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ABSTRACT

The aim of statistical analysis and inference is to draw meaningful conclusions. In the

case where there is prior knowledge of stochastic orderings or inequalities, it is desirable to

incorporate this information in the estimation. This avoids possible unrealistic estimates,

and may also lead to gain in efficiency.

In this dissertation we first present the constrained nonparametric maximum likelihood

estimator (C-NPMLE) of the survivor functions in one- and two-sample settings. Dykstra

(1982) also considered C-NPMLE for such problems, however, as we show, Dykstra’s

method has an error and does not always give the C-NPMLE. We corrected this error and

simulation shows improvement in efficiency compared to Dykstra’s estimator. Confidence

intervals based on bootstrap methods are proposed. Uniqueness and consistency of the

proposed estimators is established.

Second, we propose a new estimator, the pointwise C-NPMLE, which is defined at each

time t by the estimates of the survivor functions subject to constraints at t only. The estima-

tor is shown to be non-increasing in t, and the consistency and the asymptotic distribution

of the estimators are presented. In the development of this estimator and the characteriza-

tion of its properties, we transform the problem into one that uses the profile likelihood;

we adapt the pool-adjacent-violators algorithm, in which pooling is defined in a special

way. Different methods to construct confidence intervals are also proposed. The estimator

is shown to have good properties compared to other potential estimators.

Finally, we propose a new method to construct confidence intervals (CIs) forG indepen-

xi



dent normal means under the linear ordering constraint. The method is based on defining

intermediate random variables that are related to the original observations and using the

CIs of the means of these intermediate random variables to restrict the original CIs from

the separate groups. This method is extended to the case with three or more groups and the

simulation studies show that the proposed CIs have coverage rates close to nominal levels

with reduced average widths.
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CHAPTER I

Introduction

The aim of statistical analysis and inference is to draw meaningful conclusions about

the real world. In the case where there is prior knowledge of stochastic orderings or in-

equalities, it is desirable to incorporate this information in estimation method to avoid

unrealistic estimates, and it may also lead to gain in efficiency. For example, if µg is the av-

erage toxicity rate of a drug for dose level g in a clinical trial, the parameters should satisfy

the restriction µ1 ≤ µ2 ≤ · · · ≤ µG; we should then require that estimates also satisfy this

constraint. In a cancer study, we expect patients with a higher stage of a certain cancer at

diagnosis to have lower survival probabilities at all times than patients with a lower stage

of the same cancer at diagnosis; we will seek estimators of the survivor probabilities that

satisfy this ordering constraint.

Let S1(t) and S2(t) be the survivor functions of random variables T1 and T2. Then T1 is

stochastically larger (smaller) than T2, denoted by T1 ≥st T2 (T1 ≤st T2), if S1(t) ≥ S2(t)

(S1(t) ≤ S2(t)) for all t (Lehmann, 1955). This type of stochastic order is called the usual

stochastic order. There are many other types of stochastic orders, such as the hazard rate

order, the likelihood ratio order, and the residual time order (see Shaked and Shanthikumar

(2007) for more details). The concept of stochastic order can be generalized to G > 2

1
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groups and all the groups can be fully or partially ordered. Some special cases are the linear

ordering or simple ordering, such as T1 ≥st · · · ≥st, TG; the simple tree ordering, such as

T1 ≥st T2, T1 ≥st T3, . . . , T1 ≥st TG; the factorial ordering, such as T1 ≥st T2 ≥st T4,

T1 ≥st T3 ≥st T4; and the umbrella ordering, such as T1 ≥st · · · ≥st Tu ≤st · · · ≤st TG. In

this dissertation, we consider the usual stochastic order in Chapters II and III for survival

distributions. In Chapter IV, we consider linear ordering of the means (as shown in the

toxicity rate of a drug example in the previous paragraph) when the underlying distributions

are normals.

Since the early 1950s, estimation problems in a restricted parameter space including

ordered parameters have been studied. One commonly used method is restricted maximum

likelihood estimation. Ayer et al. (1955) studied the binomial case when the event probabil-

ities satisfy linear ordering constraint and first gave a minimax form for the solution. Many

other methods such as isotonic regression have also been proposed as well as methods of

testing hypotheses in restricted parameter spaces. While there is considerable literature

in point estimations and hypothesis tests (see Robertson et al. (1988), Silvapulle and Sen

(2005) for more details), there is much less on confidence intervals. Bayesian methods

in which the restriction is incorporated into the prior can also be used (Dunson and Ped-

dada, 2008; Taylor et al., 2007; Marchand and Strawderman, 2006; Zhang and Woodroofe,

2003; Roe and Woodroofe, 2000). Marchand and Strawderman (2004) and van Eeden

(2006) reviewed estimation methods that have been developed in the past and discussed the

“good” properties of restricted estimators, such as dominance, minimax and admissibility.

Cohen and Sackrowitz (2004) discussed some inference issues and pointed out that tradi-

tional inference methods, such as likelihood based methods, can lead to some undesirable

properties in restricted parameter problems. In addition, Andrews (2000) pointed out that

the bootstrap method, which has been very useful for constructing confidence intervals for
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complicated situations, will fail when a parameter is on the boundary or close to the bound-

ary of the parameter space. Thus, it is of interest to develop an inference procedure without

depending on traditional inference methods.

In terms of estimating survivor or distribution functions, the nonparametric approach is

generally used to avoid strong unrealistic assumptions about the underlying distributions.

For independent right censored data, one commonly used estimator is the constrained non-

parametric maximum likelihood estimator (C-NPMLE), which is the estimator that maxi-

mizes the generalized likelihood (Johansen, 1978) subject to the stochastic ordering con-

straint. Brunk et al. (1966) studied the C-NPMLE in the two-sample case without censor-

ing, and Dykstra (1982) extended this result to right censored data in the one- and two-

sample cases. For the case with three or more groups, Feltz and Dykstra (1985), Dykstra

and Feltz (1989), Dardanoni and Forcina (1998), Hoff (2003b) and Lim et al. (2009) pro-

posed various method for the C-NPMLE. Other alternative estimators include the swapping

method in which estimates of Kaplan-Meier estimators are swapped when the constraint is

violated (Lo, 1987), the averaging method in which two Kaplan-Meier estimators are av-

eraged when the constraint is violated with weights based on initial sample sizes (Rojo,

2004), and isotonic regression of Kaplan-Meier estimators with the weights based on ini-

tial sample sizes under linear ordering constraint (El Barmi and Mukerjee, 2005). Recent

works also considered estimating the survivor functions from the posterior distributions by

incorporating the information of stochastic order through the prior distribution (Dunson

and Peddada, 2008; Karabatsos and Walker, 2007; Hoff, 2003a; Evans et al., 1997; Arjas

and Gasbarra, 1996).

In studying the C-NPMLE of the survivor function, we found that some conditions

were not appropriately considered in the algorithms and proofs in Dykstra (1982). As a

consequence, his result is incorrect for some data configurations. Specifically, Dykstra’s
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estimator is the C-NPMLE in the one-sample case when estimating S1(t) subject to the

constraint T1 ≥st T2. However, for other types of constraints, Dykstra’s method may fail

to find the C-NPMLE. In Chapter II, we present a correct method to obtain the C-NPMLE

of the survivor functions in one- and two-sample settings where the survivor distributions

could be discrete or continuous and discuss the non-uniqueness of the estimators. We also

present a computationally efficient algorithm to obtain the C-NPMLE. To address the non-

uniqueness of the C-NPMLE of S1(t) when S1(t) ≤ S2(t), we consider the maximum

C-NPMLE (MC-NPMLE) of S1(t). In the one-sample case with arbitrary upper bound

survivor function S2(t), we present a novel and efficient algorithm for finding the MC-

NPMLE of S1(t). We study consistency of the the C-NPMLE and consider methods for

constructing confidence intervals. In simulation studies, we compare the C-NPMLE with

Dykstra’s estimator and other alternatives.

A number of authors (Rojo, 2004; Gangnon and King, 2002; El Barmi and Mukerjee,

2005) have noted that the Dykstra’s estimator as the C-NPMLE of the stochastically or-

dered survivor functions can have relatively large pointwise bias and mean squared error

(MSE) at a fixed time, and they have suggested alternatives that can have smaller MSE

of estimator for underlying distribution. A corrected version of the C-NPMLE presented

in Chapter II does lead to improved properties. However, this corrected C-NPMLE still

often yields poorer pointwise properties than some of the other estimators that have been

proposed. When we consider finite sample properties of an estimator Ŝ(t), we usually use

pointwise criteria, such as pointwise bias or pointwise MSE, at each fixed t. In contrast

to pointwise estimators such as described in Rojo (2004) and Lo (1987), the C-NPMLE is

focused on estimating the whole survival curve. So it is perhaps not surprising that Rojo’s

estimator typically has better properties when evaluated using metrics such as pointwise

MSE. On the other hand, these estimators do not adapt well to unequal censoring distribu-



5

tions between groups, whereas the C-NPMLE does. This motivated us to propose a new

constrained estimator in Chapter III, a pointwise C-NPMLE, which is defined at each time

t by the estimates of the survivor functions subject to constraints at time t only. We also

propose an efficient algorithm to obtain the estimators. The estimator is shown to be non-

increasing in t and consistent. The asymptotic distribution of the estimators are presented.

In the development of this estimator and the characterization of its properties, we transform

the problem into one that uses the profile likelihood; we adapt the pool-adjacent-violators

algorithm, in which pooling is defined in a special way. Different methods to construct

confidence intervals including fixed width confidence intervals and bootstrap confidence

intervals are proposed and the properties of these intervals are compared. In simulation

studies, we also compare the properties of the pointwise C-NPMLE with those of other

potential alternatives.

In Chapter IV, we consider the problem of constructing confidence intervals for G

independent normal population means under linear ordering constraints. For this problem,

confidence intervals based on asymptotic distributions, likelihood ratio tests and bootstrap

methods do not have good properties, particularly when some of the population means are

close to each other. We propose a new method based on defining intermediate random

variables that are related to the original observations and using the confidence intervals

of the means of these intermediate random variables to restrict the original confidence

intervals from the separate groups. In the two-sample case with known variances or known

ratio of the variances, we present a theorem about the coverage rates of the confidence

intervals. We also proposed methods to construct confidence intervals when the variances

of the populations need to be estimated separately. The method is also extended to the case

with three or more groups. In simulation studies, we compare coverage rates and average

widths of the new method with those of other methods in various different scenarios.



CHAPTER II

Nonparametric Maximum Likelihood Estimator of
Stochastically Ordered Survivor Functions

2.1 Introduction

Suppose that the random variable T > 0 is the time until some specified event, such as

death or recurrence of a disease. Our interest centers on estimating the survivor function of

T , S(t) = P (T > t), t > 0. With right censored data, the Kaplan-Meier estimator (KM,

Kaplan and Meier, 1958) is commonly used. In some instances with two or more groups,

we may have prior knowledge that the survivor function of one group is greater than or

equal to that of another group at all times. This type of constraint is called stochastic or-

dering and can arise in many contexts; for example, with time from diagnosis to death of

cancer patients where the survival probability for a lower tumor stage group can be reason-

ably assumed to be larger than that in a higher stage group. As well as wanting an estimator

to be consistent with this prior knowledge, it can be expected that an estimator that satisfies

the constraint will be more precise, with lower sampling variability, than one that does not

utilize this knowledge, particularly in small sample size settings. As an obvious example

of the potential for substantial improvements in efficiency, consider three groups with the

middle group bounded both above and below. If the middle group has small sample size

6
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compared to the other two, the efficiency of the constrained estimator will be substantially

better than that of the simple KM estimator for that middle group.

The cancer application mentioned above is just one example where distributions will

be ordered, there are numerous other examples in biomedical and other areas of research

where there is a strong rationale for an ordering of distributions. One approach to imposing

ordering is through parametric modeling, an alternative approach that imposes less assump-

tions is through non-parametric estimation subject to an ordering constraint. In view of the

frequency of situations where ordering constraints are natural, the potential benefit by using

these constraints, and the mild nature of the assumptions, it is surprising to us that ordered

constrained estimation is not used more in applications.

Let T1 and T2 have survivor functions S1(t) and S2(t) respectively then T1 is stochasti-

cally less than T2 (T1 ≤st T2) if S1(t) ≤ S2(t) for all t. There are many possible definitions

of ordering of survival functions (Shaked and Shanthikumar, 1994, 2007). The above one

is called usual stochastic ordering. Other possible definitions that make stronger assump-

tions are hazard rate ordering, reverse hazard ordering and likelihood ratio ordering. There

are also weaker forms of ordering, such as second-order dominance (Rojo and El Barmi,

2003) and stochastic precedence (Arcones, Kvam, and Samaniego, 2002). Which form of

ordering is most appropriate in any application will depend on the context. In this paper we

focus on the usual stochastic ordering. First we consider a one-sample problem in which

data are available from S1(t) and S2(t) is known. Then we consider the more applicable

two-sample problem in which S1(t) and S2(t) are unknown and data are available on both.

A constrained nonparametric maximum likelihood estimator (C-NPMLE) is a nonpara-

metric estimator that maximizes the likelihood subject to the constraint. Since the initial

work of Brunk, Franck, Hanson, and Hogg (1966), many methods and algorithms have

been proposed to obtain the C-NPMLE for different situations, including the one-sample



8

case, the two-sample case, the linear ordering case, in which the constraint takes the form

T1 ≤st, . . . ,≤st TG, and a general partial ordering case, which includes constraints such

as T1 ≤st T2, T1 ≤st T3. Brunk, Franck, Hanson, and Hogg (1966) studied the C-NPMLE

in the two-sample case without censoring. Dykstra (1982) extended this work to accom-

modate right censored data in the one- and two-sample cases. According to his work, the

C-NPMLE is a modified KM type estimator with an adjustment to the number of subjects

in each risk set. In the case of linear ordering or general partial ordering, Feltz and Dyk-

stra (1985), Dykstra and Feltz (1989), Hoff (2000, 2003b), and Lim et al. (2009) extended

this work and proposed various methods to find the C-NPMLE. The NPMLE of an un-

constrained survivor function has jumps only at observed event times and the C-NPMLE

has been assumed to have jumps only at observed event times by many researchers. How-

ever, as can be seen in section 2.3, in some cases there is no C-NPMLE that jumps only at

observed event times. This incorrect assumption that jumps only occur at observed event

times has also been implicitly made in research on likelihood ratio tests (e.g. Thomas and

Grunkemeier 1975; Li 1995; Murphy 1995).

Some data configurations were not appropriately considered in the main theorem and

the proof in Dykstra (1982). As a consequence, the theorem that he stated is not correct and

his algorithm does not always give the C-NPMLE. More specifically, Dykstra’s estimator

(D-estimator) is the C-NPMLE in the one-sample case when estimating S1(t) subject to

the constraint T1 ≥st T2. However, for other constraints, his method fails and the purpose

of this article is to provide a correctly stated theorem and associated algorithm.

As an illustration, we give a simple example of a one-sample case that the D-estimator is

not a C-NPMLE. Suppose that S1 and S2 are known to have probability mass only at times

1, 4, 5 and the observed event times from S1 are 1, 2+, 3+ and 5 (+ denotes censoring).

The likelihood based on the data is L = {S1(0) − S1(1)} × S1(2) × S1(3) × {S1(4) −
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S1(5)}. If the constraint is S1(1) ≤ S2(1) = 0.8 and S1(4) ≤ S2(4) = 0.4. The D-

estimator is S̃1(1) = S̃1(2) = S̃1(3) = S̃1(4) = 0.4 and S̃1(5) = 0 with the corresponding

likelihood L̃ = (1 − 0.4) × 0.43 = 0.0384. It is easily seen that another constrained

estimate, Ŝ1(1) = Ŝ1(2) = Ŝ1(3) = 2/3, Ŝ1(4) = 0.4 and Ŝ1(5) = 0, gives a larger

likelihood, L̂ = (1− 2/3)× (2/3)2 × 0.4 ≈ 0.0593.

Some alternative estimators of constrained survivor functions have also been proposed.

In the two-sample case, Lo (1987) proposed a simple estimator that swaps the estimates

of survivor functions when the constraint is violated. Rojo (2004) and El Barmi and Muk-

erjee (2005) proposed estimators that use the weighted average of the two KM estimators

at times when the constraint is violated with weights based on the initial sample sizes. In

numerical work (Rojo and Ma, 1996; Rojo, 2004), these alternative estimators were found

to be superior to the C-NPMLE in terms of pointwise mean squared error. However, these

investigations used the incorrect C-NPMLE from Dykstra (1982) and did not consider un-

equal censoring patterns between the two groups.

In this paper, to develop the ideas and the notation, we start with the simplest one-

sample case with discrete survivor function before considering the more important two-

sample case. In section 2.2, we consider the discrete case, where we assume that Tg fol-

lows a discrete distribution and the potential death times are also given. In section 2.3,

we extend to the case where S1(t) and S2(t) are not discrete functions. In section 2.4, we

show the uniform consistency of the C-NPMLE in the two-sample case. In section 2.5,

we analyze larynx cancer data in the two-sample case. In section 2.6, we propose meth-

ods to construct confidence intervals and in section 2.7, we conduct a simulation study to

compare finite sample property of the C-NPMLE with the D-estimator, Lo’s estimator and

Rojo’s estimator. Proofs of the theorems and derivations of the algorithms are given in the

Appendix.
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2.2 Estimation of Discrete Survivor Functions

2.2.1 One-sample Case

Consider a discrete failure time variable T1 with potential failure times a1 < · · · < am

and let a0 = 0 and am+1 = +∞. We are interested in estimating the discrete survivor

function S1(t) based on a right censored sample of T1. We further suppose that a discrete

survivor function S2(t) with the same potential failure times is given. Our problem is to

estimate S1(t) under the bounded below constraint (S1(t) ≥ S2(t)) or the bounded above

constraint (S1(t) ≤ S2(t)).

The censoring mechanism is assumed independent and the right censored data are sum-

marized by:

d1i the number of events at ai, i = 1, . . . ,m;

n1i the number at risk just prior to ai, i = 1, . . . ,m; and

c1i the number of censored subjects in [ai, ai+1) i = 0, . . . ,m.

Let hgi = log {Sg(ai)/Sg(ai−1)} , i = 1, . . . ,m, so that 1− exp(hgi) is the discrete hazard

and logSg(ai) =
∑i

j=1 hgj for g = 1, 2, i =, . . . ,m. The likelihood of S1(a1), . . . , S1(am)

is

L(S1(·)) = S1(a0)c10
m∏
i=1

[
{S1(ai−1)− S1(ai)}d1i S1(ai)

c1i
]
,

and the log likelihood written as a function of h1 = (h11, . . . , h1m), is

logL(h1) =
m∑
i=1

[d1i log {1− exp(h1i)}+ (n1i − d1i)h1i] .

The likelihood is maximized subject to
∑i

j=1 h1j ≥
∑i

j=1 h2j or
∑i

j=1 h1j ≤
∑i

j=1 h2j,

i = 1, . . . ,m under bounded below or bounded above constraint respectively. Consider
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now a particular vector h∗1 = (h∗11, . . . , h
∗
1m). In the bounded below case, the ith constraint

is said to be inactive if
∑i

j=1 h
∗
1j >

∑i
j=1 h2j , active if

∑i
j=1 h

∗
1j =

∑i
j=1 h2j or violated

if
∑i

j=1 h
∗
1j <

∑i
j=1 h2j . There is a similar definition in the bounded above case.

2.2.2 One-sample Case: Bounded Below Constraint

Dykstra (1982) first proposed a method to obtain the C-NPMLE in the bounded below

case, and we next describe the associated theorem and algorithm. In preparation for this,

we define a function of k,

H(a, b, k) =
b∑

j=a

log
(

1− d1j

n1j + k

)
−

b∑
j=a

h2j (2.1)

for a, b integer with 1 ≤ a ≤ b ≤ m. In (2.1) and elsewhere, if both d1j and (n1j +k) equal

to 0, then 0/0 is interpreted as 0. Let D(a, b) = maxa≤i≤b d1i and V (a, b) = mina≤i≤b h2i.

For a ≤ i ≤ b, letK(a, b) be the unique solution of the equationH(a, b, k) = 0 ifD(a, b) >

0 and V (a, b) < 0; K(a, b) = +∞ if D(a, b) > 0 and V (a, b) = 0; K(a, b) = −∞

if D(a, b) = 0 and V (a, b) < 0; and otherwise K(a, b) = 0. Further, let K+(a, b) =

max{K(a, b), 0} and K−(a, b) = max{−K(a, b), 0}.

Theorem 2.1 (Bounded Below Constraint (modified from Dykstra, 1982)).

Let m′ = max(i : n1i > 0) and τ = am′+1. For each a, b with 1 ≤ a ≤ b ≤ m′, let

k̂i = mina≤i maxb≥iK
+(a, b), and ĥ1i = log{1 − d1i/(n1i + k̂i)}. Then, the C-NPMLE

of S1(·) is Ŝ1(t) = exp(
∑

i:ai≤t ĥ1i), t < τ . The C-NPMLE can be defined arbitrarily for

t ≥ τ subject to the constraint.

In this theorem, k̂i is a nonnegative real number. It can be shown that k̂1 ≥ k̂2 ≥ · · · .

This theorem gives a method of obtaining the MLE, however, the ĥ1 can be obtained more

easily using an algorithm that was presented by Dykstra (1982) (see Algorithm 2.2). While
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this algorithm does give the C-NPMLE, we developed (see Algorithm 2.3) a computation-

ally more efficient version of it.

Algorithm 2.2 (Bounded Below Constraint (modified from Dykstra, 1982)).

1. Set i0 = 0, ` = 1 and m′ = max{i : n1i > 0}.

2. If there exists b > i`−1 such thatK(i`−1 +1, b) > 0, then let i` = min
{

arg maxb>i`−1

K(i`−1 + 1, b)
}

and k` = K(i`−1 + 1, i`). Otherwise, let i` = m′, k` = 0.

3. Let ĥ1j = log{1− d1j/(n1j + k`)}, i`−1 + 1 ≤ j ≤ i`.

4. If i` = m′, stop. Otherwise, set ` = `+ 1 and go to step 2.

Note that this algorithm gives a KM type estimator in which the number at risk is

potentially modified at each potential failure time. It can be shown that k1 ≥ k2 ≥ · · · ,

so that this estimate is essentially a KM estimate based on modified data where k1 more

subjects are placed at risk at time 0, and at time ai` , k` − k`+1, ` = 1, 2, . . . of these

additional subjects are censored.

Step 2 in Algorithm 2.2 is looking for the next active constraint in the solution. A root

finding procedure is needed to calculate K(i`−1 + 1, b). To find a root with high precision

is computationally intensive, so it is inefficient to calculate K(i`−1 + 1, b) for all b > i`−1

to find the index of the next active constraint. Instead we propose another algorithm that is

equivalent to Algorithm 2.2 but only calculates K(i`−1 + 1, b) when necessary.

Algorithm 2.3 (Bounded Below Constraint (a more efficient algorithm)).

1. Set i0 = 0, ` = 1 and m′ = max(i : n1i > 0).

2. Let i` = minb>i`−1
{b : H(i`−1 + 1, b, 0) < 0}, then set k` = K(i`−1 + 1, i`). If no

such i` exists, set i` = m′ and k` = 0 and go to step 4.
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3. Let I = minb>i` {b : H(i` + 1, b, k`) < 0}. If no such I exists, then go to step 4.

Otherwise, set i` = I and repeat step 3.

4. Let ĥ1j = log{1− d1j/(n1j + k`)}, i`−1 + 1 ≤ j ≤ i`.

5. If i` = m′, stop. Otherwise, set ` = `+ 1 and go to step 2.

The two algorithms are equivalent because steps 2 and 3 in Algorithm 2.3 are looking

for min
{

arg maxb>i`−1
K(i`−1 + 1, b)

}
as in Algorithm 2.2. However, Algorithm 2.3 im-

plements a root finding procedure only when it finds a position b, where K(i`−1 + 1, b) is

larger than the previously found maximum K(i`−1 + 1, i`). This significantly improves the

efficiency of the calculations.

2.2.3 One-sample Case: Bounded Above Constraint

For the bounded above constraint, Dykstra (1982) presented a theorem to obtain the

C-NPMLE that is similar to the theorem of the bounded below constraint, except for an

adjustment for an “exception” that may happen before the first event time. For more details,

see Dykstra (1982). The proof, however, did not consider some data configurations in

which the “exception” can occur at later times and the method does not always yield a

C-NPMLE. In this section, we present a correct theorem and algorithm for this type of

constraint in the discrete case. Then in the next section we discuss cases where S1(t) and

S2(t) are not necessarily discrete functions.

The C-NPMLE may not be unique even before the last observed time. To circumvent

this, we define the maximum C-NPMLE (MC-NPMLE) and then present a theorem and an

algorithm to obtain the MC-NPMLE under bounded above constraint.

Definition 2.4. The maximum C-NPMLE (MC-NPMLE) is the C-NPMLE that maximizes

the estimate of the survivor function in the class of all C-NPMLEs.
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We demonstrate in Appendix B that the MC-NPMLE exists and is unique.

Theorem 2.5 (Bounded Above Constraint). Let m′ = max(i : n1i > 0). For each a, b with

1 ≤ a ≤ b ≤ m′, let k̂i = mina≤i maxb≥i min(K−(a, b), n1b), and sequentially define

ĥ1i =


log{1− d1i/(n1i − k̂i)} d1i > 0

min

{
0,

i∑
j=1

h2j −
i−1∑
j=1

ĥ1j

}
d1i = 0

then, the MC-NPMLE of S1(·) is Ŝ1(t) = exp
(∑

i:ai≤t ĥ1i

)
, t < τ , where τ = am′+1.

Even though the C-NPMLE may not be unique, it can be shown that the difference

between the MC-NPMLE and any other C-NPMLE can only be at times where d1i = 0 and

n1i = k̂i.

The major difference between this theorem and Dykstra’s incorrect result is in the defi-

nition of k̂i. Dykstra defined k̂i = mina≤i maxb≥iK
−(a, b). However, k̂i cannot be larger

than the number at risk at any position between a and b in the solution of a C-NPMLE.

For the right censored case, k̂i = mina≤i maxb≥i min{K−(a, b), n1b} because n1b is the

smallest in this range.

A computationally efficient algorithm that obtains k̂i easily is given by:

Algorithm 2.6 (Bounded Above Constraint).

1. Set i0 = 0, ` = 1, m′ = max(i : n1i > 0).

2. Let i` = minb>i`−1
{b : H(i`−1 + 1, b, 0) > 0}. If no such i` exists, go to step 7,

otherwise go to step 3.

3. If d1i` = 0 and H(i`−1 + 1, i`,−n1i`) ≥ 0, then set k` = n1i` and go to step 5,

otherwise set k` = −K(i`−1 + 1, i`) and go to step 4.
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4. Let I = minb>i`{b : n1b > k` and H(i` + 1, b,−k`) > 0}. If no such I exists, then

go to step 5. Otherwise, set i` = I and go to step 3.

5. Let ĥ1j = log{1− d1j/(n1j − k`)}, i`−1 + 1 ≤ j ≤ i` − 1

ĥ1i` =
∑i`

j=i`−1+1 h2j −
∑i`−1

j=i`−1+1 ĥ1j .

6. If i` = m′, stop. Otherwise, set ` = `+ 1 and go to step 2.

7. Let ĥ1j = log(1− d1j/n1j), i`−1 + 1 ≤ j ≤ m′, stop.

Heuristically, the solution is a Kaplan-Meier type estimator of modified data with right

censoring and left truncation. For i with i`−1 < i ≤ i`, the number at risk is modified to

n1i − k`. Since k1 ≥ k2 ≥ · · · , the modified data can be described as k1 subjects being

removed at time 0 and replaced over time as left truncated data. In particular, k`− k`+1 are

added (left truncated) at ai`+, ` = 1, 2, · · · . Note that the number at risk in the modified

data can be zero at some times, and when this occurs, the C-NPMLE may not be unique.

This corresponds to the result that, for left truncated data, the MLE is not unique when the

number at risk is zero at an intermediate point.

Example 2.7 (One-sample case with a bounded above constraint). Suppose we have ob-

served survival times 1, 2, 2.5+, 3, 3.5+, 4.5+, 5.5+, 6.5+, 9, 11.5+ (+ denotes censoring).

We assume the potential event times are integers from 1 to 12, S1(t) ≤ S2(t), t = 1, . . . , 12,

and the values for S2(t) are given in Table 2.1.

