covariance function is obtained

when β = 1.

We generate X(s, t) on a regular grid of 7 × 7 × 30 space-time points, with the

spatial coordinates being set at (1, 1.5, . . . , 4)× (1, 1.5, . . . , 4) and T = (1, 2, . . . , 30).

Table 3.1 includes nine simulation setups, whose marginal spatial/temporal corre-

lation patterns are displayed in Figure 3.2, respectively. To create a variety of de-

pendence structures in the simulation study, we start in setup 1 with short-range

spatial and temporal dependences, and next vary the spatial and temporal scaling

parameters a and b and then vary the spatio-temporal interaction parameter β. It

is clear that the decaying rate of correlation slows down from setup 1 to setup 9 in

both directions of space and time.

Also, for this type of covariance structure, the spatial/temporal scaling param-

eter, together with the interaction parameter, determine the marginal dependence

patterns in space or time. For example, in setup 2 and setup 3, the same a and β

values lead to identical marginal temporal dependence patterns. The same phe-

nomenon occurs in setup 1 and setup 3 as well as setup 6 and setup 9 for marginal

spatial correlations. Note that the interpretation of the temporal and spatial lags

on the horizontal axes should be based on the specific units used to specify coor-

dinates.

Parameter ν is fixed at 0.5 in the simulation. In practice, ν is difficult to esti-

mate, because it requires dense space data and may run into identifiability problem

(Stein, 1999). Also as pointed out by Huang et al. (2007), the estimation of σ2
ϵ may

cause numerical instability, hence is fixed in the simulation for the convenience
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Figure 3.2: Spatial and temporal correlation patterns for simulation setups 1-9. Pa-
rameter ν is fixed at 0.5.
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of comparison. We will outline a profile quadratic inference function approach to

estimating ν in the discussion.

Table 3.1: Mean squared errors (MSE) of parameter estimates. Results are from
200 simulations based on covariance structure in equation (3.4). Total
MSE is the sum of MSEs for four parameters. RE is the relative efficiency
defined as the total MSE of WCL over that of JCEF.

Simulation Scenarios Method Mean Squared Errors Total MSE RE
a b β σ2

a b β σ2

Setup 1 8 3 5 1 WCL 3.6035 0.1034 0.3400 0.0060 4.05
JCEF 3.3502 0.0943 0.3420 0.0058 3.79 1.07

Setup 2 3 8 5 1 WCL 0.6664 0.9276 0.9997 0.0017 2.60
JCEF 0.1656 0.6594 0.4080 0.0018 1.23 2.10

Setup 3 3 3 5 1 WCL 0.0869 0.0794 0.4294 0.0052 0.60
JCEF 0.0777 0.0888 0.2266 0.0053 0.40 1.51

Setup 4 1 3 0.5 1 WCL 0.0047 0.1046 0.0030 0.0018 0.11
JCEF 0.0037 0.0703 0.0023 0.0019 0.08 1.46

Setup 5 1 3 1 1 WCL 0.0029 0.0599 0.0073 0.0028 0.07
JCEF 0.0022 0.0527 0.0037 0.0027 0.06 1.19

Setup 6 1 3 2 1 WCL 0.0025 0.0637 0.0183 0.0026 0.09
JCEF 0.0020 0.0467 0.0085 0.0026 0.06 1.46

Setup 7 1 3 5 1 WCL 0.0031 0.1157 0.2439 0.0073 0.37
JCEF 0.0025 0.1080 0.1288 0.0072 0.25 1.50

Setup 8 1 3 8 1 WCL 0.0038 0.1950 1.3044 0.0111 1.51
JCEF 0.0028 0.1967 0.5698 0.0113 0.78 1.94

Setup 9 0.5 3 2 1 WCL 0.0007 0.0822 0.0321 0.0064 0.12
JCEF 0.0005 0.0670 0.0172 0.0073 0.09 1.32

Estimation of the weight matrix is achieved by sub-group sampling on overlap-

ping sub-blocks of size 4× 4× 15, determined according to the rule given in Politis

and Romano (1994). We use the estimates from WCL to evaluate the individual
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score functions in each sub-blocks. A total of 200 simulated datasets are generated

for each setup. We compare the JCEF and WCL in terms of mean squared errors

(MSE).

The results, summarized in Table 3.1, show that the JCEF method clearly out-

performs WCL in all nine simulation setups in terms of the total MSE, the sum of

individual MSEs. The relative efficiency (RE), defined as the ratio of the total MSE

of WCL over that of JCEF, shows that, for all scenarios, JCEF clearly gains efficiency

compared to WCL and in some cases such gain is substantial. Parameter-specific

MSEs indicate that most of the improvement occurs in the estimation of the inter-

action parameter β. On average, the MSE reduction is 40.52% for β, followed by

26.1% for a, the temporal scaling parameter, and then 13.52% for b, the spatial scal-

ing parameter. The estimates for the variance parameter σ2 are comparable for the

two methods. The significant efficiency improvement for β, a and b are very desir-

able, since these are important parameters pertaining to the dependence structure.

Especially for the interaction parameter β, valid parameter and standard error es-

timates will help researchers make infernece about whether a simpler, separable

spatio-temporal covariance is supported by the data.

3.4.1 Standard Error Estimation

The key to obtaining valid standard error estimates is to create proper repli-

cates of the data. As done in the step of weight matrix estimation, we invoke the

subsampling method to calculate standard errors. A similar formula to that in

equation (3.3) is used with θi
n replacing Γi

n(θ). The subsample size is determined

by Mnb/(b+2), where b equals 3 in the spatio-temporal setting. Following Hea-



43

gerty and Lumley (2000), we vary the tuning parameter M from 2 to 4 to assess

the effects of different subsample sizes on the standard error estimation, resulting

in three subsampling schemes: 3 × 3 × 15, 4 × 4 × 15, and 4 × 4 × 20, respectively.

The same weight matrix used in the previous JCEF estimation is used for each

subsample evaluation.

Another popular approach to creating data replicates is through parametric

bootstrap. That is, after obtaining JCEF estimates, we generate data based on the

estimated model, and the square root of the sample variance of the JCEF estimates

across replicates is obtained as the estimate. This method involves more computa-

tion, but is less prone to bias than subsampling, which is likely to introduce extra

bias with artificially created subsamples in finite samples. Bevilacqua et al. (2010)

adopts the parametric bootstrap approach for constructing tests of separability of

space-time covariance functions. We consider a comparison of subsampling and

parametric bootstrap with bootstrap sample size 200. Given the importance of the

spatio-temporal interaction parameter β, we devote our attention to β in the simu-

lation.

Table 3.2 lists results from 300 rounds of simulation for setups 5-7 with β equals

1, 2 and 5, respectively. We can see that different subsample sizes do have an im-

pact on standard error estimation. Smaller subsamples yield standard error esti-

mates closer to the empirical standard deviations, while larger subsamples tend

to underestimate the variations. The reason may be that we use all overlapping

sub-blocks and larger sub-blocks share more common observations, leading to less

variations among blocks. However, truncation bias can occur if subsamples are too

small, since it may fail to account for correlations at longer distances. Parametric

bootstrapped standard error estimates perform very well in all three settings with
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estimates very close to the empirical standard deviations. This is because with

consistent parameter estimates, the bootstrap procedure would yield a standard

error estimate similar to the empirical one. In summary, if parametric bootstrap

is feasible computationally, it is recommended; otherwise, subsampling is a way

to do it. Obviously, some further investigation is needed to determine the tuning

parameter M.

From the QQ-plot in Figure 3.3, we can see that the estimated β values fol-

low the normal distribution closely, which means that using the normal approx-

imation and the bootstrapped standard error estimates, valid inference on β is

insured. This is confirmed by computing the 95% coverage probabilities across

replicates for the three setups. In Table 3.2, parametric bootstrap and subsampling

with 3 × 3 × 15 partition scheme yield covarage probabilities close to the nominal

95%, while the other two subsampling schemes have smaller coverage probabil-

ities due to underestimated standard errors. As a byproduct of this simulation,

WCL estimates as inputs for the weight estimation are also recorded. The calcu-

lated MSE in Table 2 again shows that the JCEF method considerably lowers MSE

leading to efficiency gain. The reduction in MSE is mainly due to the reduction in

standard deviations, that is, both methods produce consistent estimates, but those

from JCEF have smaller variances, which again corroborates the theory.
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Figure 3.3: Normal QQ-plots of the standardized estimates of β̂ by JCEF, fixing
other parameters. Observed quantiles are ordered (β̂ − β)/SE(β̂),
based on standard error estimates from parametric bootstrap.

Observed Quantiles

T
he

or
et

ic
al

 Q
ua

nt
ile

s

−2 0 2

−
2

0
2

Setup 5

Observed Quantiles

T
he

or
et

ic
al

 Q
ua

nt
ile

s

−2 0 2

−
2

0
2

Setup 6

Observed Quantiles

T
he

or
et

ic
al

 Q
ua

nt
ile

s

−2 0 2

−
2

0
2

Setup 7

3.5 Analysis of Particulate Matter Data

We analyze 20-year PM10 data across the northeastern United States from Au-

gust 1982 to August 2002. The goal is to study the spatio-temporal dependence

structure of air pollutant PM10 so that predictions can be made at specific loca-

tions and time points. Monthly mean PM10 measures are obtained by averaging

all available readings for a given month and are log transformed. Because not all

monitors are observed all the time, we use 108 monitors with consecutive monthly

records between January 2000 and August 2002 (32 months) in this area for an il-

lustration of the JCEF method. A layout of the monitor locations is displayed in

Figure 3.4. The distance between two monitor locations ranges from 0.45 to 956
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miles.

Figure 3.4: Layout of PM10 monitor stations for Northeastern United States from
January 2000 to August 2002.

Northeastern United States

We first remove month and location effects by an ANOVA model treating each

month and location as class variables (Diez Roux et al., 2008), and then use the

resulting residuals to estimate the spatio-temporal dependence structure. To visu-

alize the spatio-temporal pattern, we plot the estimated spatio-temporal empirical

variogram in Figure 3.5(left). Observation pairs are grouped by distance lags of 20

to 500 miles with unit increase of 20 miles and temporal lags of one to 20 months,

with unit increase of one month.

We fit the nonseparable covariance structure in equation (3.4) with a nugget

effect of variance σ2
ϵ to the data. A set of initial parameter values is obtained us-

ing WLS by minimizing the weighted difference of the empirical variogram to the

parametric variogram at pre-specified lags.

As pointed out previously, subsampling may not be appropriate for the irreg-



48

Figure 3.5: Empirical and fitted spatio-temporal variogram for PM10 residuals.
Observation pairs are grouped by distance lags of 20 to 500 miles with
unit increase of 20 miles and temporal lags of one to 20 months, with
unit increase of one month.
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ular spatial monitor grid, we use parametric bootstrap to create sample replicates

for the subsequent determination of the optimal distance lag, the weight matrix

estimation and standard error estimation.

To determine the optimal distance lags, it is computationally prohibitive in

practice to compute the Godambe information for all possible combinations of spa-

tial and temporal lags. We use the grid search method to find the optimal lags from

a pool of spatial and temporal lags with time ranging from 1 to 6 months with one

month increment and spatial distances ranging from 20 to 260 miles with 20 miles

increment. The optimal combination is 6 months in time and 100 miles in space,

which means we will include pairs that are within p = 100 miles in distance and

q = 6 months in time to specify our composite estimating functions. Then WCL is

carried out for estimation and its estimates are used for weight matrix calculation.

Finally, the JCEF method is applied to estimate the model parameters.
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Table 3.3: Parameter and standard error estimates of the spatio-temporal covari-
ance structure in equation (3.4) fitted to the PM10 data set. Standard
error estimates are obtained by parametric bootstrap. CI denotes for con-
fidence interval.

WCL JCEF
Parameter Estimate 95% CI Estimate 95% CI

a 1.0112 0.6213 1.5048 1.1636 0.7833 1.7285
b 0.0382 0.0148 0.0981 0.0403 0.0173 0.0939
β 4.1129 0.9423 20.7327 6.4341 1.7373 23.8292
σ2 0.0219 0.0173 0.0265 0.0224 0.0180 0.0277
σ2

ϵ 0.0194 0.0167 0.0231 0.0199 0.0173 0.0229

Parameter estimates, standard errors and 95% confidence intervals from JCEF

and WCL are listed in Table 3.3. Point estimates from the two methods are similar,

but JCEF yields smaller standard error estimates, especially for the interaction pa-

rameter β, which is consistent with the simulation results. For the JCEF method,

given β̂ = 6.4341, â = 1.1636 means that the marginal temporal correlation decays

by around 40% with one month increase in time, and b̂ = 0.0403 indicates that the

marginal spatial correlation decays by approximately 15% with 10 miles increase

in space. β̂ = 6.4341 indicates that the temporal correlation decays approximately

1.5% faster with 10 miles further away in space, while the spatial correlation de-

cays about 2.5% faster with 1 month further apart in time. The confidence interval

for β̂ does not cover one, indicating that there is a significant spatio-temporal in-

teraction effect. As a result, a separable covariance strucutre is not applicable to

this data set if the covariance function in equation (3.4) is used to model the de-

pendence structure.

We also compare the sums of squared differences (SSD) between the fitted para-

metric variograms obtained by JCEF (Figure 3.5, right) and WCL to the empiri-
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cal variogram at grid points at which the empirical variogram is computed. The

SSD ratio of JCEF over WCL is 0.67, indicating that the fitted surface by JCEF is

33% closer to the empirical one than that by WCL. In summary, the proposed

JCEF outperforms WCL in point estimates, standard error estimates, as well as

the goodness-of-fit. Some additional analysis of the data may be carried out. For

example, one could use tests proposed in Li et al. (2007) to test the symmetry and

isotropy of the data dependence and fit the corresponding parametric covariance

function to the data to improve overall model fit. It is worth further investigation.

3.6 Discussion

In this chapter, we have proposed a statistically efficient and computationally

feasible approach to estimating spatio-temporal covariance models for massive

data sets. The proposed JCEF method constructs separate composite likelihoods

based on spatial, temporal and spatio-temporal cross pairs, and then join them into

a quadratic inference function. Through such GMM formulation, our method ac-

counts for correlations among the pairs via the weight matrix and allocates higher

weights to groups of pairs with more information, hence substantially improves

the estimation efficiency over existing WCL methods. The JCEF estimator has also

proven to be consistent and asymptotically Gaussian under the increasing-domain

asymptotics. Comprehensive simulation studies have shown that JCEF recovers

significant amount of efficiency from the conventional weighted composite likeli-

hood approach.

