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CHAPTER I

INTRODUCTION, LITERATURE REVIEW, AND

OBJECTIVES

Due to their unique capability to hover, perform low-speed maneuvers in tightly

constrained environments, and take-off and land vertically; helicopters are widely

used for various civilian and military missions that fixed-wing aircraft cannot per-

form. To perform these tasks, helicopters have to operate in a complex aerody-

namic environment, depicted in Fig. 1.1. In forward flight, blades on the side of

the rotor that is advancing into the relative wind experience a higher dynamic pres-

sure than the blades on the retreating side resulting in an asymmetry in the aero-

dynamic environment on the rotor disk. This inherent asymmetry combined with

the flapping, lead-lag, and pitching motions of the rotor blades generates highly

unsteady aerodynamic loads which are transmitted to the hub and the fuselage

as vibrations. Vibratory loads, predominantly the Nb/rev harmonic components,

whereNb is the number of rotor blades, have been a source of concern in the design

and maintenance of helicopters since their early developmental days [81]. Vibra-

1
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tions cause crew and passenger discomfort and reduce the airframe and compo-

nent fatigue lives resulting in high maintenance costs. Like vibrations, noise has

also been an undesirable characteristic of rotorcraft since their inception and has

become an increasingly important problem for modern helicopters due to stringent

limitations imposed by the regulations. The high noise levels generated during

low speed approach flight conditions can severely limit a civilian helicopter’s com-

munity acceptance and render a military helicopter vulnerable to easy detection.

High levels of vibration and noise at low speed descending flight conditions are

attributed to the blade-vortex interaction (BVI) phenomenon which occurs when

a rotating blade encounters the tip vortices shed by the preceding blades. At high

speeds, dynamic stall, which is characterized by time dependent flow separation

on the retreating side of the rotor disk, is a dominant source of vibratory loads.

Also at high speeds, transonic effects at the blade tip generate noise known as the

high-speed impulsive (HSI) noise.

Increasingly stringent requirements on acceptable noise and vibration levels of

modern helicopters have motivated substantial research in the rotary-wing com-

munity towards designing efficient control technologies that can produce quieter

and smoother helicopters while showing minimal impact on the airwothiness and

structural integrity of the helicopter. During the last four decades, various active

control approaches, such as the higher harmonic control, individual blade control,

actively controlled conventional plain trailing-edge flaps, and the active twist rotor

have been explored and shown to have potential as effective means for noise and
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Figure 1.1: Various elements of the complex aerodynamic environment of a heli-
copter.

vibration reduction in rotorcraft. Several factors such as: excessive implementation

costs, mechanical complexities, high control power requirements, limitations on

actuation frequencies, and reliability concerns have prevented the implementation

of these approaches on a production helicopter. This current state of active control

is motivating the search for more cost effective approaches such as microflaps.

The microflap, which is a small tab typically 1-5% in chord, located near the

trailing edge of an airfoil as shown in Fig. 1.2, has recently emerged as a promising

device for active control in helicopters. The microflap is derived from the Gurney

flap, shown in Fig. 1.3, which was originally conceived by Dan Gurney to increase

the downward force generated by the spoiler on his race car. The Gurney flap

causes the flow to turn around the trailing edge resulting in the formation of two

counter-rotating vortices behind the microflap, shown in Fig. 1.3. The turning of

the flow shifts the trailing edge stagnation point to the bottom edge of the mi-
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croflap thus changing the Kutta condition and increasing the effective camber of

the airfoil [23, 76].

Unlike the Gurney flap that is permanently fixed to the airfoil, the microflap

can be deployed normal to the airfoil surface. In spite of its small size, the mi-

croflap has been shown to enhance the maximum lift coefficient of an airfoil by up

to 30% without significant drag penalties [6,84,127]. The microflap when deployed

also increases the nose-down pitching moment of the airfoil. The microflap’s abil-

ity to effect the lift and pitching moment on an airfoil indicates its potential as an

active on-blade vibration and noise control device for helicopters. Furthermore,

the size of the microflap when compared to plain trailing-edge flaps represents

a distinct advantage permitting high bandwidth actuation with small actuation

power requirements, minimal loss in structural stiffness of the wing, and lower

wing warping. Another interesting aspect of the microflaps is that their small size

might allow them to be retrofitted on existing helicopter blades with suitable mod-

ifications. Despite its potential benefits, the microflap has not been carefully exam-

ined for helicopter noise and vibration reduction applications, primarily due to its

recent emergence on the scene combined with the lack of computational tools suit-

able for active control studies using the microflap. The overall goal of this thesis is

to develop such computational tools and use them to investigate and evaluate the

effectiveness of the microflap in reducing helicopter noise and vibrations.