Table 2.1 gives KM estimate, S∗1(t), and the MC-NPMLE, Ŝ1(t). The values of k̂i are

from Theorem 2.5 and those of k` are from Algorithm 2.6. The active constraints are at

times 6, 7 and 8. As indicated above, if i = i`−1 + 1, . . . , i`, then k̂i = k`. For example,

k̂1 = · · · = k̂6 = k1. As can be seen in Figure 2.1, the major difference between the MC-

NPMLE and the D-estimator is that the former has jumps in the estimate for population 2
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Table 2.1: Results for Example 2.7. ai is potential event time with corresponding number
of event d1i and number at risk n1i, S2 is constraint, S∗1 is KM estimate, Ŝ1, ĥ1i and k` are
results from Algorithm 2.6, k̂i is from Theorem 2.5, SD1 is D-estimates (Dykstra, 1982),
and the last observed time τ = 11.5.

ai 1 2 3 4 5 6 7 8 9 10 11 12

d1i 1 1 1 0 0 0 0 0 1 0 0 0
n1i 10 9 7 5 4 4 2 2 2 1 1 0
S2 0.94 0.92 0.86 0.68 0.54 0.40 0.36 0.32 0.30 0.26 0.22 0.20
S∗1 0.90 0.80 0.69 0.69 0.69 0.69 0.69 0.69 0.34 0.34 0.34 0.34
Ŝ1 0.86 0.71 0.54 0.54 0.54 0.40 0.36 0.32 0.16 0.16 0.16 0.16
ĥ1i -0.15 -0.18 -0.29 0 0 -0.29 -0.11 -0.12 -0.69 0 0 0

k` ←−−−−−−−−−− k1 = 3 −−−−−−−−−−→ k2 = 2 k3 = 2 ←−−−− k4 = 0 −−−−→

k̂i 3 3 3 3 3 3 2 2 0 0 0 0

SD1 0.804 0.609 0.32 0.32 0.32 0.32 0.32 0.32 0.16 0.16 0.16 0.16

at time 5, 6,7 and 8, where there is no observed event for that population. As expected, the

MC-NPMLE has larger log likelihood value than the D-estimator (-12.4 versus -13.22) and

is closer to the KM estimator.

2.2.4 Two-sample Case

The notation is similar to that in the one-sample case except that S2(ai) also needs to

be estimated so that d2i, n2i and c2i, 1 ≤ i ≤ m are also observed.

The likelihood of S1(a1), . . . , S1(am), S2(a1), . . . , S2(am) is

L(S1(·), S2(·)) =
2∏
g=1

[
Sg(a0)cg0

m∏
j=1

{Sg(aj−1)− Sg(aj)}dgj Sg(aj)cgj
]
,

and the corresponding log likelihood of hg = (hg1, . . . , hgm), g = 1, 2 is

logL(h1,h2) =
2∑
g=1

m∑
i=1

[dgi log {1− exp(hgi)}+ (ngi − dgi)hgi]. (2.2)

A C-NPMLE in the two-sample case is an estimator that maximizes the log likelihood

(2.2) subject to the constraints,
∑i

j=1 h1j ≥
∑i

j=1 h2j , and h1i, h2i ≤ 0, i = 1, . . . ,m.
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Figure 2.1: Estimates of survivor functions under bounded above constraint in discrete
situation. Log likelihood values shown in parentheses.

A method for the two-sample case was described by Dykstra (1982), but has the same

problem as for the bounded above constraint. Here again the C-NPMLE of the lower

survivor function may not be unique. We propose a theorem and an algorithm to estimate

the C-NPMLE of S1(t) and the MC-NPMLE of S2(t). In preparation for this, we define

H2(a, b, k) =
b∑

j=a

log

(
1− d1j

n1j + k

)
−

b∑
j=a

log

(
1− d2j

n2j − k

)
, 1 ≤ a ≤ b ≤ m.

Let Dg(a, b) = maxa≤j≤b dgj, g = 1, 2. For a ≤ i ≤ b, let K2(a, b) be the unique solution

of the equation H2(a, b, k) = 0 if D1(a, b) > 0 and D2(a, b) > 0; K2(a, b) = +∞ if

D1(a, b) > 0 and D2(a, b) = 0; K2(a, b) = −∞ if D1(a, b) = 0 and D2(a, b) > 0; and

otherwise K2(a, b) = 0. Further, let K+
2 (a, b) = max{K2(a, b), 0}.

Theorem 2.8 (Two-sample case). Let m′ = max{i : n1i > 0, n2i > 0}. For each a, b

with 1 ≤ a ≤ b ≤ m′, let k̂i = mina≤i maxb≥i min{K+
2 (a, b), n2b}, i ≤ m′ and k̂i = 0 if

i > m′. Let
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ĥ1i = log{1− d1j/(n1j + k̂i)}

ĥ2i =


log{1− d2j/(n2j − k̂i)} d2i > 0 or i > m′

min(0,
∑i

j=1 ĥ1j −
∑i−1

j=1 ĥ2j) d2i = 0 and i ≤ m′.

The C-NPMLE of S1(·) is Ŝ1(t) = exp(
∑

i:ai≤t ĥ1i), t < τ1, and the MC-NPMLE of S2(·)

is Ŝ2(t) = exp(
∑

i:ai≤t ĥ2i), t < τ2, where τg = max(ai+1 : ngi > 0). Sg(t), g = 1, 2 can

be defined arbitrarily for t > τg subject to the constraint, g = 1, 2.

We also describe an efficient algorithm to obtain the solution.

Algorithm 2.9 (Two-Sample Case).

1. i0 = 0, ` = 1, mg = max(i : ngi > 0), g = 1, 2 and m′ = min(m1,m2)

2. Let i` = min{b : H2(i`−1 + 1, b, 0) < 0}. If no such i` exists, go to step 7, otherwise

go to step 3.

3. If d2i` = 0 and H2(i`−1 + 1, i`, n2i`) ≤ 0, then set k` = n2i` and go to step 5,

otherwise set k` = K2(i`−1 + 1, i`) and go to step 4.

4. Let I = minb>i`{b : n2b > k` and H2(i` + 1, b, k`) < 0}. If no such I exists, then go

to step 5. Otherwise, set i` = I and go to step 3.

5. Let ĥ1j = log{1− d1j/(n1j + k`)}, i`−1 + 1 ≤ j ≤ i`

ĥ2j = log{1− d2j/(n2j − k`)}, i`−1 + 1 ≤ j ≤ i` − 1

ĥ2i` =
∑i`

j=i`−1+1 ĥ1j −
∑i`−1

j=i`−1+1 ĥ2j .

6. If i` = m′, go to step 7. Otherwise, set ` = `+ 1 and go to step 2.

7. For g, such that mg > m′, set ĥgj = log(1− dgj/ngj), i`−1 < j ≤ mg, stop.
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As Dykstra (1982) described, the solution for population 1 can be obtained from a

modified data set in which k̂i of the observations from population 2 that are at risk at time

ai are taken as observations from population 1. From this point of view, k̂i must be less

than or equal to n2i, because population 2 in the modified data can not have a negative at

risk number at any time. The solution of population 2, however, may not be obtained from

its own modified data and depends on the solution for population 1.

2.3 Extension to Non-discrete Case

In this section, we extend the results of section 2 so as not to assume known potential

event times. Thus, in the one-sample case, suppose S2(t) is a known survivor function

defined on [0,+∞) and we seek the C-NPMLE under bounded below and bounded above

constraints. In the two-sample case, we estimate both S1(t) and S2(t) from data subject to

T1 ≥st T2.

Let {X1, . . . , XN} be the union of all distinct observed event times from the populations

1 and 2, and set X0 = 0, XN+1 = ∞ for convenience. The number of events at Xi in

population g is dgi. Let C(j)
gi , g = 1, 2,i = 1, . . . , N , j = 1, . . . ,mgi be the censoring times

of population g in [Xi, Xi+1), i = 0, . . . , N , and let (Ygi,∆gi) be observations, where Ygi

is the observed time and ∆gi is the event indicator (∆gi = 1 if event occurred or ∆gi = 0 if

right censored).

Proceeding as in Johansen (1978), the likelihood to maximize, subject to constraint, is

L(S1(·),SG(·)) =
G∏
g=1

ng∏
i=1

{Sg(Ygi−)− Sg(Ygi)}∆giSg(Ygi)
1−∆gi

=
G∏
g=1

(mg0∏
j=1

Sg(C
(j)
g0 )

N∏
i=1

[
{Sg(Xi−)− Sg(Xi)}dgi

mgi∏
j=1

S1(C
(j)
gi )
]) (2.3)

where G = 1 for the one-sample case and G = 2 for the two-sample case.
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2.3.1 One-sample Case with T1 ≥st T2 and S2(t) is Known

If any survivor function S̄(t) satisfying the stochastic ordering constraint is replaced by

a discrete Ŝ(t) having possible jumps only at observed event times and Ŝ(Xi) = S̄(Xi) for

all i, the likelihood will not decrease and the constraint is not violated since Ŝ(t) ≥ S̄(t)

for all t. Thus, the C-NPMLE can be obtained within the class of survivor functions with

jumps only at observed event times. So Algorithm 2.3 can be directly used by setting the

observed event times to potential event times and estimating Ŝ1(t) for t ≤ max(Y1i), the

last observed time.

2.3.2 One-sample Case with T1 ≤st T2 and S2(t) is Known

This is the most complicated case. The discrete method is not easy to apply because the

constraint may be relevant at all times if S2(t) is not a step function.

One way to obtain a C-NPMLE of S1(t) is the “limit method”, in which we use the

limit of a discrete function to approach a continuous one. For example, we chooseR evenly

spaced times between 0 and max(Y1i) as potential event times, apply the bounded above

constraint at these R times, and obtain the limiting estimate of Ŝ1(t) with Algorithm 2.6 as

R goes to infinity. However, this method is computationally intensive. We propose instead

a method that, through judicious selection of a finite number of appropriate potential event

times, yields the MC-NPMLE as described in Algorithm 2.10.

Algorithm 2.10. Let Ci, i = 1, · · · , nc be all distinct observed censoring times and let X−i

be the time just before observed event time Xi.

1. Let X ′i, i = 1, 2, · · · be the distinct ordered times from the union of Xi, X−i nd Ci.

2. Estimate Ŝ1(t), which is the MC-NPMLE with potential event times at all X ′i, using

Algorithm 2.6.
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3. S̃1(t) = min{Ŝ1(t), S2(t)}.

In practice, we set X−i = Xi but order X−i before Xi.

Theorem 2.11. S̃1(t) from Algorithm 2.10 is the MC-NPMLE of S1(t) subject to T1 ≤st T2.

Proof. First, we show that S̃1(t) is a C-NPMLE. Let S̄1(t) be a C-NPMLE subject to

T1 ≤st T2. Note that Ŝ1(t) is the maximum likelihood estimator subject to fewer con-

straints (only at times X ′i) compared to S̄1(t), we have that L(Ŝ1(t)) ≥ L(S̄1(t)). Further

L(S̄1(t)) ≥ L(S̃1(t)) since S̃1(t) = min(Ŝ1(t), S2(t)) ≤ S2(t). Note that at every time X ′i,

i = 1, · · · , ntot, Ŝ1(X ′i) ≤ S2(X ′i), the difference between Ŝ1(t) and S̃1(t) may only occur

in time interval (X ′i, X
′
i+1) for some i. The five possible time intervals are (C,C), (C,X−),

(X,C) (X−, X) and (X,X−), where C represents censoring time, X event time and X−

time just before X . None of these intervals includes C, X or X−, the three elements that

determine likelihood (2.3). So L(S̃1(t)) = L(Ŝ1(t)) = L(S̄1(t)), which implies that S̃1(t)

is a C-NPMLE subject to T1 ≤st T2.

Then, we show that S̃1(t) is the MC-NPMLE. Suppose it is not, we must be able to find

a time x∗ where S̄1(x∗) > S̃1(x∗) = min{Ŝ1(x∗), S2(x∗)}. Then S̄1(x∗) > Ŝ1(x∗) since

S̄1(x∗) ≤ S2(x∗). Consider another survivor function S ′1(t) with jumps only at the timesX ′i

and S ′1(X ′i) = S̄1(X ′i) for all i, S ′1(t) is constrained estimator of S1(t) subject to discrete

constraint at all X ′is. Since S ′1(x∗) = S ′1(max(X ′i : X ′i ≤ x∗)) = S̄1(max(X ′i : X ′i ≤

x∗)) ≥ S̄1(x∗) > Ŝ1(x∗) and Ŝ1(t) is the MC-NPMLE with discrete constraint, S ′1(t) is

not a C-NPMLE subject to the discrete constraint. So L(S̄1(t)) = L(S ′1(t)) < L(Ŝ1(t)) =

L(S̃1(t)), which is a contradiction. Thus, S̃1(t) is the MC-NPMLE.

Example 2.12 (One-sample case with a bounded above constraint, continuous case). In

Example 2.7, suppose we take S2(t) to be piecewise linear with knots at the discrete points

in Table 2.1.
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Table 2.2: Results for Example 2.12. The X ′i, d1i and n1i are defined in Algorithm 2.10,
S2 is constraint, S∗1 is KM estimate, and Ŝ1 and ĥ1i are results from Algorithm 2.6.

X ′i 1- 1 2- 2 2.5 3- 3 3.5 4.5 5.5 6.5 9- 9 11.5

d1i 0 1 0 1 0 0 1 0 0 0 0 0 1 0
n1i 10 10 9 9 8 7 7 6 5 4 3 2 2 1
S∗1 1 0.90 0.90 0.80 0.80 0.80 0.69 0.69 0.69 0.69 0.69 0.69 0.34 0.34
S2 0.94 0.94 0.92 0.92 0.89 0.86 0.86 0.77 0.61 0.38 0.34 0.30 0.30 0.21
Ŝ1 0.94 0.80 0.80 0.65 0.65 0.65 0.47 0.47 0.47 0.47 0.38 0.30 0.15 0.15
ĥ1i -0.06 -0.18 0 -0.22 0 0 -0.41 0 0 -0.10 -0.11 -0.13 -0.69 0

The procedure for calculating the MC-NPMLE in this case with Algorithm 2.10 is

illustrated in Table 2.2 and Figure 2.2a. First, choose X ′i as in the first row of Table 2.2 and

find d1i and n1i, the number of events and the number at risk at timeX ′i. Algorithm 2.6 with

potential event times X ′i is used to calculate Ŝ1(t) as shown in the sixth row in Table 2.2

and the dash plot in figure 2.2a. Finally, calculate the MC-NPMLE as min{Ŝ1(t), S2(t)}

as shown with the thick dot-dash curve in figure 2.2a. Note that the MC-NPMLE is not a

step function in this example.

Figure 2.2b, 2.2c, and 2.2d are the plots using the “limit method” with 12, 36 and 360

potential event times respectively. As the number of potential points increases, the estimate

becomes closer to the MC-NPMLE obtained through Algorithm 2.10. The log likelihood is

-12.4 with 12 potential event times and decreases to -13.02 with 360 potential event times.

This will approach -13.03, the same as that from Algorithm 2.10, as the number of potential

event times goes to infinity.

2.3.3 Two-sample Case With No Potential Event Times

Consider any pair of survivor functions S̄1(t) and S̄2(t) satisfying the stochastic order-

ing constraint S1(t) ≥ S2(t) for all t. If we replace these by discrete survivor functions

Ŝ1(t) and Ŝ2(t) with possible jumps at observed event times, X1, . . . , XN , and Ŝg(Xi) =
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(c) Limit approach with 36 potential points
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(d) Limit approach 360 potential points
Figure 2.2: Estimates of survivor functions under continuous bounded above

constraint. Log likelihood values shown in parentheses.

S̄g(Xi), g = 1, 2, i = 1, . . . , N , the likelihood cannot decrease and the constraint is not

violated anywhere. Thus, the C-NPMLE can be obtained in the class of survivor functions

with jumps only at observed event times, which is the same as obtaining the C-NPMLE

in the discrete case. Theorem 2.8 and Algorithm 2.9 can be directly used to obtain Ŝ1(t)

and Ŝ2(t) with the observed event times as the potential event times and we estimate Sg(t)

for t ≤ maxi(Ygi), g = 1, 2. Note that Ŝ1(t) is the unique C-NPMLE of S1(t) and Ŝ2(t)

is the unique MC-NPMLE of S2(t). As expected as the sample size of one group (n1 or

n2) becomes very large, the two-sample case estimator for the other group approaches the

corresponding one-sample estimator in section 2.3.1 and 2.3.2.
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2.4 Consistency

Dykstra (1982) presented a proof of consistency of the D-estimator. Here, we give a

proof of consistency of the corrected C-NPMLE.

Suppose that (Cgi, Tgi), g = 1, 2, i = 1, · · · , ng are independent and identically dis-

tributed with Cgi⊥Tgi. Suppose that τ > 0 satisfies P (min{Cgi, Tgi} > τ) = 0. Let n1

and n2 be the respective sample size of sample 1 and 2. Meier (1975) has shown that the

product limit estimator S∗g (t) of the survivor function Sg(t) satisfies

lim
ng→∞

P
{

sup
x≤τ
|S∗g (x)− Sg(x)| > ε

}
= 0 (2.4)

for any given ε > 0.

Theorem 2.13. Suppose the data are from the iid case as described above, where S1(t) ≥

S2(t) for all t. Suppose further that Sg(τ) > 0, g = 1, 2 for given τ > 0. Then

lim
ng→∞

P (sup
t≤τ
|Ŝg(t)− Sg(t)| > ε) = 0 (2.5)

for any given ε > 0.

Proof. See Appendix A.

2.5 Example

This example is a case study of survival times from diagnosis of male larynx cancer

patients (Kardaun, 1983). We analyze the data from the patients with larynx cancer stages

1 and 2, which are shown in Table 2.3.

Table 2.4 summarizes the results. S∗1(t) and S∗2(t) are KM estimates for stage 1 and

stage 2 patients respectively and are plotted in Figure 2.3a. The two plots cross each other,

indicating that there exist violations of the stochastic ordering constraint T1 ≥st T2. Times
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Table 2.3: Survival times (in Years) of male patients with larynx cancer
stage 1 and stage 2 in example in section 2.5. + represents censoring.

stage 1 stage 2

0.6 3.2+ 4.0 5.3 6.1+ 6.7+ 8.1+ 0.2 3.3+ 4.3+ 7.6+
1.3 3.3 4.0 5.5+ 6.2+ 7.0+ 9.6+ 1.8 3.6 5.0+ 9.3+
2.4 3.3+ 4.3 5.9+ 6.4 7.4 10.7+ 2.0 3.6+ 6.2
2.5+ 3.5 4.5+ 5.9+ 6.5 7.4+ 2.2+ 4.0 7.0
3.2 3.5 4.5+ 6.0 6.5+ 8.1+ 2.6+ 4.3+ 7.5+

0.2, 0.6, . . . , 7.4 in Table 2.4 (first and sixth rows) are distinct observed event times. We

set these as potential event times and calculate Ŝ1(t) and Ŝ2(t) from Algorithm 2.9. The

remaining times 9.3 and 10.7 are the last observed censoring times of population 2 and 1.

Figure 2.3b shows the C-NPMLE of survivor functions subject to S1(t) ≥ S2(t) for each

group. The D-estimator is the same as the C-NPMLE in this case. Compared to the plots

in Figure 2.3a, we can see that the effect of the constraint is to make Ŝ1(t) larger than S∗1(t)

and Ŝ2(t) smaller than S∗2(t) for all t > 0. The estimates of median life times of stage 1 and

stage 2 patients are 6.5 and 7.0 months from KM estimators respectively, which contradicts

our belief about cancer stages; the corresponding estimates of 7.4 and 6.2 months from

C-NPMLEs, are more realistic.
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Figure 2.3: Estimates of survivor functions, two-sample case.
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Table 2.4: KM and C-NPMLE estimates of survivor functions for male patients with larynx
cancer in example in section 2.5. S∗1 and S∗2 are KM estimates and Ŝ1 and Ŝ2 are estimates
from the C-NPMLE. ∗∗ denotes last observed time for each group.

t .2 .6 1.3 1.8 2.0 2.4 3.2 3.3 3.5 3.6

Ŝ1(t) 1 0.972 0.944 0.944 0.944 0.915 0.886 0.856 0.794 0.794
Ŝ2(t) 0.931 0.931 0.931 0.863 0.794 0.794 0.794 0.794 0.794 0.711
S∗1(t) 1 0.970 0.939 0.939 0.939 0.909 0.878 0.845 0.778 0.778
S∗2(t) 0.941 0.941 0.941 0.882 0.824 0.824 0.824 0.824 0.824 0.749

t 4.0 4.3 5.3 6.0 6.2 6.4 6.5 7.0 7.4 9.3 10.7

Ŝ1(t) 0.729 0.696 0.660 0.617 0.617 0.561 0.505 0.505 0.421 0.421 0.421∗∗

Ŝ2(t) 0.617 0.617 0.617 0.617 0.494 0.494 0.494 0.370 0.370 0.370∗∗

S∗1(t) 0.710 0.676 0.639 0.593 0.593 0.539 0.485 0.485 0.404 0.404 0.404∗∗

S∗2(t) 0.665 0.665 0.665 0.665 0.532 0.532 0.532 0.399 0.399 0.399∗∗

2.6 Confidence Intervals

If the true survivor functions S1(t) and S2(t) are never equal, then the asymptotic vari-

ances of Ŝ1(t) and Ŝ2(t) are the same as those of KM estimators. This motivate one pos-

sible method to obtain confidence intervals using asymptotic variances. In this method the

confidence intervals for unrestricted estimators are shifted and centered on the constrained

estimators (Hwang and Peddada, 1994). We apply this idea on a log transformed scale in

this paper and consider the following approximate confidence interval,

Ŝg(x) exp{±1.96σ∗g(x)},

where σ∗g(x) is standard error estimate of logS∗g (x) (see Kalbfleisch and Prentice 2002,

page 17).

Another possible approach to construct confidence intervals is to use the bootstrap

methods. In this paper, we consider two sampling schemes, a ‘standard’ and a ‘restricted’

scheme. In the standard scheme, survival time and censoring indicator pairs are sam-



27

pled with replacement within each group whereas in the restricted scheme (denoted R-

Roobstrap), event times are drawn from the distribution 1− Ŝg(t) and censoring times are

drawn from 1−Sc∗g (t), where Sc∗g (t) is the KM estimate of censoring survivor function for

group g. For each bootstrap sample, a bootstrap estimate Ŝbg(t), b = 1, . . . , B is obtained by

applying the C-NPMLE or the MC-NPMLE. Confidence intervals based on these bootstrap

estimates can be constructed using percentiles (Efron, 1981) or a bias corrected percentiles

(Efron, 1987). In our simulation study, we conduct the bias corrected (BC) bootstrap on

the arcsin(
√
s) transformed scale for s = Sg(t).

2.7 Simulation Study

2.7.1 Two-sample Case when Sample Size is Small

We conducted a Monte Carlo simulation study to compare finite sample properties of

four different estimators – Dykstra (1982), Lo (1987), Rojo (2004) and the C-NPMLE for

the two-sample case where S1(t) ≥ S2(t) for all t. The root mean square error ( RMSE )

of the estimates of the survivor functions over a range of values of t are shown. Each simu-

lation consists of 10,000 replications. The upper (lower) plot of each sub-figure shows the

RMSE of estimates of S1(t) (S2(t)). The distributions and sample sizes for the simulations

are shown in Table 2.5.

As before, let S∗1(t) and S∗2(t) be the KM estimates. Lo’s estimators are defined as

ŜL1 (t) = max{S∗1(t), S∗2(t)} and ŜL2 (t) = min{S∗1(t), S∗2(t)}. Rojo’s estimators are defined

as ŜR1 (t) = max[S∗1(t), {n1S
∗
1(t) + n2S

∗
2(t)}/(n1 + n2)] and ŜR2 (t) = min[{n1S

∗
1(t) +

n2S
∗
2(t)}/(n1 + n2), S∗2(t))], where n1 and n2 are sample size of population 1 and 2. In

order to minimize different effects from estimates beyond the last observed time in each

population for different estimators, we set the estimates of survivor functions as low as
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Table 2.5: Distributions and sample sizes used in simulation study.

Event Distributions Censoring Distributions Sample size
logS1(t) logS2(t) logSc1(t) log Sc2(t) n1 n2

Figure 3.1a −t −1.2t −1.5t −1.5t 100 40
Figure 3.1b −t −1.2t No censoring −3.0t 100 40
Figure 3.1c −t −1.2t −3.0t No censoring 100 40
Figure 3.1d −t −1.2t −1.5t −1.5t 40 100
Figure 3.1e −t −1.2t No censoring −3.0t 40 100
Figure 3.1f −t −1.2t −3.0t No censoring 40 100

possible after the last observed time for each population.

Dykstra’s estimator has similar efficiency compared to the C-NPMLE when population

2 is significantly less censored (Figure 3.1c and 3.1f), but in other cases, the C-NPMLE

has smaller MSE compared to Dykstra’s estimator. In cases with the same censoring dis-

tributions (Figure 3.1a and 3.1d), Rojo’s estimator behaves better than other estimators.

The intuitive reason that the C-NPMLE is not the best, despite maximizing the likelihood,

is because the C-NPMLE is focussed on estimating the whole distribution, whereas the

Rojo’s and Lo’s estimators are pointwise estimators, and the RMSE is a pointwise crite-

rion. However, if population 1 and 2 have significantly different censoring distributions, the

C-NPMLE is the preferred estimator. Specifically when population 1 is excessively cen-

sored (Figure 3.1c and 3.1f), Rojo’s estimator has large RMSE compared to the C-NPMLE

where the true survivor functions are small (< 0.4). Lo’s estimator in general does not

behave well when the two populations have different censoring distributions (Figure 3.1b,

3.1c and 3.1f).

2.7.2 Properties of Confidence Intervals

We conducted a simulation study to evaluate finite sample properties of the CIs pro-

posed in section 3.5. The sample sizes and the underlying distributions are shown in Table
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Figure 2.4: Comparison of RMSEs for different estimators.
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2.6. Each simulation consists of 1,000 replications and bootstrap CIs are based on 199 boot-

strap samples. We construct bootstrap CIs using percentiles and bias corrected percentiles.

For the bias correction, we used arcsin(
√
s) transformation at times 0.29 and 0.69, where

the survival probabilities of group 1 are 0.75 and 0.50 respectively. We also evaluated

the bias corrected intervals on the original scale and on the log(s) scale, and found that

the binomial variance stabilizing arcsin(
√
s) transformation gave CIs with slightly better

properties than other two transformations and hence we only report the results under this

transformation.

Table 2.6 shows the mean squared errors (MSEs) and biases of the KM estimator and

the C-NPMLE at times 0.29 and 0.69. As expected, Ŝ1(t) is positively biased and Ŝ2(t)

is negatively biased. The closer the two distributions or the smaller the sample sizes, the

larger the bias and the MSE of the C-NPMLE. The MSE of the C-NPMLE is generally

smaller than that of the KM estimator unless the two survival probabilities are very close

to each other as in cases a, b and e.

The coverage rates and average widths of the CIs described in section 3.5 are shown

in Table 2.7. Bootstrap methods using the percentiles (columns 5 and 7 in Table 2.7)

do not work well with fairly low coverage rates when the two survivor probabilities are

not far from each other (a, b, c, e and f). However, we found that the bias corrected

bootstrap CIs (Bootstrap (BCasin) and R-Bootstrap (BCasin) in Table 2.7) produce narrower

intervals with reasonable coverage rates, especially when using the restricted sampling

scheme (R-Bootstrap (BCasin) in Table 2.7). In comparison, the shifted constant width CI

that is centered on the C-NPMLE (last column in Table 2.7) has the same width as the KM

estimator on the log scale. The results suggest that the asymptotic variance gives CIs with

reasonable coverage rate except that in some cases (e.g. case d at time 0.29 and case c

at time 0.69), the CIs have too high a coverage rate. These intervals, however, tend to be



31

Table 2.6: MSE (×104) and Bias (×102). Event time distribution is exp(λg), g =
1, 2 and censoring distribution is U(0, 1.5) for both groups in all scenarios.