Another advantage of JCEF is the possibility of deriving a goodness-of-fit statis-
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tic to test the mean-zero model assumption, H0 : E {Γn(θ)} = 0. This can be

used for testing the separability structure of the covariance matrix. Since θ̂n is

obtained by an over-identified estimating function Γn(θ), Qn(θ̂n) falls in the ’over-

identifying restriction’ test by Hansen (1982). He proved that the asymptotic dis-

tribution of Qn(θ̂n) is χ2 with degrees of freedom equal to the number of estimat-

ing functions minus the number of parameters, which in our case is 2r. However,

many researchers have pointed out that the first-order asymptotic theory often pro-

vides inadequate approximations to the distributions of the test statistics obtained

from GMM estimators; see, for example, a special issue of the Journal of Business

& Economics Statistics (July 1996). To improve inference, a number of alterna-

tive estimators have been suggested. These include empirical likelihood (Qin and

Lawless, 1994; Owen, 1988; Imbens, 1997), modified bootstrap procedures (Hall

and Horowitz, 1996), and the continuous updating estimator (Hansen et al., 1996).

Qu et al. (2000) used the latter approach to construct the QIF and showed that the

finite-sample distribution of the objective function agrees well with the asymp-

totic counterpart. Performances of these goodness-of-fit methods under the JCEF

framework for spatio-temporal data is worth further exploration.

As noted previously, the smoothness parameter ν is usually difficult to esti-

mate. However, the quadratic objective function in JCEF provides an analogy to

the profiled likelihood for estimating ν. Specifically, given a range of ν values, we

perform the JCEF estimation procedure for each ν, and record the parameter values

and the target function value. Then ν is estimated to be the one with the smallest

target function value, and the corresponding parameter estimates are used as the

final estimates. We plot log-Q(θ) and ν in Figure 3.6 for simulation setup 7 consid-

ered in Table 3.1. The true value for ν is 0.5. We can see that this profile approach
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provides an accurate estimate of ν, and may be a very promising method. Further

detailed work is needed for this development.

Figure 3.6: Estimated log-Q(θ̂) against smoothness parameter ν, evaluated in
setup 7 in Table 3.1. The true value for ν is 0.5.
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We have considered covariance estimation from a detrended process. As known,

detrending may introduce artificial correlation into the residuals, which may dis-

tort the intrinsic correlations of the data. In fact, this is a common concern when

a two-stage procedure is used to estimate covariance structures. A simple solu-

tion would be to jointly estimate mean and covariance parameters. From a large-

sample point of view, as long as mean parameters are consistently estimated, co-

variance estimates can be consistent under some mild conditions. On the other

hand, in actual applications, finite sample performances matter more. Our exper-

iments in both theory and computation suggested that two factors are crucial to

ensure similar performances between the two-stage approach and the joint esti-

mation method: (i) the strength of the intrinsic spatio-temporal dependency and

(ii) the sample size. For large data sets, these two factors are usually in favor of the
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two-stage procedure.

It is worth noting that variance estimates of the JCEF estimator do not account

for the uncertainty in the weight matrix estimation. This pertains to the uncertainty

resulted from the plugged-in parameter estimates in the evaluation of the weight

matrix. According to Windmeijer (2005), such variation is known to be of order

O(n−1), which is a lower-order term than O(n−1/2) and thus may be ignorable

when n is large. In addition, this issue concerning the finite-sample performance

of the JCEF estimator has been well studied in the GMM literature. Several meth-

ods have been proposed to correct for the downward bias in parameter standard

error estimates when the sample size is inadequate. This includes adding a vari-

ance correction term (Windmeijer, 2005), or using a parametric bootstrap proce-

dure (Hall and Horowitz, 1996) to account for the uncertainty in the weight matrix

estimation.

We focus our attention on evaluating the efficiency gain of JCEF over the ex-

isting methods in terms of covariance estimation in this paper. Kriging, one of

the popular approaches used for prediction in Geostatistics, relies heavily on co-

variance functions, as the kriging predictor is the best linear unbiased estimator

based on the covariance model specified for the process. It may also be interest-

ing to study whether more efficient covariance estimators will yield more efficient

predictors.



CHAPTER IV

Estimation Methods for High-Dimensional
Space-Time Covariances

4.1 Introduction

In chapter III, a new estimating procedure called Joint Composite Estimating

Function (JCEF) has been proposed to estimate high-dimensional spatio-temporal

covariance functions. It significantly improves estimating efficiency over conven-

tional weighted pairwise marginal composite likelihood methods, and has desir-

able large-sample statistical properties. In this chapter, we investigate the relative

performance of JCEF in a wider context, comparing it to many other popular esti-

mating approaches proposed in the literature.

Thanks to the technology advancements in all fields of modern sciences, e.g. re-

mote satellite sensing in environmental sciences, functional-MRI in medical stud-

ies, and the next-generation sequencing in bioinformatics etc., data has never been

more accessible to researchers than what can be available today. Statistics has

been greatly challenged by the need to explore such massive data sets. In recent

decades, there has been a spawn of statistical research in the development of com-

54
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putationally feasible methods for analyzing large-scale data sets. The focus of this

chapter will be dwelt on the spatio-temporal data arising frequently in environ-

mental sciences, where millions of observations can be instantaneously collected

over a large number of spatial locations.

The difficulty in estimating dependence structures for massive data has long

been recognized in spatial statistics. Two types of approaches have been developed

to facilitate computations. The first approach is based on simplifying covariance

structures. For stationary spatial processes on regular grids, Zimmerman (1989)

showed that covariance structures of those processes possess patterned structures

that could be utilized to reduce the computational burden. Cressie and Jahan-

nesson (2008) proposed fixed rank kriging for very large spatial data sets, where

the covariance matrices were specially designed so that the matrix manipulations

were of a fixed magnitude. A similar idea was exploited in Banerjee et al. (2008).

However, these approaches either require the spatial processes to be stationary, or

impose over-simplified structures for the covariance matrices, hence may not be

well generalized to real data analysis.

Another approach is based on likelihood approximations, where simplified

versions of the full likelihood are considered. For example, composite likelihood

(CL) methods (Lindsay, 1988) have been proposed to model spatial data. As a gen-

eral class of pseudo-likelihoods, composite likelihood is based on valid marginal

or conditional likelihood functions. Curriero and Lele (1999); Heagerty and Lele

(1998); Li and Lin (2006) all used pairwise marginal densities to build composite

likelihood estimation functions, while Vecchia (1988) and Stein et al. (2004) sug-

gested approximating the likelihood by a product of conditional densities with

truncated conditioning sets. Apart from composite likelihood approaches, Furrer
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et al. (2006) and Kaufman et al. (2008) used covariance tapering method to shrink

small values of covariance entries to zero, so that the sparse matrix algorithm could

be used to speed up computation. Fuentes (2007) proposed an approximation by

modeling the covariance structures in the spectral domain, which appears to be

more involved and hence is of less popularity in application.

Additional challenges arise in spatio-temporal settings. With the addition of a

time domain, data scale is much larger. Also, the distinct yet intricately involved

nature of the space and time further complicates the data analysis. To simplify

covariance structures, people usually separately model spatial and temporal de-

pendencies (Sahu et al., 2007; Smith and Kolenikov, 2003) or to apply a separa-

ble spatio-temporal covariance function for the ease of computation (Haas, 1995;

Genton, 2007). Although these and other similar approaches have many desirable

properties, they all ignore a crucial model component: the spatio-temporal inter-

action effect.

The objective of this chapter is to provide numerical evidences on why JCEF

proposed in chapter III is more appropriate in spatio-temporal data analysis than

other available methods. We use pairwise marginal densities as the building blocks

of the estimating function due to the following considerations:

(i) Pairwise CL is both analytically and numerically simple to work with.

(ii) It only requires the correct specification of bivariate densities, hence the re-

sulting estimation and inference are robust to the misspecification of high-

dimensional moment structures (Varin et al., 2011). In contrast, conditional

CL approaches (e.g. Vecchia, 1988; Stein et al., 2004) are usually vulnerable to

model misspecification, as they require the formulation of higher-dimensional
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distributions. In addition, it is easier to check assumptions on the bivariate

distribution than on the high-dimensional multivariate distribution.

(iii) The pairwise CL approach does not require a distance metric accommodating

both space and time, while a unified distance norm is needed by the tapering

approach (Kaufman et al., 2008). As we will see in the simulation experi-

ments (see section 4.3.2), tapering expedites computing time only when the

number of non-zero covariance elements is small.

Thus, the pairwise composite likelihood seems appealing in modeling large-

scale spatio-temporal data, for its simplicity, flexibility and feasibility in statistical

inference and numerical computation. The rest of chapter is organized as follows.

A review of some of the popular approaches in covariance estimation is given in

section 4.2. Extensive simulation experiments are carried out to compare the rela-

tive performances of the methods in section 4.3, followed by a discussion section.

4.2 A Review of Covariance Estimation Methods

4.2.1 Fixed Rank Kriging

To reduce the computational intensity of handling large matrices, Cressie and

Jahannesson (2008) proposed the fixed rank kriging technique based on a reduced

rank approximation of the underlying process. The prediction is based on a family

of covariance functions constructed using a set of basis functions that is fixed in

number. Essentially, the covariance of the spatial process is assumed to be gener-
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ated from a hidden process of a fixed dimension, so that one only needs to invert

the kernel covariance matrix of the hidden process. Banerjee et al. (2008) proposed

a similar method in the Bayesian framework, and termed it as the predictive pro-

cess. I briefly introduce the key idea in the spatial context.

Let Y(s), s = 1, . . . , n be a pure spatial process in S , write

Y(s) = S(s)′η+ ϵ(s), (4.1)

where ϵ(s) is the independent error term, and

S(s) = (S1(s), . . . , Sr(s))
′ ,

is a set of r basis functions. η is an r-dimensional vector with Var(η) = K. Both

S(s) and K are assumed to be known. The model in equation (4.1) may be regarded

as a spatial random-effects model. When a deterministic mean model is included,

equation (4.1) becomes a mixed effects model. Now let S be an n × r matrix whose

(i, l) element is Sl(si), then the covariance of Y = (Y(1), . . . , Y(n)) is

Σ = SKS′ + σ2Vn, (4.2)

Where Vn is an n× n diagonal matrix with entries given by the measurement error

variance, and are assumed known. Kriging requires the inversion of a generic

covariance of Y, whose computational complexity is of order O(n3). Given the

specific expression of (4.2), the complexity is reduced to O(r3), with r being a fixed

constant given in equation (4.1). A fast computation is achieved by applying the

following Sherman-Morrison-Woodbury formulae (Henderson and Searle, 1981)
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to equation (4.2).

(I + PAP′)−1 = I − P(A−1 + P′P)−1P′,

where P and A are matrices of appropriate dimensions.

Many research studies have successfully used the fixed rank kriging to capture

the large scale structure of spatial processes. However, it is usually inadequate

in capturing the local and small-scale dependence structure (Stein, 2008; Finley

et al., 2009). To solve this problem, Sang and Huang (2011) proposed a full-scale

approximation method, in which the residual covariance that is not accounted for

by the fixed-rank process is modeled and estimated through tapering (Furrer et al.,

2006; Kaufman et al., 2008).

4.2.2 Spectral Methods

Another approach to reduce computation of the full likelihood is through the

spectral decomposition of the covariances. For observations on a regular com-

plete lattice, the resulting spectral density can be conveniently estimated by pe-

riodogram, and Whittle’s approximation can be used to compute the likelihood

(Whittle, 1954). Guyon (1982) and Stein (1995, 1999) applied the spectral meth-

ods to study stationary spatial process on regular grids without missing data.

Fuentes (2002) extended the spectral methods to nonstationary spatial processes,

and Fuentes (2007) adapted the procedure to irregularly spaced spatial data. Fol-

lowing notations in Fuentes (2007), I introduce the spectral decomposition of the

covariance functions and the likelihood approximation method as follows.

For two observations from a stationary spatial process, the spatial covariance
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function C depends on the relative configuration of two locations s1 and s2 in R2.

C(s1 − s2) = cov(Y(s1), Y(s2))

The spectral density function f is the Fourier transform of the covariance function:

f (ω) =
1

(2π)2

∫
R2

exp(−isT)C(s)ds,

where i is the complex unit.

Furthermore, if Y is observed only at n uniformly spaced spatial locations ∆

units apart, then the spectrum of observations of the sample sequence Y(∆s), for

s ∈ Z2, is concentrated within the finite-frequency band −π/∆ ≥ ω ≤ π/∆. The

spectral density of f∆ of the process on the lattice is written as

f∆(ω) = ∑
Q∈Z2

f
(

ω +
2πQ

∆

)
,

where ω ∈ [−π/∆, π/∆]2.

The spectral density of a lattice process, observed on an n1 × n2 grid, where

n = n1n2 can be estimated by the periodogram,

In(ω) = (2π)−2(n1n2)
−1

∣∣∣∣∣ n1

∑
i=1

n2

∑
j=1

Y(sij) exp
{
−isT

ijω
}∣∣∣∣∣

2

,

where | • | is the norm for a complex number.

The above equation is evaluated in the set of Fourier frequencies Ω = 2π( f1/n1, f2/n2),
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where

( f1, f2) =

{⌊
−n1 − 1

2

⌋
, . . . , n1 −

⌊n1

2

⌋}
×
{⌊

−n2 − 1
2

⌋
, . . . , n2 −

⌊n2

2

⌋}
.

Moreover, according to Whittle (1954), if Y(s) follows a Gaussian process with

mean zero, the negative log-likelihood can be approximated as:

n
(2π)2 ∑

ω∈Ω

log f (ω) + In(ω) f (ω)−1,

where f is the spectral density of the lattice process. The approximated likelihood

can be calculated very efficiently using the fast Fourier transformation, which re-

quires only O(n log2 n) operations.

Spectral methods are less intuitively appealing than other methods. It is more

involved to generalize the method to nonstationary and irregular spatial data.

How this type of approach can be used to facilitate estimation of spatio-temporal

covariance functions has not yet been addressed in the literature.

4.2.3 Pseudo-Conditional Likelihoods

Besides the marginal composite likelihood methods, another form of composit-

ing the likelihood is through conditional density functions (see Chapter II for de-

tails). Vecchia (1988) proposed to approximate the full likelihood through products

of conditional density functions, and truncate the conditioning sets to avoid large

matrix manipulations. This method was later extended by Stein et al. (2004) to

include distant observations in the conditioning sets.