A review of the various existing approaches to helicopter vibration and noise

reduction is provided in section 1.1. Various computational and experimental
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Microflap

Figure 1.2: An illustration of the microflap.
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Figure 1.3: An illustration of the flow behind a Gurney flap.

studies examining the aerodynamic effects of the Gurney flap and the microflap

are reviewed in section 1.2.1. Section 1.2.2 provides a literature review of the var-

ious applications of microflap that have been studied so far. A literature review

of various actuation systems that have been developed for practical implementa-

tion of the microflap are discussed in section 1.2.3. Finally, the objectives and the

contributions of this dissertation are presented in section 1.3.
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1.1 Review of the Available Helicopter Vibration and Noise Re-

duction Approaches

1.1.1 Helicopter Vibration Reduction Approaches

Two fundamentally different approaches to reducing vibrations in helicopters

have evolved over time. The traditional approaches which are relatively more

mature and widely implemented are based on passive techniques involving ab-

sorbers, isolators, and attenuators [81, 108, 139]. However, these devices have sig-

nificant weight penalties. A more recent passive approach that has been examined

for helicopter vibration reduction involves the use of structural optimization to

minimize vibrations through modification of the mass, stiffness, and geometrical

properties of the rotor blade. A detailed survey of the developments in the struc-

tural optimization approach can be found in Refs. 20, 43, 48.

During the last forty years, a remarkable reduction in the acceptable levels of

vibrations lead to the development of various active control approaches, including

the actively controlled trailing edge flaps. Detailed reviews of the various active

control approaches to the vibration reduction problem can be found in Refs. 46,98.

Active control approaches that have been widely studied are: 1) higher harmonic

control (HHC), 2) conventional individual blade control (IBC), 3) active control of

structural response (ACSR), 4) active twist rotor blades (ATR), and 5) actively con-

trolled trailing-edge flaps (ACF). All the active control approaches, except ACSR,

influence the vibration levels by modifying the aerodynamic loading on the rotor,
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or the rotating system.

The HHC approach was the first approach and has received considerable at-

tention. The HHC system minimizes the rotor vibrations by actively controlling

the blade pitch angle through the non-rotating lower portion of a conventional

swashplate. Effectiveness of the HHC controller in reducing vibrations has been

demonstrated through computations, wind-tunnel tests, and flight tests [46]. How-

ever, despite its initial success the HHC approach has not been implemented on a

production helicopter. The primary reasons are: (1) limitation on the control po-

tential due to the fact that all blades use the same pitch input, and (2) excessive

implementation costs.

An alternative to controlling vibrations through a stationary swashplate is the

conventional individual blade control approach, where each blade is individually

controlled by introducing pitch inputs in the rotating reference frame. This ap-

proach, pioneered by Kretz [70], overcomes some of the limitations associated with

the HHC approach. The IBC approach allows independent control of each blade,

with actuators located between the swashplate and the blade in the rotating frame.

An IBC approach based on blade root actuation has been tested on the MBB BO-105

and UH-60 rotor systems at the NASA Ames 40 x 80 foot wind tunnel [58,130]. The

IBC system has also been flight tested on an MBB BO-105 helicopter [113]. In spite

of its effectiveness, implementation of the conventional IBC on a production he-

licopter has been prevented due to high control power requirements, mechanical

complexity, and cost.
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An alternative approach to individual blade control is the active twist rotor

which has been shown to be an effective means for helicopter vibration reduc-

tion. Anisotropic piezo-composite actuators are implemented by embedding ac-

tive fibers in a composite. The application of a voltage on the actuator modifies