Event time Sample MSE Bias MSE Bias
distributions sizes KM C-NPMLE KM C-NPMLE KM C-NPMLE KM C-NPMLE

t = 0.29 t = 0.69

a.
λ1 = 1 100 19.1 19.9 -0.01 2.45 36.1 39.3 0.21 3.41
λ2 = 1.01 50 41.3 53.7 0.16 -5.16 68.3 76.5 0.14 -5.95

b.
λ1 = 1 100 19.4 19.5 0.18 2.22 33.4 34.4 0.16 2.71
λ2 = 1.1 50 44.9 49.1 -0.17 -4.51 75.4 65.7 0.23 -4.60

c.
λ1 = 1 100 22.6 21.1 -0.09 1.59 35.7 33.7 -0.05 1.92
λ2 = 1.2 50 48.4 46.0 -0.05 -3.55 72.5 61.5 -0.32 -3.95

d.
λ1 = 1 100 20.9 18.9 -0.08 1.20 33.7 30.8 -0.11 1.18
λ2 = 1.4 50 49.2 40.3 0.26 -2.25 71.5 57.3 -0.02 -2.23

e.
λ1 = 1 400 5.52 6.3 0.05 1.37 8.92 10.3 0.12 1.79
λ2 = 1.01 200 10.7 12.9 0.20 -2.54 18.3 20.9 0.10 -3.18

f.
λ1 = 1 400 5.31 5.24 0.10 1.01 8.81 8.59 0.13 1.22
λ2 = 1.1 200 10.7 9.99 0.17 -1.69 17.4 14.9 0.24 -1.89

g.
λ1 = 1 400 5.33 4.98 0.01 .611 8.73 8.15 0.11 0.73
λ2 = 1.2 200 11.9 10.2 0.00 -1.19 18.2 15.1 -0.06 -1.22

h.
λ1 = 1 400 5.06 4.84 -0.02 0.27 8.43 8.24 -0.03 0.20
λ2 = 1.4 200 12.4 11.4 -0.03 -0.56 16.1 15.1 -0.01 -0.39

wider than those from the bias corrected bootstrap. Based on our simulation results, bias

corrected bootstrap approach using the restricted scheme (R-Bootstrap (BCasin) in Table

2.7) is preferable.

It should be noted that the estimate and the standard error is on appropriate data sum-

mary when the information is symmetric about the estimate. But here, especially when

S1(t) is close to S2(t), the most appropriate CI are asymmetric. Thus simple repeating of

the standard error for Ŝg(t) based on an asymptotic variance is not recommended in this

situation.
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Table 2.7: Coverage rates (×102) and average widths (×102) of confidence intervals.

Sampling scheme Bootstrap R-Bootstrap

Estimator KM C-NPMLE K-M C-NPMLE

Confidence Interval Percentile BCasin Percentile BCasin Sg(t) exp(±1.96σ∗g)

a.
S1(t) 95(17.5) 85(14.7) 94(15.2) 84(15.2) 95(16.0) 95(17.9) 93(18.5)
S2(t) 94(24.6) 73(20.5) 91(19.7) 68(22.0) 94(20.7) 93(25.2) 95(23.5)

b.
S1(t) 94(17.4) 85(14.9) 95(15.4) 84(15.2) 96(16.0) 95(17.9) 93(18.4)
S2(t) 93(25.2) 78(21.1) 92(20.4) 75(22.5) 94(21.3) 93(26.0) 97(24.5)

c.
S1(t) 93(17.4) 87(15.2) 91(15.7) 85(15.4) 93(16.2) 94(17.9) 93(18.3)
S2(t) 92(25.7) 85(21.6) 92(20.9) 84(22.9) 92(21.7) 93(26.5) 96(25.3)

d.
S1(t) 94(17.4) 90(15.5) 94(16.0) 90(15.8) 94(16.5) 95(17.9) 94(18.2)

t = 0.29
S2(t) 94(26.6) 91(22.9) 94(22.3) 91(23.7) 93(22.8) 95(27.5) 98(26.5)

e.
S1(t) 93 (8.8) 82 (7.6) 91 (7.7) 80 (7.8) 92 (8.0) 94 (9.0) 91 (9.1)
S2(t) 94(12.3) 73(10.0) 90 (9.7) 68(10.7) 95(10.3) 95(12.7) 95(12.2)

f.
S1(t) 94 (8.8) 87 (7.8) 93 (7.9) 86 (7.9) 93 (8.1) 94 (9.0) 94 (9.1)
S2(t) 94(12.7) 84(10.6) 92(10.3) 82(11.0) 93(10.7) 96(13.0) 97(12.7)

g.
S1(t) 94 (8.7) 90 (7.9) 93 (8.1) 90 (8.1) 94 (8.2) 95 (9.0) 95 (9.1)
S2(t) 94(13.0) 89(11.1) 91(10.9) 89(11.5) 90(11.2) 94(13.3) 97(13.1)

h.
S1(t) 95 (8.8) 93 (8.3) 94 (8.4) 93 (8.3) 94 (8.4) 96 (9.0) 96(9.0)
S2(t) 94(13.5) 93(12.3) 89(12.1) 93(12.4) 90(12.3) 96(13.8) 97(13.7)

t = 0.69

a.
S1(t) 94(22.4) 83(19.8) 92(19.8) 82(20.5) 94(20.6) 94(23.1) 92(24.7)
S2(t) 95(31.7) 74(23.8) 91(24.2) 70(25.8) 95(26.4) 96(32.9) 96(29.1)

b.
S1(t) 94(22.4) 88(20.0) 93(20.1) 86(20.6) 94(20.7) 94(23.2) 93(24.4)
S2(t) 93(31.7) 81(24.3) 92(24.8) 78(26.0) 94(26.7) 94(32.9) 97(29.7)

c.
S1(t) 94(22.5) 90(20.5) 92(20.5) 89(20.7) 94(20.7) 94(23.1) 94(24.1)
S2(t) 93(31.5) 86(25.0) 93(25.6) 84(26.0) 94(27.0) 95(32.8) 98(30.3)

d.
S1(t) 94(22.4) 93(20.9) 94(20.9) 93(21.1) 94(21.1) 95(23.1) 96(23.8)
S2(t) 92(31.0) 89(25.7) 91(26.7) 90(26.4) 92(27.6) 94(32.5) 97(30.8)

e.
S1(t) 94(11.3) 83(10.0) 91(10.0) 81(10.3) 92(10.3) 95(11.6) 91(11.9)
S2(t) 93(15.9) 72(12.2) 90(12.2) 66(13.0) 93(13.1) 94(16.4) 93(15.3)

f.
S1(t) 94(11.3) 89(10.3) 93(10.3) 88(10.5) 93(10.5) 95(11.6) 95(11.8)
S2(t) 95(15.9) 85(12.7) 92(12.8) 83(13.3) 93(13.4) 95(16.4) 97(15.7)

g.
S1(t) 94(11.3) 91(10.5) 94(10.5) 91(10.6) 94(10.6) 95(11.6) 95(11.7)
S2(t) 94(15.8) 91(13.4) 91(13.5) 90(13.7) 91(13.8) 94(16.3) 97(15.9)

h.
S1(t) 94(11.2) 94(10.8) 93(10.8) 94(10.9) 92(10.9) 96(11.6) 96(11.6)
S2(t) 95(15.6) 93(14.3) 91(14.4) 94(14.4) 90(14.6) 96(16.0) 97(15.9)
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2.8 Discussion

Dykstra’s estimator is the same as the C-NPMLE when the stochastically smaller popu-

lation has no censoring. When censoring exists in that population, our experience suggests

that Dykstra’s estimators and the estimators developed in this paper are usually different

for small sample settings. In large sample cases, they are frequently identical at early

times but then differ in the tail. A fundamental difference between Dykstra’s estimator and

the C-NPMLE developed in this paper is that the C-NPMLE can have probability mass at

non-event times throughout the follow-up period whereas, for Dykstra’s estimator, this can

happen only prior to the first failure in the stochastically smaller population.

The results from the simulation suggests that the C-NPMLE has a smaller or equal

RMSE when compared to Dykstra’s estimator. Rojo’s estimator has good properties under

the pointwise criteria because it is based on pointwise estimates. It does not, however, adapt

well to unequal censoring. There is the potential to develop an improved approach that

might adapt the NPMLE to the pointwise case. The simulation results also suggest the bias

correct Bootstrap confidence interval using the restricted sampling scheme is preferable in

practice.

Præstgaard and Huang (1996) established the asymptotic distribution of Dykstra’s es-

timator. If, as seems likely, the Dykstra’s estimator and the C-NPMLE are asymptotically

equivalent, the asymptotic distribution should also apply to the C-NPMLE. However, in our

opinion, the asymptotic distribution is not very useful for finite sample inference. If S1(t)

is strictly greater than S2(t), then the asymptotic distributions of the C-NPMLE of Ŝ1(t)

and Ŝ2(t) will be identical to that of KM estimators, i.e. the constraint becomes irrelevant

asymptotically while the constraint is still relevant everywhere in the finite sample case. If

S1(t) = S2(t), then the asymptotic distribution is mathematically interesting, but probably
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not appropriate to use in this context where all are willing to assume that S1(t) ≥ S2(t).

We are currently investigating extensions of these estimators and algorithms to settings

with more than two samples with linear ordering or partial ordering constraints. Hoff (2000,

2003b) and Lim, Kim, and Wang (2009) have proposed different methods to obtain the C-

NPMLE under partial ordering constraints. However, we believe that the extension of the

methods in this paper will provide additional insights and have the potential to improve

the methods through reducing the number of parameters to compute and the number of

constraints to apply.



CHAPTER III

Pointwise Constrained Maximum Likelihood Estimator of
the Survivor Function under Stochastic Ordering

3.1 Introduction

We often encounter situations where there is prior knowledge of stochastic ordering

among distributions. For example, in a cancer study, we expect patients with a lower stage

of cancer at diagnosis to have lower death rates at all times than those with a higher stage.

Stochastic ordering is an important concept and has a wide range of applications, in such

fields as biomedical research, economics and finance, and system reliability in engineer-

ing science. In addition to the natural desire for estimators of the distributions to satisfy

the same ordering restrictions as the underlying distributions, there is the potential for im-

proved efficiency by applying the constraints in the estimation method as compared to

ignoring them.

For random variables T1 and T2 with corresponding survivor functions S1(t) and S2(t),

T1 is stochastically larger than T2 (T1 ≥st T2) if S1(t) ≥ S2(t) for all t (Lehmann, 1955).

For G groups, the concept can be generalized to partial ordering; specifically, we say that

Tg, g = 1, . . . , G satisfy the partial ordering constraints defined by the constraint set E ⊂

{1, . . . , G}2 if for any (i, j) ∈ E, Ti ≥st Tj . Special cases of this are simple ordering, in

35
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which T1 ≥st · · · ≥st TG, for which E = {(1, 2), (2, 3), . . . , (G − 1, G)}; tree ordering,

in which T1 ≥st T2, T1 ≥st T3, . . . , T1 ≥st TG for which E = {(1, 2), (1, 3), . . . , (1, G)};

umbrella ordering, in which T1 ≥st · · · ≥st Ti ≤st Ti+1 ≤st · · · ≤st TG for which E =

{(1, 2), (2, 3), . . . , (i−1, i), (i+1, i), (i+2, i+1), . . . , (G,G−1)}, and factorial ordering

such as T1 ≥st T2 ≥st T4, T1 ≥st T3 ≥st T4, for which E = {(1, 2), (2, 4), (1, 3), (3, 4)}.

The constraint set E is said to be non-redundant if, for any (i, k) ∈ E, (k, j) ∈ E, and

(i, j) ∈ E implies i = k or k = j. Any set E has an equivalent non-redundant set, and we

henceforth assume that E is non-redundant.

We consider independent right censored samples of the form (Ygi,∆gi), g = 1, . . . , G,

i = 1, . . . , ng, where Ygi is the observed time and ∆gi is the event indicator (∆gi = 1 if the

event occurred or ∆gi = 0 if right censored). We assume that the censoring mechanism is

independent, so that the generalized likelihood as a function of survivor functions is

L{S1(·), . . . , SG(·)} =
G∏
g=1

ng∏
i=1

{
Sg(Ygi−)− Sg(Ygi)

}∆gi

Sg(Ygi)
1−∆gi , (3.1)

under the condition that there are no common jumps between the life time and censor-

ing distributions. The E-constrained nonparametric maximum likelihood estimator (C-

NPMLE) is the estimator Ŝ1, ..., ŜG that maximizes (3.1) subject to the partial ordering

constraint E. Brunk et al. (1966) studied the constrained nonparametric maximum like-

lihood estimator in the two-sample case without censoring. Dykstra (1982) and we in

Chapter II extended this result to right censored data. In the case of three or more popula-

tions with a general partial ordering, Hoff (2003b) and Lim et al. (2009) proposed different

computational methods for obtaining the C-NPMLE. The C-NPMLE has the properties

that a violation of a constraint in the Kaplan-Meier estimators (Kaplan and Meier, 1958) at

an earlier time affects the estimator at a later time, even if there is no violation at this later

time. This could be considered as undesirable. A number of authors have noted that the
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C-NPMLE of S1, . . . , SG can have relatively large pointwise bias and mean squared error

at a fixed t and have suggested alternatives (Rojo and Ma, 1996; Rojo, 2004; Gangnon and

King, 2002; El Barmi and Mukerjee, 2005) that can have better mean squared error prop-

erties. In Chapter II, we noted a correction to the C-NPMLE presented by Dykstra (1982),

which did lead to improved properties, however, this corrected C-NPMLE still often has

poorer pointwise properties than some other estimators that have been proposed. Some

of these alternative estimators are relatively simple to define. In the two sample problem,

Lo (1987) suggested swapping the Kaplan-Meier estimates of the survivor functions when

the constraint is violated. Gangnon and King (2002) proposed constrained estimators of

the distribution functions for a simple ordering case using a minimum distance estimation

method and also extended Lo’s estimator to the simple ordering case. For the two sample

problem, Rojo (2004) proposed estimating both survivor functions as the weighted aver-

age of the two Kaplan-Meier estimators at times when the constraint is violated, where

the weights are based on the initial sample sizes. El Barmi and Mukerjee (2005) extended

Rojo’s estimators to the simple ordering situation using isotonic regression method. The

simulation study in Chapter II shows that some of these estimators have smaller mean

squared error than the C-NPMLE when the censoring distributions are equal, however,

when the censoring distributions are substantially different between the groups, they may

have larger mean squared error than the C-NPMLE. Moreover, these alternative estimators

have not been explicitly extended to a general partial ordering case.

When we consider finite sample properties of an estimator Ŝ(t), we usually use point-

wise criteria, such as pointwise bias or pointwise mean squared error at each fixed t. In

contrast to pointwise estimators such as described in Rojo (2004) and Lo (1987), the C-

NPMLE is focused on estimating the whole survival curve. So it is perhaps not surprising

that Rojo’s estimators typically have better properties when evaluated using metrics such
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as pointwise mean squared error. On the other hand, these estimators do not adapt well

to unequal censoring distributions between groups whereas the C-NPMLE does. This mo-

tivated us to propose a new constrained estimator, a pointwise constrained nonparametric

maximum likelihood estimator.

Definition 3.1 (Pointwise C-NPMLE). For each specified time x, let S̃g(t;x) be the max-

imum likelihood estimator of Sg(t) under the constraint Si(x) ≥ Sj(x) for all (i, j) ∈ E.

Then Ŝg(t) = S̃g(t; t), g = 1, . . . , G for all t is the pointwise constrained nonparamet-

ric maximum likelihood estimator of the survivor function Sg under the partial stochastic

ordering constraint E.

The rest of the chapter is organized as follows. In section 3.2 we develop the estimator.

We consider consistency and asymptotic distributions in sections 3.3, and in section 3.4,

we compare asymptotic properties of the pointwise C-NPMLE with the Kaplan-Meier es-

timator. In section 3.5, we consider methods to construct confidence intervals. We conduct

a simulation study to compare small and large sample properties of different estimators in

section 3.6, and apply the method to a real data example in section 3.7.

3.2 Estimation Methods

3.2.1 Notation and Likelihood

To obtain the pointwise C-NPMLE as given in Definition 3.1, it is required to maxi-

mize the likelihood (3.1) subject to the constraints Si(x) ≥ Sj(x) for all (i, j) ∈ E for

a fixed time x. This will give the estimates of S̃1(t;x), . . . , S̃G(t;x) and the constrained

maximization will be repeated for all times x of interest.

Let Xgj, j = 1, 2, · · · ,mg be the distinct event times in group g and define Xg0 = 0



39

and Xg(mg+1) = ∞, g = 1, . . . , G. Let Ng(t) be the number at risk at time t in group

g and Mg(t) be the number of distinct events in (0, t] in group g. Let dgj and ngj be

respectively the number of events and the number at risk in group g at time Xgj , where

g = 1, . . . , G, j = 1, . . . ,mg.

It is convenient to redefine the problem in terms of hazards. Let hg(t) =

log{Sg(t)/Sg(t−)}, so that 1 − exphg(t) is the discrete hazard in group g at time t. The

log likelihood of (3.1) can then be rewritten as

logL(h1, · · · , hG)

=
G∑
g=1

{ mg∑
i=1

[
dgi log

{
1− exphg(Xgi)

}
+ (ngi − dgi)hg(Xgi)

]
+Ng(x)hδg(x)

}
,

(3.2)

where hg = {hg(Xp), . . . , hg(Xgmg), h
δ
g(x)}, g = 1, . . . , G. The corresponding constraints

are
∑Mp(x)

j=1 hp(Xpj) + hδp(x) ≤
∑Mr(x)

j=1 hr(Xrj) + hδr(x), for all (p, r) ∈ E, and hδg(x) ≤

0, g = 1, . . . , G. In this, hδg(x) = I(x 6= XgMg(x))hg(x); this accounts for the fact that

if x = XgMg(x), we do not have the extra term Ng(x)hg(x) in the log likelihood (3.2).

Note that hg(Xgj) must be negative because of the term log{1 − exphg(Xgj)} in the log

likelihood (3.2). Thus, the constraint hg(Xgj) ≤ 0 is not necessary.

To maximize the log likelihood subject to the constraints, we introduce Lagrange mul-

tipliers λij ≥ 0 and νg ≥ 0, giving the corresponding Lagrangian function as

lagrL(h, λ, ν) =
G∑
g=1

mg∑
i=1

[
dgi log

{
1− exphg(Xgi)

}
+ (ngi − dgi)hg(Xgi)

]
+

G∑
g=1

{Ng(x)hδg(x)− νghδg(x)}

−
∑

(p,r)∈E

λpr

{Mp(x)∑
j=1

hp(Xpj) + hp(x)−
Mr(x)∑
j=1

hr(Xrj)− hr(x)
}
.
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3.2.2 Linearly Constrained Convex Minimization

There is a large literature on general approaches to linearly constrained convex mini-

mization problems. Essentially, there are three types of algorithms. One is the interior point

method that targets complementary slackness while maintaining primal and dual feasibil-

ity. Another is the primal active set method that targets dual feasibility while maintaining

primal feasibility and complementary slackness. A third is the dual active set method that

targets primal feasibility while maintaining dual feasibility and complementary slackness.

In general our data contain a much larger number of observed event times than the num-

ber of groups. Interior point methods such as geometric programming (Lim et al., 2009) and

primal active set methods such as some gradient based methods (Snyman, 2005) simulta-

neously optimize over the large number of quantities hδg(x) and hg(Xgi), g = 1, . . . , G, i =

1, . . . ,mg at each time x of interest, so these two types of methods are not computation-

ally efficient in our setting. Dual active set methods that maximize the dual problem

LD(λ, ν) = suph {−lagrL(h, λ, ν)} with constraints λij ≥ 0 and νg ≥ 0 involve many

fewer parameters, however, the dual function LD(λ, ν) is difficult to express as a function

of λ, ν and the feasible range of λ, ν is difficult to specify in our problem. So dual active

set methods are also difficult to implement in our context.

In section 3.2.5, we transform the problem of maximizing the log likelihood (3.2) sub-

ject to the linear constraints to another simple concave maximization problem subject to

linear constraints by using the profile likelihood. In preparation for this, we first discuss

the constrained maximum likelihood estimator of the survivor function in the one sample

case.
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3.2.3 Maximum Likelihood Estimator of the Survivor Function Subject to a Single
Constraint

We consider a one-sample case and for ease of presentation, we omit the group indicator

g. Without constraint, the maximum likelihood estimator has probability mass only at

the observed event times up to and including the last observed time. The log likelihood

analogous to (3.2) is

logL(h) =
m∑
j=1

[djlog {1− exph(Xj)}+ (nj − dj)h(Xj)] , (3.3)

where h = {h(X1), . . . , h(Xm)} and (3.3) is maximized at h(Xj) = log(1 − dj/nj), j =

1, . . . ,m, which corresponds to the Kaplan-Meier estimator.

Consider now the maximum likelihood estimator subject to the constraint S(x) =

exp(q). In this case, the maximum likelihood estimator of the survivor function can be

obtained in the class of survivor functions with positive probability mass at event times Xi

and nonnegative probability mass at time x. The optimization problem is to maximize the

log likelihood of h = {h(X1), . . . , h(Xm), hδ(x)},

logL(h) =
m∑
i=1

[dilog {1− exph(Xi)}+ (ni − di)h(Xi)] +N(x)hδ(x),

subject to
∑M(x)

j=1 h(Xj) + hδ(x) = q and hδ(x) ≤ 0.

Let K(q;x) = −N(x) if M(x) = 0, otherwise let K(q;x) = max(−N(x), k̂), where

k̂ is the unique solution of the equation
∑M(x)

j=1 log{1−dj/(nj +k)} = q. Note that k̂ =∞

if q = 0 and k̂ = dM(x) − nM(x) if q = −∞. Let

ĥ(q;Xi) =


log

{
1− di

ni +K(q;x)

}
i ≤M(x)

log(1− di
ni

) i > M(x)

,

ĥδ(q;x) = q −
M(x)∑
j=1

ĥ(q;Xj).

(3.4)
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Theorem 3.2. The maximum likelihood estimator of S(t) subject to constraint S(x) =

exp(q) at a given x is Ŝ(t) = exp{
∑

Xj≤t ĥ(q;Xj) + I(t ≥ x)hδ(q;x)}, t ≤ τ , where τ is

the last observed time.

Proof. See Appendix D.

Thomas and Grunkemeier (1975) and Li (1995) considered the same maximization

problem as described above. However, Thomas and Grunkemeier (1975) solved the prob-

lem with the equality constraint
∑M(x)

j=1 h(Xj) = q, which implicitly assumes that ĥ(x) = 0

if x is not an observed event time, whereas Li (1995) mistakenly “proved” that ĥ(x) = 0

unless x is an observed event time. In fact, the maximization problem described above

involves two constraints:
∑M(x)

j=1 h(Xj) + hδ(x) = q and hδ(x) ≤ 0. It is possible that

ĥδ(x) < 0 ifK(q;x) = −N(x). The inequality constraint of a parameter such as hδ(x) ≤ 0

has been neglected in these approaches. It is necessary, however, to apply the Karush-

Kuhn-Tucker conditions (Karush 1939; Kuhn and Tucker 1951) to all possible inequality

constraints, including the bounds of parameters and then cautiously remove unnecessary

constraints that are guaranteed by other constraints.

3.2.4 The Profile Likelihood of S(x)

From Theorem 3.2 and (3.4), the profile log likelihood of S(x) = exp(q) at a given x is

plh(q;x) = sup
h∈R

logL(h)

=
m∑
i=1

[
dilog

{
1− exp ĥ(q;Xi)

}
+ (ni − di)ĥ(q;Xi)

]
+N(x)ĥδ(q;x),

(3.5)

where R = {h :
∑M(x)

i=1 h(Xi) + hδ(x) = q}, and ĥ(q;Xi) and ĥδ(q;x) are defined in

equation (3.4).

Lemma 3.3. The derivative of the profile log likelihood (3.5) with respect to q is−K(q;x).
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Proof. We consider separately the cases i) K(q;x) > −N(x) and ii) K(q;x) = −N(x).

i) If K(q;x) > −N(x), then ĥδ(x) = 0 and ĥ(q;Xi) = log(1 − di/ni) for i > M(x),

which does not depend on q. For any i ≤M(x),

d

dĥ(q;Xi)

[
dilog

{
1− exp ĥ(q;Xi)

}
+ (ni − di) ĥ(q;Xi)

]
=
−di exp{ĥ(q;Xi)}
1− exp{ĥ(q;Xi)}

+ ni − di = ni −
di

1− exp ĥ(q;Xi)

= ni − {ni +K(q;x)} = −K(q;x).

Thus,

d

dq
plh(q;x) =

d

dq

{
m∑
i=1

[
dilog

{
1− exp ĥ(q;Xi)

}
+ (ni − di) ĥ(q;Xi)

]
+N(x)ĥδ(x)

}

=

M(x)∑
i=1

−K(q;x)
dĥ(q;Xi)

dq
= −K(q;x)

d

dq

M(x)∑
i=1

ĥ(q;Xi) = −K(q;x).

ii) If K(q;x) = −N(x), then ĥ(q;Xi) = log{1 − di/[ni − N(x)]} for i ≤ M(x) and

ĥ(q;Xi) = log(1− di/ni) for i > M(x) are not functions of q. So

d

dq
plh(q;x)

=
d

dq

{
m∑
i=1

[
dilog

{
1− exp ĥ(q;Xi)

}
+ (ni − di) ĥ(q;Xi)

]
+N(x)ĥδ(q;x)

}

= N(x) = −K(q;x).

3.2.5 Reformulation of the Problem Using Profile Likelihood

For given x, maximizing the log likelihood (3.2) subject to the constraints in E can be

redefined as maximizing the log profile likelihood



44

plh(q1, . . . , qG;x) =
G∑
g=1

plhg(qg;x)

=
G∑
g=1

{
Mg(x)∑
i=1

[(ngi − dgi) log {ngi +Kg(qg;x)− dgi} − ngi log {ngi +Kg(qg;x)}]

+ I
{
Kg(qg;x) = Ng(x)

}
Ng(x)

[
qg −

Mg(x)∑
j=1

log

{
1− dgi

ngi +Kg(qg;x)

}]}
+C,

(3.6)

subject to constraints qi ≥ qj , for all (i, j) ∈ E and qg ≤ 0, g = 1, · · · , G. Note that by

using the profile likelihood, only G parameters q = (q1, . . . , qG) need to be estimated, and

that Ŝg(x) = exp(q̂g), where q̂ = (q̂1, . . . , q̂G) is the maximum likelihood estimator of q.

Any of the general methods described in section 3.2.2 can be used to maximize the log

profile likelihood (3.6) under the corresponding linear constraints. Note that the log profile

likelihood (3.6) is easy to calculate and the derivative is

d

dqT
phh(q;x) = {−K1(q1;x), . . . ,−KG(qG;x)}T ,

which is needed in some constrained optimization algorithms.

To obtain the pointwise C-NPMLE Ŝg(t), g = 1, . . . , G for all t, it is not necessary

to maximize the profile likelihood at every t. It can be seen that the pointwise C-NPMLE

may only jump at observed event times and at times just after observed censoring times. Let

{X ′j} be the union of all distinct times Ygi if ∆gi > 0 and Y +
gi if ∆gi = 0. Note that Y +

gi can

be taken as Ygi+ ε for a small ε > 0. We calculate Ŝg(X ′j), and then Ŝg(t) is a step function

with jumps at only X ′j , i.e. Ŝg(t) = Ŝg(max{X ′j : X ′j ≤ t}) for all t ≤ τg, g = 1, · · · , G.

The following Theorem shows that the pointwise C-NPMLE is a valid survivor function

for every group until the last observed time of that group.

Theorem 3.4. The pointwise C-NPMLE Ŝg(t), g = 1, · · · , G obtained from maximizing the

profile likelihood (3.6) is a non-increasing function in t. That is, for any 0 ≤ x < y ≤ τg,
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Ŝg(x) ≥ Ŝg(y).

Proof. See Appendix E.

3.2.6 Generalized Pool-adjacent-violators Algorithm in the Simple Ordering Case

Suppose that G survivor functions satisfy the simple stochastic ordering constraint

T1 ≥st · · · ≥st TG, and we aim to estimate the pointwise C-NPMLE at time x. A gen-

eralized pool-adjacent-violators algorithm can be used, where the set of violating groups to

be “pooled” is called B. The common value q̂ for all groups in B is the one that maximizes

the log profile likelihood

plB(q;x) =
∑
i∈B

plhi(q;x) =
∑
i∈B

logLi(ĥi).

Since from Lemma 3.3, d
dq

∑
i∈B plhi(q;x) = −

∑
i∈BKi(q;x), the maximizer q̂ is the root

of the equation

∑
i∈B

Ki(q;x) = 0, (3.7)

when the maximizer q̂ < 0. Here B ⊂ {1, · · · , G} is a set of indices of survivor functions

that we are interested in “pooling”. In the simple ordering setting, B will be a set of

adjacent integers, for example {2} or {2, 3, 4}.

Best, Chakravarti, and Ubhaya (1999) studied minimization of the sum of convex

functions subject to linear ordering constraint using the pool-adjacent-violators algorithm

method. Our log profile likelihood is the sum of concave functions, so maximizing the log

profile likelihood is the same as minimizing separable convex functions as considered by

Best et al. (1999). We adapt their algorithm, details of which can be found in Appendix C.
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3.3 Consistency and Asymptotic Distribution

Let S∗g (t) be the Kaplan-Meier estimator of Sg(t) and let Scg(t) be the censoring sur-

vivor function for group g. Further, let τg = inf{t : Sg(t)S
c
g(t) = 0}, g = 1, . . . , G. Under

the condition that there are no common jumps between the life time and censoring distribu-

tions, Stute and Wang (1993) showed that the Kaplan-Meier estimator S∗g (t) is uniformly

consistent for Sg(t) on [0, τg). A similar result holds for the pointwise C-NPMLE. The

following theorem is proved in Appendix F.