Specifically, partition a random vector Y into subvectors Y1, . . . , Yb of possibly
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different lengths, and denote Y(j) = (Y1, . . . , Yj), j ≥ 2. Then, the likelihood can be

written as

f (Y; θ) = f (Y1; θ)
b

∏
j=2

f (Yj|Y(j−1); θ).

To reduce the dimension of the conditioning sets, let S(j) be some subvector of Y(j),

then

f (Y; θ) ≈ f (Y1; θ)
b

∏
j=2

f (Yj|S(j−1); θ),

where Yj is called the prediction set and Sj the conditioning set.

Choosing Sj to be of smaller sizes reduces computations, however two prob-

lems are associated with this decomposition. First, a multivariate distribution is

required, which is not readily available for non-Gaussian data. Also this approach

is more susceptible to model miss-specification, since it requires the correct speci-

fication of high-order distribution structures. It is also a difficult task to check the

model assumption for multivariate distributions of more than two dimensions. In

these regards, pairwise composite likelihood has clear advantages. Second, the

choice of the conditioning sets is tricky and usually requires an overall distance

metric of space and time.

Nevertheless, Stein’s method is representative of the conditional formulation

within the composite likelihood framework and is closely connected to Gaussian

Markov random fields. We also include it in our simulation experiments.

4.2.4 Covariance Tapering

Tapering (Furrer et al., 2006; Kaufman et al., 2008) is becoming increasingly

popular in spatial statistics due to its simplicity both in concept and in implemen-
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tation. The idea is to set certain elements of the covariance matrix to 0, such that

the resulting matrix is sparse and positive definite, and retains the original proper-

ties for proximate locations. Specifically, let C(h; θ) be the covariance function for

two observations with distance h in space, and Ktaper(h; η) be the tapering function

that is identically 0 whenever h ≥ η, where η is a pre-specified cutoff. Then the

tapered covariance function is given by:

Ctaper(h; θ) = C(h; θ)Ktaper(h; η).

In our spatio-temporal setting, applying the tapering technique requires the

specification of a joint distance metric accommodating both space and time coor-

dinates. This is generally difficult, as space and time are distinct with respect to

distance. Nevertheless, for the pure simulation purpose, we use the Euclidean dis-

tance norm on standardized spatial and temporal coordinates. Note that MLE is a

special case of the tapering method when the taper range η is set at infinity.

Besides the requirement of a join spatio-temporal distance metric, tapering has

some other limitations that have not yet been addressed. For example, the class

of tapering functions depends only on distances between observations, hence is

stationary in nature. It may not be appropriate to taper a nonstationary covari-

ance matrix with a stationary tapering function. Constructing more flexible taper-

ing functions that accommodate non-stationarity, anisotropy and other potential

spatial characteristics can better preserve the original covariance structures and

greatly enhance the performance of the tapering method.
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4.3 Simulation Experiments

To assess the performance of the JCEF method, we conduct simulation experi-

ments to compare it to some of the available methods in the literature, including

(i) weighted composite likelihood (WCL), the current available CL approach, (ii)

the tapering method (taper) based on covariance regularization (Kaufman et al.,

2008), (iii) conditional pseudo-likelihood methods (Stein) proposed in Stein et al.

(2004) and Vecchia (1988), (iv) weighted least square approach (WLS), the one used

most often by practitioners in spatial statistics (Cressie, 1993), and (v) maximum

likelihood estimates (MLE), the golden standard.

We compare their performances in terms of mean squared errors (MSE) of pa-

rameter estimates. We also scale parameter-specific MSEs by their corresponding

parameter values and sum them together to obtain an overall efficiency measure,

called total scaled MSE. This scaling balances different scales of parameter values,

so that a fair comparison can be made. Relative efficiency (RE) is then computed

as the ratio of the total scaled MSEs between two methods under comparison. All

simulations are coded in R 2.11.1 (R Development Core Team, 2010) and executed

on a Linux cluster with Intel Xeon X5680 processors (3.33 GHz CPU and 1.5G mem-

ory for each of 16 nodes).

The spatio-temporal covariance function used in the data generation is a non-

separable spatio-temporal covariance structure proposed in Cressie and Huang
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(1999):

C(h, u; θ) =


σ2(2β)

(a2u2+1)ν(a2u2+β)Γ(ν)

{
b
2
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) 1
2 h
}ν
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(
b
(
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a2u2+β

) 1
2 h
)

, if h > 0,

σ2(2β)
(a2u2+1)ν(a2u2+β)

, if h = 0,
(4.3)

where u = |t1 − t2| is the time lag and h = ||s1 − s2|| is the Euclidean distance

between two locations. Kν is the modified Bessel function of the second kind of

order ν (Abramowitz and Stegun (1972), p.374), where ν > 0 is a smoothness pa-

rameter characterizing the behavior of the correlation function near the origin. If

u = 0, C(h, 0; θ) degenerates into a purely spatial covariance, which is the popu-

lar Matèrn class used in spatial statistics. When ν = 0.5, this spatial correlation

is an exponential function of h, when ν → ∞, the Gaussian correlation function.

In practice, ν is difficult to estimate, because it requires dense space data and may

run into identifiability problem (Stein, 1999). We will discuss a profile quadratic

inference function approach for estimating ν in the discussion section.

For the rest of the parameters, a > 0 is the scaling parameter of time, b > 0 is the

scaling parameter of space, β > 0 is a space-time interaction parameter, and σ2 =

C(0, 0) > 0, the variance at the origin. Note that a separable covariance function

is obtained when β = 1. We also study the presence of a nugget effect in our

simulation comparison, and denote its variance as σ2
ϵ . As a result, the parameter

vector of interests is θ ≡ (a, b, β, σ2, σ2
ϵ ).
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4.3.1 Comparison to Weighted Composite Likelihood

We first compare JCEF with WCL. We form our composite estimating func-

tions based on neighboring pairs for both WCL and JCEF, following the suggestion

given in Bevilacqua et al. (2010). It is noted that tuning the distance lag according

to a certain optimality criterion (e.g. minimizing the trace of the inverse of the

Godambe information) for each specific case can result in better efficiency. How-

ever, using a common distance lag in the simulation study serves the purpose of

comparison, and the related computational burden appears manageable.

We generate X(s, t) on a regular grid of 7 × 7 × 30 space-time points, with spa-

tial coordinates being set at (1, 1.5, . . . , 4) × (1, 1.5, . . . , 4) and T = (1, 2, . . . , 30).

Table 4.1 includes three simulation setups. We vary β values from 0.5, 1 to 5, cor-

responding to negative, none and positive spatio-temporal interaction effect, re-

spectively. Each column-wise plot in Figure 4.1 shows the marginal spatial and

temporal correlation patterns, respectively. It is clear that the decay rate of spa-

tial or temporal correlation given different temporal or spatial lags changes with

different β values. Parameter ν is fixed at 0.5 in the simulation.

Estimation of the weight matrix is achieved by sub-group sampling on over-

lapping sub-blocks of size 4 × 4 × 15, following the rule suggested in Politis and

Romano (1994). We use estimates from WCL to evaluate individual score functions

in each sub-blocks. A total of 200 simulated datasets are generated for each setup.

We first compare JCEF and WCL in the presence of a nugget effect σ2
ϵ . The

results, summarized in Table 4.1, show that the JCEF method clearly outperforms

WCL in all three simulation setups in terms of the total scaled MSE. The resulting

REs show that, for all three scenarios, JCEF clearly reaches 25% or higher efficiency
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improvement compared to WCL. Unscaled parameter-specific MSEs indicate that

on average, approximate 10% reduction in MSE is achieved for parameter a, b, β

and σ2
ϵ .

Table 4.1: (With Nugget) Mean squared errors (MSE) of parameter estimates. Re-
sults are from 200 rounds of simulations based on the covariance struc-
ture in equation (3.4) and a nugget effect σ2

ϵ . Total scaled MSE is the sum
of MSEs for four parameters scaled by parameter means. RE is the rela-
tive efficiency defined as the total scaled MSE of WCL over that of JCEF.

Scenarios Method Mean Squared Errors Total
Scaled
MSE

RE

a b β σ2 σ2
ϵ

Setup 1 1 3 0.5 1 0.5
WCL 0.0122 0.2915 0.0060 0.0060 0.0039 0.0901
JCEF 0.0122 0.2651 0.0039 0.0051 0.0025 0.0724 1.25

Setup 2 1 3 1 1 0.5
WCL 0.0086 0.1492 0.0186 0.0047 0.0027 0.0594
JCEF 0.0070 0.1376 0.0107 0.0051 0.0016 0.0447 1.33

Setup 3 1 3 5 1 0.5
WCL 0.0078 0.1593 0.3855 0.0133 0.0014 0.0599
JCEF 0.0074 0.1065 0.2576 0.0125 0.0013 0.0471 1.27

Average MSE Reduction 12.24% 9.09% 11.04% 3.76% 10.59%

We then compare the two methods without the nugget effect in the covariance

structures. Similar summary statistics are listed in Table 4.2, part of which is re-

ported in Table 3.1. It appears that in this case, JCEF gains even more efficiency for

a, b and β. On average, the MSE reduction is 40.5% for β, followed by 26.1% for a

(the temporal scaling parameter), and then 13.5% for b (the spatial scaling parame-

ter). The estimates for the variance parameter σ2 are comparable between the two
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Figure 4.1: Plot of C(h, u) in equation (3.4). Each column of the plot corresponds
to spatial and temporal correlation patterns for simulation setups 1-3
considered in Table 4.2. Parameter ν is fixed at 0.5.
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methods. The significant efficiency improvement for β, a and b are very desirable,

since these are important parameters pertaining to the dependence structure. In

addition, for the interaction parameter β, valid parameter and standard error es-

timates will help researchers make infernece about whether a simpler, separable

spatio-temporal covariance is supported by data.

Table 4.2: (Without Nugget) Mean squared errors (MSE) of parameter estimates.
Results are from 200 rounds of simulations based on the covariance struc-
ture in equation (3.4). Total scaled MSE is the sum of MSEs for four pa-
rameters scaled by parameter means. RE is the relative efficiency defined
as the total scaled MSE of WCL over that of JCEF.

Scenarios Method Mean Squared Errors Total
Scaled
MSE

RE

a b β σ2

Setup 1 1 3 0.5 1
WCL 0.0047 0.1046 0.0030 0.0018 0.11
JCEF 0.0037 0.0703 0.0023 0.0019 0.08 1.46

Setup 2 1 3 1 1
WCL 0.0029 0.0599 0.0073 0.0028 0.07
JCEF 0.0022 0.0527 0.0037 0.0027 0.06 1.19

Setup 3 1 3 5 1
WCL 0.0031 0.1157 0.2439 0.0073 0.37
JCEF 0.0025 0.1080 0.1288 0.0072 0.25 1.50

Average MSE Reduction 22.38% 17.17% 40.18% -1.08%

4.3.2 Comparison to Tapering

We compare the tapering method and JCEF with varying distance lags and ta-

per ranges. For each combination of the spatial and temporal lags (p, q) used for

JCEF, we select an appropriate taper range, so that the same pairs of observations
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are included in the latter method. Given that each pair of observations corresponds

to two entries in the full covariance matrix, we quantify the shared amount of infor-

mation by both methods in terms of the percent of covariance elements utilized in

estimation for each set of spatial and temporal lags (p, q) and the respective taper

range η. These percentages are marked below the horizontal axis label in Figure

4.2, where boxplots of estimates of log(β) and the averaged computing times (red-

dotted line for MLE, and solid line for the specific method) are presented. Data are

generated based on setup 3 considered in Table 4.2.

In terms of parameter estimates, boxplots in the bottom panel of Figure 4.2

show that for JCEF, increasing spatial and temporal lags does not improve the es-

timates, consistent to findings in the current literature (e.g. Varin et al., 2005; Davis

and Yau, 2011). This is because, pairs further apart are less likely to be correlated,

hence contain little information about the dependence. Including them in the esti-

mation will add more noise in the estimation of covariance structures.

On the contrary, boxplots in the top panel of Figure 4.2 show that, increasing the

taper range from nearing neighbors (1%) to the maximum distance (100%), leads

to improved estimation. This is because tapering works on the covariance ma-

trix. Extending the taper range increases the non-zero covariance elements used

in estimation, which in turn brings in high-order correlations among the included

covariance elements, leading to efficiency gain. This explanation does not apply

to pairwise CL methods, since no high-order correlations are contained in pairs.

However, this weakness is overcome, to some extent, by JCEF in which the weight

matrix effectively accounts for some of the correlations beyond pariwise depen-

dences. Obviously, WCL does not incorporate such high-order correlation infor-

mation, so it is less efficient than JCEF, as already shown in chapter II.
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Figure 4.2: Boxplots of log(β) estimates from tapering (top panel) and JCEF (bot-
tom panel) for setup 3 considered in Table 4.2 with a spatial grid of 7 by
7 and 30 time points. Five sets of spatial and temporal lag combination
(p, q) (with increasing values) are considered for JCEF, corresponding
to JCEF 1 - JCEF 5. The percentages of information utilized by each
(p, q) are marked below the horizontal axis label, ranging from 1% to
75%. Five taper ranges η are chosen respective to each (p, q), and are
labeled as Taper 1 - Taper 5. The same percentages are marked for ta-
pering accordingly. MLE is the special case when p = q = ∞ for JCEF
and η = ∞ for tapering. Red dotted lines are the corresponding mean
computing time (in seconds). Red dashed line indicates the mean time
used by MLE. Blue dashed line indicates the true log(β) value.
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In terms of computing time needed for the optimization to converge, the red-

solid line in the top panel of Figure 4.2 shows that, tapering requires much longer

time than MLE (red-dotted line) as the taper range increases. Tapering is faster

when only 1% of the covariance elements (nearing neighbors) are used in estima-

tion. Note that we use the R code posted on http://www.image.ucar.edu/Data

/precip tapering/ for executing the tapering method (with minor changes), which

is the same code used by Kaufman et al. (2008). So the comparison of computing

time is based on the same sparse matrix algorithm. What makes tapering run slow

may due to the time spent in indexing and retrieving non-zero entries, which can

be a substantial workload for a larger taper range. Figure 4.2 clearly indicates that

tapering is only competitive when the taper range is small. However, in this case,

JCEF is superior to tapering in both estimation and computational efficiency.