the twist distribution of the blade, and changes the aerodynamic environment and

the vibratory loads. Wind tunnel tests performed on the NASA/Army/MIT active

twist rotor [118,119,142] in hover and forward flight have shown that the ATR is an

effective vibration reduction technology. Closed-loop control tests were conducted

on the ATR system demonstrating excellent reduction in the 4/rev and 1/rev vi-

bratory normal hub shear force over a range of flight conditions [120]. Another

implementation of the ATR which utilizes a piezo-electrically twisted composite

beam with bending-torsion coupling to twist the entire blade was developed and

tested in a wind-tunnel by Bernhard and Chopra [9]. The active piezo-electric fiber

is a relatively new technology and has several challenges associated with its imple-

mentation. The primary challenges are achieving uniformity of material properties

and actuation characteristics, reducing fabrication costs, and requirement for very

high actuation voltages [9].

The active control of structural response approach is the only approach that has

been implemented on a production helicopter, the Westland EH101 [126]. In the

ACSR approach, actuators placed at select locations are used to excite the fuselage

and produce vibratory loads. The excitation is chosen such that the effective re-

sponse of the fuselage due to the rotor hub loads and the controlled excitation is
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reduced to a minimum at a selected location, such as the pilot seat. A comprehen-

sive analytical simulation of the ACSR was developed by Cribbs, Friedmann and

Chiu [29] using a finite element model for the fuselage. Acceleration amplitudes at

the pilot seat and the rear cabin were reduced below 0.05g over a range of advance

ratios.

In the past twenty years, the actively controlled flaps (ACF) have been proven

to be an effective means for helicopter vibration reduction [44, 45]. The ACF sys-

tem reduces vibrations through a time-dependent deflection of the flap resulting

in a redistribution of the unsteady aerodynamic loads on the rotor blade. The ACF

requires significantly lower actuation power when compared to the HHC and con-

ventional IBC systems. Furthermore, the ACF system has no adverse effects on

the helicopter airworthiness as it operates independent from the primary control

system [46]. The ACF approach thus represents a more cost effective approach to

individual blade control.

The first comprehensive computational study demonstrating the effectiveness

of active flaps for helicopter vibration reduction was conducted by Millott and

Friedmann [87]. In this study, a coupled flap-lag-torsional isotropic blade model,

including geometric nonlinearities due to moderate deflections was used. Modi-

fied quasi-steady Theodorsen theory was used to determine the aerodynamic loads

for the blade/trailing-edge flap combination. The actively controlled flap was

modeled as a 12% span, 25% chord, servo flap centered at the 75% span location.

The 4/rev hub shears and moments were reduced by 90% for a torsionally soft
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blade and by 80% for a torsionally stiff blade at an advance ratio µ = 0.3.

Myrtle and Friedmann [92] extended this work by replacing the quasi-steady

aerodynamic model with a two-dimensional, compressible, time-domain, unsteady

aerodynamic model based on the rational function approximation (RFA) approach.

Subsequently, a free-wake model was introduced in to the analysis by deTerlizzi

and Friedmann [31, 32] in order to accurately model the vibrations induced by

blade-vortex interaction at low advance ratios. With the improved aerodynamic

model, over 80% vibration reduction was recorded under BVI conditions. In or-

der to capture the dynamic stall induced vibrations at high speeds, a dynamic stall

model based on the ONERA dynamic stall model [105] was incorporated into the

analysis by Depailler and Friedmann [33, 34]. The ONERA dynamic stall model

can be expressed as a time-domain, state-space aerodynamic model and hence is

suitable for aeroelastic analysis. Significant vibration reduction was noticed using

the active flaps at high speeds where dynamic stall is predominant. Subsequently,

a modified version of the noise prediction code WOPWOP [15] was incorporated

into the analysis by Patt, Liu, and Friedmann [78, 98]. The code was used to in-

vestigate the effectiveness of actively-controlled flaps for simultaneous BVI noise

and vibration reduction. A consolidation of the previously mentioned research ef-

forts resulted in a comprehensive rotorcraft analysis tool referred to as the Active

VIbration and NOise Reduction (AVINOR) code [52]. A modified version of this

code is used for all the rotorcraft vibration and noise control studies presented in

this thesis.