Theorem 3.5. Let Ŝk(t) be the pointwise C-NPMLE (see Definition 3.1). Under the condi-

tion of no common jumps of Sk(t) and Sck(t), as nk →∞, k = 1, . . . , G,

sup
t<τg

|Ŝg(t)− Sg(t)| → 0 with probability 1.

Let Wg(V ) be a Brownian motion on [0,∞) with variance function Vg(t). As shown in

Gill (1983),

ng
1/2

(
S∗g − Sg
Sg

)
→ W (Vg) in distribution on [0, τg] as ng →∞,

where

Vg(t) = −
t∫

0

dSg(x)

S2
g (x−)Scg(x−)

.

For a fixed time x, ng1/2{S∗g (x) − Sg(x)}→N{0, σ2
g(x)} in distribution where σ2

g(x) =

Vg(x)S2
g (x).

Let n =
∑G

g=1 ng and assume that limn→∞ ng/n = cg > 0 and letZ∗g (x) = n1/2{S∗g (x)−

Sg(x)}, g = 1, . . . , G. Then {Z∗1(x), . . . , Z∗G(x)}T→{Z1(x), . . . , ZG(x)}T in distribution,

where Zg(x) ∼ N(0, σ2
g(x)/cg) and Zg(x)′s are independent.

Theorem 3.6. For a fixed time x < min{τk : Lg(x) ≤ k ≤ Ug(x)} and under the simple



47

ordering constraint T1 ≥st · · · ≥st TG,

n1/2
g {Ŝg(x)− Sg(x)} → c1/2

g min
Lg(x)≤`≤g

max
g≤u≤Ug(x)

∑u
k=`{Zk(x)wk(x)}∑u

k=`wk(x)
in distribution,

(3.8)

where wg(x) = cg/σ
2
g(x), Lg(x) = min{i : Si(x) = Sg(x)} and Ug(x) = max{i : Si(x) =

Sg(x)}.

Proof. See Appendix G.

In Appendix G, we discuss extensions and special cases of Theorem 3.6 to situations

where the number at risk in one group is zero.

Let Šg(x) be the estimate of Sg(x) by applying the isotonic regression algorithm to

S∗g (x) with weights wg(x), g = 1, . . . , G, subject to constraint S1(x) ≥st · · · ,≥st SG(x).

Then, Šg(x) has a min-max form (Barlow et al., 1972)

Šg(x) = min
1≤`≤g

max
g≤u≤G

∑u
k=`{S∗k(x)wk(x)}∑u

k=`wk(x)
.

From Theorem 2 in El Barmi and Mukerjee (2005), it can be seen that

n1/2
g {Šg(x)− Sg(x)} D→ c1/2

g min
Lg(x)≤`≤g

max
g≤u≤Ug(x)

∑u
k=`{Zk(x)wk(x)}∑u

k=`wk(x)
.

From (3.8), it follows that Ŝg(x) and Šg(x) are asymptotically equivalent. We hypothesize

that this equivalence to the isotonic regression will also hold under the partial ordering con-

straint. This yields the following conjecture for the asymptotic distribution of the pointwise

C-NPMLE.

Conjecture 3.7. For a fixed time x,

n1/2
g {Ŝg(x)− Sg(x)} D→ c1/2

g fg(Z1(x), . . . , ZG(x);
c1

σ2
1

, . . . ,
cG
σ2
G

, x),

as n → ∞ for any x given Sg(x)Scg(x) > 0. Here Ψg(x) = {i : Si(x) = Sg(x)},

Eg(x) = {(i, j) : i, j ∈ Ψg(x) and (i, j) ∈ E} and fg(z1, . . . , zG;w1, . . . , wG, x) is the
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solution function for µg that minimizes
∑G

i=1wi(zi−µi)2 under constraints µi ≥ µj for all

(i, j) ∈ Eg(x).

If this conjecture is correct, inference methods developed for the isotonic regression

could also be useful for the pointwise C-NPMLE.

3.4 Comparison with Kaplan-Meier Estimator when Sample Size is
Large

3.4.1 Simple Ordering Case

In the simple ordering case with no censoring, El Barmi and Mukerjee (2005) showed

that their isotonic regression estimator has smaller asymptotic mean squared error than the

unrestricted Kaplan-Meier estimator. A similar result holds for the pointwise C-NPMLE

compared to the Kaplan-Meier estimator when there is right censoring.

Theorem 3.8. Consider the simple ordering constraint T1 ≥st T2 · · · ≥st TG. For a

fixed x with Sck(x)Sk(x) > 0 for all k = 1, . . . , G, let n1/2
k {Ŝk(x) − Sk(x)} D→ Ẑk

and n
1/2
k {S∗k(x) − Sk(x)} D→ Zk, k = 1, . . . , G. If there exists at least one g′ with

Sg′(x) = Sg(x), then

E(Ẑ2
g ) < E(Z2

g ).

If no such g′ exists, then Ŝg(x) and S∗g (x) are asymptotically equivalent.

Thus, the pointwise C-NPMLE has smaller asymptotic mean square error than -the

Kaplan-Meier estimator. In fact, a stronger inequality relation holds. Namely pr[|Ẑg| ≤

ε] > pr[|Zg| ≤ ε] for all ε > 0. In the two sample case, we calculate asymptotic bias and

asymptotic mean squared error of the C-NPMLE in section 3.4.2.
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3.4.2 The Two-sample Case, G = 2

If S1(x) > S2(x), then asymptotically, the constraint is irrelevant and n1/2
1 {Ŝ1(x) −

S1(x)} → σ1(x)Z̄1 and n1/2
2 {Ŝ2(x) − S2(x)} → σ2(x)Z̄2 in distribution, as n1, n2 → ∞,

where Z̄1 and Z̄2 are independent standard normal random variables.

If S1(x) = S2(x), from Theorem 3.6, we consider n1 → ∞ and n2 → ∞ such that

n1/n2 → c1/c2 as before. In this case,

n
1/2
1 {Ŝ1(x)− S1(x)} D→ σ1(x) max

{
Z̄1,

Z̄1 + c(x)1/2Z̄2

1 + c(x)

}
and n

1/2
2 {Ŝ2(x)− S2(x)} D→ σ2(x) min

{
Z̄2,

c(x)Z̄2 + c(x)1/2Z̄1

1 + c(x)

} (3.9)

where c(x) = limn1,n2→∞ n2σ
2
1(x)/{n1σ

2
2(x)} = c2σ

2
1(x)/{c1σ

2
2(x)}.

When S1(x) = S2(x), direct calculation from (3.9) shows that the asymptotic mean

squared errors are

lim
n1→∞

E[n1{Ŝ1(x)− S1(x)}2] =
{2 + c(x)}σ2

1(x)

2{1 + c(x)}

and lim
n2→∞

E[n2{Ŝ2(x)− S2(x)}2] =
{1 + 2 c(x)}σ2

2(x)

2{1 + c(x)}
.

(3.10)

These two asymptotic mean squared errors are always smaller than the unrestricted coun-

terparts σ2
1(x) and σ2

2(x).

Let S̃1(x) and S̃2(x) be the estimates of Rojo (2004) or El Barmi and Mukerjee (2005).

Based on definitions of their estimators, when S1(x) = S2(x), the asymptotic mean squared

errors are

E[n1{S̃1(x)− S1(x)}2] = σ2
1(x) +

c{σ2
2(x)− (2 + c)σ2

1(x)}
2{1 + c}2

and E[n2{S̃2(x)− S2(x)}2] = σ2
2(x) +

c{σ2
1(x)− (1 + 2c)σ2

2(x)}
2{1 + c}2

.

(3.11)

where c = c2/c1.

It can be shown that the asymptotic mean squared error of Ŝg(x) is less than or equal
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to that of S̃g(x), g = 1, 2 and the equality holds only when σ2
1(x) = σ2

2(x), in which

case S̃g(x) and Ŝg(x), g = 1, 2 are asymptotically equivalent. From equation (3.11) we

see that when σ2
2(x)/σ2

1(x) > c2/c1 + 2, the Rojo’s estimator S̃1(x) is asymptotically less

efficient than the Kaplan-Meier estimator S∗1(x) and when σ2
1(x)/σ2

2(x) > c1/c2 +2, S̃2(x)

is asymptotically less efficient compared to S∗2(x).

From equation (3.9), the asymptotic bias of Ŝg(x), g = 1, 2 can be calculated as follows

lim
n1→∞

E[n
1/2
1 (Ŝ1(x)− S1(x))] = σ1(x)

∞∫
−∞

∞∫
c1/2(x)

c1/2z2 − c(x)z1

1 + c(x)
fZ̄2

(z2)fZ̄1
(z1)dz2dz1

= σ1(x)

[
c(x)

2π{1 + c(x)}

] 1
2

< σ1(x)

(
1

2π

) 1
2

≈ 0.4σ1(x).

Similarly,

lim
n2→∞

E[n
1/2
2 {Ŝ2(x)− S2(x)}] = σ2(x)

[
1

2π{1 + c(x)}

] 1
2

< σ2(x)

(
1

2π

) 1
2

≈ 0.4σ2(x).

This asymptotic bias is less than 0.4 times the standard deviation of the Kaplan-Meier

estimator. As shown in Theorem 3.8, the mean squared error of the C-NPMLE is less than

that of the Kaplan-Meier estimate.

3.5 Confidence Intervals

3.5.1 Bootstrap

While there is a rich literature on the point estimation of a survivor functions under

stochastic ordering constraint, there has been little discussion on constructing confidence

intervals of the survivor functions under stochastic ordering. Rojo (2004) discussed weak

convergence to a Gaussian process of his estimator from which confidence band could

be constructed. Here we introduce several other possible ways to construct confidence
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intervals, and compare their properties in section 3.6.3.

Two sampling schemes for bootstrapping are presented. The first is the standard scheme,

in which survival time and censoring indicator pairs are sampled with replacement from

the data set. The second is a scheme based on simulating bootstrap samples from the con-

strained estimator; that is, event times are sampled from Ŝg(t) and censoring times are

sampled from Sc∗g (t), the Kaplan-Meier estimate of censoring survivor function in group g.

For each bootstrap sample, a bootstrap estimate Ŝbg(t), b = 1, . . . , B is obtained by apply-

ing the pointwise C-NPMLE. Confidence intervals based on these bootstrap estimates can

be constructed using percentiles (Efron, 1981), pivotal or percentile-t tests (Hall, 1992) or

bias corrected and accelerated tests (Efron, 1987).

As a comparison, we also tried standard bootstrap and then applied Kaplan-Meier esti-

mator to obtain bootstrap estimates, which is bootstrapping the unrestricted Kaplan-Meier

estimator.

3.5.2 Confidence Interval Centered on Constrained Estimator

Hwang and Peddada (1994) suggested a method in which a confidence interval is com-

puted for the unrestricted estimator and then shifted and centered on the constrained es-

timator. They showed that, under fairly general conditions, for elliptically symmetrically

distributed random variables, the coverage probability for the shifted interval will exceed

the nominal level. For the survivor function, we apply the intervals on a log transformed

scale and consider the following approximate confidence interval,

Ŝg(x) exp{±1.96σ∗g(x)},

where σ∗g(x) is standard error estimate of logS∗g (x).

Another method to obtain confidence intervals centered on Ŝg(x) is by using the boot-
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strap, which is to sample event times from Ŝg(t) and censoring times from Sc∗g (t) to obtain

a censored bootstrap sample, then fit the Kaplan-Meier estimator to obtain bootstrap esti-

mates S∗bg (x), b = 1, . . . , B for each group, from which confidence intervals are obtained

using percentiles.

We also introduce a reduced width confidence interval centered on the constrained esti-

mator under the simple ordering constraint. Let [l̂i, ûi] be an unrestricted confidence inter-

val for Si(x). We define the reduced width CI for Sg(x) as [ˆ̀′g, û
′
g], where û′g = min1≤i≤g ûi

and l̂′g = maxg≤i≤G l̂i, where g = 1, . . . , G.

3.6 Simulation Studies

3.6.1 Two-sample Case when Sample Size is Small

We have conducted numerous simulation studies to compare finite sample properties

of three different constrained estimators, Rojo (2004), the C-NPMLE in Chapter II and the

pointwise C-NPMLE, and compare them to the unconstrained Kaplan-Meier estimator in

the two-sample case. In this paper, we show results for the scenarios as described in Table

3.1 where the constraint is S1(t) ≥ S2(t) for all t.

Table 3.1: Underlying Distributions in a simulation study in section 3.6.1. When event ran-
dom variable follows a U(0, 1) distribution, the censoring distributions exp(3.2), exp(1.6)
and exp(0.67) give approximately 70%, 50% and 30% censoring rates.

Underlying Distributions Censoring Distributions Sample size
S1(t) S2(t) Sc1(t) Sc2(t) n1 n2

Figure 3.1a exp(1) exp(1.1) exp(1) exp(1) 80 80
Figure 3.1b exp(1) exp(1.1) exp(1) No censoring 80 80
Figure 3.1c exp(1) exp(1.1) exp(2) No censoring 80 80
Figure 3.1d exp(1) exp(1.1) U(0, 1.6) No censoring 80 80
Figure 3.1e U(0, 1) U1.1(0, 1) exp(3.2) exp(1.6) 50 50
Figure 3.1f U(0, 1) U1.1(0, 1) exp(0.67) exp(3.2) 50 50
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The mean squared error of the estimates of the survivor functions over a range of values

of t are shown. Each simulation consists of 10,000 replications. The upper (lower) plot of

each sub-figure in Figure 3.1 shows the mean squared error of estimates of S1(t) (S2(t)).

In cases with the same censoring distributions (Figure 3.1a), Rojo’s estimator and the

pointwise C-NPMLE have smaller mean squared error compared to other estimators. We

observed the Rojo’s estimator is almost as efficient as the pointwise C-NPMLE when cen-

soring distributions are the same or very close to each other. However, if population 1 and

2 have different censoring distributions, the pointwise C-NPMLE in general has smaller

mean squared error compared to all other estimators. Rojo’s estimator does not adjust well

to the unequal censoring distributions (Figure 3.1b – 3.1f) even when the censoring rates are

close to each other (Figure 3.1d). Note that the pointwise C-NPMLE is the only estimator

that dominates the Kaplan-Meier estimator at any time in any situation considered.

In summary, we found that the pointwise C-NPMLE has smaller mean squared error

almost everywhere and is a suggested estimator when estimating survivor functions under

stochastic ordering constraint.

3.6.2 Two-sample Case: Asymptotic Properties

We define the asymptotic relative efficiency as the inverse ratio of the mean squared

errors and compare the asymptotic relative efficiency of the three constrained estimators

to the Kaplan-Meier estimator in the two sample case in Figure 3.2. The underlying dis-

tributions are S1(t) = S2(t) = exp(−t), Sc1(t) = 1 and Sc2(t) = exp(−2t). Note that

the constraint is asymptotically relevant everywhere. We set limn1,n2→∞ n1/n2 = 1. The

asymptotic relative efficiency of the full constrained nonparametric maximum likelihood

estimator is based on simulated data with very large sample size. Asymptotic relative effi-
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Comparison of mean squared errors for different estimators. ♦: Kaplan-Meier
estimator;4: C-NPMLE;5: Rojo’s estimator; +: pointwise C-NPMLE.
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ciencies of the pointwise C-NPMLE and the Rojo’s estimator are calculated using equations

(3.10) and (3.11).

The pointwise C-NPMLE dominates all other estimators for all twhile Rojo’s estimator

could be inefficient for some t (left graph in Figure 3.2). Note that compared to the Kaplan-

Meier estimator, the full constrained nonparametric maximum likelihood estimator is less

efficient everywhere in this setting.
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Figure 3.2: Comparison of asymptotic relative efficiency under the constraint T1 ≥st T2.
The underling distributions are: S1(t) = S2(t) = exp(−t), Sc1(t) = 1 and Sc2(t) =
exp(−2t). ♦: Kaplan-Meier estimator; 4: C-NPMLE; 5: Rojo’s estimator; +: point-
wise C-NPMLE.

3.6.3 Simple Ordering Case

In this section, we compare finite sample properties of the pointwise C-NPMLE with

the Kaplan-Meier estimator in the simple ordering case and investigate the CIs described

in section 3.5. We consider three groups with underlying distributions T1 ∼ exp(1), T2 ∼

exp(1.1) and T3 ∼ exp(1.4) and a uniform censoring distribution C ∼ U(0, 4.3), which

yields an overall censoring rate of about 20%. Sample sizes are n1 = n3 = 40 and n2 = 20.
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The simulation is based on 10,000 replicates and 200 bootstrap estimates. We construct the

CIs using percentiles (Efron, 1981) at time 0.26 and 0.63, where the survival rates of group

2 are 0.75 and 0.5 respectively.

Figure 3.3 shows the mean squared error of the pointwise C-NPMLEs and Kaplan-

Meier estimators and we see efficiency gains at all times for all group. The largest gains

are in the estimation of S2(t) where the mean squared error of the pointwise C-NPMLE

is less than half of the mean squared error of the Kaplan-Meier estimator at almost all the

times.

Figure 3.3: Comparison of Kaplan-Meier estimator and
pointwise C-NPMLE in the three sample case. ©, 4 or
+: Kaplan-Meier estimates for group 1, 2 or 3; ×, ♦ or 5:
pointwise C-NPMLE for group 1, 2 or 3.

The coverage rates and average widths of the confidence intervals described in Section

3.5 are shown in Table 3.2. As expected, the confidence intervals centered on the pointwise

C-NPMLE have higher coverage rate (V vs. I and VI vs. II), but these confidence intervals

tend to be too conservative while the average widths are about the same as the unrestricted

counterparts. The bootstrap methods (III and IV) give the confidence intervals with signif-

icantly reduced width, but the coverage rates tend to be lower for some groups (III and IV
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at time 0.26, group 1). The average widths of reduced width confidence intervals for group

2 are significantly smaller than the original confidence intervals while the coverage rates

are about the same (V’ vs. V and VI’ vs. VI). Bootstrap methods III and IV are not ideal

but seem best among these considered and have quite reasonable coverage properties.

Table 3.2: Coverage rate (%) and average width (%) of 95% confidence intervals. The
distribution functions are T1 ∼ exp(1), T2 ∼ exp(1.1), T3 ∼ exp(1.4) and C ∼
uniform(0, 4.3) for all groups. Total censoring rate is 20%. Sample sizes are n1 = 40,
n2 = 20 and n3 = 40. Bootstrapping confidence interval is based on percentiles (Efron,
1981). Results are based on 10,000 simulation samples.

t = 0.26 t = 0.63
Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

I 92.8 (25.3) 92.8 (35.6) 92.8 (27.8) 93.7 (31.2) 93.1 (43.5) 93.2 (30.8)
II 92.1 (26.1) 89.2 (37.5) 93.2 (28.8) 94.5 (32.4) 93.3 (46.3) 94.5 (32.3)
III 90.1 (21.0) 97.5 (23.9) 94.7 (25.0) 92.9 (27.3) 97.5 (29.2) 93.9 (27.2)
IV 89.9 (20.4) 94.8 (22.5) 93.3 (24.4) 92.6 (26.6) 94.5 (27.7) 93.0 (26.9)
V 94.0 (24.7) 99.4 (37.1) 96.5 (28.2) 95.8 (31.2) 99.3 (44.3) 95.4 (30.7)
V’ 94.0 (24.6) 99.3 (31.2) 96.5 (28.1) 95.8 (31.1) 99.2 (37.9) 95.4 (30.6)
VI 92.4 (26.8) 97.5 (37.9) 96.8 (28.3) 95.0 (33.6) 98.8 (46.6) 96.9 (31.7)
VI’ 91.6 (26.1) 97.4 (31.5) 96.8 (28.3) 94.8 (33.2) 98.8 (39.6) 96.9 (31.7)
I: Standard bootstrap then Kaplan-Meier estimator; II: Log transformation, i.e.
S∗g (x) exp{±1.96σ∗g(x)}; III: Sampling from Ŝ (the pointwise C-NPMLE) then Ŝ; IV:
standard bootstrap then Ŝ; V: Sampling from Ŝ then Kaplan-Meier estimator; V’: V with
width reduced; VI: Ŝg(x) exp{±1.96σ∗g(x)}; VI’: VI with width reduced.

3.7 Example

The data are from prostate cancer patients who received radiation therapy at the Uni-

versity of Michigan Hospital, a portion of data used in Proust-Lima and Taylor (2009).

Five-hundred and three patients without planned hormonal therapy are included in this ex-

ample to estimate the survivor function of time to first recurrence of prostate cancer. For

this analysis recurrence is defined as the first occurrence of local recurrence, distant metas-

tasis or initiation of salvage hormone therapy.
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It is reasonable to expect that the patients with higher baseline prostate-specific anti-

gen value have a higher recurrence rate of prostate cancer than those with lower baseline

prostate-specific antigen values. The Gleason grade is a measure of the aggressiveness of

the tumor cells obtained from microscopic inspection of a biopsy prior to the treatment. It

is reasonable to expect that the patients with lower Gleason grade have a lower recurrence

rate. In this example, we divided the patients into 6 groups based on baseline prostate-

specific antigen is less than 10 or larger than or equal to 10 (A or B) and Gleason ≤ 6,

= 7 or≥ 8 (1, 2 or 3). Thus A1 represents the patient group with baseline prostate-specific

antigen < 10 and Gleason ≤ 6 and B3 the patient group with baseline prostate-specific

antigen ≥ 10 and Gleason ≥ 8. The natural set of constraints for the survivor functions are

A1 ≥ A2 ≥ A3, B1 ≥ B2 ≥ B3, A1 ≥ B1, A2 ≥ B2 and A3 ≥ B3.

The Kaplan-Meier estimates of each groups are shown in Figure 3.4a. The unrestricted

Kaplan-Meier estimates do not satisfy the stochastic ordering. Specifically we notice that

between 1 year and 2.5 years, the groups A2, B2 and B3 do not satisfy ordering constraint

and after 5 years the orderings of A2 and A3, and B2 and B3 are also violated.

The pointwise C-NPMLEs are shown in Figure 3.4b. The estimates satisfy the stochas-

tic ordering constraint at all times. Between 1 year and 2.5 years, we notice that the survivor

functions take a common value in groups A2, B2 and B3 and after 5 years, groups A2 and

A3, B2 and B3 are combined together respectively. Interestingly at around 12.5 years,

there is a jump of the survivor function in groups B2 and B3, even though there is no

observed event.

Detailed results of point estimates and corresponding confidence intervals for some

selected times are shown in Table 3.3.
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(a) Kaplan-Meier estimates

(b) the pointwise C-NPMLE
Figure 3.4: Estimates in the University of Michigan prostate cancer exam-
ple. Here A or B represent baseline prostate-specific antigen is < or ≥ 10,
and 1, 2 or 3 represents Gleason score is <, = or > 7. The vertical bars in
Kaplan-Meier estimator are observed censoring times.
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Table 3.3: Estimates and confidence intervals of survivor functions for some
selected times in the prostate cancer example. Confidence interval using stan-
dard bootstrap method are shown in parenthesis. Bootstrap confidence interval
is based on percentiles. The unit of the results is percentage (%).

Time (years) 1.5 5 8.5

A1
Kaplan-Meier 99.4 (98.1, 100 ) 93.9 (89.5, 97.8) 83.6 (75.1, 91.1)
PC-NPMLE 99.4 (98.5, 100 ) 93.9 (89.5, 97.8) 83.6 (75.3, 91.2)

A2
Kaplan-Meier 99.1 (97.4, 100 ) 83.4 (75.1, 90.3) 62.2 (43.4, 79.0)
PC-NPMLE 99.1 (97.4, 100 ) 83.4 (75.5, 90.7) 63.4 (45.6, 78.9)

A3
Kaplan-Meier 80.0 (60.0, 100 ) 70.0 (40.0, 100 ) 70.0 ( 0.0, 90.0)
PC-NPMLE 88.7 (82.1, 99.6) 70.0 (44.7, 87.4) 63.4 (20.0, 75.1)

B1
Kaplan-Meier 98.0 (95.0, 100 ) 78.3 (69.0, 86.6) 64.2 (51.7, 75.5)
PC-NPMLE 98.0 (95.0, 100 ) 78.3 (69.0, 86.6) 64.2 (51.7, 75.5)

B2
Kaplan-Meier 86.8 (79.2, 94.2) 48.8 (35.7, 62.3) 34.2 (14.6, 50.8)
PC-NPMLE 88.7 (82.9, 94.4) 48.8 (38.4, 62.4) 34.7 (22.1, 51.0)

B3
Kaplan-Meier 96.4 (88.9, 100 ) 47.8 (28.2, 66.2) 35.9 (10.0, 60.7)
PC-NPMLE 88.7 (81.8, 94.2) 47.9 (29.1, 57.6) 34.7 (10.0, 46.9)

A or B: baseline prostate-specific antigen < 10 or≥ 10; 1,2 or 3: Gleason <,=
or > 7; PC-NPMLE: Pointwise C-NPMLE.

3.8 Discussion

The pointwise C-NPMLE is a likelihood based pointwise estimator. Unlike the full

constrained nonparametric estimator maximum likelihood estimator, the violation of a con-

straint at one time does not affect the estimates at other times. The “weights” for each

group, which are based on maximizing the likelihood when the constrains are violated, are

natural and give better results than using weights based on initial sample size of each group

as used by Rojo (2004) and El Barmi and Mukerjee (2005).

Rojo’s estimator in the two-sample case and El Barmi and Mukerjee’s estimator in

the simple ordering case are the pointwise C-NPMLE without censoring. However, if

censoring exists, these estimators are quite different in some situations, especially when

the censoring distributions are significantly different between groups. Another feature of

the El Barmi and Mukerjee’s estimator is the range of times for which the estimator is
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defined. Specifically, it is defined only until the minimum time of the last observations

in all groups. If the last observed time in one group is much earlier than others, which

could happen when the sample size of a group is much smaller than others, then all the

estimators are subsequently undefined at times even though there may be a large number of

observations at risk in the other groups. On the other hand, the pointwise C-NPMLE for a

group is defined up to the last observed time of that group and is not affected by short valid

ranges of other groups.

Because the pointwise C-NPMLE can have jumps at non-event times, the likelihood

ratio tests of survivor functions, first introduced by Thomas and Grunkemeier (1975) and

discussed by Li (1995) and Murphy (1995) may be problematic, because they assume the

jumps only occur at event times. Thus the likelihood ratio test and confidence interval and

confidence band based on the likelihood ratio test may need to be revised.

The methods we introduced to construct confidence interval are far from perfect. The

bootstrap methods can have lower coverage rate than the nominal level for some popu-

lations while confidence intervals centered on the pointwise C-NPMLE all tend to have

coverage rates that are too high without reducing the width of the confidence interval. In-

vestigating other methods of constructing confidence interval is an interesting area of study.

We have observed that the pointwise C-NPMLE may be less efficient than the uncon-

strained Kaplan-Meier estimator under certain partial ordering constraints, particularly un-

der tree ordering constraints, T1 ≤st T2, T1 ≤st T3, . . . , T1 ≤st TG. The estimation problem

of normal means under partial ordering constraint is discussed by Lee (1988); Hwang and

Peddada (1994); Fernandez et al. (1999); Cohen and Sackrowitz (2002); Chaudhuri and

Perlman (2005, 2007). The strategy discussed in Hwang and Peddada (1994) is to reorder

and switch some of the estimators and then apply fixed width confidence intervals. They

showed that this approach did improve the coverage probabilities of the confidence in-



62

tervals. It is an open question to see if their strategy can also be shown to improve the

properties in the constrained survival data setting.



CHAPTER IV

Confidence Intervals under Order Restriction

4.1 Introduction

Consider a G-sample problem where the observations Xgi, g = 1, . . . , G, i = 1, . . . , ng

are independent random variables with distribution function Fg(x;µg). When estimating

µ = (µ1, . . . , µG), there often exists information about the inequality orderings and bounds

of these parameters. For example, if µg is the average height of children of age g or µg is

the toxicity rate of a drug for dose level g in a clinical trial, the parameters should satisfy

the restriction:

µ1 ≤ µ2 ≤ · · · ≤ µG. (4.1)

This type of ordering is called simple ordering or linear ordering. The natural estimator

for order restricted parameters is the restricted maximum likelihood estimator (MLE). For

the case where Fg(x;µg), g = 1, . . . , G is a normal distribution function with mean µg

and variance σ2, the MLE of µ̂g under restriction (4.1) is the isotonic regression estimator

(Barlow et al., 1972; Robertson et al., 1988; Silvapulle and Sen, 2005). The restricted MLE

63
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µ̂g has been shown to dominate the unrestricted MLE X̄g in the sense that

P (|µ̂g − µg| ≤ c) ≥ P (|X̄g − µg| ≤ c), g = 1, . . . , G, (4.2)

for all c > 0 (Kelly, 1989; Lee, 1981). In this paper, we focus on constructing confidence

intervals for the parameters µg under the linear ordering constraints.