4.3.3 Comparison to WLS and MLE

We now include WLS and MLE in the comparison. WLS is probably the most

commonly used method in spatial data analysis. It estimates dependence parame-

ters by fitting a parametric covariance function to the computed empirical spatio-

temporal variogram. As already shown in Lele and Taper (2002), WLS is less effi-

cient than WCL, which as we have shown is less efficient than JCEF.

We use setup 3 considered in Table 4.2 for comparing the five methods. Table

4.3 lists results of β estimates from three increasing grids. In particular, we choose

the taper range so that it is computationally competitive to MLE. Then the spatial

and temporal lags in JCEF are set at values comparable to the tapering method.
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Table 4.3: A comparison of MSEs and computing time for MLE, JCEF, WCL, Taper-
ing and WLS for setup 3 considered in Table 4.2, based on 200 rounds of
simulations. Data are generated from three increasing grids of 5× 5× 15,
6 × 6 × 20, and 7 × 7 × 30.

5 × 5 × 15 6 × 6 × 20 7 × 7 × 30
MSE Time MSE Time MSE Time

MLE 0.09 2.61 0.03 4.11 0.02 15.66
JCEF 1.62 0.03 0.85 0.06 0.37 0.12
WCL 4.47 0.03 2.31 0.05 1.08 0.10
Taper 5.13 3.40 2.11 3.94 1.13 8.45
WLS 8.91 0.00 6.81 0.00 4.73 0.01

As the golden method, MLE has the smallest MSEs for the price of the most

computing time. WLS is the fastest for the cost of being least accurate. It is clear

that JCEF well balances between time and MSE, and is the best among all methods

in this simulation setup.

4.3.4 Comparison to Conditional Pseudo-Likelihood

Alternative to marginal bivariate distributions used in JCEF, estimation based

on conditional density functions is also extensively considered in the literature.

See Vecchia (1988) and Stein et al. (2004), among others.

Given innumerable ways to construct the conditioning sets, in the simulation

study, we follow Stein (2005) to select half of the conditioning set from the nearest

neighbors, and the other half from observations further apart. We vary the number

of conditioning observations from 1, 2, 4, 6, and 8, and term them as Stein 1 to

Stein 8, respectively. Results shown in Figure 4.3 are obtained based on setup 3

considered in Table 4.2, the same setting used in Table 4.3 and Figure 4.2. Figure

4.3 displays boxplots of log(β) estimates and mean computing time for 5 versions
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of Stein’s method and for our JCEF based on neighboring pairs. Results of the MLE

are included as the golden standard. From Figure 4, we learn:

(i) As the size of conditioning sets increases, Stein’s method yields improved

efficiency, as a result of including the high-order conditional dependence.

(ii) When the size of the conditioning set is 1, Stein 1 uses bivariate density func-

tions, and hence similar pairs are used in both Stein 1 and JCEF. Clearly, JCEF

performs much better in terms of estimation efficiency. Interestingly, JCEF

has shown to be comparable to Stein’s method up to four conditioning ob-

servations. This suggests that the weight matrix used in JCEF incorporates

additional amount of information beyond pairwise correlation, comparable

to Stein 4.

(iii) Although Stein’s method is always faster than MLE, it is clearly slower than

JCEF. Thus, as far as computing time is concerned, JCEF will be advanta-

geous for large-size data problems as well as running analysis on ordinary

PCs.

In summary, we conclude that compared to Stein’s method, JCEF is a desirable

compromise between estimation and computational efficiency. In addition, unlike

Stein’s method, JCEF does not require an explicit specification and evaluation of

the full multivariate density functions. This can be a considerable challenge when

Stein’s method is to be generalized to non-normal data, such as binary and Poisson

data.
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Figure 4.3: Boxplots for estimates of log(β) by Stein’s method with varying sizes of
conditioning sets. Stein 1 refers to Stein’s method with 1 conditioning
observation and so forth. Estimates by JCEF based on neighboring pairs
and by MLE are also plotted for comparison. Red solid line is the mean
computing time (in seconds) for both JCEF and Stein’s methods. Red
dashed line is the mean time of MLE. Blue dashed line indicates the
true log(β) value.
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4.4 Discussion

In this chapter, I have reviewed most of the methods proposed in the literature

to estimate covariance structures for massive data sets. These parallel methodol-

ogy developments have been mostly focused on spatial data sets, and have not

yet been applied in spatio-temporal settings. Even within the spatial context, how

these methods compare is still an open question.

The simulation experiments have compared the conventional WCL, JCEF, ta-

pering, Stein’s method, WLS and MLE. Results show that JCEF is advantageous

over these methods in terms of balancing estimation and computational efficiency

for large data sets. JCEF is faster and has smaller MSE than tapering when the ta-

per range is short. It is a better method than Stein’s method with one observation

in the conditioning set, a situation where bivariate distributions are used by both

methods. It also recovers a significant amount of efficiency from WCL. Unlike ta-

pering, it does not require a joint distance metric in space and time, and is more

robust to model misspecification than Stein’s methods which require parametric

forms of higher-order distributions.

Spectral methods and the fixed ranking kriging are not chosen because it is hard

to set up the simulation for fair comparison. The spectral method requires a set of

Fourier frequencies to approximate the likelihood, which cannot be easily related

to a scenario in the composite likelihood or tapering setting. While the fixed rank

kriging needs the specification of a set of basis functions, which again cannot be

formulated to resemble any of the pseudo-likelihood methods.

However, it is possible to formulate a composite likelihood version comparable
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to the predictive process method. Specifically, if the predictive process is built

on a coarsened spatial grid of the data on a regular lattice, and the dimension

of the process is m. Then we can formulate composite likelihoods based on m-

dimensional marginal densities of observations on the grids of the same dimension

and shape. The resulting composite estimation will utilize much more information

from the higher dependence structure of the data and should be more efficient than

the pairwise version. Since different m-dimensional observations can be directly

incorporated into the estimation. This enlarged composite estimation approach

may be more efficient than the predictive process, where observations off the grid

need to be predicted.

Sang and Huang (2011) proposed a full-scale approximation which aimed to

retain the merit of the predictive process in capturing large-scale variations and

that of the tapering in capturing short-range variations. A similar setup can be

constructed within the composite likelihood framework. Namely, one part of the

composite likelihoods can utilize observations of a larger dimension, in analogy to

the predictive process. The other part can still be based on pairwise observations,

similar to the tapering approach to capture a short range of dependences. Then,

this mixture of composite likelihoods may provide an improved version of the cur-

rent pairwise composite likelihoods to deal with anisotropic spatial dependences.

It is worth mentioning that by including more observations in the condition-

ing set, stein’s method yields more efficient estimates at a contained computing

cost, as seen in Figure 4.3. This shows that incorporating high-order dependence

among observations increases estimation efficiency. A similar gain in efficiency can

be expected for the marginal composite likelihood. I have conducted a small scale

simulation to assess whether using tri-variate marginal composite likelihoods im-
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proves efficiency. Parameter values in setup 3 of Table 4.3 are set as the true values.

Data are generated on a 5 × 5 × 5 regular grid.

Figure 4.4: Boxplots of log β estimates from various methods, labeled along the
horizontal axis. Stein 1 - Stein 3 correspond to conditioning sets of 1-3
observations. JCEF and WCL are based on bivariate densities. TCL de-
notes tri-variate marginal composite likelihood estimation. Computing
times are marked in red above the horizontal axis. Parameter values
in setup 3 Table 4.3 are set as the true values. Data are generated on a
5 × 5 × 5 regular grid.
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Figure 4.4 displays the boxplots of log β estimates from various methods, la-

beled along the horizontal axis. Stein1 - Stein3 correspond to the conditioning set

of 1-3 observations. JCEF and WCL are based on bivariate densities. TCL de-

notes tri-variate marginal composite likelihood estimation. Computing times are
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marked in red above the horizontal axis. It is clear that TCL is more efficient than

WCL and is comparable to Stein2. This indicates that triplets of observations yield

more efficient estimates than pairs of observations in spatio-temporal setting.



CHAPTER V

GeoCopula Regression Models for Spatial-Clustered
Data

5.1 Introduction

In social and health sciences, research studies usually involve subjects that are

randomly selected within a large number of geographical units. For example,

among the studies of place effects on health, Chaix et al. (2005) investigated indi-

vidual and contextual factors that determine the health care utilization in France,

where 10955 people are randomly surveyed within 4421 municipals in France. To

study the association of neighborhood environmental risk factors with cardiovas-

cular diseases, Mujahid et al. (2007) used a sample of 5988 subjects selected from

576 census tracts from three states in USA. Grady (2010) assessed the impact of

racial residential segregation on low birth weight from a pool of 10277 cases nested

in 1092 census tracts in Michigan. In civil and environmental engineering studies,

Sener et al. (2011) analyzed the physical activity participation levels of individuals

in a family unit based on data drawn from the 2000 San Francisco Bay Area House-

hold Travel Survey, in which individual and household socio-demographic as well

80
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as all activity and travel episodes information were recorded for subjects in 15000

households.

These examples are just a glimpse of a growing number of research projects

that collect data in spatial dimensions, thus necessitate the eminent need to gen-

eralize the multilevel data analysis to incorporate the spatial dependences among

the clustering units. In classic multilevel models, data from clusters are assumed

to be independent, and the focus dwells on appropriately accounting for within-

cluster correlations while making statistical inferences. However, when clusters

are spatially correlated, such as neighborhoods or census tracts, subjects from clus-

ters are likely to be correlated due to location proximity, hence the between-cluster

independence assumption is no longer valid. Statistical analysis ignoring the spa-

tial effect can lead to wrong standard errors of the regression coefficient estimates,

which in turn biases hypothesis testing (Anselin and Griffith, 1988). As a result, in

order to draw valid statistical inference, it is of critical importance to account for

the between-cluster spatial correlation as well as the within-cluster correlation.

In the current literature, there are two popular modeling frameworks for ana-

lyzing spatially correlated data. One approach is based on random effects models,

where mean models are specified conditional on cluster-specific random effects

(e.g. Diggle et al., 2008). The spatial structures are accounted for by allowing ran-

dom effects to distribute as a spatial stochastic process. For non-Gaussian data,

regression parameters in such hierarchical specification only have conditional or

cluster-specific interpretations, which may not be desirable when population char-

acteristics are of interest. The other approach is the generalized estimating equa-

tion (GEE, Liang and Zeger 1986), which specifies the mean model and covariance

separately. In the covariance model, the spatial dependence is incorporated via a
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spatially structured working correlation matrix (e.g. Albert and McShane, 1995;

Gotway and Stroup, 1997). GEE is suitable when the mean model is of central in-

terest, since it treats spatial dependences as nuisance components. As a result, GEE

is not appropriate for spatial interpolation, which however is an important task in

many practical studies, such as disease mapping (Diggle et al., 2008).

In this chapter, we propose a new and flexible modeling framework that models

both mean and covariance structures of spatial-clustered data, termed as GeoCop-

ula regression model. In this model, univariate margins are specified by general-

ized linear models, while the spatial and cluster dependences are modeled through

the multivariate Gaussian copula. The proposed framework allows us to analyze a

large variety of multivariate discrete and continuous spatial-clustered data, includ-

ing normal, binary and count data as special cases. Since the mean and the depen-

dence structure are separately formulated, regression parameters have marginal

interpretations, and at the same time, spatial dependence is explicitly modeled by

the copula and is not constrained by the mean model.

It is worth mentioning that Bárdossy (2006) and Bárdossy and Li (2008) pro-

posed to use bivariate copulas as an alternative to variograms and covariance func-

tions to describe spatial variability. They showed that copula-based approach is

more flexible in accounting for asymmetrical dependence and is superior in terms

of prediction when the normality assumption is violated. Moreover, Kazianka and

Pilz (2010) proposed a similar regression model in which exponential dispersion

distribution family (Jorgensen, 1997) is used as the marginal distributions and a

multivariate copula is applied to model the spatial dependence. Our work in

this chapter extends Kazianka and Pilz’s model to analyze more complex spatial-

clustered data, and attempts to provide a richer statistical presentation (e.g. large
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sample properties) of the multivariate copula regression model. Most importantly,

our joint composite estimating function is new and computationally efficient in

complex data structures.

A key obstacle of preventing the wide spread of spatial analysis in contex-

tual research is mostly due to computational issues. Almost all existing models

require either high-dimensional matrix manipulations such as in GEE, or high-

dimensional integrations, such as in random effects models. Numerical calcu-

lations quickly become intractable for data sets with a large number of spatial

units, as in the previous examples. Similar computational problems are faced by

Bayesian approaches as well.

The need to reduce computational burden is eminent in many practical situa-

tions. For spatial data, people have tried to use composite likelihood (CL) methods

(Lindsay, 1988), which is a general class of pseudo-likelihoods based on likelihoods

of marginal or conditional events. Among many others Curriero and Lele (1999)

used CL in spatial variogram estimation, and demonstrated that the CL approach

provides consistent estimates and is superior to likelihood-based methods in terms

of weaker distributional assumptions and much less computational burden. Hea-

gerty and Lele (1998) applied CL approach to binary spatial data, which is mod-

eled via a probit model of pairwise observations using an exponential decaying

covariance structure. Li and Lin (2006) modeled spatially correlated survival data

by a Gaussian copula and avoided the high-dimensional integration of the likeli-

hood function by again considering pairwise observations. Varin et al. (2005) used

pairwise CL to estimate GLMM for Poisson data and show that CL can consid-

erably reduce computing burden and retain adequate efficiency. Bárdossy (2006)

and Bárdossy and Li (2008) developed bivariate spatial copulas to model ground
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water quality parameters. While Kazianka and Pilz (2010) proposed the same CL

approach for estimating spatial copula models.

Though the pairwise CL approach, currently the most popular version of CL,

is computationally appealing and yields estimators with sound asymptotic prop-

erties, it implicitly treats observation pairs as independent, resulting in some loss

of efficiency in comparison to the full likelihood method. Recently, Bai et al. (2011)

proposed a joint composite estimating function (JCEF) approach to accounting for

correlations among the pairs in the analysis of spatio-temporal data. In the context

of spatial-clustered data, we aim at the development of a new JCEF method that

yields better efficiency than the existing pairwise CL methods. Recognizing the

differences between within-cluster correlation and between-cluster spatial correla-

tion, we group pairs into between-cluster pairs that come from different clusters,

and within-cluster pairs that lie within a cluster, (see Figure 5.1 in section 5.3). The

former group is expected to provide more information about cluster-level covari-

ate effects (e.g. environmental factors) and between-cluster spatial dependence,

while the latter may be more informative about within-cluster covariate effects

(e.g. subject-level characteristics) and within-cluster correlations. Then we com-

bine the two sets of composite estimating functions into a quadratic objective func-

tion, in a similar way suggested by Qu et al. (2000). Then the estimation is carried

out by minimizing the objective function. In this way efficiency can be improved.