11

Recently the AVINOR code was used to develop combined active/passive ro-

tor blade optimization approaches based on surrogate based optimization and the

actively controlled flaps [51]. A surrogate is an approximation, of the objective

function used for optimization, generated using a limited number of function eval-

uations over the design space. An efficient global optimization (EGO) algorithm

combined with kriging surrogates was used to identify blade designs that are suit-

able for vibration reduction at high and low advance ratios. A blade design yield-

ing 71% vibration reduction under BVI conditions and 26% vibration reduction at

high-speed forward flight conditions was identified using multi-objective function

optimization techniques.

The ACF approach for helicopter vibration reduction has also been experimen-

tally validated [30,36,47,69,86]. Whirl-tower tests of a full-scale, five-bladed bear-

ingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing

edge flap on each blade, were conducted by the Boeing company as part of the

SMART (Smart Material Actuated Rotor Technology) Rotor Demonstration Pro-

gram funded jointly by NASA, DARPA, and the Boeing company [129]. Recently,

wind-tunnel tests of the SMART active flap rotor were conducted at the NASA

Ames 40x80 foot wind tunnel [128]. The tests demonstrated up to 80% reduc-

tion in vibratory hub loads. The impact of the active flap on rotor smoothing and

performance was also demonstrated. These tests were conducted primarily using

open-loop control inputs with ±3◦ saturation limits on the flap deflection. The

ACF technology was also flight tested by Eurocopter on a BK-117 hingeless rotor
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system equipped with three piezoelectrically actuated active flaps [68]. Up to 90%

reduction was observed in the 4/rev vibratory loads using open loop control.

Based on the foregoing literature review it is evident that various active and

passive control technologies have been explored and shown to reduce helicopter

vibrations successfully.

1.1.2 Helicopter Noise Reduction Approaches

Helicopter noise is composed of contributions from the main rotor, tail rotor,

engine, and gearbox. However, the major source is usually the main rotor. High-

speed impulsive noise which is dominant at high speed flight conditions, propa-

gates primarily in the plane of the rotor with peak noise observed in the region

forward of the helicopter [17]. Blade-vortex interaction noise is dominant at low-

speeds and propagates out of the rotor plane making it more audible to the ob-

servers on the ground [17]. Consequently, BVI noise has been the primary focus of

many helicopter noise reduction studies.

Both passive and active control methods have been studied for rotorcraft noise

reduction applications. Several computational and wind tunnel studies conducted

using passive methods such as modification of blade tip shapes, blade planform,

and twist distribution to reduce rotorcraft noise have been reported by Yu in Ref. 144.

Blade tip shapes play an important role in blade airloads, which influence tip vor-

tex formation. Noise reductions of up to 5 dB were demonstrated using modified

tip geometries [144].
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Active blade control concepts such as the higher-harmonic control, conven-

tional individual blade control, and the active flaps have been successfully shown

to reduce rotor noise. These active control techniques reduce BVI noise by modi-

fying the blade airloads and blade aeroelastic deflections which in turn influence

the tip vortex strength, blade-vortex miss distance, and the blade-vortex interac-

tion angle. Comprehensive reviews of various active noise reduction studies are

provided in Refs. 144, 145.

The HHC technology has been experimentally tested at the NASA Langley

Transonic Dynamics Tunnel (TDT) [18, 19] and the German-Dutch Wind Tunnel

(DNW) [122, 123, 125, 146] demonstrating up to 6 dB BVI noise reduction using

open-loop control methods. It was also noted in these tests that the control inputs

that yielded maximum noise reduction caused an increase in the vibration levels.