Estimation problems in a restricted parameter space have been studied since the 1950s.

Marchand and Strawderman (2004) and van Eeden (2006) reviewed estimation methods

that have been developed in the past and discussed the “good” properties of restricted es-

timators, such as dominance, minimax and admissibility. Cohen and Sackrowitz (2004)

discussed some inference issues and pointed out that traditional inference methods, such

as likelihood based method, can lead to some undesirable properties in restricted parame-

ter problems. Andrews (2000) also pointed out that the bootstrap method, which has been

very useful for constructing confidence intervals of complicated parameters, will fail when

a parameter is on the boundary or close to the boundary of the parameter space. Thus, it

is of interest to develop an inference procedure without depending on traditional inference

methods.

Specialized methods for constructing confidence intervals under order restrictions have

been suggested. Schoenfeld (1986) proposed a method for one-sided intervals based on

inverting the likelihood ratio test for the ordered means from a normal distribution. Hwang

and Peddada (1994) proposed constant length confidence intervals, in which the confidence

interval, derived without the order restriction assumption, is shifted and centered at an im-

proved estimator, e.g. centered at the restricted MLE in the linear ordering case. From the

dominance properties described in equation (4.2), coverage rates of these restricted meth-

ods exceed the nominal levels obtained from unrestricted intervals. In addition, bootstrap

and other resampling procedures are discussed by Peddada (1997) and Li et al. (2010).
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In this paper, we propose a novel method to construct confidence intervals under a

linear ordering constraint. In section 4.2, we consider a two-sample case of ordered normal

means with known variances and obtain some theoretical results about the coverage rate

and width of the confidence interval. In section 4.3, we propose methods for the case when

the population variances are unknown. We extend the methods to the case with three or

more samples in section 4.4. In section 4.5, we describe some other confidence intervals

that have been proposed in the literature and in section 4.6, we conduct simulation studies

to compare those confidence intervals with our approach. In section 4.7, we illustrate the

method using data on half-lives of an antibiotic in an animal study.

4.2 Confidence Intervals for µ1 and µ2 with Known Variances

4.2.1 Family of Confidence Intervals

Let Xg ∼ N(µg, σ
2
g), g = 1, 2, where σ2

g is known. Our goal is to construct 1 − α

confidence intervals for µ1 and µ2 when it is known that µ1 ≤ µ2. Let X(γ) = γX1 + (1−

γ)X2, where γ ∈ [0, 1]. The mean and variance of X(γ) are µ(γ) = EX(γ) = γµ1 + (1−

γ)µ2 and σ2(γ) = var{X(γ)} = γ2σ2
1 + (1− γ)2σ2

2 . Let z1−α/2 be the upper α/2 quantile

of a standard normal distribution and let t1−α/2,ν be the upper α/2 quantile of a standard t

distribution with degree of freedom ν, which we denote for convenience by z and tν . The

unrestricted confidence intervals for µ1, µ2 and µ(γ) are µg ∈ [Xg−zσg, Xg+zσg], g = 1, 2

and µ(γ) ∈ [X(γ)−zσ(γ), X(γ)+zσ(γ)]. Since µ1 ≤ µ(γ) ≤ µ2, it is sensible to consider

modifying the limits of the confidence intervals for µ1 and µ2, based on the limits of the

confidence interval µ(γ). We here propose a family of confidence interval [L1(γ), U1(γ)]
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for µ1 and [L2(γ), U2(γ)] for µ2 as follows:

L1(γ) = min{X1 − zσ1, X(γ)− zσ(γ)},

U1(γ) = min{X1 + zσ1, X(γ) + zσ(γ)},
(4.3)

and

L2(γ) = max{X2 − zσ2, X(γ)− zσ(γ)},

U2(γ) = max{X2 + zσ2, X(γ) + zσ(γ)}.
(4.4)

Henceforth in sections 2 and 3, we only consider upper and lower limits for µ1. Those

for µ2 will be of the same form except for changing min to max and changing the subscript

from 1 to 2. In this section, we develop the method and theory for the case of one observa-

tion per group. The results apply to multiple observations per groups by simply replacing

Xg by the group mean and replacing σ2
g by σ2

g/ng.

The following is preliminary to a discussion of the coverage probability for µ1 using

L1(γ) and U1(γ).

Definition 4.1. X = (X1, . . . , Xk) has an elliptical unimodal distribution with location µ

and positive-definite matrix Σ if its probability density function is

f(x) = C h{(x− µ)TΣ−1(x− µ)},

where h(t) is a nonincreasing function in t.

Theorem 4.2. Suppose Y = (Y1, Y2)T has a bivariate elliptical unimodal distribution with

location µ = (0,∆) and Σ =

(
1 ρ

ρ 1

)
, where ∆ ≥ 0. Define cα so that pr(|Y1| ≤ cα) =

1− α. Then

Q = P{min(Y1 − cα, Y2 − cα) ≤ 0 ≤ min(Y1 + cα, Y2 + cα)} ≥ 1− α. (4.5)
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Proof. The joint probability density function of Y is

f(y1, y2) = C h
{
y2

1 + (y2 −∆)2 − 2ρy1(y2 −∆)
}
.

Then, from (4.5),

Q = P (Y1 ≥ −cα, Y2 ≥ −cα)− P (Y1 ≥ cα, Y2 ≥ cα)

=

∫
D ∪E ∪H

f(y1, y2)dy1dy2

=

∫
D ∪E ∪F

f(y1, y2)dy1dy2 +

∫
H

f(y1, y2)dy1dy2 −
∫
F

f(y1, y2)dy1dy2, (4.6)

where D ,E ,F and H are defined in Figure 4.1. It is clear that∫
D ∪E ∪F

f(y1, y2)dy1dy2 = P{|Y1| ≤ cα} = 1− α. (4.7)

Figure 4.1: Sample space of (y1, y2).

Let yH = (y1, y2) be a point in H with yF = (−y2,−y1) a corresponding point in F .

It can be seen that

(yH − µ)TΣ−1(yH − µ)− (yF − µ)TΣ−1(yF − µ) = −2∆(1− ρ)(y1 + y2) ≤ 0
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for all ∆ ≥ 0 and (y1, y2) ∈ H . Since h(t) is nonincreasing, we have f(y1, y2) ≥

f(−y2,−y1) if ∆ ≥ 0 and (y1, y2) ∈ H . Thus the density at each point in H is greater

than or equal to the density at the corresponding point in F . Since (−y2,−y1) varies over

all of F as (y1, y2) varies over H ,∫
H

f(y1, y2)dy1dy2 −
∫
F

f(y1, y2)dy1dy2 ≥ 0. (4.8)

The result (4.5) follows immediately from (4.6), (4.7) and (4.8).

Corollary 4.3. If X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) are independent with µ1 ≤ µ2,

then P{L1(γ) ≤ µ1 ≤ U1(γ)} ≥ 1− α for all γ ∈ [0, 1].

Proof. This follows by setting Y1 = (X1 − µ1)/σ1, Y2 = {X(γ) − µ1}/σ(γ) and h(t) =

exp(−t/2) in Theorem 4.2. The corresponding ∆ = {µ(γ) − µ1}/σ(γ) = (1 − γ)(µ2 −

µ1)/σ(γ) ≥ 0, ρ = {1 + (1− γ)2σ2
2/(γ

2σ2
1)}−1/2 and C = (2π)−1(1− ρ2)−1/2.

This corollary shows that the coverage rate of the interval [L1(γ), U1(γ)] always ex-

ceeds the nominal level when the variances of X1 and X2 are known.

4.2.2 Selection of γ

We would like to choose a value of γ to make the width of the confidence intervals for

µ1 defined in equation (4.3) as small as possible. One possible choice of γ is the value

that minimizes W1(γ) = E{U1(γ) − L1(γ)}, but W1(γ) depends on the unknown mean

difference µ2 − µ1. There is a γ ∈ (0, 1) for which σ2(γ) < σ2
1 , and it can be seen that

when σ2(γ) < σ2
1 , U1(γ)− L1(γ) ≤ 2zσ1 for any observations X1 and X2, thus the width

of the interval can be reduced by suitable choice of γ. Another intuitive choice of γ is the

value that minimizes σ2(γ). It is easy to see that σ2(γ) is minimized at γ̂ = σ2
2/(σ

2
1 + σ2

2).

In Theorem 4.4, we show that this γ̂ also minimizes W1(γ) if µ1 = µ2.
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Theorem 4.4. W1(γ) is minimized at γ = γ̂ if µ1 = µ2.

Proof. Consider the case γ ≥ 1− 2σ2
1/(σ

2
1 + σ2

2), for which σ2(γ) ≤ σ2
1 .

Let c(γ) = z{σ1 − σ(γ)}/(1− γ). Then we have

U1(γ)− L1(γ) =



2zσ1 if X2 −X1 > c(γ)

(1− γ)(X2 −X1) + zσ1 + zσ(γ) if − c(γ) < X2 −X1 ≤ c(γ)

2zσ(γ) if X2 −X1 ≤ −c(γ).

So,

W1(γ) =

∞∫
c(γ)

2zσ1fX2−X1(x)dx+

c(γ)∫
−c(γ)

{(1− γ)x+ zσ1 + zσ(γ)}fX2−X1(x)dx

+

−c(γ)∫
−∞

2zσ(γ)fX2−X1(x)dx = z{σ1 + σ(γ)},

because X2 − X1 ∼ N(0, σ2
1 + σ2

2),
∫ c(γ)

−c(γ)
xfX2−X1(x)dx = 0 and

∫∞
c
fX2−X1(x)dx =∫ −c

−∞ fX2−X1(x)dx.

Similarly we can show that if γ < 1− 2σ2
1/(σ

2
1 + σ2

2), W1(γ) = z{σ1 + σ(γ)}.

Thus minimizingW1(γ) is the same as minimizing σ(γ), which happens at γ = σ2
2/(σ

2
1+

σ2
2).

Using this γ̂, the proposed confidence interval for µ1 is

L̂1 = min(X1 − zσ1, X̂ − zσ̂), Û1 = min(X1 + zσ1, X̂ + zσ̂). (4.9)

where X̂ = (X1σ
2
2 +X2σ

2
1)/(σ2

1 + σ2
2) and σ̂2 = σ2

1σ
2
2/(σ

2
1 + σ2

2).

An interesting question is how much wider this CI is compared to the narrowest pos-

sible CI when µ1 6= µ2. To investigate this, we compute minγW1(γ) through numerical

minimization over γ for a given µ2−µ1 and compare it with W1(γ̂). The results are shown

in Figure 4.2. The largest possible average width for the confidence interval using γ̂, com-
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pared to the optimal, occurs when σ2
2/σ

2
1 = 0.063 for nominal level of 95% and when

σ2
2/σ

2
1 = 0.081 for nominal level of 99%. Compared to the minimum possible W1(γ),

W1(γ̂) is only at most 0.4% wider at nominal level of 95% and at most 0.8% wider at

nominal level of 99%. This indicates that the CI using γ̂ is almost as efficient as the most

efficient CI in this family.
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Figure 4.2: Comparison of width of confidence interval using γ̂ and minimum pos-
sible width.

4.2.3 Properties of Proposed Confidence Intervals

4.2.3.1 Maximum Coverage Rate

Let ρ = σ2/
√
σ2

1 + σ2
2 and let ∆ = (µ2 − µ1)(1− ρ2)/(ρσ1). Let Y1 = (X1 − µ1)/σ1

and let Y2 = (X̂ − µ1)/σ̂. Then the joint distribution of Y1 and Y2 is

f(y1, y2) =
1

2π
√

1− ρ2
exp

{
−y

2
1 + (y2 −∆)2 − 2ρy1(y2 −∆)

2(1− ρ2)

}
.
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Table 4.1: Theoretical maximum coverage rate of CI for µ1 in the
situations with different ratio of variances.

1− α σ2
2/σ

2
1

10−9 10−3 0.01 0.1 0.2 0.5 1 2 10

.95 .969 .969 .968 .965 .962 .959 .956 .953 .950

.90 .933 .932 .930 .924 .920 .913 .909 .905 .901

.80 .852 .850 .846 .835 .829 .819 .812 .806 .801

.70 .761 .759 .753 .740 .732 .721 .713 .707 .701

The coverage probability is

P = 1− α +

∞∫
z

z∫
−∞

f(y1, y2)dy2dy1 −
∞∫
−z

−z∫
−∞

f(y1, y2)dy2dy1.

Setting dP/d∆ = 0, we find that maximum coverage probability of the proposed confi-

dence interval for fixed ρ occurs at ∆̂ that solves the equation

Φ
{

(zρ− z −∆ρ)/
√

1− ρ2
}
− Φ

{
(z − zρ−∆ρ)/

√
1− ρ2

}
exp (−2z∆) = 0,

(4.10)

where Φ is the cumulative distribution function of standard normal random variable. It

can be shown that equation (4.10) has one and only one positive solution for ∆ for any

0 < ρ < 1. As can be seen in Table 4.1 and Figure 4.3a, the theoretical maximum coverage

rate increases as σ2
2/σ

2
1 (or equivalently ρ) decreases and approaches 0.969 for nominal

level of 95% when σ2
2/σ

2
1 goes to 0.

4.2.3.2 Confidence Interval Width

The reduction of average width compared to the unrestricted confidence interval de-

pends on σ2
2/σ

2
1 and µ2 − µ1 as can be seen in Figure 4.3b. For the CI of µ1, the smaller

the σ2
2/σ

2
1 , the smaller the average width, and the closer the means, the smaller the average

width. The average width can be half the width of the unrestricted CI when σ2
2/σ

2
1 → 0 and
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µ1 = µ2. If the variance of X1 and X2 are similar, the average width will be about 85% of

the unrestricted one when µ1 = µ2.
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Figure 4.3: Coverage probability and ratio of average width of restricted confidence
interval for µ1 compared to unrestricted confidence interval for µ1.

4.3 Confidence Intervals for µ1 and µ2 with Unknown Variances

Suppose we observed Xgi ∼ N(µg, σ
2
g), g = 1, 2, i = 1, 2, · · · , ng. Let X̄g =∑ng

i=1Xgi/ng, g = 1, 2. We consider two cases.

4.3.1 Restricted Confidence Interval when σ2
1 and σ2

2 are Unknown but σ2
2/σ

2
1 is

Known

Let ŝ2
1 =

{∑n1

i=1(X1i − X̄1)2 +
∑n2

i=1(X2i − X̄2)2/p
}
/ν and let X̃ = (X̄1n1p +

X̄2n2)/(n2 + n1p), where p = σ2
2/σ

2
1 and ν = n1 + n2 − 2. Then µ̃ = EX̃ = (µ1n1p +

µ2n2)/(n2 + n1p) and σ̃2 = var(X̃) = σ2
1p/(n2 + n1p). Let s̃2 = pŝ2

1/(n2 + n1p), then

(X̃ − µ̃)/s̃ and
√
n1(X̄1 − µ1)/ŝ1 follow standard T distributions with degree of freedom
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ν. The unrestricted CIs for µ1 and µ̃ are:

µ1 ∈ [X̄1 − tν ŝ1/
√
n1, X̄1 + tν ŝ1/

√
n1],

µ̃ ∈ [X̃ − tν s̃, X̃ + tν s̃].

We propose a restricted CI for µ1 as follows:

L̂1 = min(X̄1 − tν ŝ1/
√
n1, X̃ − tν s̃),

Û1 = min(X̄1 + tν ŝ1/
√
n1, X̃ + tν s̃).

(4.11)

When σ2
2/σ

2
1 is known, the pivotal random variables (X1−µ1)/ŝ1 and (X̃−µ̃)/s̃ follow

a bivariate T distribution. Since the multivariate T both belongs to the elliptical distribution

family, the result in Theorem 4.2 concerning coverage rates of CIs is applicable.

Corollary 4.5. The confidence interval defined in (4.11) satisfies P (µ1 ∈ [L̂1, Û1]) ≥ 1−α.

Proof. This follows by setting Y1 = (X̄1 − µ1)/ŝ1, Y2 = {X̃ − µ1}/s̃ and h(t) =

{1 + t/ν}−(ν+2)/2 in Theorem 4.2. The corresponding ∆ = (µ̃ − µ1)E(1/s̃) = (µ2 −

µ1)n2E(1/s̃)/(n2 + n1p) ≥ 0, ρ =
√
pn1/(pn1 + n2) and C = 1/(2π

√
1− ρ2).

4.3.2 Restricted Confidence Intervals when both σ2
1 and σ2

2 are Unknown

Let ŝ2
g =

∑ng
i=1(Xgi − X̄g)

2/(ng − 1), g = 1, 2. Unrestricted CIs for µ1 and µ2 are:

µ1 ∈ [X̄1 − tn1−1ŝ1/
√
n1, X̄1 + tn1−1ŝ1/

√
n1],

µ2 ∈ [X̄2 − tn2−1ŝ2/
√
n2, X̄2 + tn2−1ŝ2/

√
n2].

Similar to the approaches in earlier sections, we consider an intermediate random vari-

ables X̃ , with mean µ̃, obtain a confidence interval [L̃, Ũ ] for µ̃ and then define the restricted

CI for µ1 as follows:

L̂1 = min(X̄1 − tn1−1ŝ1/
√
n1, L̃), Û1 = min(X̄1 + tn1−1ŝ1/

√
n1, Ũ). (4.12)
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In this case, it is not possible to find an intermediate random variable X̃ = γX̄1 + (1−

γ)X̄2 with exactly appropriate properties. Even for a fixed γ, the distribution of X̃ does

not have a simple form, and obtaining the distribution of X̃ for a constant γ is in fact a

variant of the Behrens-Fisher problem. Instead, we propose three methods of defining X̃

and approximating its distribution.

Method 1: For X̃ = γX̄1+(1−γ)X̄2, var(X̃) = γ2σ2
1/n1+(1−γ)2σ2

2/n2 is minimized

at γ = n1σ
2
2/(n1σ

2
2 + n2σ

2
1), giving X̃ = (n1σ

2
2X̄1 + n2σ

2
1X̄2)/(n1σ

2
1 + n2σ

2
1) and the

minimum variance σ2
1σ

2
2/(n2σ

2
1 + n1σ

2
2). However, we do not know σ2

1 and σ2
2 , so we use

unbiased estimator ŝ2
1 and ŝ2

2 to approximate X̃ , giving

X̃ = (n1ŝ
2
2X̄1 + n2ŝ

2
1X̄2)/(n1ŝ

2
2 + n2ŝ

2
1).

The coverage rate for µ̃ (= γµ1 + (1 − γ)µ2) using variance estimate ŝ2
1ŝ

2
2/(n2ŝ

2
1 + n1ŝ

2
2)

will be too low , because it does not incorporate the uncertainty in the estimation of σ2
1 and

σ2
2 . One approach to allow for this is to modify the estimated variance based on thresholds

of tv distributions. Since P (X̄g − µg > tν ŝg/
√
ng) = P [X̄g − µg > {ŝgtν/(z

√
ng)}z] =

α/2, we propose to approximate the distribution of X̄g − µg with a N(0, ŝ2
gt

2
ν/(z

2ng))

distribution. This gives exactly the same 1−α confidence interval for µg, g = 1, 2 as using

a t distribution. Thus, we use ŝ2
gt

2
v/z

2 as the estimate of σ2
g to adjust for the uncertainty of

ŝ2
g and propose the following variance estimate of σ̃2:

σ̃2 =
t2n1−1t

2
n2−1ŝ

2
1ŝ

2
2

n2t2n1−1ŝ
2
1 + n1t2n2−1ŝ

2
2

× 1

z2
. (4.13)

The approximate confidence interval for µ̃ is then X̃ ± zσ̃.

Method 2: Since (X̄g − µg)
√
ng/ŝg ∼ Tg, conditional on X̄g and ŝ2

g, µg ∼f X̄g +

(ŝg/
√
ng)Tg, g = 1, 2, where Tg is a standard T random variable with degree of freedom

ng − 1 and ∼f represents the fiducial distribution, which is equivalent to a Bayesian poste-
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rior distribution under the usual noninformative priors. The variance of µ̃ is minimized at

γ̂ = n∗1ŝ
2
2/(n

∗
2ŝ

2
1 +n∗1ŝ

2
2), where n∗g = ng(ng−3)/(ng−1), g = 1, 2. This suggests defining

X̃ = (n∗1ŝ
2
2X̄1 + n∗2ŝ

2
1X̄2)/(n∗1ŝ

2
2 + n∗2ŝ

2
1). (4.14)

We still suggest using the variance estimate in (4.13), giving the CI

L̃ = X̃ − zσ̃, Ũ = X̃ + zσ̃. (4.15)

The use of σ̃2 is desirable because the CI for µ1 derived from (X̃ − zσ̃, X̃ + zσ̃) using

σ̃2 from (4.13) always gives smaller or at least equal length interval compared to the unre-

stricted interval (X̄1 − tn1−1ŝ1, X̄1 + tn1−1ŝ1), whereas this does not hold if we replace ng

by n∗g in (4.13).

Another way to calculate L̃ and Ũ is to use the exact fiducial distribution of µ̃, which is

defined as

µ̃ ∼ X̃ + γ̂(ŝ1/
√
n1)T1 + (1− γ̂)(ŝ2/

√
n2)T2, (4.16)

and then numerically calculate the percentiles of this distribution.

Simulations show that the restricted CI using the exact fiducial distribution of µ̃ in

(4.16) gives similar results to the CI defined by (4.15) using σ̃2 when comparing average

width and coverage rate.

Method 3: Define X̃ as the maximum likelihood estimator subject to the constraint

µ1 = µ2. The log likelihood is

logL = −n1 + n2

2
log(2π)− n1

2
log σ2

1−
n2

2
log σ2

2−
∑n1

i=1(X1i − µ)2

2σ2
1

−
∑n2

i=1(X2i − µ)2

2σ2
2

.

The log profile likelihood is given by

log pl{µ, σ̂2
1(µ), σ̂2

2(µ)} = −n1 + n2

2
{log(2π) + 1} − n1

2
log σ̂2

1(µ)− n2

2
log σ̂2

2(µ),
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where σ̂2
g(µ) =

∑ng
i=1(Xgi−µ)2/ng, g = 1, 2. Then X̃ will be the solution of the following

equation

n2
1(X̄1 − µ)∑

(X1i − X̄1)2 + n1(X̄1 − µ)2
+

n2
2(X̄2 − µ)∑

(X2i − X̄2)2 + n2(X̄2 − µ)2
= 0,

and the CI for µ̃ that we propose is (X̃ − zσ̃, X̃ + zσ̃), where σ̃2 is given by (4.13).

4.4 Confidence Intervals with Three or more Groups

Suppose Xgi ∼ N(µg, σ
2
g), i = 1, . . . , ng, g = 1, . . . , G and assume that µ1 ≤ µ2 ≤

· · · ≤ µG. Let X̄g =
∑ng

i=1 Xgi/ng, g = 1, . . . , G.

4.4.1 Three-sample Case with Known Variances

We first consider joining neighboring groups or sets of neighboring groups. Let X̄12 =

(X̄1n1σ
−2
1 +X̄2n2σ

−2
2 )/(n1σ

−2
1 +n2σ

−2
2 ), X̄23 = (X̄2n2σ

−2
2 +X̄3n3σ

−2
3 )/(n2σ

−2
2 +n3σ

−2
3 )

and X̄123 =
∑3

g=1(X̄gngσ
−2
g )/

∑3
g=1(ngσ

−2
g ) with µ̄12, µ̄23 and µ̄123 denoting their means.

Let σ̄2
12 = 1/(n1σ

−2
1 + n2σ

−2
2 ), σ̄2

23 = 1/(n2σ
−2
2 + n3σ

−2
3 ) and σ̄2

123 = 1/
∑3

g=1(ngσ
−2
g ).

The unrestricted CIs for µg are X̄g ± zσg/
√
ng, g = 1, 2, 3, where Lg and Ug denote

the lower and upper limits of these CIs. The unrestricted CIs for µ̄12, µ̄23 and µ̄123 are

X̄12 ± zσ̄12, X̄23 ± zσ̄23, X̄123 ± zσ̄123 and let L̄12, Ū12, L̄23, Ū23, L̄123, and Ū123 denote

these lower and upper limits.

We reduce the problem to one of comparing two groups. For group 1, we can construct

the confidence interval for µ1 based on the comparison of group 1 and group 2. Thus the

confidence interval for µ1 would be

L̂1 = min(L1, L̄12), Û1 = min(U1, Ū12). (4.17)

An alternative that may be worth considering in some circumstances would be to base the
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confidence interval of the comparison of group 1 and the combined group 2 and group 3. If

it is believed that µ2 and µ3 are close to each other, then this may be a good choice. Then

the restricted confidence interval for µ1 would be

L̂1 = min(L1, L̄123), Û1 = min(U1, Ū123), (4.18)

The confidence interval for µ3 is based on the comparison of groups 2 and 3, and is given

by

L̂3 = min(L3, L̄23), Û3 = min(U3, Ū23), (4.19)

Again an alternative that might be worth considering in some circumatances, if it is believed

that µ1 and µ2 are close to each other, is to combine groups 1 and 2 to give the restricted

confidence interval for µ3 as

L̂3 = min(L3, L̄123), Û3 = min(U3, Ū123), (4.20)

In practice, we recommend the default of not combining other groups and using equa-

tions (4.17) and (4.19), while recognizing that there may be advantages for using equations

(4.18) and (4.20) instead. The decision of whether to combine groups could be based on

either prior knowledge, or potentially a pre-test could be performed from the available data.

We will briefly discuss a possible form for such a pre-test in the discussion.

Now we consider the confidence interval for µ2. This includes two two-sample prob-

lems. For the upper bound of the confidence interval, if Ū23 ≥ Ū12 then

Û2 = min{Ū23,max(U2, Ū12)} and Û2 = max{Ū12,min(U2, Ū23)} are both possible upper

bounds, however, both are equal and equal to median{U2, Ū12, Ū23} (see Figure 4.4a). If

Ū23 < Ū12, it is not straightforward how to pick a value for Û2. In the two-sample case for

group 1 and 2, Û2 = max(U2, Ū12) implies that Û2 ≥ Ū12, while in the two-sample case for
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group 2 and 3, Û2 = min(U2, Ū23) implies that Û2 ≤ Ū23. Since Ū23 < Ū12, a good value

for Û2 should be between Ū23 and Ū12. The true means are ordered as µ̄12 ≤ µ̄123 ≤ µ̄23.

This suggests one possible choice for Ûg will be Ū123. However, Ū123 may not be between

Ū23 and Ū12, therefore we propose Û2 = median(Ū12, Ū123, Ū23) (see Figure 4.4b), and note

that Û2 = Ū123 in most, but not all cases. Thus the proposed restricted confidence interval

for µ2 is

Û2 =


median(U2, Ū12, Ū23) if Ū23 ≥ Ū12

median(Ū12, Ū123, Ū23) otherwise.

L̂2 =


median(L2, L̄12, L̄23) if L̄23 ≥ L̄12

median(L̄12, L̄123, L̄23) otherwise.

(4.21)

(a) Ū12 ≤ Ū23 (b) Ū12 > Ū23

Figure 4.4: Upper limits of the confidence interval in three or more sample case.

4.4.2 Three-sample Case with Unknown Variances

In this case, the restricted confidence intervals can also be defined using (4.17)-(4.21).

Here, we discuss how to define the limits of unrestricted confidence intervals Lg, Ug, g=1,2,
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L̄12, Ū12, L̄123, Ū123, L̄23 and Ū23.

Ifwg = σ2/σ2
g , g = 1, 2, 3 is known, for some unknown σ2, let ŝ2 =

∑3
g=1

∑ng
i=1wg(Xgi−

X̄g)
2/(
∑3

g=1 ng − 3), then the unrestricted confidence interval for µg is Lg, Ug = X̄g ±

tν ŝ(ngwg)
−1/2, where ν = n1+n2+n3−3. Let X̄12 = (X̄1n1w1+X̄2n2w2)/(n1w1+n2w2),

X̄12 = (X̄2n2w2 + X̄3n3w3)/(n2w2 + n3w3) and X̄123 =
∑3

g=1(X̄gngwg)/
∑3

g=1(ngwg),

then the unrestricted confidence intervals for µ̄12, µ̄123 and µ̄23 will be (L̄12, Ū12) = X̄12 ±

tν ŝ(n1w1+n2w2)−1/2, (L̄123, Ū123) = X̄123±tν ŝ(n1w1+n2w2+n3w3)−1/2 and (L̄23, Ū23) =

X̄23 ± tν ŝ(n2w2 + n3w3)−1/2.