In this chapter, GeoCopula model is constructed from the multivariate Gaus-

sian copula for three reasons: (i) When margins are normal linear models, the pro-

posed GeoCopula model becomes the multivariate Gaussian distribution, the most

widely used model for spatial continuous data. When the probit link is used for

binary data, the GeoCopula model results in a multivariate probit model, another



85

very popular model for spatial binary data. (ii) The dependence structure is con-

veniently depicted by a correlation matrix in the Gaussian copula, which can be

straightforwardly utilized in the spatial interpolation, such as kriging. (iii) Other

copulas such as Archimedean copulas cannot accommodate as rich and flexible

spatial dependences as the Gaussian copula. We will revisit this point in a later

section.

The rest of the chapter is structured as follows. In section 5.2, the GeoCopula

model is proposed and detailed for multivariate Gaussian and binary data. Section

5.3 proposes a joint composite estimating function approach to estimating param-

eters in the GeoCopula model. Large-sample properties of the proposed estimator

is investigated in section 5.4. Simulation experiments are conducted in section 5.5.

A real data example is illustrated in section 5.6, followed by some discussions in

section 5.7.

5.2 Model

Let Ysi denote the outcome of the ith subject nested in geographic cluster s,

where i ∈ Is, the index set of subjects in cluster s, and s ∈ S ⊂ R2, with S

being a collection of spatial clusters under study. Denote the number of subjects

in cluster s as ns, and the total number of subjects is n = n1 + · · ·+ nS. Suppose

that each outcome Ysi follows a generalized linear model (McCullagh and Nelder,

1989), whose mean (or systematic component) µsi is specified as a function of p

covariates, xsi = (xsi
1 , . . . , xsi

p )
T via a known link function h; that is,

h(µsi) = η(xsi) = xT
siβ = β0 + β1xsi

1 + · · ·+ βpxsi
p ,
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where β = (β0, β1, . . . , βp)T is a vector of regression coefficients.

The cumulative distribution function (CDF) of Ysi is given by Fsi(ysi; µsi, φsi),

where φsi is the dispersion parameter. For simplicity, write the univariate CDF by

Fsi(ysi), and the corresponding density function by fsi(ysi).

5.2.1 Copula Dependence Model

To specify a fully parametric model for all Ysi’s, we invoke a copula depen-

dence model to characterize both spatial and within-cluster correlations. In short,

an n-dimensional copula function is a multivariate parametric distribution with

univariate uniform margins. That is, copula C(u) is a CDF in the n dimensional

cube with uniformly distributed marginals u = (u1, . . . , un). A copula can be easily

constructed from a given multivariate distribution. Let W = (W1, . . . , Wn)T ∼ G

where G is an n dimensional CDF with margins G1, . . . , Gn. Then the resulting

copula takes the form

CG(u) = G
{

G−1
1 (u1), . . . , G−1

n (un)
}

, (5.1)

where u = (u1, . . . , un)T ∈ (0, 1)n, provided the existence of all marginal inverse

CDFs (i.e. quantile functions) G−1
i of Gi. Note that the dependence structure in the

original G is transfered into copula CG. Equivalently, by a change of variables,

CG (G1(w1), . . . Gn(wn)) = G (w1, . . . , wn) .

By supplementing the copula CG in equation (5.1) with any given margins, say

F11, . . . , FSnS , a new multivariate distribution can be obtained as
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F(y) = CG{F11(y11), . . . , FSnS(ySnS)}, (5.2)

where y = (y11, . . . , ySnS).

When marginal outcomes are all continuous, the first order derivative of CDF

(5.2) leads to the density function of y as follows:

f (y) = cG{F11(y11), . . . , FSnS(ySnS)} ∏
s∈S ,i∈IS

f (ysi), (5.3)

where cG is the density function corresponding to CG.

When marginal outcomes are all discrete, a multivariate probability mass func-

tion is obtained by taking the Radon-Nikodym derivative of CDF F(y) in equation

(5.2), and given as follows:

f (y) = P
(
Y11 = y11, . . . , YSnS = ySnS

)
=

2

∑
j11=1

· · ·
2

∑
jSnS=1

(−1)j11+···+jSnS CG(u
j11
11 , . . . , u

jSnS
SnS

), (5.4)

where u1
si = Fsi(ysi), and u2

si = Fsi(ysi−). Here Fsi(ysi−) is the left-hand limit of Fsi,

which is equal to Fsi(ysi − 1) when the support of Fsi is an integer set, such as the

case for Poisson or binomial outcomes.

Different choices of copula models result in different multivariate parametric

distributions. The following examples indicate the richness and flexibility of the

copula framework.

Example 1 (Multivariate Gaussian Copula). When G is the n dimensional mul-

tivariate Gaussian distribution with zero means and a correlation matrix Σ, the
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resulting copula is known as the multivariate Gaussian copula, with CDF given

by:

CΦ(u|Σ) = Φn

{
Φ−1(u1), . . . , Φ−1(un)|Σ

}
, (5.5)

Here Φn and Φ are CDFs for n-variate normal Nn(0, Σ) and the standard univari-

ate normal N(0, 1) marginals, respectively. Note that (u1, . . . , un) are independent

when Σ is the identity matrix.

Example 2 (Multivariate t Copula). When G is the n dimensional multivariate t

distribution with zero means, degrees of freedom κ and a correlation matrix Σ, the

resulting copula is called the multivariate t copula with CDF given by,

CT(u|Σ, κ) = Tn

{
T−1(u1|κ), . . . , T−1(un|κ)|Σ, κ

}
,

where Tn(•|Σ, κ) is the n-variate t CDF with d.f. κ and T(•|κ) is the corresponding

univariate t CDF with d.f. κ. It is known that the t copula captures some tail depen-

dences as opposed to the Gaussian copula that yields independence in the lower

or upper tails. Hence t copula is often applied to model continuous outcomes of

extreme values. When d.f. κ → ∞, the t copula approaches the Gaussian copula.

However, for the t copula, an identity correlation matrix does not imply indepen-

dence among margins. Also, in practice it is very subtle to handle tail dependences

for discrete outcomes, such as binary data.

Example 3 (Multivariate Archimedean copula). A copula is called Archimedean

if it admits the following representation

C(u) = ψ
(

ψ−1(u1) + . . . + ψ−1(un)
)

,



89

where ψ is the copula generator. Some important generators include Clayton,

Frank and Gumbel copula. Unlike the elliptical copulas such as Gaussian and

t, Archimedean copulas usually have explicit CDF formulas, and hence are eas-

ier to evaluate. Although, they can deal with arbitrary n dimensional outcomes,

there is only one dependence parameter specified to measure the strength of the

association among n components. For example, the Clayton generator function is

(1 + t)−1/θ, where θ describes the dependence among all univariate margins. For

complex data structures, like the spatial-clustered data considered in this chapter,

multi-level dependences are present. So a simple dependence parameter is not

enough to describe the dependence structure of the data.

Example 4 (Vine copulas). To formulate more flexible multivariate copulas that

deal with complex dependence structures and that are computationally tractable, a

pair-copula decomposition of a multivariate copula density function was proposed

in Joe (1996); Bedford and Cooke (2001). Specifically, an n-variate copula density c

can be expressed as a product of n(n − 1)/2 bivariate conditional copula densities,

in a sequential manner,

c(u) =
n−1

∏
j=1

n−j

∏
j=1

ci,i+j|i+1,...,i+j−1

{
ui|i+1,...,i+j−1, ui+j|i+1,...,i+j−1

}
, (5.6)

where

ui|i+1,...,i+j−1 = F(yi|yi+1, . . . , yi+j−1),

and

ui+j|i+1,...,i+j−1 = F(yi+j|yi+1, . . . , yi+j−1)

are the conditional CDFs, based on given margins F(yi), i = 1, . . . , n and bivariate
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copula dependence measures, ci,i+j|i+1,...,i+j−1. For example, when n = 3, expres-

sion (5.6) becomes

c(u1, u2, u3) = c12(u1, u2) ∗ c23(u2, u3) ∗ c13|2(u1|2, u3|2). (5.7)

The decomposition of the multivariate copula density is not unique. Bedford and

Cooke (2002) used graphical models to organize possible decompositions in a sys-

tematic way, and called them ”vines”. The formulation adopted in equation (5.6)

is the D-vine structure. In parallel, there is a C-vine structure.

One major advantage of the vine copula construction is that different copula

functions can be specified for different pairs to more flexibly capture complex

dependences of real data. In addition, via this decomposition the evaluation of

the full likelihood only involves calculation of bivariate densities. For example,

in equation (5.7), c12, c23 and c13|2 can be specified by different two-dimensional

copulas. This form of pair-copula construction has been applied to study serial

dependences for longitudinal data (Smith et al., 2010), and cross-sectional depen-

dence for multiple time series (Min and Czado, 2010). The current practice is only

limited to n ≤ 50 or so, due to the escalating computational burden.

The presence of spatial dependence structures requires the multivariate copula

to fulfill the following three properties as pointed out by Bárdossy (2006); Kazianka

and Pilz (2010): (i) exchangeability, that is the dependence between location s1 and

s2 is the same as the dependence between s2 and s1; (ii) arbitrarily strong or weak

dependence can be modeled, that is, given a set of very close spatial locations, there

should be a parameterization of the copula to achieve full dependence. On the

contrary, when spatial locations are far away, the parameterization of the copula
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should lead to independence; (iii) The geometric position of the corresponding

locations can be incorporated into the copula parameterization. In addition, we

believe that another three features are also desirable: (iv) high-dimensional and

flexible dependence structures can be incorporated; (v) continuous and discrete

outcomes can be modeled; (vi) the copula regression model should encompass

existing popular models as special cases.

Given these constraints, not all the popular multivariate copulas are appropri-

ate in modeling spatial-clustered data. For example, in Example 3, the Archimedean

copulas have only one dependence parameter, hence the strength of dependence

does not vary with spatial distances. As for the multivariate t copula in Example 2,

even if the correlation matrix can be formulated as a function of spatial distances,

zero correlations do not imply statistical independence among margins (Kotz and

Nadarajah, 2004), and the tail dependence is hard to interpret for binary outcomes.

Furthermore, although the pair-copula construction in Example 4 allows flexible

dependences to be specified in each bivariate copulas, such flexibility hampers

the use of a unified dependence measure to describe a certain overall dependence

pattern over the spatial domain (e.g. different bivariate copulas have different

dependence ranges and interpretations), which is a crucial component needed in

spatial interpolation, such as kriging (Cressie, 1993, Chapter 3). Also, given a set

of pairwise dependence parameters, it is difficult to model, estimate (n(n − 1)/2

dependence parameters) and interpret related dependence patterns. For example,

in equation (5.7) c12, c23 and c13|2 have their own pair-specific dependence param-

eters, which appear to be too generic to model overall spatial features using the

vine copula model.
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5.2.2 GeoCopula Regression Models

In this chapter, we choose the multivariate Gaussian copula described in Ex-

ample 1 as the dependence model to build the GeoCopula regression model. The

advantages include (i) the multivariate Gaussian copula is both analytically and

theoretically well studied; (ii) the correlation matrix enables us to model a depen-

dence map across the entire spatial region under study, which can accommodate

full dependence with correlations approaching 1, and full independence with zero

correlation coefficients, as well as positive and negative correlations; (iii) the cor-

relation pattern can be easily formulated as functions of spatial coordinates and

covariates, which can be conveniently estimated and applied for spatial interpola-

tion.

For example, if we assume a compound symmetry (i.e. exchangeable) structure

for within-cluster correlation, then the within-cluster correlation matrix for cluster

i is

Σii = (1 − ρ)Ini + ρJni , i = 1, . . . , S (5.8)

where ρ is the correlation among individuals within the same cluster, and Ini is an

ni × ni identity matrix, and Jni an ni × ni matrix with all entries being 1.

Furthermore, if we assume the spatial correlation to be the Matérn class across

clusters, the spatial correlation matrix between observations in clusters s and t is

Σst =
1

Γ(ν)2ν−1

(
2
√

νdst

α

)
Kν

(
2
√

νdst

α

)
∗ Jns×nt , (5.9)

where dst is the distance between cluster s and t, and Jns×nt is an ns × nt matrix

with all entries being 1. That is, subjects in cluster s are equally correlated with
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subjects in cluster t. The strength of the correlation is a function of the distance

between two clusters.

It follows that the overall correlation matrix Σ is an S × S block matrix of the

form

Σ = [Σij]S×S, i, j = 1, . . . , S, (5.10)

where the block-diagonal Σii is given in (5.8) and the off block-diagonal Σij is given

in (5.9).

Moreover, various spatial correlation patterns like, for example, nonstationar-

ity and anisotropy, can be easily formulated for between-cluster correlation pat-

terns as functions of spatial ordinates and covariates. In summary, almost all exist-

ing spatial correlation structures studied in the literature can be straightforwardly

adapted into the multivariate Gaussian copula model with little effort, through

blocks of the between-cluster correlation matrices.

Another important advantage of using Gaussian copula is that by specifying

different marginal GLMs for Fsi(ysi), the resulting GeoCopula, given by

F(y) = Φn

{
Φ−1(F11(y11)), . . . , Φ−1(FSnS(ySnS))|Σ

}
, (5.11)

encompasses a wide range of useful models in practice, including the Gaussian

spatial model (when Fsi(ysi) is normal), and the multivariate probit model (when

Fsi(ysi) is binomial with a probit link) as special cases.

Example 5 (GeoCopula Special Case I: Multivariate Gaussian Regression Model).

Assume marginally Ysi ∼ N(xT
siβ, σ2

si), and denote the uniform random variable
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usi = Φ
(

ysi−xT
siβ

σsi

)
. Plug usi into equation (5.5), we obtain

F(y) = Φ

(
y11 − xT

11β

σ11
, . . . ,

ySnS − xT
SnS

β

σSnS

|Σ
)

.

That is

Y ∼ Nn (Xβ, DΣD) , (5.12)

where

X =


xT

11

· · ·

xT
SnS

 , D = diag{σ11, . . . , σSnS}.

Example 6 ( GeoCopula Special Case II: Multivariate Probit Model). Assume

marginally Ysi ∼ Bernoulli(psi). Then the CDF of Ysi is

Fsi(ysi) =


0, ysi < 0

1 − psi, 0 ≤ ysi < 1

1, ysi ≥ 1.