The Higher-harmonic control Aeroacoustics Rotor Test (HART) conducted at the

DNW is the most comprehensive experimental study of the effects of the HHC

technique on BVI noise and vibration reduction conducted so far [122]. Wind-

tunnel tests were conducted with a 40% geometrically and dynamically scaled BO-

105 main rotor. A detailed set of data including blade airloads, blade deflections,

acoustic signatures, blade surface pressure distribution, and tip vortex geometry

and strength was acquired using extensive instrumentation. A reduction of 6 dB

in BVI noise was achieved using a 3/rev open-loop control input. A follow-up to

the original HART test known as the HART II [77,115,135,146] has been conducted

using more extensive instrumentation aiming to further improve the physical un-
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derstanding behind BVI noise generation and reduction. Computational studies

were conducted by the Army Aeroflightdynamics Directorate (AFDD), the DLR,

the ONERA, and NASA Langley as complementary studies to the HART experi-

ments [133]. The blade-vortex miss distance was identified as playing a major role

in reducing BVI noise. In a different study, results obtained from the University of

Maryland Advanced Rotor Code (UMARC) were validated against HART test data

by Tauszig [131]. In another study, Wachspress and Quackenbush [140] compared

their comprehensive analysis code, CHARM, with HART test data. The correlation

between the HART experimental results and the computational results obtained in

the studies described above was inconsistent, showing good agreement for only a

few cases. It was suggested in Ref. 133 that further improvements in wake model-

ing are required to get consistently accurate predictions. The University of Michi-

gan AVINOR simulation code was also validated against the HART test data by

Patt, Liu, and Friedmann [101, 102]. Blade tip deformations, aerodynamic loads,

and acoustic pressure levels obtained from the simulation code and the HART ex-

periments were compared. Excellent agreement was obtained for the baseline case

while the comparisons for the minimum vibration and minimum noise cases were

reasonably good.

The IBC system was first studied for noise reduction at the NASA Ames 40×80

wind tunnel [56, 57] on a full-scale BO-105 rotor. Open loop tests conducted at a

heavy BVI flight condition indicated that the 2/rev input was the most effective for

noise reduction. Noise levels were reduced by up to 9 dB on the advancing side by
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appropriately choosing the phase of the control input. Similar to the HHC tests, the

optimal control inputs for reducing BVI noise usually resulted in an increase in the

vibration levels. Subsequently, the IBC system was tested at the NASA Ames 40×

80 wind tunnel facility on a UH-60 rotor using open-loop control inputs yielding

up to 10 dB noise reduction on the advancing side [58]. The IBC system was also

flight tested on a BO-105 [7, 8] demonstrating up to 5 dB noise reduction using a

2/rev control input. Results from the flight tests were compared to computations

showing marginal agreement [82, 124].

Actively controlled trailing-edge flaps have been shown to be effective for BVI

noise reduction through several experimental and computational studies [22,30,54,

101,102,128,141]. Experiments conducted under the SMART rotor project demon-

strated reductions of up to 6dB in both BVI noise during low-speed descending

flight and in-plane noise during high-speed level flight using active flaps [128].

Application of ACF for BVI noise reduction was examined through several ana-

lytical studies performed at the Mc-Donnel Douglas Helicopter company [22, 54].

These studies were conducted using a modified version of the Comprehensive

Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD/JA) [62]

code and the WOPWOP code [15] for acoustic prediction. Noise reductions of the

order of 5 dB were obtained. Subsequently, tests performed at the NASA Langley

14×22 wind tunnel [30] on a two-bladed rotor with a single flap equipped on each

blade demonstrated up to 4 dB reduction in noise levels. In another interesting

study, tests were conducted at the NASA Ames 7 × 10 foot wind tunnel on a 2-
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bladed rotor using steady flap deflections and up to 7 dB BVI noise reduction was

recorded [141].

Application of actively-controlled flaps for BVI noise and vibration reduction

was extensively studied using the comprehensive rotorcraft analysis code AVI-

NOR [101, 102]. Acoustic calculations were performed using the WOPWOP code,

which was modified to account for a fully flexible blade model. The effect of

BVI noise reduction on vibrations and vice-versa was examined at a heavy BVI

descending flight condition. Simultaneous reduction of noise and vibration was

successfully demonstrated using a dual active flap configuration. A reduction of

about 5 dB on the advancing side noise combined with about 40% vibration reduc-

tion was achieved. The flap deflections were restricted to ±4◦ saturation limits.