If σ2
g , g = 1, 2, 3 needs to be estimated separately, let ŝg =

∑ng
i=1(Xgi− X̄g)

2/(ng− 1),

then the unrestricted confidence interval for µg is (Lg, Ug) = X̄g ± tng−1ŝg/
√
ng. In this

situation, we use method 2 in section 4.3.2 to obtain the means and confidence intervals for

the combined groups. Let n∗g = ng(ng−3)/(ng−1), g = 1, 2, 3, then the mean estimates are

X̄12 =
(∑2

g=1 n
∗
gŝ
−2
g X̄g

)
/
(∑2

g=1 n
∗
gŝ
−2
g

)−1

, X̄123 =
(∑3

g=1 n
∗
gŝ
−2
g X̄g

)
/
(∑3

g=1 n
∗
gŝ
−2
g

)−1

and X̄23 =
(∑3

g=2 n
∗
gŝ
−2
g X̄g

)
/
(∑3

g=2 n
∗
gŝ
−2
g

)−1

. The variance estimates for these means

are σ̄12 =
(∑2

g=1 ngŝ
−2
g t−2

ng−1z
2
)−1

, σ̄23 =
(∑3

g=2 2ngŝ
−2
g t−2

ng−1z
2
)−1

and

σ̄123 =
(∑3

g=1 ngŝ
−2
g t−2

ng−1z
2
)−1

. The unrestricted confidence intervals for these means

are defined as (L̄12, Ū12) = X̄12 ± zσ̄12, (L̄123, Ū123) = X̄123 ± zσ̄123 and (L̄23, Ū23) =

X̄23 ± zσ̄23.

4.4.3 Confidence Intervals for more than Three Groups

The CI for µ1 can be constructed just by considering this as a 2 sample problem with

groups 1 and 2. An alternative, that may lead to a gain in efficiency, is to consider com-

bining other groups. However, there are many possible two-sample problems that could to

be used to construct the restricted CI. The key here would be to decide which set of X̄g’s
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is used to form a two-sample problem with X̄1. If it is believed that µ2, . . . , µu are close

to each other, the restricted CI for µ1 will depend on the limits of the CI for µ̄1,u, which is

the mean of group 1 to u, specifically a convex combination of µ1 to µu with the weight

proportional to the inverse of the variance. Similarly, if it is believed that µ`, . . . , µG−1 are

close to each other, the restricted CI for µG will depend on the limits of the CI for µ̄`,G−1.

The problem of constructing the CI for µg, 1 < g < G can be treated as a three-sample

problem with groups g − 1, g and g + 1. Again, it may be possible to gain some efficiency

by combining other groups. If it is believed that µ`, . . . , µg−1 are close to each other and

µg+1, . . . , µu are close to each other, groups ` to g− 1 can be considered as one group with

a smaller mean and groups g + 1 to u as the other group with a larger mean. Then the

method for the middle group of the three-sample case can be used to construct a restricted

CI for µg.

4.5 Other Restricted Confidence Intervals

There are a number of other possible approaches for constructing restricted confidence

intervals, including bootstrap based confidence intervals and constant length confidence

intervals (Hwang and Peddada, 1994).

Two sampling schemes for the bootstrap based on pivotal distributions are consid-

ered. The first scheme is based on the unrestricted MLE, in which Xb
gi, b = 1, . . . , B, i =

1, . . . , ng, g = 1, . . . , G is sampled from N(X̄g, σ
2
g) if σ2

g is known, Xb
gi is sampled from

X̄g+ŝ Tg/
√
wg, where Tg is standard T random variable with degree of freedom

∑G
g=1(ng−

1) if wg is known, or Xb
gi is sampled from X̄g + ŝgTg, where Tg is standard T random vari-

able with degree of freedom ng − 1 if σ2
g is estimated. The second scheme is based on

the restricted MLE µ̂g, in which Xb
gi is sampled in the three different ways as described
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above except that the mean is µ̂g instead of X̄g, where µ̂g is the restricted MLE of µg. For

each bootstrap sample, a bootstrap estimate µ̂bg, b = 1, . . . , B is obtained by applying the

restricted maximum likelihood method. CIs are based on the percentiles of the bootstrap

distribution of µ̂bg.

Hwang and Peddada (1994) proposed a constant length confidence interval in which

the center of the CI is shifted from the unrestricted MLE to the restricted MLE. They

showed that, under fairly general conditions, the coverage probability of the CI centered

on the restricted MLE will exceed the nominal level. In our setting, the constant length

confidence interval is defined as µ̂g ± zσg/
√
ng if σ2

g is known or as µ̂g ± tvŝg/
√
ng if σ2

g

is unknown, where v =
∑G

g=1(ng − 1) for known wg or v = ng − 1 for the case when σ2
gs

are estimated separately.

4.6 Simulation Study

We have undertaken numerous simulation studies for the two-sample case. We con-

sidered many different scenarios by varying µ1, µ2, σ
2
1, σ

2
2, n1 and n2. We found that the

proposed method gives excellent coverage rates close to the nominal level even in small

sample sizes and that the widths are narrower than those of unrestricted intervals and can

be substantially narrower. The three methods in section 4.3.2 give similar results with very

slightly better properties for methods 2. In this paper, we present results only for the more

interesting and challenging three-sample case.

Let the population means of the three groups be ordered as µ1 ≤ µ2 ≤ µ3. Cover-

age probabilities and the average width of CIs are calculated based on 5,000 simulated

datasets and each bootstrap confidence interval is based on 999 bootstrap estimates. The

distributions and sample sizes for the simulations are listed in Table 4.2. We included
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in the comparison the CI based on the unrestricted estimates (Unres), the shifted con-

stant length CI (Shifted(Const)), the bootstrap methods and the new method of section

4.4. The results using equations (4.18) and (4.20) in which we assume all groups are close

(New(combined)) and using equations (4.17) and (4.19) in which we assume all groups

are separated (New(separate)) are shown. The three parametric bootstrap methods are,

completely unrestricted (Bootstrap(Unres)), the method where the bootstrap samples are

simulated from a distribution centered at X̄g and the restricted MLE is estimated (Boot-

strap(RMLE), and the method where the bootstrap samples are simulated from a distribu-

tion centered at µ̂g and the restricted MLE is estimated (Bootstrap-R(RMLE)).

Table 4.2: Different combinations of population means, vari-
ances and sample sizes used in simulation studies.

µ σ2 n

(a) -0.1, 0, 0.1 5, 5, 10 5, 5, 10
(b) -1.0, 0, 1.0 5, 5, 10 5, 5 ,10
(c) -0.1, 0, 0.1 5, 5, 5 5, 5, 50
(d) -0.1, 0, 0.1 10, 10, 10 5, 50, 10
(e) -0.1, 0, 0.1 5, 50, 10 10, 10, 10
(f) -0.1, 0, 2.0 10, 10, 10 5, 50, 10
(g) -0.1, 0, 2.0 10, 10, 10 5, 10, 50

We present the results for coverage rates and average confidence interval widths in

Table 4.3 for σ2
g known, in Table 4.4 for known ratios of variances and in Table 4.5 for the

case where all variances are estimated.

As expected, the shifted constant length confidence interval centered on the restricted

MLE has higher coverage probability than the nominal level. However, the coverage rate

tends to be extremely high for µ2 when all three population means are close to one another

(cases (a), (c), (e) in Table 3, 4 and 5). Even though the bootstrap method works well when

all the population means are well separated(case (b)), the coverage rates for some popula-
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Table 4.3: Empirical coverage rates and average widths of 95% confidence intervals for µ1,
µ2 and µ3 when the variances are known.

Method
Unres Shifted Bootstrap Bootstrap Bootstrap-R New New

Const Unres RMLE RMLE separate combined

(a)
µ1 94.9(3.92) 97.3(3.92) 94.8(3.90) 92.0(2.99) 91.3(3.16) 95.3(3.37) 95.7(3.16)
µ2 95.2(3.92) 99.7(3.92) 95.1(3.90) 96.7(2.68) 98.3(2.81) 97.2(2.84) 97.2(2.84)
µ3 94.9(3.92) 97.2(3.92) 94.7(3.90) 91.9(3.00) 91.4(3.16) 95.1(3.38) 95.5(3.16)

(b)
µ1 95.3(3.92) 97.2(3.92) 95.2(3.90) 95.1(3.37) 95.9(3.42) 95.9(3.61) 95.6(3.67)
µ2 94.9(3.92) 98.4(3.92) 94.5(3.90) 95.7(3.03) 97.4(3.10) 96.4(3.30) 96.4(3.30)
µ3 94.8(3.92) 97.1(3.92) 94.8(3.91) 95.2(3.38) 96.2(3.43) 95.6(3.61) 95.0(3.67)

(c)
µ1 95.2(3.92) 97.5(3.92) 95.0(3.90) 91.4(2.57) 90.3(2.82) 95.3(3.38) 96.7(2.67)
µ2 94.7(3.92) 99.7(3.92) 94.7(3.90) 96.2(1.87) 98.0(2.10) 97.5(2.06) 97.5(2.06)
µ3 95.2(1.24) 95.8(1.24) 95.0(1.23) 94.0(1.17) 94.2(1.18) 95.2(1.21) 95.0(1.19)

(d)
µ1 95.0(5.54) 97.5(5.54) 94.8(5.52) 90.3(3.43) 89.5(3.85) 95.9(3.69) 95.8(3.63)
µ2 94.5(1.75) 96.8(1.75) 94.4(1.74) 94.5(1.61) 95.2(1.63) 95.2(1.64) 95.2(1.64)
µ3 95.3(3.92) 97.8(3.92) 94.9(3.90) 91.5(2.62) 91.4(2.88) 96.0(2.81) 96.2(2.79)

(e)
µ1 95.5(2.77) 96.7(2.77) 95.3(2.76) 93.8(2.46) 93.6(2.51) 95.4(2.71) 95.4(2.52)
µ2 95.9(8.77) 100 (8.77) 95.7(8.73) 97.2(2.96) 98.8(3.25) 97.9(3.30) 97.9(3.30)
µ3 94.8(3.92) 97.0(3.92) 94.9(3.90) 91.8(3.05) 91.6(3.22) 94.8(3.75) 95.2(3.15)

(f)
µ1 95.0(5.54) 97.3(5.54) 94.9(5.52) 91.6(3.54) 91.5(3.94) 95.3(3.72) 96.2(3.91)
µ2 94.5(1.75) 95.1(1.75) 94.3(1.75) 94.1(1.68) 94.3(1.68) 94.6(1.71) 94.6(1.71)
µ3 94.9(3.92) 95.9(3.92) 94.9(3.90) 94.8(3.57) 95.8(3.58) 94.9(3.75) 94.9(3.75)

(g)
µ1 94.8(5.54) 97.3(5.54) 94.6(5.52) 93.3(4.13) 93.2(4.40) 95.4(4.41) 94.8(4.79)
µ2 94.7(3.92) 98.0(3.92) 94.7(3.90) 94.0(3.17) 95.0(3.22) 95.1(3.40) 95.1(3.40)
µ3 95.2(1.75) 95.3(1.75) 95.1(1.74) 95.1(1.72) 95.2(1.72) 95.2(1.75) 95.2(1.75)

tion means can be well below the nominal level in some situations (µ1 for cases (a), (c),

(d) and (f)). There are no noticeable improvements from using the bootstrap method with

sampling centered on the restricted MLE compared to the bootstrap method with sampling

centered on the unrestricted MLE. The method proposed in this paper gives fairly accurate

coverage rate with reduced width of the intervals in all the situations considered in this

simulation study and is the recommended method. Although the properties of confidence

intervals are improved by using only adjacent group’s information (NEW separate), the

efficiency can be improved by combining the groups with similar means as seen in scenar-

ios (a), (c) and (e) (NEW(combined) vs NEW(separate), comparing width of confidence
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Table 4.4: Empirical coverage rates and average widths of 95% confidence intervals for µ1,
µ2 and µ3 when the ratios of variances are known.

Method
Unres Shifted Bootstrap Bootstrap Bootstrap-R New New

Const Unres RMLE RMLE separate combined

(a)
µ1 95.0(4.16) 97.2(4.16) 94.8(4.14) 91.8(3.16) 91.2(3.33) 95.4(3.58) 95.7(3.36)
µ2 95.3(4.16) 99.3(4.16) 95.0(4.14) 96.1(2.81) 97.7(2.94) 97.0(3.02) 97.0(3.02)
µ3 94.7(4.16) 97.0(4.16) 94.4(4.14) 91.8(3.16) 91.5(3.33) 95.1(3.58) 95.3(3.35)

(b)
µ1 95.1(4.16) 96.6(4.16) 94.9(4.14) 94.9(3.55) 95.3(3.61) 95.6(3.83) 95.3(3.88)
µ2 94.7(4.16) 98.2(4.16) 94.9(4.14) 95.9(3.18) 97.3(3.25) 95.9(3.50) 95.9(3.50)
µ3 94.9(4.16) 96.8(4.16) 94.6(4.14) 95.0(3.56) 96.0(3.61) 95.5(3.83) 95.1(3.88)

(c)
µ1 95.3(3.99) 97.4(3.99) 95.1(3.97) 91.2(2.61) 90.2(2.86) 95.2(3.43) 96.6(2.72)
µ2 95.0(3.99) 99.7(3.99) 94.9(3.97) 96.3(1.90) 98.0(2.12) 97.5(2.09) 97.5(2.09)
µ3 95.2(1.26) 95.9(1.26) 94.9(1.25) 94.2(1.19) 94.1(1.20) 95.2(1.23) 95.2(1.21)

(d)
µ1 95.0(5.64) 97.6(5.64) 94.8(5.62) 90.8(3.48) 89.9(3.91) 96.0(3.76) 95.9(3.70)
µ2 95.0(1.78) 96.5(1.78) 94.7(1.78) 94.9(1.64) 95.4(1.66) 95.4(1.67) 95.4(1.67)
µ3 95.1(3.99) 97.6(3.99) 94.8(3.97) 91.7(2.66) 91.6(2.92) 95.7(2.86) 95.7(2.84)

(e)
µ1 95.3(2.87) 96.5(2.87) 95.2(2.86) 93.6(2.54) 93.5(2.60) 95.5(2.81) 95.2(2.61)
µ2 95.6(9.08) 100 (9.08) 95.5(9.04) 96.9(3.03) 98.8(3.31) 97.6(3.41) 97.6(3.41)
µ3 95.1(4.06) 96.9(4.06) 95.1(4.04) 92.2(3.15) 92.1(3.31) 95.2(3.89) 95.5(3.26)

(f)
µ1 94.7(5.63) 97.0(5.63) 94.7(5.60) 91.5(3.58) 91.6(3.98) 95.1(3.77) 96.0(3.97)
µ2 94.6(1.78) 95.3(1.78) 94.3(1.77) 94.1(1.70) 94.3(1.71) 94.7(1.74) 94.7(1.74)
µ3 94.9(3.98) 95.7(3.98) 94.7(3.96) 94.7(3.62) 95.5(3.62) 94.9(3.81) 94.9(3.80)

(g)
µ1 94.9(5.64) 97.4(5.64) 94.7(5.61) 93.4(4.19) 93.1(4.46) 95.5(4.49) 95.0(4.86)
µ2 94.6(3.98) 97.6(3.98) 94.6(3.97) 94.1(3.21) 95.2(3.25) 94.8(3.45) 94.8(3.45)
µ3 95.3(1.78) 95.4(1.78) 95.4(1.77) 95.4(1.74) 95.0(1.74) 95.3(1.78) 95.3(1.78)

interval for µ1 or µ3). However, the effect of combining groups that are well separated can

lead to wider intervals, as seen for µ1 in cases (f) and (g). In practice, if we believe that

all the population means are well separated as in case (b), the bootstrap method is a good

alternative, and sometimes yield confidence intervals of smaller average width.

4.7 Example

The half-life of a drug is the time needed to halve the concentration of the drug in the

body of a human or an animal. The half-life may vary with the concentration of the drug,
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Table 4.5: Empirical coverage rates and average widths of 95% confidence intervals for µ1,
µ2 and µ3 when the variances are estimated separately.

Method
Unres Shifted Bootstrap Bootstrap Bootstrap-R New New

Const Unres RMLE RMLE separate combined

(a)
µ1 95.3(5.28) 96.6(5.28) 95.3(5.25) 91.3(3.89) 89.6(4.00) 95.0(4.65) 94.8(4.32)
µ2 95.5(5.17) 97.1(5.17) 95.5(5.15) 94.4(3.16) 93.8(3.19) 94.7(3.35) 94.7(3.35)
µ3 94.9(4.40) 96.6(4.40) 94.7(4.37) 90.3(3.38) 87.6(3.46) 95.4(4.07) 94.8(3.85)

(b)
µ1 94.5(5.21) 95.4(5.21) 94.6(5.19) 94.5(4.27) 94.4(4.30) 95.1(4.75) 95.3(4.76)
µ2 94.6(5.22) 96.0(5.22) 94.5(5.18) 94.7(3.55) 95.1(3.58) 94.8(4.01) 94.8(4.01)
µ3 94.7(4.41) 96.3(4.41) 94.5(4.39) 94.0(3.73) 94.9(3.76) 96.1(4.16) 96.3(4.17)

(c)
µ1 95.3(5.24) 97.4(5.24) 95.1(5.21) 90.0(3.31) 88.9(3.57) 95.8(4.66) 96.9(3.74)
µ2 94.8(5.21) 98.3(5.21) 94.5(5.18) 95.0(2.14) 96.0(2.30) 95.8(2.40) 95.8(2.4.0)
µ3 95.1(1.26) 95.3(1.26) 94.9(1.26) 93.6(1.21) 92.5(1.20) 94.9(1.26) 94.6(1.25)

(d)
µ1 95.2(7.43) 97.4(7.43) 95.2(7.40) 91.1(4.39) 90.2(4.80) 96.2(5.15) 96.0(5.09)
µ2 94.9(1.79) 96.5(1.79) 94.6(1.78) 94.5(1.65) 95.0(1.65) 95.3(1.68) 95.3(1.68)
µ3 95.2(4.41) 97.8(4.41) 95.2(4.39) 92.4(2.89) 91.4(3.14) 96.5(3.40) 96.4(3.38)

(e)
µ1 95.2(3.11) 96.0(3.11) 95.1(3.09) 93.8(2.72) 93.3(2.76) 95.7(3.07) 95.2(2.90)
µ2 95.1(9.82) 99.9(9.82) 94.9(9.77) 96.3(3.12) 97.6(3.33) 96.8(3.60) 96.8(3.60)
µ3 95.1(4.40) 96.7(4.40) 95.1(4.38) 91.7(3.33) 91.1(3.49) 96.0(4.29) 95.6(3.76)

(f)
µ1 94.7(7.34) 97.3(7.34) 94.3(7.29) 92.3(4.44) 92.0(4.84) 95.7(5.08) 97.0(5.30)
µ2 94.6(1.79) 94.8(1.79) 94.5(1.78) 94.3(1.72) 93.7(1.71) 94.2(1.75) 94.2(1.75)
µ3 94.6(4.38) 95.2(4.38) 94.4(4.35) 94.4(3.88) 95.1(3.87) 95.2(4.12) 95.2(4.11)

(g)
µ1 94.7(7.41) 96.1(7.41) 94.2(7.37) 92.2(5.18) 91.9(5.41) 94.6(5.89) 96.1(6.28)
µ2 94.4(4.39) 96.1(4.39) 94.2(4.37) 93.1(3.46) 92.5(3.40) 94.0(3.72) 94.0(3.72)
µ3 95.2(1.79) 95.4(1.79) 95.0(1.78) 95.1(1.75) 95.0(1.75) 95.4(1.79) 95.4(1.79)

and usually is longer for higher concentration levels. Table 4.6 shows data from Hirotsu

(2005). It contains the half-lives in hours of an antibiotic at four different doses that is

injected into rats. The higher dose level should result in a higher concentration and hence

it is reasonable to assume the half life is shorter for the lower dose level.

The analysis is based on two scenarios. First, we assume all the observation are from

normal distributions with means that depend on the doses but with the same variance. Sec-

ond, we assume that the variances of different dose levels may not be equal. The results are

shown in Table 4.7. It can be seen that widths of restricted CIs are narrower compared to

their unrestricted counterparts. Both limits of the confidence interval for doses of 10 mg/kg
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and 50 mg/kg are modified. The most noticeable reduction in the width of the restricted

confidence interval is for the dose of 50 mg/kg when we estimate the variances separately,

where the width of the restricted confidence interval is about 35% of the unrestricted one.

We also considered the impact of combining some neighboring groups as a way to obtain

shorter intervals. Specifically we combined the 5 mg/kg and 10 mg/kg groups and the 25

mg/kg and 50 mg/kg groups. The results were quite similar to those in Table 4.7 and are

not shown.

Table 4.6: Half-life of an antibiotic in rats.

Dose (mg/kg) Data (h) Average

5 1.17 1.12 1.07 0.98 1.04 1.08
10 1.00 1.21 1.24 1.14 1.34 1.19
25 1.55 1.63 1.49 1.53 1.55
50 1.21 1.63 1.37 1.50 1.81 1.50

200 1.78 1.93 1.80 2.07 1.70 1.86

Table 4.7: Estimates and confidence intervals of half-lives in the example in section 4.7.

Dose Equal variances Different variances
(mg/kg) MLE(CI) RMLE (CI) MLE (CI) RMLE (CI)

5 1.08 (0.78, 1.38) 1.08 (0.78, 1.34) 1.08 (0.87, 1.28) 1.08 (0.87, 1.18)
10 1.19 (0.89, 1.49) 1.19 (1.04 ,1.45) 1.19 (0.84, 1.54) 1.19 (1.03, 1.53)
25 1.55 (1.25, 1.85) 1.52 (1.25, 1.62) 1.55 (1.36, 1.74) 1.55 (1.36, 1.63)
50 1.50 (1.20, 1.81) 1.52 (1.42, 1.78) 1.50 (0.86, 2.15) 1.55 (1.46, 1.91)

200 1.86 (1.56, 2.16) 1.86 (1.58, 2.16) 1.86 (1.45, 2.26) 1.86 (1.60, 2.26)

4.8 Discussion

In this paper, we developed a novel method for constructing confidence intervals un-

der linear ordering constraints for normal population means. In the two sample case, we

showed that the coverage rate is at least the nominal level when the variances or the ratio
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of the variances is known. Simulation studies show that the coverage rates are also close to

the nominal level even when the variances of populations are estimated separately.

The methods developed in section 4.2, 4.3 and 4.4 are applicable to normal observa-

tions. On account of the central limit theorem, we expect the coverage rates of the restricted

CIs for the means to be close to the nominal level in nonnormal populations if the sample

size is fairly large. We found this to be empirically true in simulations (not shown), except

when the distribution is very skewed and the sample size is relatively small. Even in this

case, the coverage rates were not substantially below the nominal level, and showed much

better coverage rates than the alternative bootstrap CI’s.

The method proposed in this paper can be generalized to other distributions by using

transformations. For example, if T is a monotone transformation and T (µ̂g) is approxi-

mately normally distributed, then it is possible to apply our method to estimate the CI of

T (µg) and then apply T−1 to obtain the CI of µg. For example, for the binomial case with

success probability µg, the variance stabilizing transformation sin−1(
√
µg) could be used.

The strategy that we developed in this paper can be broadly described using two stages:

in the first stage, obtain an unrestricted CI, (Lg, Ug) for µg using a normal or t distribution;

in the second stage, modify these bounds based on the order restrictions, using for example,

equations (4.17), (4.19) and (4.21). A modification of this method is to use the bootstrap in

the first stages to obtain (Lg, Ug).

The methodology described in this paper is applicable in the linear ordering case.

Hwang and Peddada (1994) discussed a constant length confidence intervals centered on

the restricted estimator under more general ordering constraints. It will be interesting to de-

velop a method using strategies similar to those in this paper for the more general ordering

situation.

As discussed in Section 4.4 the method for three or more samples could potentially be
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made more efficient by combining groups rather than just considering the closest group.

Whether it is beneficial to combine groups depends on the closeness of the means of neigh-

boring groups. It could be useful to develop a method that can automatically decide which

sets of means are close to each other and so are better to be combined when constructing

the restricted confidence intervals. For example, one possible approach for the three-group

situation would be to test: H0 : µ1 ≤ µ2 = µ3 vs Ha : µ1 ≤ µ2 < µ3 at a certain signifi-

cance level to decide whether µ2 and µ3 are close to each other, and so to decide whether

or not to combine group 2 and group 3 to construct the restricted confidence intervals for

µ1.



CHAPTER V

Future Research

The method discussed in Chapter II and the concept of the MC-NPMLE can be ex-

tended to settings with more than two samples with linear ordering or partial ordering

constraints. Hoff (2000, 2003b) proposed an estimation method via mixtures, in which the

constrained measures are represented with unconstrained mixtures of simple and known

extreme measures, probability measures over the points of the extreme set. The extreme

set is the set of all extreme points, where an extreme point of a convex set is a point in

the set that can not be written as a convex combinations of other points in the set. His

method is appealing because it can be used in Bayesian analysis to achieve uncertainty

estimation (Hoff, 2003a). However, his method focused on the case where the measures

are distribution functions, and did not consider censored data. It would be interesting to

develop a method using mixtures to obtain the C-NPMLE and the MC-NPMLE of survivor

functions with right censored or interval censored data. Lim et al. (2009) also proposed a

different method to obtain the C-NPMLE under partial ordering constraints using geomet-

ric programming. However, we believe that the extension of the methods in Chapter II will

provide additional insights and have the potential to improve the computational efficiency

through reducing the number of parameters to compute and the number of constraints to

89
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apply.

While the nature of my dissertation research has been quite mathematical, the area of

order restricted estimation is broadly applicable. There are many situations where there is

a strong rationale for monotonicity or order restrictions, and incorporating this information

via a pointwise C-NPMLE is an appealing approach that does not require the use of strong

parametric assumptions. It will also be interesting to find more cases and areas to apply our

methods. For example, one possible application is estimating the probability of toxicity of

each dose in a Phase I clinical trial. The toxicity at a fixed time is of interest, yet there

may exist noninformative censoring such as early drop-out. In this situation, the traditional

nonparametric method based on the binomial distribution does not apply and the pointwise

C-NPMLE is a natural solution. Another possible area is a stratified Cox model when the

stochastic ordering constraint to the baseline distribution function across different strata.

The efficiency of the relative risk estimation might be improved by appropriately applying

a pointwise C-NPMLE to obtain the baseline survivor functions for different strata.

Another possible future research area is the general area of Bayesian methodology

in order restricted inference where the order restrictions can be incorporated through the

prior distributions. Taylor et al. (2007), Marchand and Strawderman (2006), Zhang and

Woodroofe (2003) and Roe and Woodroofe (2000) have studied Bayesian methods by

applying truncated noninformative priors in the restricted parameter space. Dunson and

Peddada (2008), Karabatsos and Walker (2007), Hoff (2003a), Gelfand and Kottas (2001),

and Arjas and Gasbarra (1996) considered various Bayesian methods based on full non-

parametric likelihoods to study stochastically ordered survivor functions. One feature of

the Bayesian approach is that the posterior distributions are usually strictly ordered (i.e.

S1(t) < S2(t)), however, here may be advantage to assign prior probability mass to the

boundaries of the order-restricted parameter space (i.e. to S1(t) = S2(t)). It would be
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also of interest to develop a Bayesian method based on the pointwise likelihood to conduct

hypothesis testings and construct confidence intervals pointwisely.

Further future research also includes proof or disproof of Conjecture 3.7, and develop-

ing a method that can automatically decide which sets of means are better to be combined

when constructing the restricted confidence intervals as discussed in Chapter IV.

Another possible direction for the future research is to consider smoothing estimates as

well as order restrictions. Specifically to consider restricted estimation of smooth survival

curves under stochastic ordering constraint. Because smoothness is a common feature of

most survival distributions, smooth estimators of survivor functions is preferable. In the

past, numerous methods have been proposed to obtain smooth estimates of density or dis-

tribution functions, such as a piecewise exponential estimator (Kim and Proschan, 1991),

Kernel estimator, penalized spline estimator, and spline-based estimators (see Simonoff

(1996)). However, there has been little discussion of smooth estimation under stochastic

ordering constraint in the literature; an exception was the work of Chaubey and Kochar

(2000) who proposed a method of smooth estimation of constrained survivor functions

in the one- and two-sample cases based on Hille’s theorem analysis. Some possible ap-

proaches are (1) smoothing the discrete constrained estimators, such as the C-NPMLE

or the pointwise C-NPMLE, by using Gamma Kernel (Bouezmarni and Rombouts, 2010;

Chen, 2000, 2002), Beta Kernel (Chen, 1999) or Nonnegative Boundary Corrected Estima-

tor (Jones, 1993; Jones and Foster, 1996); (2) restricting smoothed survivor functions, and

(3) using a basis of spline functions such as monotone regression spline (Abrahamowicz

et al., 1989; Ramsay, 1988) to obtain a smooth estimator using a semi-infinite programming

method (see Weber (2003)).