Consider a probit regression model psi = Φ(xT
siβ). Plug Fsi(ysi) into equation

(5.11), we obtain a multivariate distribution for n-variate binary data, which is

shown in Song (2000) to have the same probability mass function as that generated

by the following multivariate probit model.

Specifically, let the latent normal variable

Zsi = xT
siβ + ϵsi, and ϵ = (ϵ11, . . . , ϵSnS)

T ∼ N(0, Σ).
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Define a dichotomous procedure as follows:

Ysi = I(Zsi > 0),

where I(•) is the indicator function. Then (Y11, . . . , YSnS)
T defined by this thresh-

old model has the same probability mass function as the random vector constructed

in Example 6. That is, the multivariate probit model is a special case of the pro-

posed GeoCopula regression model.

5.3 Estimation

5.3.1 General Theory

For a large-scale data set, computing the distribution function of the GeoCop-

ula models in equation (5.11) either requires high-dimensional integration or large

matrix inversion, hence is not numerically feasible. Following Besag (1974), we

consider a pseudo-likelihood approach to perform parameter estimation and in-

ference for the GeoCopula models. Estimation functions are formulated from pair-

wise marginal composite likelihoods (Lindsay, 1988; Varin et al., 2011). Bai et al.

(2011) proposed the joint composite estimating function (JCEF) approach to fur-

ther improve the estimation efficiency by forming a quadratic objective function

from different types of pairwise estimating functions. We develop an analog of the

JCEF approach in this new class of models. Each type of estimating functions is

constructed by grouping pairs of outcome variables according to characteristics of

the underlying spatial process. In our spatial-clustered data, a natural grouping

scheme is to partition pairs into within-cluster and between-cluster groups (e.g.
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villages), as shown in Figure 5.1. The former contains pairs of observations from a

common cluster, which are more relevant to subject-level effects and within-cluster

correlations. While the latter consists pairs of observations from different clus-

ters, which capture more information relevant to cluster-level covariate effects and

between-cluster spatial correlations.

Figure 5.1: Configurations of spatial-clustered data with two clusters. (i) between-
cluster pair, (ii) within-cluster pair.

(i)

(ii)

To develop JCEF, the first step is to marginalize the high-dimensional CDF func-

tion in equation (5.11) into 2-dimensional marginals. Let the vector of parameters

of interest be θ, which includes the mean regression coefficients β, the dispersion

parameter ψ, and the variance and covariance parameters ρ and α in Σ, provided

that a Matérn class spatial correlation function is assumed. Assume the length of θ

is p. By the property of marginal closure of the Gaussian copulas, a 2-dimensional

marginal CDF is given by,

F(ysi, ytj; θ) = Φ2{Φ−1(Fsi(ysi; β, ψ)), Φ−1(Ftj(ytj; β, ψ))|Σsi,tj(ρ, α)}, (5.13)
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where Σsi,tj is the 2 × 2 corresponding sub correlation matrix.

Let f (ysi, ytj; θ) be the density with respect to F(ysi, ytj; θ), whose explicit ex-

pression form is given by equation (5.3) for continuous outcomes and in equa-

tion (5.4) for discrete outcomes. Let U(ysi, ytj; θ) be the marginal score function

associated with f (ysi, ytj; θ), which is called the component score function (CSF).

According to Varin et al. (2011), the conventional composite likelihood estimating

functions is formed by summing all such CSFs within a certain distance lag d:

S(θ, d) = ∑
||s−t||<d

U(ysi, ytj; θ, d),

where || • || is the Euclidean distance in R2. We call this method weighted com-

posite likelihood (WCL) approach (Bevilacqua et al., 2011). The weight is 0/1,

depending on the distance d between two clusters.

The optimal d can be determined by evaluating the Godambe information ma-

trix (i.e. asymptotic covariance of the estimates) of the corresponding estimating

equations (Bevilacqua et al., 2011). A value of d leading to the most informative set

of estimating equations is then used. However, when calculating the information

matrix is computationally costly, empirical guidelines can be used. For example,

from the empirical spatial variogram, one can learn the spatial dependence pat-

terns, and choose a value for d within which pairwise correlations are fairly high.

Numerous simulation experiments are reviewed in (Varin et al., 2011) and studied

in Davis and Yau (2011) and Bai et al. (2011). All have shown that including pairs

within shorter distances usually results in more efficiency than including pairs fur-

ther apart. This is desirable, since a substantial number of pairs can be eliminated

from estimation, which greatly facilitates the computational feasibility and speed.
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To develop the JCEF approach, we first partition pairs into between-cluster and

within-cluster groups. Label the two sets as DW,n and DB,n, respectively. They are

given by

DW,n = {(s, i, t, j) : s = t ∈ S , and i ̸= j, i, j ∈ Is},

DB,n = {(s, i, t, j) : 0 < ||s − t|| ≤ d; s, t ∈ S , and i ∈ Is, j ∈ It}.

Then Dn = DW,n ∪ DB,n ∈ S × Is × S × Is ⊂ R2 × R+ × R2 × R+ is the set

containing all pairs used in estimation.

The between-cluster CSF is constructed as

ΨB,n(θ, d) =
1

|DB,n| ∑
(s,i,t,j)∈DB,n

U(ysi, ytj; θ, d).

And, the within-cluster CSF is constructed as

ΨW,n(θ) =
1

|DW,n| ∑
(r,l,r,m)∈DW,n

U(yrl, yrm; θ),

where |A| is the cadinality of set A.

Instead of taking the sum of the two groups of CSFs, we stack them into an

extended CSF:

Γn(θ, d) =
(

ΨT
B,n(θ, d), ΨT

W,n(θ)
)T

.

Note that the dimension of Γn is larger than that of θ, leading to a so-called over-

identification scenario (Hansen, 1982). To obtain an estimate of θ, following Hansen

(1982) and Qu et al. (2000), we form a quadratic objective function of the following

form:

Qn(θ, d) = ΓT
n (θ, d)W−1Γn(θ, d),
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where W is a 2p × 2p positive-definite weight matrix. Consequently, a JCEF esti-

mator is defined as

θ̂n(d) = argminθ∈ΘQn(θ, d). (5.14)

According to Hansen (1982), the optimal weight matrix is W = Cov (Γn(θ, d)), in

the sense that the resulting estimator has the maximum efficiency.

5.3.2 JCEF in Multivariate Probit Model

It is relatively easy to derive JCEF in the multivariate Gaussian model by fol-

lowing the general procedure outlined in the above session. Here, we illustrate the

derivation of JCEF in the GeoCopula regression model for binary data. We refer

to Heagerty and Lele (1998) that considered multivariate probit model for spatial

binary data.

First, the bivariate probability mass function for Ysi and Ytj in the general canon-

ical form is given by:

log P
(
Ysi = ysi, Ytj = ytj

)
= α0(si, tj) + α1(si, tj)ysi + α2(si, tj)ytj + α3(si, tj)ysiytj.

Second, according to Zhao and Prentice (1990), the score function may be ex-

pressed as follows:

Usi,tj(θ) = DT
si,tjV

−1
si,tjRsi,tj,
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with

Dsi,tj =
∂

∂θ


µsi

µtj

σsi,tj

 and Rsi,tj(θ) =


ysi − µsi

ytj − µtj

(ysi − µsi)(ytj − µtj)− σsi,tj

 .

The detailed expression of Vsi,tj = var
(

Rsi,tj
)

can be found in Appendix A in Hea-

gerty and Lele (1998).

Third, based on the GeoCopula model, we have

µsi = E(ysi) = Φ(xT
siβ), µtj = E(ytj) = Φ(xT

tjβ),

σ2
si,tj = Φ2

(
xT

siβ, xT
tjβ|Σsi,tj

)
− Φ(xT

siβ)Φ(xT
tjβ).

Finally, the group-based composite score functions are

ΨB,n(θ, d) =
1

|DB,n| ∑
(s,i,t,j)∈DB,n

Usi,tj(θ, d),

and

ΨW,n(θ) =
1

|DW,n| ∑
(r,l,r,m)∈DW,n

Url,rm(θ).

5.3.3 Estimation of the Weight Matrix

Although the optimal weight matrix Cov(Γn(θ)) can be derived analytically us-

ing multivariate Gaussian quadrant probabilities, given the large number of possi-

ble pairs, computing it based on the analytic formula is not practically feasible. Al-
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ternatively, in spatial data analysis, estimation of this covariance matrix is mostly

achieved by subsampling techniques as suggested in Heagerty and Lele (1998);

Heagerty and Lumley (2000); Lee and Lahiri (2002); Li and Lin (2006). Specifically,

let the sampling region be An = S × T , where |An| = n. Under the assumption

that, asymptotically, |An|E(Γn(θ)ΓT
n (θ)) → Λ, we can estimate Λ using sample co-

variance matrix of statistics computed on either overlapping or non-overlapping

subshapes of the sampling region An. That is:

Λ̂ = k−1
n

kn

∑
i=1

|Ai
l(n)|

{
Γi

n(θ)− Γ̄(θ)
}2

, (5.15)

with Γ̄(θ) = ∑kn
i=1 Γi

n(θ)/kn, where Γi
n(θ) is vector Γ(θ) evaluated in Ai

l(n), i =

1, . . . , kn, a collection of (non)overlapping subshapes of An and kn denotes the

number of subshapes.

We will apply this subsampling technique for our weight matrix estimation as

well as later the standard error estimation. We follow Politis and Romano (1994) to

choose the optimal subsample size proportional to Cna/a+2, where a is the dimen-

sional of the spatial domain and C is a tuning constant.

5.4 Large Sample Properties

In the spatial-clustered setting considered in this chapter, the increase of the

sample size can be achieved by either increasing the number of subjects within

each cluster, or by increasing the number of spatial clusters. For the latter case,

two scenarios are possible: (i) more sample locations are added within a fixed

spatial domain, known as the in-fill asymptotics (Zhang, 2004); (ii) More locations
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are included by expanding the spatial domain, corresponding to the increasing-

domain asymptotics (Mardia and Marshall, 1984). Sampling more people within

clusters can be regarded as a special case of the in-fill asymptotic scenario, where

more observations are collected at the same locations. Since these extra data are

likely to be highly correlated, for some parameters, consistent estimates may not

exist under the in-fill asymptotics (Zhang, 2004).

In this chapter, we establish large-sample properties of the JCEF estimator un-

der the increasing domain context. Because we form the estimating functions

based on pairwise observations, the asymptotic properties of θ̂n will be based on

properties of the extended pairwise random process

y(k) ≡
(
ysi, ytj

)T , (5.16)

where k = (s, i, t, j) ∈ Dn. Under appropriate conditions of the correlation decay

rate for the process y(k), usually postulated by certain mixing conditions (Guyon,

1995), we expect to have ”pseudo-independent” pairs when they are beyond a cer-

tain distance. In such cases, we can derive laws of large numbers (LLN) and cen-

tral limit theorems for ΨB,n(θ, d) and ΨW,n(θ) respectively, and then for Γn(θ, d) =

(ΨB,n(θ, d), ΨW,n(θ))
T. Moreover, by using standard GMM arguments (Hansen,

1982), we can show the consistency and asymptotic normality of θ̂n defined in

equation (5.14).

Jenish and Prucha (2009) developed a set of limit theorems for random pro-

cesses under rather general conditions of nonstationarity, unevenly spaced loca-

tions, and general forms of sample regions. We exploit those results to sketch

large-sample properties for our JCEF estimator as follows.
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5.4.1 Consistency

Consider a generic case of the composite estimating function

ΨA,n(θ) =
1

|DA,n| ∑
k∈DA,n

Uk(y(k); θ),

where A ∈ {B, W}.

We assume the following assumptions for the component score functions.

Assumption 1 The (possibly unevenly spaced) lattice D ⊂ R2 × Z+ × R2 × Z+ is

infinitely countable. All elements in D are located at distances of at least d0 > 0

from each other. That is, ρ(i, j) ≥ d0, for all i, j ∈ D, where ρ(i, j) is a distance

metric for any two points i, j ∈ D. See a detailed definition of the distance metric

in the Appendix C.

Assumption 2 {DA,n : n ∈ N} is a sequence of arbitrary finite subsets of D, satis-

fying |DA,n| → ∞ as n → ∞, for A ∈ {B, W}.

Assumption 3 (Uniform L2+δ integrability) Let qk = supθ∈Θ ||Uk(y(k); θ)||. For

some δ > 0, lime→∞ Eq2+δ
k 1(||qk|| > e) = 0, for all k ∈ Dn.

Assumption 4 E supθ∈Θ ||U̇(y(k); θ)|| < ∞, for all k ∈ Dn.

Assumption 1 ensures that the increase of sample size is achieved by an ex-

panding domain, thus it rules out the in-fill asymptotics. Assumption 2 guaran-

tees that sequences of subsets DB,n and DW,n on which the process is generated,

increase in cardinality. Assumptions 3 and 4 are regularity conditions for score

functions. The uniform integrability condition in Assumption 3 is a standard mo-

ment assumption postulated in CLTs for one-dimensional processes. A sufficient

condition for the uniform L2+δ integrability of Uk is its uniform Lγ boundedness
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for some γ > 2 + δ. A weaker assumption of L1 integrability is sufficient for a

LLN for Uk. Assumption 4 is a Lipschitz-type condition, implying that the score

functions are L0 stochastically equicontinuous, so that a ULLN can be obtained.

Lemma 3. When the sample size increases with the increasing spatial domain, given as-

sumptions 1 - 4, and certain appropriate mixing conditions for y(k) given in the Appendix

D,

sup
θ∈Θ

||ΨA,n(θ)− EΨA,n(θ)||
p→ 0, as n → ∞.

As shown in Jenish and Prucha (2009), a polynomial decay of the mixing co-

efficient for the process is enough for their results to hold, which is satisfied by

Gaussian random processes considered in our chapter (Guyon, 1995).

Lemma 3 holds for ΨB,n(θ, d) and ΨW,n(θ) respectively, so we can show easily

that for any given positive-definite weight matrix W,

sup
θ∈Θ

|Qn(θ)− EQn(θ)|
p→ 0, as n → ∞.

Consequently, we establish the consistency of the JCEF estimator in Theorem 1.

Theorem 3. Under the same regularity conditions stated in Lemma 3, if the true pa-

rameter value θ0 is the unique minimizer of EQn(θ), and θ̂n minimizes Qn(θ), then

θ̂n
p→ θ0, as n → ∞.