As for the case of vibrations, active control approaches such as the HHC, con-

ventional IBC, and the ACF have been extensively studied and shown to be effec-

tive for helicopter BVI noise reduction. However, none of these approaches has

been implemented on a production helicopter.

1.2 Literature on Gurney Flaps and Microflaps

The microflap due to its unique combination of aerodynamic effectiveness and

small size, can potentially overcome some of the limitations associated with the

implementation of the active control approaches discussed in the preceding sec-

tions. The microflap is a relatively new device, consequently, limited number of
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studies have been conducted examining its aerodynamic effects. However, the

Gurney flap, which is a static microflap, has been extensively studied using both

experiments and computations. This section provides a review of the literature

on microflap aerodynamics and its applications. A brief review of different ap-

proaches to implementing a microflap actuation system is also provided.

1.2.1 Gurney Flap and Microflap Aerodynamics

The Gurney flap was first studied for aerospace applications by Liebeck, who

conducted one of the earliest experimental studies investigating the aerodynamics

of a Gurney flap [76]. Liebeck observed, using a tufted probe, significant turn-

ing of the flow around the trailing-edge towards the Gurney flap. He also ob-

served a reverse flow region behind the Gurney flap which he hypothesized was

due to the formation of two counter-rotating vortices behind the flap as shown

in Fig. 1.3. The turning of the flow around the trailing-edge shifts the trailing-

edge stagnation point to the bottom edge of the Gurney flap. This shift in the

stagnation point changes the Kutta condition of the airfoil which in turn increases

the effective camber of the airfoil [23]. Several experimental and computational

studies have been conducted analyzing the aerodynamic effects of a Gurney flap.

Depending on its size and location, the Gurney flap is capable of increasing the

maximum lift coefficient of an airfoil by up to 30%, based on experiments con-

ducted at Reynolds numbers over 1 million [6,25,84,127]. Wind-tunnel test results

reported in Refs. 6, 26, 75, 84, 127 indicate that Gurney flaps placed on the lower
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surface of the airfoil increase the maximum lift, accompanied by a positive shift in

the lift curve. These findings have also been confirmed using computational fluid

dynamics (CFD) simulations [6,23,59]. The increase in lift was found to be a result

of an increase in the lower-surface pressures near the trailing-edge of the airfoil

accompanied by a decrease in the upper-surface pressures near the leading edge

and over the middle parts of the airfoil. These phenomena also result in an in-

creased nose-down pitching moment. It was also noted that placing a Gurney flap

on the upper surface of the airfoil can have a negative effect on the lift resulting in

a downward shift of the lift curve [6].

The lift increment generated from the Gurney flap improves with increasing

free-stream angles of attack [23]. The drag penalty due to the Gurney flap also in-

creases with increasing free-stream angle of attack. This is because with increasing

angle of attack, the lower surface boundary layer thickness is reduced due to the

more favorable pressure gradient, and hence the ratio of flap height to boundary

layer thickness is increased. The effects of Gurney flap size on the aerodynamic

characteristics of an airfoil have been studied [6, 50, 84]. It was noted that increas-

ing the Gurney flap height generally tends to augment its lift enhancing effects.

However, the additional lift gained from a Gurney flap is not a linear function of

its height [50]. The gain in lift diminishes with increasing Gurney flap height. Also,

increasing the Gurney flap height to a magnitude that exceeds the boundary layer

thickness results in a significant increase in drag. Thus, for a Gurney flap to yield a

beneficial lift-to-drag ratio, its height needs to be smaller than the boundary-layer
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thickness [50]. Several studies have discovered that a Gurney flap close to 2%c in

height yields the best lift-to-drag ratio [76, 96].

The chordwise location of the Gurney flap was found to have a strong effect on

its ability to increase the airfoil lift. The Gurney flap is most effective when placed

at the trailing edge of the airfoil [6, 50, 75]. However, the trailing edge of a typical

airfoil section does not provide sufficient structural volume to house a retractable

Gurney flap and an actuation device. Therefore, the optimal tab location is likely

to exist as far aft on the airfoil section as the volume requirements permit.