In the Chapter IV, we constructed a method of obtaining confidence intervals that was

applied to normal distributions. It will be worthwhile to generalize and investigate this ap-
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proach for other distributions such binomial distribution and gamma distribution or families

of distributions such as exponential family and location parameter family.



APPENDICES

93



APPENDIX A

Proof of Theorem 2.13 in Section 2.4

To fix notation, let a0 = 0, a1, a2, · · · am be the complete ordered observed event times

of any given data in the two sample case, i0 = 0, i1, i2, · · · iL the index of active constraint

times, and k1, k2, · · · , kL be the corresponding k values from Algorithm 2.9.

The last active constraint time from Algorithm 2.9 satisfies aiL ≤ τ . Ŝ1(t)/S∗1(t) is

non-decreasing and Ŝ2(t)/S∗2(t) is non-increasing in t in any sample. At the last active

constraint aiL , S∗1(aiL) ≤ Ŝ1(aiL) = Ŝ2(aiL) ≤ S∗2(aiL).

So for any x ≤ aiL ,

S∗1(x) ≤ Ŝ1(x) ≤ S∗1(x)
Ŝ1(aiL)

S∗1(aiL)
≤ S∗1(x)

S∗2(aiL)

S∗1(aiL)

≤

[
sup
t≤aiL

S∗2(t)

S∗1(t)

]
S∗1(x) ≤

[
sup
t≤τ

S∗2(t)

S∗1(t)

]
S∗1(x)

Similarly,

S∗2(x) ≥ Ŝ2(x) ≥
[
inf
t≤τ

S∗1(t)

S∗2(t)

]
S∗2(x).
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For any x > aiL in the same sample,

S∗1(x) ≤ Ŝ1(x) = Ŝ1(aiL)× S∗1(x)

S∗1(aiL)

≤
[
sup
t≤τ

S∗2(t)

S∗1(t)

]
S∗1(aiL)× S∗1(x)

S∗1(aiL)
=

[
sup
t≤τ

S∗2(t)

S∗1(t)

]
S∗1(x).

So, regardless of where aiL is, in any sample, for any x ≤ τ , we always have

S∗1(x) ≤ Ŝ1(x) ≥
[
sup
t≤τ

S∗2(t)

S∗1(t)

]
S∗1(x) and S∗2(x) ≥ Ŝ2(x) ≥

[
inf
t≤τ

S∗1(t)

S∗2(t)

]
S∗2(x)

As n1, n2 go to∞, from (2.4), for any x ≤ τ , S∗1(x)→ S1(x) and S∗2(x)→ S2(x). So

S∗2(x)

S∗1(x)
→ S2(x)

S1(x)
⇒ sup

x≤τ

S∗2(x)

S∗1(x)
→ sup

x≤τ

S2(x)

S1(x)
= 1,

in probability if indeed S1(t) ≥ S2(t) for all t. Thus P
{

supx≤τ |Ŝ1(x)− S∗1(x)| > ε
}
→ 0

for every ε > 0. Then using Meier’s result (2.4), we obtain the desired result for Ŝ1(t).

Similarly, we can show that P
{

supx≤τ |Ŝ2(x) − S∗2(x)| > ε
}
→ 0 for every ε > 0 and

hence we obtain the desired result for Ŝ2(t).

To simplify the proof, we only show consistency of the C-NPMLE in the case of iid

data. However, it can be shown that the estimators are consistent in the more general

situation as discussed in Dykstra (1982).



APPENDIX B

Proof for the Two-sample Case from Section 2.2

Recall that mg = max{i : ngi > 0}, g = 1, 2 and m′ = min(m1,m2). In this section,

we prove that the ĥgi, g = 1, 2, i = 1, . . . ,mg in Theorem 2.8 and Algorithm 2.9 is the

C-NPMLE. We use ĥAgi and ĥTgi to distinguish the results from Algorithm 2.9 and Theorem

2.8 before we prove that they are the same. In Lemma B.2, we show that ĥAgi = ĥTgi, and in

Lemma B.3, we show that ĥ1i is the C-NPMLE and ĥ2i is the MC-NPMLE.

B.1 Characteristics of Results from Theorem 2.8 and Algorithm 2.9

Steps 2,3 and 4 in Algorithm 2.9 are used to calculate k`. Suppose the algorithm has R`

iterations with initial step 2 to 3 (0th iteration) and step 4 to 3 (1st, . . . , Rth
` iteration) before

it finds i`. Here, i(r)` and k(r)
` , r = 0, . . . , R` are results from iteration r. Let i(−1)

` = i`−1

and k(−1)
` = 0 for convenience. Note that H2(a, b, k) is a non-decreasing function in k and

strictly increasing if there is at least one observed event between a and b.

Lemma B.1. The result for any data from Algorithm 2.9 has the following properties:

(a).
∑i`

j=1(ĥA1j − ĥA2j) = 0, ` = 1, . . . , L;
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(b). k` = min{K2(i`−1 + 1, i`), n2i`} and H2(i`−1 + 1, i`, k`) ≤ 0;

(c). k(r)
` > k

(r−1)
` , r = 1, . . . , R`;

(d).
∑i

j=1 ĥ
A
1j ≥

∑i
j=1 ĥ

A
2j , i = 1, . . . ,m′;

(e). k1 ≥ k2 ≥ · · · ≥ kL > 0.

Proof. (a) It is obvious since
∑i`

j=i`−1+1 ĥ
A
2j =

∑i`
j=i`−1+1 ĥ

A
2j , ` = 1, . . . , L.

(b) From step 3 in Algorithm 2.9, k` can take two values: k` = n2i` if H2(i`−1 +

1, i`, n2i`) ≤ 0 (in this case K2(i`−1 + 1, i`) ≥ n2i` ), or k` = K2(i`−1 + 1, i`).

(c) Show by contradiction. Suppose there exists r′ such that k(r′)
` ≤ k

(r′−1)
` . It follows

that

H2(i`−1 + 1, i
(r′)
` , k

(r′)
` ) ≤ H2(i`−1 + 1, i

(r′)
` , k

(r′−1)
` )

= H2(i`−1 + 1, i
(r′−1)
` , k

(r′−1)
` ) +H2(i

(r′−1)
` + 1, i

(r′)
` , k

(r′−1)
` )

= H2(i
(r′−1)
` + 1, i

(r′)
` , k

(r′−1)
` ) < 0 ( step 2 or 4 in Algorithm 2.9 ).

(B.1)

However, from step 3 in Algorithm 2.9, k(r′)
` must either satisfy:

K2(i`−1, i
(r′)
` ). Then H2(i`−1 + 1, i

(r′)
` , k

(r′)
` ) = 0, which contradicts (B.1); or

n
2i

(r′)
`

. Then k(r′−1)
` ≥ k

(r′)
` = n

2i
(r′)
`

, which contradicts the condition n
2i

(r′)
`

> k
(r′−1)
`

that is required to reach iteration r′ in step 4 of Algorithm 2.9.

(d) Suppose there exists i′ such that
∑i′

j=1 ĥ
A
1j <

∑i′

j=1 ĥ
A
2j , equivalently

∑i′

j=i`′−1+1 ĥ
A
1j <∑i′

j=i`′−1+1 ĥ
A
2j . Then each of the three possible valid ranges of i′ leads to a contradiction.

That is either:

i′ = i`,` ≤ L. Then
∑i′

j=1 ĥ
A
1j =

∑i′

j=1 ĥ
A
2j , which contradicts Lemma B.1 (a); or

i′ > iL. Then H2(iL + 1, i′, 0) =
∑i′

j=iL+1(ĥ1j − ĥ2j) < 0, which contradicts the

condition H2(iL + 1, b, 0) ≥ 0 for all b > iL in step 2 of Algorithm 2.9; or
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i`−1 < i′ < i` for a ` ≤ L. Then for r′ = max{r : i
(r)
` < i′},

H2(i`−1 + 1, i′, k`) =
i′∑

j=i`−1+1

(ĥ1j − ĥ2j) < 0.

It follows that H2(i`−1 + 1, i′, k
(r′)
` ) < 0 since k(r′)

` < k
(R`)
` = k` from (c) and

H2(i`−1 + 1, i
(r′)
` , k

(r′)
` ) +H2(i

(r′)
` + 1, i′, k

(r′)
` ) < 0. Thus H2(i

(r′)
` + 1, i′, k

(r′)
` ) < 0,

which implies that there exists r∗ with r∗ > r′ and i(r
∗)

` ≤ i′. This is impossible

because if so, then i′ = i
(r′+1)
` and for any r′ + 1 < R`, we have

0 = H2(i`−1+1, i
(r′+1)
` , k

(r′+1)
` ) < H2(i`−1+1, i

(r′+1)
` , k`) =

i′∑
j=i`−1+1

(ĥA1j−ĥA2j) < 0.

(e) Suppose there exists ` such that k`+1 > k` > 0. Then k` < k`+1 ≤ n2i`+1
. Moreover,

H2(i` + 1, i`+1, k`) < H2(i` + 1, i`+1, k`+1) ≤ 0. It follows that the algorithm must not

have stopped at Rth
` iteration in step 4 of Algorithm 2.9, which is a contradiction.

Lemma B.2. Based on the same data, the results from Algorithm 2.9 and Theorem 2.8

satisfy:

(a). k̂i = k` if i = i`−1 + 1, . . . , i`, ` = 1, . . . , L and k̂i = 0 if i > iL;

(b). ĥTgi = ĥAgi, g = 1, 2, i = 1, . . . ,mg.

Proof. (a) If i`−1 < i ≤ i` for ` ≤ L, then for any a ≤ i, there exists `′ ≤ ` such that

i`′−1 < a ≤ i`′ . Then from Lemma B.1 (b),

H2(i`′−1, i`′ , k`′) ≤ 0 = H2(a, i`′ , K2(a, i`′)).

It follows that H2(a, i`′ , k`′) ≤ H2(a, i`′ , K2(a, i`′)), since H2(i`′−1, a − 1, k`′) ≥ 0 from

Lemma B.1 (d) and so K2(a, i`′) ≥ k`′ ≥ · · · ≥ k` from Lemma B.1 (e). Thus

H2(a, i`, K2(a, i`)) = 0 = H2(a, i`′ , K2(a, i`′)) +
∑̀
j=`′+1

H2(ij−1, ij, kj)
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≥ H2(a, i`′ , k`) +
∑̀
j=`′+1

H2(ij−1, ij, k`) = H2(a, i`, k`).

It follows K2(a, i`) ≥ k` > 0 and min(K+
2 (a, i`), n2i`) ≥ k` since k` ≤ n2i` from Lemma

B.1 (b). Therefore,

k̂i = min
a≤i

max
b≥i

min{K+
2 (a, b), n2b} ≥ min

a≤i
min{K+

2 (a, i`), n2i`} ≥ k`.

However, obtaining k̂i is a minimization problem and its lower bound can be reached when

a = i`−1 + 1 and b = i`. Thus k̂i = k`.

If i > iL, then K2(iL + 1, b) ≤ 0 for all b > iL because H2(iL + 1, b, 0) ≥ 0 from

step 2 of Algorithm 2.9. So K+
2 (iL + 1, b) = 0 for all b > iL. Hence, 0 ≤ k̂i ≤

maxb≥i min{K+
2 (iL + 1, b), n2b} = 0, i.e. k̂i = 0.

(b) For population 1, ĥT1i = log[1 − d1i/(n1i + k̂i)], ĥA1i = log[1 − d1i/(n1i + k`)] and

k̂i = k` if i`−1 < i ≤ i`, i = 1, . . . , L, so ĥT1i = ĥA1i for all i ≤ iL. If i > iL, then

ĥT1i = log[1− d1i/n1i] = ĥA1i, iL < i ≤ m1.

For population 2, we use induction.

Let ĥA20 = ĥT20 = 0, then the result holds for j = 0;

Assume for all i ≤ j, ĥA2i = ĥT2i;

For the next index j + 1, there are possible cases (i), (ii), (iii):

(i). d2(j+1) > 0. Then

ĥT2(j+1) = log[1− d2(j+1)/(n2(j+1) − k̂i)]

= log[1− d2(j+1)/(n2(j+1) − k`)] = ĥA2(j+1), if i`−1 < j + 1 ≤ i`, i ≤ L

ĥT2(j+1) = log[1− d2(j+1)/n2(j+1)] = ĥA2(j+1), if iL < j + 1 ≤ m2.

(ii). d2(j+1) = 0 and j + 1 6= i`, ` = 1, · · · , L. Then ĥA(j+1) = 0. So
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∑(j+1)
i=1 ĥA1i −

∑j
i=1 ĥ

A
2i =

∑j+1
i=1 (ĥA1i − ĥA2i) ≥ 0. It follows that

ĥT(j+1) = min{
j+1∑
i=1

ĥT1i −
j∑
i=1

ĥT2i, 0} = min{
j+1∑
i=1

ĥA1i −
j∑
i=1

ĥA2i, 0} = 0 = ĥA(j+1);

(iii). d2(j+1) = 0 and j + 1 = i`. Then
∑j+1

i=1 (ĥA1i − ĥA2i) = 0. So

ĥT(j+1) = min{
j+1∑
i=1

ĥT1i −
j∑
i=1

ĥT2i, 0} = min{
j+1∑
i=1

ĥA1i −
j∑
i=1

ĥA2i, 0} = ĥA2(j+1).

B.2 Optimization Problem for the Two-sample Case

Consider a general nonlinear optimization problem with inequality constraint

minimize f(θ)

subject to gj(θ) ≤ 0, j = 1, 2, . . . ,m,

for θ ∈ Rn. Define the Lagrangian as

Lagr(θ,λ) = f(θ) +
m∑
j=1

λjgj(θ).

For continuously differentiable functions f and gj , Karush (1939) and Kuhn and Tucker

(1951) independently derived the necessary conditions at the solution θ∗. Assume the ex-

istence of Lagrange multipliers λ∗ ∈ Rm, then at the solution θ∗, the following conditions

must be satisfied:

∂f

∂θi
(θ∗) +

m∑
j=1

λj
∂gj(θ

∗)

∂θi
= 0, i = 1, . . . , n

gi(θ
∗) ≤ 0, i = 1, . . . ,m

λ∗i gi(θ
∗) = 0, i = 1, . . . ,m

λ∗i ≥ 0, i = 1, . . . ,m.
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These conditions, known as KKT conditions, also constitute sufficient conditions if f(θ)

and gi(θ) are also convex functions. For more details, see Snyman (2005).

In the two-sample problem, we maximize the log likelihood (2.2) subject to a stochastic

ordering constraint. As seen in Theorem 2.8 and Algorithm 2.9, we estimate ĥgi for i ≤ mg,

g = 1, 2, since for i > mg, there is no data available in population g. Further, if we set

ĥ1i = 0 for all i > m1 and ĥ2i = −∞ for all i > m2, the stochastic ordering constraint

is automatically satisfied given
∑m′

j=1(ĥ1j − ĥ2j) ≥ 0 for all i > m′. So the log likelihood

(2.2) can be maximized separately for i ≤ m′ and i > m′. Like the KM estimator, the log

likelihood is maximized by ĥgi = log(1 − dgi/ngi), m′ + 1 ≤ i ≤ mg. So in Lemma B.3,

we only consider maximizing
∑2

g=1

∑m′

i=1

{
dgilog

(
1− ehgi

)
+ (ngi − dgi)hgi

}
under the

stochastic ordering constraint.

Lemma B.3. The result {ĥgi, g = 1, 2, i = 1, . . . ,mg} from Theorem 2.8 and Algorithm 2.9

is the solution of maximizing the log likelihood (2.2) under stochastic ordering constraint∑i
j=1(h2j − h1j) ≤ 0, i = 1, . . . ,m′, and h1i, h2i ≤ 0, i = 1, . . . ,mg.

Proof. The optimization problem here is:

minimize −
2∑
g=1

m′∑
i=1

{
dgilog

(
1− ehgi

)
+ (ngi − dgi)hgi

}
(B.2)

subject to



gi(h1,h2) =
∑i

j=1 (h2j − h1j) ≤ 0

gm′+i(h1,h2) = h2i ≤ 0

g2m′+i(h1,h2) = h1i ≤ 0

and the corresponding Lagrangian is

Lagr(h1,h2,λ) = −
2∑
g=1

m′∑
i=1

{
dgilog

(
1− ehgi

)
+ (ngi − dgi)hgi

}
+

3m′∑
j=1

λjgj(h1,h2).
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Thus the KKT conditions are:

d1ie
ĥ1i

1− eĥ1i
− (n1i − d1i)−

m′∑
j=i

λ̂j + λ̂i+2m′ = 0 (B.3a)

d2ie
ĥ2i

1− eĥ2i
− (n2i − d2i) +

m′∑
j=i

λ̂j + λ̂i+m′ = 0 (B.3b)

i∑
j=1

(ĥ2j − ĥ1j) ≤ 0 (B.3c)

λ̂i

i∑
j=1

(ĥ2j − ĥ1j) = 0 (B.3d)

λ̂i, λi+m′ , λi+2m′ ≥ 0 (B.3e)

ĥ1i ≤ 0, h2i ≤ 0 (B.3f)

λ̂i+mĥ2i = 0 (B.3g)

λ̂i+2mĥ1i = 0 (B.3h)

We define λ̂i, λ̂i+m′ and λ̂i+2m′ , i = 1, · · · ,m′ as follows :

λ̂i =



kL if i = iL

k` − k`+1 if i = i`, ` = 1, . . . , L− 1

0 otherwise

(B.4)

λ̂i+m′ =



0 if d2i > 0,

n2i − k` if d2i = 0 and i`−1 < i ≤ i`, ` = 1, . . . , L

n2i if d2i = 0 and i > iL

(B.5)

λ̂i+2m′ =


0 if d1i > 0

n1i +
∑m′

j=i λ̂j if d1i = 0

(B.6)

Conditions (B.3c) and (B.3f) are satisfied by Algorithm 2.9. Condition (B.3e) is also
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satisfied since k1 ≥ · · · ≥ kL > 0 (Lemma B.1 (e)) and k` ≤ n2i` ≤ n2i (Lemma B.1 (b))

if i`−1 < i ≤ i`. Algorithm 2.9 always gives ĥ1i = 0 if d1i = 0 and λ̂i+2m′ = 0 if d1i > 0

from (B.6), so condition (B.3h) is satisfied. If d2i = 0, ĥ2i < 0 only when i = i` for some `

and k` = n2i` . So in this case, λ̂i+m′ = 0 from (B.5), which can lead to (B.3g). From (B.4),

λ̂i 6= 0 when i = i`. However,
∑i`

j=1(ĥ2j − ĥ1j) = 0, so condition (B.3d) is also satisfied.

From (B.4), we also know that
∑m′

j=i λ̂j = k` and
∑m′

j=i λ̂j = 0 if i ≥ iL. If d1i = 0, then

the condition (B.3a) is −n1i −
∑m′

j=i λ̂j + λ̂i+2m′ = 0, which is satisfied with definition of

λ̂i+2m′ in (B.6). If d1i > 0, then λ̂i+2m′ = 0 from (B.6), so the condition (B.3a) is also

satisfied. Similarly, the condition (B.3b) is satisfied.

All KKT conditions are satisfied at the solution from Algorithm 2.9, and (B.2) reaches

the global minimum since the optimization function and all constraints are convex.

B.3 Uniqueness of the Solution

Lemma B.4. From Theorem 2.8 and Algorithm 2.9, {ĥ1i, i = 1, . . . ,m1} is the unique

C-NPMLE of h1i and {ĥ2i, i = 1, . . . ,m2} is the unique MC-NPMLE of h2i under the

stochastic ordering constraint.

Proof. In this proof, we first remove some unnecessary stochastic ordering constraints;

then we show that k̂i =
∑m′

j=i λ̂j are unique; last we discuss the uniqueness of the C-

NPMLE of h1i and the MC-NPMLE of h2i.

For any C-NPMLE, ĥ1i = 0 if d1i = 0, because λ̂i+m′ = n1i +
∑m′

j=i λ̂j > 0 if

i ≤ m1. So
∑i

j=1(ĥ2j − ĥ1j) ≤ 0 for d1i = 0 will be automatically satisfied given∑i
j=1(ĥ2j − ĥ1j) ≤ 0 for d1i > 0 and ĥ1i, ĥ2i ≤ 0.

Thus for d1i = 0, the condition (B.3d) is not necessary, or we can simply set λ̂i = 0.

Based on this setting of λ̂i, we show that k̂i =
∑m′

j=i λ̂j is unique.
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Suppose k̂i is not unique, then we can find two sets of {k̂i} and {k̃i} from {λ̂i} and

{λ̃i} that satisfy the KKT conditions with corresponding solutions {ĥgi} and {h̃gi}. Let

i∗ = min(i : k̂i 6= k̃i). Without loss of generality, assume k̂i∗ > k̃i
∗ ≥ 0. Then

i∗−1∑
j=1

(h̃2j − h̃1j) = 0. (B.7)

Because λ̃i∗−1 = k̃(i∗−1) − k̃i∗ = k̂(i∗−1) − k̃i∗ > k̂(i∗−1) − k̂i∗ = λ̃i∗−1 ≥ 0.

Let î = min{i ≥ i∗ :
∑i

j=1(ĥ2 − ĥ1) = 0, d1i > 0}. Then λ̂j = 0 for j = i∗, . . . , î

from condition (B.3d). So

k̂i
∗

= · · · = k̂î > k̃i
∗ ≥ · · · ≥ k̃î (B.8)

and λ̃i+m′ = n2i − k̃i > n2̂i − k̂î ≥ 0 from condition (B.3b) if d2i = 0, i = i∗, . . . , î. So

h̃2i = 0 if d2i = 0, i = i∗, . . . , î (B.9)

from condition (B.3g). Therefore,

î∑
j=1

(h̃2j − h̃1j) =
i∗−1∑
j=1

(h̃2j − h̃1j) +
î∑

j=i∗

(h̃2j − h̃1j) =
î∑

j=i∗

(h̃2j − h̃1j) (from (B.7))

=
î∑

j=i∗

{log(1− d2j/(n2j − k̃j)− log(1− d1j/(n1j + k̃j)} (from (B.9))

>
î∑

j=i∗

{log(1− d2j/(n2j − k̂j)− log(1− d1j/(n1j + k̂j)} (from (B.8))

≥
î∑

j=i∗

(ĥ2j − ĥ1j) ≥
i∗−1∑
j=1

(ĥ2j − ĥ1j) +
î∑

j=i∗

(ĥ2j − ĥ1j) = 0.

which contradicts condition (B.3c). Thus k̂i is unique and ĥ1i is unique, because ĥ1i =

log{1− d1i/(n1i + k̂i)} if d1i > 0 and ĥ1i = 0 if d1i = 0.

Also ĥ2i = log{1 − d2i/(n2i − k̂i)} if d2i > 0, and ĥ2i = 0 if d2i = 0 and k̂i < n2i

(because λ̂i+m′ = n2i − k̂i > 0). Therefore, all C-NPMLEs may only differ from each

other in population 2 when d2i = 0 and k̂i = n2i.
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If we sequentially set ĥ2i = min(
∑i

j=1 ĥ1j−
∑i−1

j=1 ĥ2j, 0) if d2i = 0 as in Theorem 2.8,

then
∑i

j=1 ĥ2j is maximized. Because if
∑i−1

j=1 ĥ2j is maximized, the maximum possible

value of
∑i

j=1 ĥ2j is min(
∑i−1

j=1 ĥ2j,
∑i

j=1 ĥ1j), which can be obtained by setting ĥ2i =

min(
∑i

j=1 ĥ1j −
∑i−1

j=1 ĥ2j, 0) if d2i = 0. Since ĥ2i sequentially takes a unique value, the

MC-NPMLE is also unique.

Proofs of the results in section 2.2 for the one-sample case are much simpler and are

not presented here.



APPENDIX C

The Pool-adjacent-violators Algorithm for the Linear
Ordering Case

We present an algorithm for the case T1 ≥st T2 · · · ≥st TG. Let J be a partition of

{1, 2, · · · , G}, so that J = {B1, B2, · · · }. Each member of J is called a block, denoted

generally by B. An optimal solution from Algorithm C.1 only contains blocks with con-

secutive integers. Let B = {a, a + 1, · · · , b}, 1 ≤ a ≤ b ≤ G, then B− is the block that

contains a − 1 or ∅ if a = 1 and B+ is the block that contains b + 1 or ∅ if b = G. For

a given block B, SB(x) = exp(q̂B), where q̂B is the solution to
∑

g∈B(q;x) = 0 or 0 if

Mg(x) = 0 for all g ∈ B.

Algorithm C.1 yields the partition Ĵ = {B̂1, . . . , B̂r} and if i ∈ B̂j , then Si(x) =

SB̂j(x) is the pointwise C-NPMLE at x. Let L = min{g : Mg(x) > 0} or G + 1 if none

exists and U = max{g : Ng(x) > 0 and S∗g (x) > 0} or 0 if none exists. Then it is easily

seen that Ŝg(x) = 1 or Ng(x) = 0 for all g < L and Ŝg(x) = 0 or Ng(x) = 0 for all g > U .
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Algorithm C.1: Pool adjacent violators algorithm to calculate the pointwise nonpara-
metric maximum likelihood estimator under the simple ordering constraint at time x.

Initialization: J = {{1}, {2}, . . . , {G}};
B = {1}, B+ = {2} and B− = ∅;

while B+ 6= ∅ do
if SB(x) ≤ SB+(x) then

J ← J/{B,B+} ∪ {B ∪B+} (replace B,B+ in J with their union) ;
B ← B ∪B+ (replace B with B+ ∪B) ;
Set new B+ ;
while B− 6= ∅ and SB(x) ≥ SB−(x) do

J ← J/{B,B−} ∪ {B ∪B−};
B ← B ∪B− ;
Set new B−;

end
else

B− = B, B = B+;
Set new B+;

end
end



APPENDIX D

Proof of Theorem 3.2

Let λ1 and λ2 be Lagrange multipliers. The corresponding Lagrangian function is

lagrL(h,λ) =
m∑
i=1

[
di log

{
1− exph(Xi)

}
+(ni − di)h(Xi)

]
+N(x)hδ(x)

+ λ1

{M(x)∑
j=1

h(Xj) + hδ(x)− q
}
−λ2h

δ(x).

(D.1)

The Karush-Kuhn-Tucker conditions that must be satisfied at the solution ĥ are:

− di exp ĥ(Xi)

1− exp ĥ(Xi)
+ (ni − di) + λ̂1 = 0, i ≤M(x) (D.2a)

− di exp ĥ(Xi)

1− exp ĥ(Xi)
+ (ni − di) = 0, i > M(x) (D.2b)

N(x) + λ̂1 − λ̂2 = 0, (D.2c)

M(x)∑
j=1

ĥ(Xj) + ĥδ(x)− q = 0, (D.2d)

ĥδ(x) ≤ 0, (D.2e)

λ̂2ĥ
δ(x) = 0, (D.2f)

λ̂2 ≥ 0. (D.2g)
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From (D.2a), we have ĥ1(Xi) = log{1 − di/(ni + λ̂1)}, i ≤ M1(x). Note that either

λ̂2 = 0 or ĥδ(x) = 0 from (D.2f), so

(1). if λ̂2 = 0, then λ̂1 = −N(x) from (D.2c), which is only valid when ĥδ(x) = q −∑M(x)
j=1 log[1− di/{ni −N(x)}] ≤ 0;

(2). if ĥδ(x) = 0, then λ̂1 is the solution of the equation q−
∑M(x)

j=1 log{1−di/(ni+λ)} = 0

from (D.2d), which is only valid when λ̂1 ≥ −N(x) from (D.2c).

Since
∑M(x)

j=1 log{1 − di/(ni + k)} is an increasing function in k, we can find that

λ̂1 = max{k̂,−N(x)}, where k̂ is the solution of the equation f(k) =
∑M(x)

j=1 log{1 −

di/(ni + k)}− q = 0. It follows that λ̂1 is exactly the same as K(q;x) defined in Theorem

3.2. Therefore, the unique solution from solving (D.2) is the same as in equation (3.4).



APPENDIX E

Proof of Theorem 3.4: Ŝg(t) is Nonincreasing in t

E.1 Notation and Characteristics of the Pointwise C-NPMLE

Let Jξ(x) be a partition of ξ ⊂ {1, . . . , G} at time x. For example, if ξ = {1, 2, 5},

Jξ(x) might be {{1}, {2}, {5}} or {{1, 2}, {5}}. Each element B of Jξ(x) is called a

block. Let Eξ = {(i, j) : i, j ∈ ξ and (i, j) ∈ E}. The pointwise C-NPMLE in ξ subject

to constraints Eξ can be represented as the partition Ĵξ(x) where every group in each block

B ∈ Ĵξ(x) has the same estimated survivor function Ŝξ(B;x) and for B1, B2 ∈ Ĵξ(x),

Ŝξ(B1;x) 6= Ŝξ(B2;x) if B1 6= B2. In Lemma E.1, we give a characterization of the

pointwise C-NPMLE. Note that the pointwise C-NPMLE may not be unique after the last

observed time for each group. To circumvent this, we set the estimates as low as possible

subject to not violating constraints.