5.4.2 Asymptotic Normality

To derive the asymptotic distribution of the JCEF estimator, the following ad-

ditional regularity conditions are needed.
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Assumption 5 Let Λn(θ) = Var {Γn(θ)}, limn→∞ nΛn(θ) = Λ(θ), where Λ(θ) is a

positive-definite matrix.

Assumption 6 supθ∈Θ ||Γ̇n(θ) − EΓ̇n(θ)||
p→ 0. Write limn→∞ EΓ̇n(θ) = I(θ),

where I(θ) is a positive-definite information matrix.

Assumption 5 assumes that the variance of Γn(θ) is of order O(n−1), which

is also a standard assumption for the subsampling estimation of the covariance.

Assumption 6 is a ULLN for the Hessian matrix Γ̇n(θ), which regulates the asymp-

totic variance of the estimator and can be obtained with the same regularity con-

ditions on Γ̇n(θ) as those in Lemma 3.

Lemma 4. Under the increasing domain framework, given Assumptions 1-6, we have

√
n Γn(θ)

d→ N(0, Λ(θ)), as n → ∞.

A sketch of the proof for Lemma 4 is given in the Appendix E. Then using the

standard GMM arguments (Hansen, 1982), we establish the following theorem:

Theorem 4. Under the increasing domain framework, given assumptions 1-6 and proper

mixing conditions for y(k), we have

√
n(θ̂n − θ0)

d→ N(0, Ω(θ0)Λ(θ0)ΩT(θ0)), as n → ∞,

where Ω(θ0) = −[IT(θ0)W−1 I(θ0)]
−1 IT(θ0)W−1.
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5.5 Simulation Experiments

5.5.1 Set Up

To assess the performance of the JCEF estimator developed for spatial-clustered

data, two simulation experiments are conducted, one based on clustered Gaussian

(Example 5) and the other based on multivariate probit model for clustered binary

data (Example 6). We compare the estimation efficiency of the JCEF, weighted com-

posite likelihood (WCL) and classic MLE. For convenience, the number of subjects

within a cluster is fixed at 4 across all clusters. There are 100 clusters located on a

10 × 10 spatial grid with two coordinates spanning from 1 to 10, and in total there

are 400 observations for a simulation data set.

For both Gaussian and binary simulation experiments, the marginal mean model

is the same and specified with two covariates:

h(µsi) = β1x1
s + β2x2

si, (5.17)

where x1
s is a cluster-level covariate, and x2

si is a subject-level covariate, both gen-

erated from the uniform distribution in (0, 1). The correlation matrix Σ consists of

diagonal blocks, Σw, and off-diagonal blocks, Σst, given below:

Σw = (1 − ρ) ∗ I4 + ρ ∗ J4,

Σst = ρ exp(−α||s − t||) ∗ J4, (5.18)

where ρ ∈ (−1, 1) is the within-cluster correlation, and α ∈ (0, ∞) is a spatial
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scaling parameter for between-cluster spatial correlation. Σst represents an expo-

nential decay correlation function. The vector of parameters of interest is θ =

(β1, β2, ρ, α).

5.5.2 Spatial-Clustered Gaussian Data

For Gaussian data, four estimation methods are compared, namely, the maxi-

mum likelihood estimation (MLE), the weighted composite likelihood estimation

(WCL), the JCEF approach with the weight estimated by parametric bootstrap

(JCEF.p), and the JCEF approach with the weight estimated by subgroup sampling

(JCEF.s). The subgroups in subsampling are chosen as overlapping subregions of

3 × 3 clusters.

In Table 5.1, two scenarios with different rates of spatial correlation decay are

considered. The spatial scaling parameter α are set at 1 and 3, respectively; the

larger the value, the faster the decay. Averaged parameter estimates across 200

rounds of simulation are reported as a summary measure for point estimation. As

shown in Table 5.1, MLE, JCEF.p and JCEF.s are comparable in terms of bias, while

WCL tends to have slightly larger biases, especially for the estimates of β2, ρ and

α. We also compare the root mean squared errors (RMSE) of parameter estimates

across simulation replicates. Each RMSE is scaled by the corresponding parame-

ter value, and is then summed together to obtain a measure of overall efficiency,

termed as Total Scaled RMSE in Table 5.1. It is shown that, in general, MLE has the

smallest RMSE, followed by JCEF.p and JCEF.s. WCL has the largest RMSE. This

confirms that when the model assumption is satisfied, MLE achieves the highest

efficiency, and for JCEF the weight estimated by the parametric bootstrap is more
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accurate than that estimated by subsampling. The WCL appears to be the least

efficient among the four methods.

It is interesting to note that for the scaling parameter α, MLE yields larger RMSE

as compared to JCEF.p in all three settings. One possible explanation is that for the

spatial process, only one realization is observed, MLE may not achieve it asymp-

totic efficiency for some parameters in small samples. Similar phenomena have

also been reported in Bai et al. (2011) and Zi (2009) . Generally speaking, results

from this simulation experiment show that both JCEF approaches improve estima-

tion efficiency over WCL and parametric JCEF sometimes even outperforms MLE

for some parameters.
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5.5.3 Spatial-Clustered Binary Data

Now we compare the same four methods in the multivariate probit model for

spatial-clustered binary data. Following Chan and Kuk (1997), we implement MLE

using an EM algorithm, where we treat latent continuous variables zsi as missing

data and apply Gibbs sampler to generate Monto Carlo samples from truncated

multivariate normal distributions.

We consider two simulation scenarios and related results are summarized in

Table 5.2. The spatial scaling parameter α is set to 1 and 3. As shown in Table 5.2,

these four methods yield similar point estimates, and the estimation bias seems to

decrease as the spatial correlation decays from scenario 1 to scenario 2. In general,

both JCEF approaches have lower RMSE compared to WCL, as shown by the total

scaled RMSE. Once again, JCEF.p appears to outperform the JCEF.s in terms of

RMSE, similar to results for the Gaussian data in section 5.5.2.

It is interesting to observe from Tables 5.1 and 5.2 that, the JCEF gains more

efficiency when the spatial dependence weakens, as indicated by the total scaled

RMSE. The reason may be that when the spatial correlation diminishes, the data

across different clusters become more variable, so that both within-cluster and

between-cluster pairs become more distinct and informative. As a result, the weight

matrix enables us to better account for such variations in estimation, leading to ef-

ficiency gains.
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In summary, JCEF proposed for spatial-clustered data analysis improves the es-

timation efficiency over the existing WCL for both Gaussian and binary data. The

extent of the improvement depends on the ability of the weight matrix to account

for high-order dependences and how accurate the weight matrix can be estimated.

It appears that the weight matrix plays a more significant role for Gaussian data

then for binary data in efficiency improvement. The efficiency gain also increases

as the spatial dependence among clusters diminishes.

5.6 Data Example

In this section, we illustrate an application of the JCEF to a real-world data.

Spatial-clustered data are frequently encountered in spatial epidemiology. One of

the key interests is to identify environmental risk factors associated with disease

prevalences. Diggle et al. (2008) investigated the spatial variation in the prevalence

of malaria among village resident children in Gambia. They developed a spatial

generalized linear mixed model to account for the spatial correlation among the

residuals at the village level and implemented it in a Bayesian MCMC framework.

Thomson et al. (1999) used GEE to obtain regression estimates and accounted for

the extra-binomial variation by a working correlation matrix with an exponential

spatial correlation function. We now re-analyze this binary malaria incidence data

using the proposed GeoCopula model.

Two thousand and thirty five children were randomly sampled from 65 villages

along the Gambia river. A graphical representation of the spatial configuration of

the sampled villages is given in Figure 5.2. Villages scatter into four distinct regions

on the map and are labeled from Area 1 - Area 5. The pairwise distances between
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two villages range from 0.95 km to 273.3 km.

Figure 5.2: Spatial Configuration of the Sampled Villages
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The response from each child is a binary indicator of the presence of malarial

parasites in a blood sample. Covariates include child level variables: age, bed net

use (NetUse) and whether the bed net is treated (Treated); and the village level

variables: inclusion or exclusion from the primary health care (PHC) system and

greenness of surrounding vegetation as derived from satellite information (Green).

In the final model suggested by Diggle et al. (2008), the five-level area dummy

variables (Area) are also included to adjust for the regional effects, however, infor-
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mation about the partition of area 4 and area 5 is not available in the data given

in R package Gambia (R Development Core Team, 2010), nor can it inferred from

the map. As a result, we had to combine Area 4 and Area 5 into one region in our

analysis.

For child i in village s, let the binary random variable Ysi denote the presence

of malaria (1 for yes; 0 for no). Let psi = E(Ysi) be the probability of the malaria

infection. Then the probit model is:

psi = Φ(xT
siβ)

= Φ(β0 + β1Age + β2NetUse + β3Treated + β4Green + β5PHC + β6Area),

where β = (β0, . . . , β6)
T is the vector of corresponding regression coefficients.

The correlation matrix Σ is specified similar to equation (5.10). That is, the

within-village correlation is specified as compound symmetry, and the between-

village correlation is given by an exponential decay function of distance between

two villages, as in equation (5.18). Note that exponential correlation decay is a

special case of the Matérn class with the smoothness parameter ν = 0.5.

The choice of the distance lag d is based on the level of the empirical spatial

correlation. Results from Diggle et al. (2008) show that the spatial dependence

decays at a fairly fast rate, so pairs of villages within 3 miles are used to construct

the pairwise composite score function.

To create subsamples for the weight matrix estimation and the subsequent stan-

dard error estimation, overlapping subregions within radius of 10 km is used as

the sub-blocks. Given the fact that the villages scatter into four major regions, the

subsampling is carried out in each region and then combined to form the overall
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subsample. In this way, spatial dependence patterns from different regions are all

represented in the subsample.

Results are summarized in Table 5.3, including JCEF estimates and their cor-

responding 95% confidence intervals. JCEF found that Age (in years) is positvely

associated with malaria prevalance, and the bed net use and the treatment of the

bed net tend to reduce the risk, although marginally significant. Prevalance in the

eastern region is significatly higher than the rest of regions. The 95% confidence

interval for ρ is (0.4318, 0.6447). The confidence interval for the spatial scaling pa-

rameter α is (0.3488, 0.4750), corresponding to an approximately 65% decrease in

dependence with one kilometer increase in distance. This means that the spatial

variation operates on a relatively small scale. On the other hand, the WCL ap-

proach yield larger confidence intervals than JCEF for most of the variables, hence

fail to identify some significant covariate effects (e.g. Age).

The findings based on our JCEF approach are consistent with those in Diggle

et al. (2008). For example, in the final model proposed by Diggle et al., age and

being in area 5 are positively associated with the risk of malaria. However, it is

important to note that results in this chapter are not directly comparable to results

in Diggle et al. (2008). The GeoCopula model provides population-level effect esti-

mates, while the spatial linear mixed model used in Diggle et al. (2008) is a cluster-

specific model. In addition, we do not have the specific boundary information for

creating the same five regions as done in their analysis. Also for identification,

correlation ρ instead of the variance is estimated in GeoCopula model. Our spatial

scaling parameter α corresponds to the inverse of their scaling parameter as well.
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5.7 Discussion

In this chapter, we have developed an innovative statistical modeling and es-

timation methodology for high-dimensional spatial-clustered data. The proposed

GeoCopula model provides population-level regression parameter estimates and

allows the modeling of flexible within-cluster and between-cluster spatial depen-

dence structures. The newly proposed JCEF procedure provides more efficient

parameter estimates than conventional pairwise composite likelihood. The nov-

elty lies in the incorporation of the correlation among different pairs of composite

scores, and then the integration of them into a quadratic objective function for

estimation. This strategy can better utilize the information from the two groups

than just summing them together as currently used in the WCL. As shown in var-

ious simulation studies, the JCEF method gains a significant higher amount of ef-

ficiency over the WCL approach for both Gaussian and binary spatial data, and is

very comparable to MLE for Gaussian data.

The GeoCopula model is built upon the multivariate Gaussian copula depen-

dence model. Bárdossy (2006); Kazianka and Pilz (2010) discussed some of the

disadvantages of the Gaussian copula, such as the tail independence and symmet-

rical correlation structures in the lower and upper tails and provides some modi-

fications based on the Gaussian copula. They propose some more flexible copulas

constructed from Gaussian copulas to address these issues. It is not clear if these

modifications are necessary to reflect spatial dependences.

The JCEF method is a general methodology that can be applied to many estab-

lished modeling framework for spatial-clustered data. The current JCEF method
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is built upon a general class of multivariate exponential dispersion distributions,

which separates the marginal and covariance specifications, hence provides a great

flexibility in model formulation. However, a similar JCEF approach can be adapted

to the generalized linear mixed models, which offers a cluster-specific parameter

interpretations as opposed to GeoCopula models, see e.g. Varin et al. (2005).

Till now, Bayesian methods are predominantly used in the analysis of spa-

tial/temporal data, owing to the numerical limitations of the traditional likelihood

methods. The method proposed in this chapter offers a competitive alternative for

analyzing high-dimensional data from a frequentist perspective.

The construction of the JCEF requires specifying a distance lag for pair inclu-

sions. This can be achieved by setting the lag to a pre-determined value, based

on geographic boundaries, sample size considerations, or substantial research. It

can also be set, from a statistical point of view, to maximize the information of

the corresponding estimating functions. As proposed in Bevilacqua et al. (2011),

the optimal distance lag can be chosen to maximize a certain matrix norm of the

Godambe information of the selected composite score functions. When there is no

data replicate, the evaluation of the Godambe information can be carried out us-

ing subsampling. Usually a grid search is adopted to locate the optimal distance

lag value from a pool of potential candidate. This procedure can be easily incor-

porated into the current JCEF framework to achieve better efficiency if the related

computational burden is manageable.

As pointed out in Bai et al. (2011), the quadratic objective function also pro-

vides a way for a goodness-of-fit test of the mean-zero model assumption. H0 :

E {Γn(θ)} = 0. Since θ̂ is obtained by an over-identified Γn(θ), Qn(θ̂) falls in the

’over-identifying restriction’ test by Hansen (1982), who proved that the asymp-
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totic distribution of Qn(θ̂) is χ2 with degrees of freedom equal to the number of

estimating functions minus the number of parameters, in our case equal to p.



CHAPTER VI

Future Work

This dissertation has focused on the development of composite likelihood method-

ology for high-dimensional spatio-temporal and spatial-clustered data. Due to the

complex dependence structures and large scales of such data, innovative statistical

modeling and estimating procedures that are both statistically and computation-

ally efficient are in eminent need.