The effect of Gurney flap shape and its angle of attachment was experimentally

studied in Refs. 75 and 134. Introducing spanwise variations in the Gurney flap

geometry, such as serrations, was found to have a beneficial effect on the Gurney

flap’s performance [134]. A Gurney flap attached perpendicular to the airfoil sur-

face produced the largest increase in the lift coefficient but also caused the highest

drag penalty [75]. A Gurney flap attached at a 45◦ angle to the airfoil surface was

found to produce the best lift-to-drag ratio.

An oscillating microflap is a recent innovation and therefore very few stud-

ies examining its unsteady aerodynamics can be found in the available literature.

The unsteady aerodynamic effects of a deployable microflap were computation-

ally studied in Refs. 23, 24, 66, 73. It was found that the unsteady lift amplitude

due to an oscillating microflap reduces with increasing reduced frequency, a phe-

nomenon similar to that predicted by Theodorsen’s theory for an airfoil oscillating

in pitch. It was also found that the peak lift generated by an oscillating microflap
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is less than the lift due to a static Gurney flap and the peak drag is greater than

that due to a static Gurney flap [24]. Similar results were also found in the current

study using three different microflap configurations [97] as discussed in Chapter

II.

1.2.2 Microflap Applications

Microflaps have been studied for various applications such as flutter suppres-

sion of high aspect ratio flexible wings, aeroelastic control of a blended-wing-body

configuration, wing trailing edge vortex alleviation, aerodynamic load control for

wind turbine blades, and for rotorcraft performance enhancement [11,23,65–67,71,

74, 83, 93, 95, 138, 143]. Computational studies and wind-tunnel experiments were

conducted in Ref. 74 to show that microflaps can increase the flutter speed of a

highly flexible wing by up to 22%. For the computational analysis, aerodynamic ef-

fects of the microflap were modeled using a modified thin airfoil theory with some

empirical inputs. The microflap was modeled as being either fully deployed or

fully retracted. Another study proposed the use of microflap for control of aeroe-

lastic response at the wing tip of a flexible blended-wing-body configuration [71].

Recent studies for fixed wing applications [83, 95, 138] suggest that microflaps can

also be used for wake manipulation, by inducing time-varying perturbations that

excite vortex instability in the wake.

The potential of microflaps with application to active load control in wind tur-

bine blades has been explored computationally and experimentally on represen-
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tative turbine airfoil sections by van Dam and colleagues [23, 27, 93]. Specifically,

the capability of microflaps to mitigate turbine blade root loading due to wind

gusts was demonstrated [27]. Substantial reduction in turbine blade root bending

moment (reduction of peak bending moment ranging from 30-50%) was observed

in Ref. 143 using microflaps. Aerodynamic effects of the microflap were modeled

based on experimental measurements obtained using a static Gurney flap.

Few other studies using permanently fixed Gurney flaps have been conducted

and are discussed here for completeness. The effectiveness of Gurney flaps in in-

creasing the maximum lift coefficient and the lift-to-drag ratio of a micro aerial

vehicle’s thin-airfoil wing at low Reynolds numbers was demonstrated experi-

mentally in Ref. 3. The effect of a Gurney flap on a compressor cascade model

at low Reynolds numbers was experimentally investigated in Ref. 90. Experi-

mental results indicated that the Gurney flap can be used to improve compres-

sor performance by delaying stall on the compressor blades. The effect of Gurney

flaps on the aerodynamic performance of microscale rotors was studied in Ref. 94.

Spin tests were conducted on a small-scale microrotor (blade tip Reynolds num-

ber < 20, 000) with a 2%c Gurney flap attached along the trailing edge of the ro-

tor blade. An increase of 50-75% in the rotor thrust accompanied by only 20-30%

increase in power penalty was observed over a range of collective pitch settings.

Preliminary studies on rotorcraft performance enhancement using permanently at-

tached Gurney flaps (of size less than 2%c) were conducted by Kentfield in Ref. 65.

The effect of Gurney flaps on the airfoil lift and drag was modeled as a curve fit
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of experimental data obtained for Gurney flaps of various sizes. Wind-tunnel tests

conducted on a model helicopter confirmed that Gurney flaps may have beneficial

effects on rotorcraft performance.