Lemma E.1. A partition Jξ(x) with corresponding estimate Sξ(B;x) is the pointwise C-

NPMLE subject to the constraints Eξ at time x if and only if
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1. Constraints are not violated. That is, for any i ∈ B1 ⊂ Jξ(x) and j ∈ B2 ⊂ Jξ(x),

(j, i) /∈ Eξ when Sξ(B1;x) > Sξ(B2;x); and

2. For any B ∈ Jξ(x), the estimate SB(B;x) = Sξ(B;x) where JB(x) = {B} is the

pointwise C-NPMLE subject to the constraints EB.

Proof. Sufficiency. Since the joint log profile likelihood plξ(q;x) for populations in ξ as

shown in section 2.6 is a separable concave function, if the condition 2 in Lemma E.1 is

satisfied, the estimate will be the pointwise C-NPMLE subject to constraints ∪B∈Jξ(x)EB.

It follows that if condition 1 in Lemma E.1 is also satisfied, the estimate must be the point-

wise C-NPMLE subject to constraints Eξ because ∪B∈Jξ(x)EB ⊂ Eξ and adding more

constraints can not increase the likelihood.

Necessity. Obviously condition 1 holds in Lemma E.1 if Sξ(B;x) is the pointwise

C-NPMLE. If we write down the KKT conditions needed for maximizing the log profile

likelihood subject to the constraints Eξ, the Lagrangian multipliers related to the constraint

(i, j) ∈ Eξ for any i and j in different block of Jξ(x) will be zero in the solution because

these constraints are inactive in the solution. Thus if we delete these zero valued Lagrangian

multipliers, the remaining KKT conditions of the populations in any B ∈ Jξ(x) are exactly

the same as the pointwise C-NPMLE subject to the constraintsEB. Since the constraints are

linear and the joint log profile likelihood is concave, the KKT conditions are also sufficient

in our problem. Thus the condition 2 in Lemma E.1 must also hold.

Lemma E.1 is useful in later proofs because it enables us to consider blocks separately.

If B̂ is a block from the pointwise C-NPMLE subject to constraintEξ for any subpopulation

ξ at time x, Ŝξ(B̂;x) = ŜB̂(B̂;x) will remain the same for any subpopulation ξ for the

same block B̂. So we use Ŝ(B̂;x) as the estimate of the pointwise C-NPMLE at time x if

B̂ ∈ Ĵξ(x).
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We give two more lemmas to characterize the pointwise C-NPMLE and Kg(q;x).

Lemma E.2. (a) For any x2 > x1 > 0 and q ≤ 0, Kg(q, x2) ≥ Kg(q, x1);

(b) For any q2 < q1 ≤ 0 and x > 0, Kg(q1, x) ≥ Kg(q2, x), and the equality holds only

when Kg(q1;x) = Kg(q2;x) = −Ng(x).

Proof. (a) We consider separately the cases i) there is no observed event before or at x1

and ii) there is at least one observed event before or at x1.

i) In this case, Kg(q, x1) = −Ng(x1) ≤ −Ng(x2) ≤ Kg(q, x2).

ii) Let k̂j be the solution of the equation

∑
i:Xgi≤xj

log

(
1− dgi

ngi + k

)
= q,

then

∑
i:Xgi≤x2

log
(

1− dgi

ngi + k̂2

)
= q =

∑
i:Xgi≤x1

log
(

1− dgi

ngi + k̂1

)
≥

∑
i:Xgi≤x2

log
(

1− dgi

ngi + k̂1

)
.

It follows that k̂1 ≤ k̂2 and hence

Kg(q, x2) = max{k̂2,−Ng(x2)} ≥ max{k̂1,−Ng(x1)} = Kg(q, x1).

(b) Suppose there is at least one observed event before or at x, and let k̂j be the solution

of the equation

∑
i:Xgi≤x

log

(
1− dgi

ngi + k

)
= qj,

then k̂2 < k̂1. Since Kg(qj;x) = max{k̂j,−Ng(x)}, it can be seen that Kg(q1, x) >

Kg(q2, x) except when both k̂1 and k̂2 are less than or equal to −Ng(x), in which case

Kg(q1;x) = Kg(q2;x) = −Ng(x).

If there is no observed event before or at x, then Kg(q1;x) = Kg(q2;x) = −Ng(x) by

definition.
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Lemma E.3. For any B̂ ∈ Ĵξ(x),

(a)
∑

g∈B̂Kg{log Ŝ(B̂;x);x} ≤ 0, and the strict inequality holds only when Ŝ(B̂;x) = 1;

(b) for any Ŝ(B̂;x) < 1 and B1 ⊂ B̂, the following two conditions will not hold simulta-

neously:

i) For all i ∈ B1 and j ∈ B̂/B1, (j, i) /∈ Eξ;

ii)
∑

g∈B1
Kg{log Ŝ(B̂;x);x} < 0.

Proof. (a) Profile likelihood
∑

g∈B̂ plhg(q;x) is a concave function of q and so the Ŝ(B̂;x)

must satisfy
∑

g∈B̂Kg(log Ŝ(B̂;x);x) = −
∑

g∈B̂
d
dq
plhg(Ŝ(B̂;x);x) = 0. The only one

exception is when there is no observed event time before or at x for all g ∈ B̂, in this case∑
g∈B̂Kg(log Ŝ(B̂;x);x) = −

∑
g∈B̂ Ng(x) < 0 and Ŝ(B̂;x) = 1.

(b) Note that d
dq

∑
g∈B1

plhg(log Ŝξ(B;x);x) = −
∑

g∈B1
Kg(log Ŝ(B̂;x);x) > 0 and

suppose that we can find such a block B1 that satisfies both i) and ii). Then we can increase

estimate Sξ(B1;x) to increase the log profile likelihood without violating the constraints.

This contradicts Ĵξ(x) is the partition of the pointwise C-NPMLE at time x.

E.2 An Algorithm to Obtain the Pointwise C-NPMLE at a Time x2 >
x1

For any x2 > x1, it can be seen that Ŝg(x1) = Ŝg(x2), for all g = 1, . . . , G if there is no

observation between x1 and x2, nor a censoring at x1, nor an event at x2. Now we consider

the situation when only one group g∗ has observations between x1 and x2. In this case,

Algorithm E.1 defines a method to obtain Ĵξ(x2) and Ŝξ(B̂;x2), where ξ = {1, . . . , G}.

The idea is to find the pointwise C-NPMLE at x2 using the estimate at x1 as the starting

point.
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Algorithm E.1: An algorithm to obtain the pointwise C-NPMLE at time x2 using
the pointwise C-NPMLE at time x1 as the starting value, where x2 > x1 and only
population g∗ has observations between x1 and x2. Below ξ = {1, . . . , G}.

1 Jξ(x2) = Ĵξ(x1) = {B̂1, . . . , B̂R}, where Ŝ(B̂1;x1) > · · · > Ŝ(B̂R;x1);
2 Find r such that g∗ ∈ B̂r and let Ar = B̂r;
3 while r ≤ R do
4 Find ĴAr(x2) = {B̂r.1, . . . , B̂r.Lr}, where Ŝ(B̂r.1;x2) > · · · > Ŝ(B̂r.Lr ;x2)

(This is the partition of the pointwise C-NPMLE at time x2 subject to constraint
EAr for groups in Ar ) ;

5 if r = R or Ŝ(B̂r.Lr ;x2) > Ŝ(B̂r+1;x1) then
6 Jξ(x2) = Jξ(x2)/{Ar} ∪ ĴAr(x2) ( replace {Ar} with ĴAr(x2) );
7 stop ;
8 else
9 `r = max{`∗ : Ŝ(B̂r.`∗ ;x2) > Ŝ(B̂r+1;x1)} ;

10 Ar+1 = B̂r+1 ∪ B̂r.(`r+1) ∪ · · · ∪ B̂r.Lr ;
11 Jξ(x2) = Jξ(x2)/{Ar, B̂r+1} ∪ {B̂r.1, . . . , B̂r.`r} ∪ {Ar+1} ;
12 r = r + 1 ;
13 end
14 end

To illustrate the algorithm, we first show an example in Figure E.1. In this, Ĵξ(x1) has

five blocks, B̂1, · · · , B̂5 and g∗ ∈ B̂2. At first, r = 2 and A2 = B̂2. Then we find ĴA2(x2),

the partition of the pointwise C-NPMLE subject to constraints EA2 at time x2 and assume

that it has four blocks B̂2.1, · · · , B̂2.4 where Ŝ(B̂2.1;x2) > Ŝ(B̂2.2;x2) > Ŝ(B̂3, x1) ≥

Ŝ(B̂2.3;x2) > Ŝ(B̂2.4;x2). The blocks B̂2.1 and B̂2.2 remain separate in the solution and

blocks B̂3, B̂2.3 and B̂2.4 are combined into A3. Then we again find ĴA3(x2) and assume

that it has two blocks B̂3.1 and B̂3.2 where Ŝ(B̂3.1;x2) > Ŝ(B̂3.2;x2) > Ŝ(B̂4;x1). Blocks

B̂3.1 and B̂3.2 remain separate in the solution and the algorithm ends. The final partition

Jξ(x2) contains blocks B̂1, B̂2.1, B̂2.2, B̂3.1, B̂3.2, B̂4 and B̂5.

Lemma E.4. Algorithm E.1 gives the pointwise C-NPMLE at x2 and the estimate for each

group is nonincreasing over time.
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Figure E.1: An example of Algorithm E.1 in Appendix E.2.

Proof. Let Jξ(x2) = {B̂1, . . . , B̂u−1, B̂u.1, . . . , B̂w.`w , B̂w+1, . . . , B̂R} be the result from

Algorithm E.1. Then, Ŝ(B̂r;x2) = Ŝ(B̂r;x1), r = 1, . . . , u − 1, w + 1, . . . , R because

there is no observation for the groups in B̂r between x1 and x2. Thus, for all B ∈ Jξ(x2),

the pointwise C-NPMLE of groups in B has the common estimate of survivor functions

ŜB(B;x2), which implies that condition 2 in Lemma E.1 must be satisfied.

Next, we prove Ŝ(B̂r;x1) ≥ Ŝ(B̂r.1;x2) for all r = u, · · · , w.

Suppose Ŝ(B̂r;x1) < Ŝ(B̂r.1;x2), then this will gives a contradiction. There are two

cases to consider:

Case 1: First step in Algorithm E.1. In this case, g∗ ∈ B̂r andAr = B̂r (line 2 in Algorithm

E.1). Then

∑
g∈B̂r.1

Kg(log Ŝ(B̂r;x1);x1) ≤
∑
g∈B̂r.1

Kg(log Ŝ(B̂r;x1);x2) (Lemma E.2(a) )

≤
∑
g∈B̂r.1

Kg(log Ŝ(B̂r.1;x2);x2) (Lemma E.2(b) ) (E.1)
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≤ 0 (Lemma E.3(a) ).

From Lemma E.2(b), equality holds in equation (E.1) only when Kg(log Ŝ(B̂r.1;x2);x2) =

−Ng(x2) for all g ∈ B̂r.1. By our convention to set the estimate of a survivor function as

low as possible when the number at risk is zero, Ŝ(B̂r.1;x2) = 0 if Ng(x2) = 0 for all g ∈

B̂r.1. Since Ŝ(B̂r.1;x2) > Ŝ(B̂r;x1) ≥ 0 by our assumption, we have
∑

g∈B̂r.1 Ng(x) > 0.

Hence we find that
∑

g∈B̂r.1 Kg(log Ŝ(B̂r.1;x1);x1) < 0, which implies that B̂r.1 ⊂ B̂r and

both conditions in Lemma E.3(b) are satisfied. This contradicts that B̂r ∈ Ĵξ(x1).

Case 2: Subsequent steps in Algorithm E.1. In this case, Ar = B̂r ∪ B̂(r−1).(`r−1+1) ∪

· · · ∪ B̂(r−1).L(r−1)
(line 10 in Algorithm E.1 from previous step) and block B̂r.1 can be

divided into blocks B∗`r−1
, . . . , B∗Lr−1

such that B∗`r−1
⊂ B̂r and B∗` ⊂ B̂(r−1).`, ` = `r−1 +

1, . . . , Lr−1. Since

Lr−1∑
`=`r−1

∑
g∈B∗`

Kg(log Ŝ(B̂r.1;x2);x2) =
∑
g∈B̂r.1

Kg(log Ŝ(B̂r.1;x2);x2) ≤ 0,

we find that either

a) there is at least one `′ that satisfies
∑

g∈B∗
`′
Kg(log Ŝ(B̂r.1;x2);x2) < 0; or

b)
∑

g∈B∗`
Kg(log Ŝ(B̂r.1;x2);x2) = 0 for all ` = `r−1, . . . , Lr−1.

In case b), we pick `′ such that
∑

g∈B∗
`′
Ng(x2) > 0. Note that Ŝ(B̂r.1;x2) > Ŝ(B̂r;x1) ≥

Ŝ(B̂(r−1).`;x2), for all ` = `r−1 + 1, . . . , Lr−1. If `′ = `r−1, then we have∑
g∈B∗

`′

Kg(log Ŝ(B̂r;x1);x1) ≤
∑
g∈B∗

`′

Kg(log Ŝ(B̂r;x1);x2)

≤
∑
g∈B∗

`′

Kg(log Ŝ(B̂r.1;x2);x2) = 0,

(E.2)

or if `′ > `r−1, then we have

∑
g∈B∗

`′

Kg(log Ŝ(B̂r−1.`′ ;x2);x2) ≤
∑
g∈B∗

`′

Kg(log Ŝ(B̂r.1;x2);x2) = 0. (E.3)
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Neither the equality in equation (E.2) nor the equality in equation (E.3) can hold since oth-

erwise∑
g∈B∗

`′
Kg(log Ŝ(B̂r.1;x2);x2) =

∑
g∈B∗

`′
Ng(x2) < 0. Hence we find that∑

g∈B∗
`′
Kg(log Ŝ(B̂r;x1);x1) < 0 in equation (E.2) or

∑
g∈B∗

`′
Kg(log Ŝ(B̂r−1.`′ ;x2);x2) <

0 in equation (E.3), which contradicts B̂r ∈ Ĵξ(x1) or B̂r.`′ ∈ ĴAr(x2).

Thus, we established that Ŝ(B̂1;x2) ≥ · · · ≥ Ŝ(B̂u−1;x2) ≥ Ŝ(B̂u;x1) ≥ Ŝ(B̂u.1;x2) ≥

· · · ≥ Ŝ(B̂u.Lu ;x2) ≥ Ŝ(B̂u+1;x1) ≥ Ŝ(B̂(u+1).1;x2) ≥ · · · ≥ Ŝ(B̂w.Lw ;x2) ≥ Ŝ(B̂w+1;x2)

≥ · · · ≥ Ŝ(B̂R;x2). It is easy to see that the constraints are not violated in the so-

lution Jξ(x2) because Ŝ(B̂u−1;x2) ≥ Ŝ(B̂u.1;x2), Ŝ(B̂r.Lr ;x2) ≥ Ŝ(B̂(r+1).1;x2), r =

u, . . . , w − 1, and Ŝ(B̂w.Lw ;x2) ≥ S(B̂w+1;x2). Therefore, the result from Algorithm E.1

is the pointwise C-NPMLE at time x2. Furthermore, for any g ∈ B̂r, r = 1, . . . , u− 1, w+

1, . . . , R, Ŝg(x2) = Ŝg(x1) since B̂r ∈ Jξ(x2) and Ŝ(Br;x1) = Ŝ(Br;x2), and for any

g ∈ B̂r, r = u, . . . , w, Ŝg(x2) ≤ Ŝg(x1), since g ∈ B̂r′.` for an r′ such that r′ ≥ r and

Ŝ(B̂r;x1) ≥ Ŝ(B̂r′.`;x2).

E.3 Completion of the Proof

To complete the proof of Theorem 3.4 when two or more groups have observations

between x1 and x2, we can produce the pointwise C-NPMLE by sequentially including

observations from a group at a time. Since each time when we add more observations from

a group, the pointwise C-NPMLE will not increase compared to that before adding these

observations, the pointwise C-NPMLE will not increase over time.
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Proof of Theorem 3.5

To establish this, we first prove

Lemma F.1. max1≤g≤G |S∗g (t)− Sg(t)| ≥ max1≤g≤G |Ŝg(t)− Sg(t)|.

of Lemma. At a fixed time t, we first prove for any k,

Ŝk(t)− Sk(t) ≤ max
1≤g≤G

{S∗g (t)− Sg(t)}.

If Ŝk(t) ≤ S∗k(t), then Ŝk(t)− Sk(t) ≤ S∗k(t)− Sk(t) ≤ max1≤g≤G{S∗g (t)− Sg(t)}.

If Ŝk(t) > S∗k(t), then there must be at least one r in the same “pooled” group such that

Sr(t) ≤ Sk(t) and S∗r (t) ≥ Ŝr(t) = Ŝk(t). Otherwise, if we divide this “pooled” group B

into two blocks B1 = {g : g ∈ B, Sg(t) ≤ Sk(t)} and B − B1, then the likelihood will

increase if we lower the common estimate of groups in block B1 at time t since all esti-

mates of survivor functions for the groups in B1 change towards the unrestricted maximum

likelihood estimators, and the constraint will not be violated, which contradicts that Ŝg(t)

is the pointwise constrained nonparametric maximum likelihood estimator. It follows that

Ŝk(t)− Sk(t) ≤ Ŝr(t)− Sr(t) ≤ S∗r (t)− Sr(t) ≤ max1≤g≤G{S∗g (t)− Sg(t)}.
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A similar argument shows that

Ŝk(t)− Sk(t) ≥ min
1≤g≤G

{S∗g (t)− Sg(t)}.

Thus,

− max
1≤g≤G

|S∗g (t)− Sg(t)| ≤ min
1≤g≤G

{S∗g (t)− Sg(t)} ≤ Ŝk(t)− Sk(t)

≤ max
1≤g≤G

{S∗g (t)− Sg(t)} ≤ max
1≤g≤G

|S∗g (t)− Sg(t)|.

So

|Ŝk(t)− Sk(t)| ≤ max
1≤g≤G

|S∗g (t)− Sg(t)|.

This establishes Lemma F.1.

For the case when t ≤ τ = min{τ1, . . . , τG} and ng →∞, g = 1, . . . , G,

lim
ng→∞

pr{sup
t<τ
|Ŝg(t)− Sg(t)| > ε} ≤ lim

ng→∞
pr{sup

t<τ
max

1≤k≤G
|S∗k(t)− Sk(t)| > ε}

≤
G∑
k=1

lim
nk→∞

pr{sup
t<τ
|S∗k(t)− Sk(t)| > ε} = 0.

(F.1)

Next we consider the case when t > τ and ng →∞, g = 1, . . . , G.

Lemma F.2. For a given k, let E+
k = {(k′, k) ∈ E}, where E = {(g′, g) : Tg′ ≥st

Tg, g, g
′ = 1, . . . , G}. If Nk(t) = 0, then for any group g satisfying Ng(t) > 0, Ŝg(t) =

S̃g(t), where S̃g(t) is the pointwise constrained nonparametric maximum likelihood esti-

mator subject to constraints defined by E/E+
k (which denotes the set of constraints in E

excluding those in E+
k ).

Proof. The only possible situation that S̃g(t) is not the pointwise constrained nonparamet-

ric maximum likelihood estimator subject to the constraints defined by E is that there exist

(k′, k) ∈ E+
k and S̃k′(t) < S̃k(t). Since Nk(t) = 0, the likelihood does not change if

we lower the estimate for group k at time t. So set S̃k(t) = min{S̃g(t) : (g, k) ∈ E+
k },
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then all constraints in E will be satisfied, hence S̃g(t), g 6= k is the pointwise constrained

nonparametric maximum likelihood estimator. We have shown in Appendix D that Ŝg(t) is

unique if Ng(t) > 0. Therefore Ŝg(t) = S̃g(t) if Ng(t) > 0.

Let Q∗g(t) = S∗g (min{t, τ ∗g }) and Qg(t) = Sg(min{t, τg−}), where τ ∗g is the last ob-

served time in group g. Then

Lemma F.3. Q∗g(t) is uniformly consistent for Qg(t) on [0,∞).

Proof. If Scg(τg−) = 0, then τ ∗g → τg as ng goes to infinity,

sup
t<∞
|Q∗g(t)−Qg(t)| = sup

t<τg

|S∗g (t)− Sg(t)| → 0 with probability 1.

If Scg(τg−) > 0, then Sg(τg) = Sg(τg−) by the condition of no common jumps of Sg(t)

and Scg(t), and τ ∗g = τg as ng goes to infinity. So

sup
t<∞
|Q∗g(t)−Qg(t)| = sup

t≤τg
|S∗g (t)− Sg(t)| → 0 with probability 1,

under the condition Sg(τg) = Sg(τg−). (see Corollary 1.2 in Stute and Wang 1993, p

1595).

Let E(t) = E/
⋃
k:τk<t

E+
k and let Q̂g(t) be the pointwise nonparametric maximum

likelihood estimator of Qg(t) subject to constraint E(t), then the strong uniform consis-

tency for Q̂g(t) holds for all t ≥ 0 using the same argument leading to the result in equation

(F.1). Since Q̂g(t) = Ŝg(t) by applying Lemma F.2 multiple times and Qg(t) = Sg(t) for

all t < τg, the strong uniform consistency of Ŝg(t) for Sg(t) is established on [0, τg). If

Sg(τg−) = Sg(τg), the strong uniform consistency of Sg(t) for Sg(t) holds on [0, τg].

This completes the proof of Theorem 3.5.
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Proof of Theorem 3.6

LetZL
g (x) = n1/2{logS∗g (x)−logSg(x)}, then by the delta method, ZL

g (x)
D→ Zg/Sg(x),

g = 1, . . . , G, where Zg, g = 1, . . . , G is defined in Section 3. For a fixed x, since

S∗g (x) is a consistent estimator of Sg(x), g = 1, . . . , G, if (i, j) ∈ E and Si(x) > Sj(x),

pr{S∗i (x) − S∗j (x) ≤ 0} → 0 as ni, nj → ∞, i.e. the constraint between group i and j

will be asymptotically inactive with arbitrary large probability at time x. So the asymptotic

distribution of Ŝg(x) is only determined by the groups with the same true survivor function

at time x.

For any group g, Ng(x)/ng → Sg(x)Scg(x) in probability as ng → ∞. So 1/Ng(x) =

Op(1/n) for all x where Sg(x)Scg(x) > 0. Let q̂ = Avn(`, u, x) be the common value of the

survivor function when combining groups ` to u at time x and assume that S`(x) = · · · =

Su(x). Then from Theorem 3.2 and using the fact that Kg(q̂;x)/n → 0 in probability as

n→∞, it follows that for each g, ` ≤ g ≤ u,

q̂ =
∑
Xgi≤x

log

{
1− dgi

ngi +Kg(q̂;x)

}
= −

∑
Xgi≤x

dgi
ngi +Kg(q̂;x)

{
1 +Op

(
1

n

)}

=
∑
Xgi≤x

log(1− dgi
ngi

) +
∑
Xgi≤x

dgi
ngi

Kg(q̂;x)

ngi
{1 + op(1)}+Op

(
1

n

)
.
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Thus,

n1/2{q̂ − logSg(x)} = ZL
g (x) + n1/2

∑
Xgi≤x

Kg(q̂;x)
dgi
n2
gi

{1 + op(1)}+Op(n
−1/2) (G.1)

Since both n1/2{q̂ − logSg(x)} and ZL
g (x) are bounded in probability,

n1/2
∑

Xgi≤x dgiKg(q̂;x)/n2
gi must be bounded in probability. Thus equation (G.1) be-

comes

n1/2{q̂ − logSg(x)} = ZL
g (x) + n1/2Kg(q̂;x)

∑
Xgi≤x

dgi
n2
gi

+ op(1) (G.2)

Let wgn(x) = n/{S2
g (x)

∑
Xgi≤x dgi/n

2
gi}. It is well known that

1

ng

∑
Xgi≤x

dgi
n2
gi

p→ Vg(x) as ng →∞.

Thus wgn(x) → cg/σ
2
g(x) = wg(x) as n → ∞. Multiplying equation (G.2) by wgn(x)

gives

wgn(x)n1/2{q̂ − logSg(x)} = wgn(x)ZL
g (x) +

n
3
2Kg(q̂;x)

S2
g (x)

+ op(1) (G.3)

Since
∑u

g=`Kg(q̂;x) = 0 as shown in equation (3.7) for any n, summing equation (G.3)

over g from ` to u and dividing by
∑u

g=`wgn(x) yields

n1/2{q̂ − logSk(x)} =

∑u
g=` Z

L
g (x)wgn(x)∑u

g=`wgn(x)
+ op(1)

D→
∑u

g=` Zg(x)wg(x)

Sk(x)
∑u

g=`wg(x)
,

for any k such that ` ≤ k ≤ u because all Sg(x)′s are equal for ` ≤ g ≤ u. Thus by the

delta method, we have

n1/2{Avn(`, u, x)− Sk(x)} D→
∑u

g=` Zg(x)wg(x)∑u
g=`wg(x)

.
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Robertson and Waltman (1968) showed that the maximum likelihood estimator under

the simple ordering constraint is

Ŝk(x) = min
Lk(x)≤`≤k

max
k≤u≤Uk(x)

Avn(`, u, x),

where Lk(x) = min{i : Si(x) = Sk(x)} and Uk(x) = max{i : Si(x) = Sk(x)} as defined

in Theorem 3.6. Thus

n
1/2
k {Ŝk(x)− Sk(x)} = c

1/2
k min

Lk(x)≤`≤k
max

k≤u≤Uk(x)
n1/2{Avn(`, u, x)− Sk(x)}

D→ c
1/2
k min

Lk(x)≤`≤k
max

k≤u≤Uk(x)

∑u
g=` Zg(x)wg(x)∑u

g=`wg(x)
.

This completes the proof of Theorem 3.6. Now we discuss extensions and special cases

of Theorem 3.6.

First consider the case when there exists g′ such that cg′ = 0 while cg > 0. The

asymptotic distribution of n1/2
g {Ŝg(x) − Sg(x)} will be the same as in equation (3.8) with

the weight for group g′ set to zero. This is because

lim
cg′→0

Zg′(x)wg′(x)∑u
g=`wg(x)

= lim
cg′→0

N(0, 1/wg′)wg′(x)∑u
g=`wg(x)

= lim
cg′→0

N(0, 1)w
1/2
g′ (x)∑u

g=`wg(x)

p→ 0.

This result might indirectly show that the finite samples can be ingored in the asymptotic

properties in our setting.

Then we discuss the case when there are some groups for which the support of the cen-

soring distribution is less than x. As discussed in Appendix E, the asymptotic distribution

of n1/2
g {Ŝg(x)− Sg(x)}, x < τg, can be obtained by modifying the constraint set to E(x).

Note that the ordering constraints Tk′ ≥st Tk, k′ = 1, . . . , k − 1 are removed if x > τ ∗k .

Also if Sk(x) < Sk(τk−), then constraints Tk ≥st Tk′ , k = k + 1, . . . , G will be asymp-

totically irrelevant because S∗k(x) can always take value S∗k(τ
∗
k ) and S∗k(τ

∗
k ) > S∗k′(x), k′ =

k + 1, . . . , G asymptotically. So group k can be removed from obtaining the asymptotic

distribution of n1/2
g {Ŝg(x)− Sg(x)}, x < τg or equivalently we can set wk = 0 in equation
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(3.8) at time x. If Sk(x) = Sk(τk−), the problem will be changed to the partial ordering

case and then we can appeal to the Conjecture in section 3 to give the asymptotic distribu-

tion of n1/2
g {Ŝg(x)− Sg(x)}. For example, in the case where T1 ≥st T2 ≥st T3 ≥st T4 and

τ1 < τ2 < τ3 < τ4, we consider the asymptotic distribution of n1/2
4 {Ŝ4(x)−S4(x)} at time

x ∈ [τ3, τ4). If S1(x) = S1(τ1−) = · · · = S4(x) = S4(τ4−), the constraints at time x are

changed to T1 ≥st T4, T2 ≥st T4 and T3 ≥st T4.
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