For spatio-temporal data, a new joint composite estimating function (JCEF)

approach has been proposed in Chapter III to estimate high-dimensional spatio-

temporal covariance structures. JCEF builds upon the popular pairwise marginal

composite score functions, and further improves the estimating efficiency by incor-

porating the high-order correlations among the pairwise scores through a weight

matrix. The resulting target function takes a similar form as the generalized method

of moments (Hansen, 1982), hence preserves some desirable properties of GMM.

For example, the JCEF estimator is consistent and asymptotically normally dis-

tributed. Also the over-identified set of estimating functions offers a means for

hypothesis testing. This is potentially useful since different types of the spatio-

temporal covariance structures can be selected based on the test statistic.

120



121

Specifically, a goodness-of-fit statistic can be derived to test the mean-zero model

assumption, H0 : E {Γn(θ)} = 0. This can be used for testing, for example, the

separability structure of the covariance matrix. Since θ̂n is obtained by an over-

identified estimating function Γn(θ), Qn(θ̂n) falls in the ’over-identifying restric-

tion’ test by Hansen (1982), who proved that the asymptotic distribution of Qn(θ̂n)

is χ2 with degrees of freedom equal to the number of estimating functions minus

the number of parameters. However, many researchers have pointed out that the

first-order asymptotic theory often provides inadequate approximations to the dis-

tributions of the test statistics obtained from GMM estimators; see, for example, a

special issue of the Journal of Business & Economics Statistics (July 1996). To im-

prove inference, a number of alternative estimators have been suggested. These

include empirical likelihood (Qin and Lawless, 1994; Owen, 1988; Imbens, 1997),

modified bootstrap procedures (Hall and Horowitz, 1996), and the continuous up-

dating estimator (Hansen et al., 1996). Qu et al. (2000) used the latter approach

to construct the QIF and showed that the finite-sample distribution of the objec-

tive function agrees well with the asymptotic counterpart. Performances of these

goodness-of-fit methods under the JCEF framework for spatio-temporal data is

worth further exploration.

In the discussion section of Chapter IV, it was briefly mentioned that com-

posite likelihoods built from triplets of observations have higher efficiency than

those based on pairs. This indicates that in some situations, high-order marginal

density functions can work better in estimation. However, given a large number

of observations, the number of all possible triplets is enormous, in the order of

O(n3) in comparison to that of O(n2) for pairwise CL. This leads to the problem

of selecting informative lower-dimensional likelihoods (pairs/triplets) to reduce
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the number of terms in CL. In the current composite likelihood literature, pairs of

observations are usually selected by a fixed distance lag: pairs within the lag are

included. Bevilacqua et al. (2011) has proposed to select an optimal lag using a

criterion based on the Godambe information matrix. Their method appears com-

putationally burdensome in spatial data analysis, where there are usually no repli-

cates. There is a clear need of developing new ways, which are both statistically

sound and computationally fast, of determining which components to include and

which to discard in the estimation.

High-dimensional spatial-clustered data is studied in Chapter V. A novel mod-

eling strategy termed as the GeoCopula regression model is proposed. The Geo-

Copula model yields population-level regression parameters and explicitly mod-

els the spatial and within-cluster correlations. Two directions of research are worth

pursuing within the GeoCopula framework. The first interesting problem is to de-

velop more flexible copula models based on the Gaussian copula but allows for

tail dependence and asymmetric correlation structures. Retaining the Gaussian

copula preserves many nice dependence properties required in spatial data analy-

sis. Work may be focused on how to generalize the Gaussian copula constructions.

Bárdossy (2006); Bárdossy and Li (2008) has done some work in this regard. They

build χ2 copulas from the Gaussian copula which circumvent the tail indepen-

dence and symmetric correlation patterns of the latter. It will be interesting to see

how their proposed copulas perform in spatial data analysis. We note in passing

that when different copulas are available, the goodness-of-fit test suggested previ-

ously can be a potential method for model selection.

The second interesting problem is to extend the estimation of the GeoCopula

regression model by increasing the dimension of the composite likelihoods. In
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Chapter V, only bivariate density functions are utilized in estimation. Efficiency

may be further recovered by using higher-dimensional densities. In this case, the

vine-type pair copula construction can be useful, since copula densities of any di-

mensions can be decomposed into bivariate densities. R software packages are

readily available for the D-vine and C-vine decomposition for relatively low di-

mensional likelihood calculations.

One of the reasons for advocating the use of composite likelihood is its robust-

ness against model misspecification, since only lower dimensional distributions

need to be correctly specified for valid statistical inference. With the construction

of a quadratic objective function, JCEF is even robust to outliers (Qu and Song,

2004). It will be worth investigating how JCEF performs with misspecified high-

order distribution structures and/or in the presence of outliers.
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APPENDIX A

Definition of the distance metric ρ in spatio-temporal
setting

The distance between two pairwise differences d(k1) and d(k2) defined in equa-

tion (3.1) depends on configurations of four points in the spatio-temporal domain

R2 × R+. Denote the coordinates of one point by (s, t). The distance between

two points p1 = (s1, t1) and p2 = (s2, t2) in R2 × R+ is defined as τ(p1, p2) =

max{||s1 − s2||, |t1 − t2|}. Let k1 = (p1, p
′
1) and k2 = (p2, p

′
2). Then the dis-

tance between two points in D ⊂ R2 × R+ × R2 × R+ is defined as ρ(k1, k2) =

min{τ(p1, p2), τ(p1, p
′
2), τ(p

′
1, p2), τ(p

′
1, p

′
2)}, i.e., the minimum distance of two points

in sets (p1, p
′
1) and (p2, p

′
2). The distance between any subsets U, V ⊂ D is defined

as ρ(U, V) = min{ρ(i, j) : i ∈ U, j ∈ V}.
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APPENDIX B

Proof of Lemma 1

Lemma 1 states a CLT for Γn(θ), which is comprised of three estimating func-

tions based on different groups of pairwise differences with varying numbers of

terms. The three groups of pairwise differences are subseries of d(k), hence satisfy

the same mixing conditions in Assumption 6 imposed on d(k). In addition, |DS,n|,

|DT,n|, and |DC,n| are of the same order O(n), making it possible to use a common

scaling factor to unify the convergence rates.

We prove the asymptotic normality of Γn(θ) through the Cramer-Wold de-

vice. For ease of argument, we work on sums of component score functions in-

stead of means. Define Γ∗
n(θ) = (Ψ∗T

S,n(θ), Ψ∗T
T,n(θ), Ψ∗T

C,n(θ))
T, where Ψ∗

A,n(θ) =

|DA,n|ΨA,n(θ) for A ∈ {S, T, C}. The aim is to prove that for arbitrary constants

c1, c2, and c3, the linear combination

c1Ψ∗
S,n(θ) + c2Ψ∗

T,n(θ) + c3Ψ∗
C,n(θ)
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is asymptotically Gaussian. Define

Gn(θ) ≡ c1Ψ∗
S,n(θ) + c2Ψ∗

T,n(θ) + c3Ψ∗
C,n(θ) = cTΓ∗

n(θ),

where c = (c1; c2; c3)
T, a 3r by r matrix with ci = ci Ir, i = 1, 2, 3, and Ir is the r by r

identity matrix. Let Var(Γ∗
n(θ)) = Σ∗

n(θ), ΣG,n(θ) ≡ Var(Gn(θ)) = cTΣ∗
n(θ)c.

Write

Gn(θ) = ∑
i∈DS,n

c1 fi(d(i); θ) + ∑
j∈DT,n

c2 f j(d(j); θ) + ∑
l∈DC,n

c3 fl(d(l); θ) (B.1)

≡ ∑
k∈Dn

hk(d(k); θ),

where

hk(d(k); θ) =


c1 fk(d(k); θ), if k ∈ DS,n;

c2 fk(d(k); θ), if k ∈ DT,n;

c3 fk(d(k); θ), if k ∈ DC,n.

Equation (B.1) simply multiplies each set of estimating functions by a constant

and sums them together. Then given Assumptions 1-4 and 6-7, according to Theo-

rem 1 in Jenish and Prucha (2009),

Σ−1/2
G,n (θ)Gn(θ) ∼ N(0, Ir), as n → ∞.

Note that Assumption 4 is imposed on fk, which also applies to hk, since hk

differs from fk by a multiplicative constant. Assumption 7 implies the convergence

of n−1Σ∗
n(θ) to a positive-definite constant matrix, provided that |DS,n|, |DT,n|, and

|DC,n| are of order O(n).
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Since c1, c2, and c3 are arbitrary constants, by Cramer-Wold device, we obtain,

(Σ∗
n(θ))

−1/2Γ∗
n(θ) ∼ N(0, I3r), as n → ∞.

Let B = diag{ 1
|DS,n|

Ir, 1
|DT,n|

Ir, 1
|DC,n|

Ir}. Then Γn(θ) = BΓ∗
n(θ), whose asymptotic

normality follows immediately.



APPENDIX C

Definition of the Distance Metric ρ for
spatial-clustered data

The distance between two extended pairs y(k1) and y(k2) defined in equation

(5.16) depends on configurations of four points in the spatial-clustered domain

R2 × Z. Denote the coordinates of one point by (s, i), where s is the vector of

spatial coordinates, and i is the index within a cluster. The distance between two

points p1 = (s, i) and p2 = (t, j) in R2 × Z is defined as τ(p1, p2) = ||s − t|| +

I(i − j ̸= 0)d0, where || • || is the Euclidean distance in R2. Defined in this way,

the distance between any two different observations consists of two parts. The

first part is the spatial distance between two clusters they reside in, and the second

part is d0 if they have different indices within clusters. This ensures that different

observations are at least d0 distance away. Let k1 = (p1, p2) and k2 = (p′1, p′2). Then

the distance between two points in D ⊂ R2 × Z × R2 × Z is defined as

ρ(k1, k2) = min{τ(p1, p2), τ(p1, p′2), τ(p′1, p2), τ(p′1, p′2)},

i.e., the minimum distance of two points in sets (p1, p2) and (p′1, p′2). The distance
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between any subsets U, V ⊂ D is defined as ρ(U, V) = min{ρ(i, j) : i ∈ U, j ∈ V}.



APPENDIX D

Mixing Conditions for y(k)

To regulate the dependence structure of y(k) defined in equation (5.16), we

impose some α-mixing conditions on y(k). Let U and V be two subsets of Dn,

and let σ(U) = σ {y(k); k ∈ U} be the σ-algebra generated by random variables

y(k), k ∈ U. Define

α(U, V) = sup {|P(A ∩ B)− P(A)P(B)|; A ∈ σ(U), B ∈ σ(V)} .

Then this α-mixing coefficient for the random field {y(k), k ∈ Dn} is defined as:

α(k, l, m) = sup {α(U, V), |U| < k, |V| < l, ρ(U, V) ≥ m} ,

with k, l, m ∈ N and ρ(U, V) the distance between sets U and V, defined in Ap-

pendix C. We need the following conditions similar to those stated in Assumption

3 (Jenish and Prucha, 2009).

Mixing Conditions The process {y(k), k ∈ Dn} satisfies the following mixing con-

ditions in an a-dimensional space:
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(a) ∑∞
m=1 ma−1α(1, 1, m)δ/(2+δ) < ∞, for some δ > 0,

(b) ∑∞
m=1 ma−1α(k, l, m) < ∞ for k + l ≤ 4,

(c) α(1, ∞, m) = O(m−a−ϵ) for some ϵ > 0.

This requires a polynomial decay of the α-mixing coefficient, which can be shown

to hold for Gaussian processes, a special case of the Gibbs fields (Winkler, 1995;

Doukhan, 1994).



APPENDIX E

Proof of Lemma 3

Lemma 3 states a CLT for Γn(θ), which is comprised of two estimating functions

based on different groups of pairwise differences with varying numbers of terms.

The two groups of pairwise differences are subseries of y(k), hence satisfy the same

mixing conditions in in Appendix C. In addition, |DB,n| and |DW,n| are of the same

order, making it possible to use a common scaling factor to unify the convergence

rates.

We prove the asymptotic normality of Γn(θ) through the Cramer-Wold device.

For ease of argument, we work on sums of component score functions instead of

means. Define Γ∗
n(θ) = (Ψ∗T

B,n(θ), Ψ∗T
W,n(θ))

T, where Ψ∗
A,n(θ) = |DA,n|ΨA,n(θ) for

A ∈ {B, W}.

The aim is to prove that for arbitrary constants c1 and c2, the linear combination

c1Ψ∗
B,n(θ) + c2Ψ∗

W,n(θ)
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is asymptotically Gaussian. Define

Gn(θ) ≡ c1Ψ∗
B,n(θ) + c2Ψ∗

W,n(θ) = cTΓ∗
n(θ),

where c = (c1; c2)
T, a 2p by p matrix with ci = ci Ip, i = 1, 2, and Ip is the p by p

identity matrix. Let Var(Γ∗
n(θ)) = Λ∗

n(θ), ΛG,n(θ) ≡ Var(Gn(θ)) = cTΛ∗
n(θ)c.

Write

Gn(θ) = ∑
i∈DB,n

c1Ui(y(i); θ) + ∑
j∈DW,n

c2Uj(y(j); θ) (E.1)

≡ ∑
k∈Dn

hk(y(k); θ),

where

hk(y(k); θ) =

 c1Uk(y(k); θ), if k ∈ DB,n;

c2Uk(y(k); θ), if k ∈ DW,n.

Equation (E.1) simply multiplies each set of estimating functions by a constant

and sums them together. Then given Assumptions 1- 6 and the mixing conditions

stated in Appendix D, according to Theorem 1 in Jenish and Prucha (2009),

Λ−1/2
G,n (θ)Gn(θ) ∼ N(0, Ip), as n → ∞.

Note that Assumption 3 and 4 are imposed on Uk, which also apply to hk, since

hk differs from Uk by a multiplicative constant. Assumption 6 implies the conver-

gence of n−1Λ∗
n(θ) to a positive-definite constant matrix, provided that |DB,n| and

|DW,n| are of the same order.
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Since c1 and c2 are arbitrary constants, by Cramer-Wold device, we obtain,

(Λ∗
n(θ))

−1/2 Γ∗
n(θ) ∼ N(0, I2p), as n → ∞.

Let A = diag{ 1
|DB,n|

Ip, 1
|DW,n|

Ip}. Then Γn(θ) = AΓ∗
n(θ), whose asymptotic nor-

mality follows immediately.
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