More recently, deployable microflaps have been studied as active control de-

vices for rotorcraft performance enhancement [66, 67]. A relatively simple deploy-

ment schedule where the microflaps were deployed primarily on retreating side

of the disk was used. The maximum thrust of the rotor was enhanced by 10%

using microflaps with a height of 1%c distributed along the entire blade span.

The unsteady aerodynamics of the microflap were modeled using a modified ver-

sion of the Hariharan-Leishman unsteady flapped airfoil model [53]. Indicial re-

sponses from CFD simulations were used to develop the aerodynamic model for

microflaps. However, this model is suitable only for a microflap located at the

trailing edge.

A Navier-Stokes flow solver coupled with a structural dynamics solver was

employed in Refs. 88, 89 to study the effectiveness of microflap for rotor vibration

reduction. The oscillating microflap was simulated in CFD using a dynamic wall

boundary condition. The magnitude and phase angles of the microflap deflection

schedule were manually adjusted in order to identify the optimal values for vibra-

tion reduction. More than 80% reduction in the vertical vibratory hub loads was

observed. However, no closed-loop control studies were performed.

Based on the literature review provided here, it is evident that despite its rela-

tive novelty, the microflap has been studied quite extensively and its potential for
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various active control applications has been demonstrated. The potential of mi-

croflap for rotorcraft performance enhancement has also been shown. However,

application of the microflap for rotorcraft noise and vibration reduction has not

been considered. Specifically, closed-loop control studies have not been conducted

to investigate the effectiveness of microflap for rotorcraft noise and vibration re-

duction.

1.2.3 Practical Implementation of Microflaps

Due to the small size of the microflaps, their practical implementation can pose

a variety of challenges. An ideal actuation system for the microflaps needs to

be compact and lightweight with a capability to provide high frequency actua-

tion with low power requirements. Conventional hydraulic and pneumatic actu-

ation systems may not be a viable option for microflap actuation because of their

large size and weight. Actuation methods based on electro-mechanical, electro-

magnetic, and piezoelectric systems are viable options for microflaps. This section

briefly describes the various actuation mechanisms that were implemented for mi-

croflaps as part of the studies mentioned in Section 1.2.2.

In the wind-tunnel experiments conducted at Stanford University for applica-

tion of microflaps to flutter suppression of high aspect ratio flexible wings [74], a

set of 26 microflaps were attached along the trailing edge of a fixed wing and were

actuated using DC motor actuators shown in Fig. 1.4. The actuator and the mi-

croflap setup used by Matalanis and Eaton [83] for their experiments conducted at
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Figure 1.4: A DC motor based actuator for microflaps used in flutter suppression
studies at the Stanford Flow Control Wind Tunnel [74].

Figure 1.5: A DC motor based rotating actuation system for microflaps imple-
mented at the Stanford Flow Control Wind Tunnel [83].

the Stanford Flow Control Wind Tunnel is shown in Fig. 1.5. The outer body of the

setup is machined out of acrylic and the microflap and arm are made out of Delrin

machined by laser ablation. The connecting plug in front of the body is used to

transmit current to the dc motor that moves the microflap. Steel pins are used as

stops to limit the motion of the flap.

For the experiments in Ref. 93 studying microflaps for active load control in

wind turbine blades, the microflap was modeled as a translational slider shown
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Figure 1.6: A translational sliding actuation system for microflaps implemented at
the UC Davis Aeronautical Wind Tunnel Facility [93].

Figure 1.7: A linear actuator system for microflaps implemented at the UC Davis
Aeronautical Wind Tunnel Facility [27].

in Fig. 1.6. The microflap assembly consists of three pieces, a base, a slider, and

an extender. This unique design allows the microflaps to slide without incurring

any hinge moments. As shown in Fig. 1.6, these small modular assemblies may

be readily mounted in to slots on a wing or a blade. The actuating mechanism

was based on a mechanical linkage operated using a servo-motor. In another ex-

perimental study conducted at the UC Davis Aeronautical Wind Tunnel a linear

actuator based microflap actuation system was used [27]. The microflaps were de-

ployed using lever arms controlled by linear actuators located at 0.60% chordwise

location from the leading edge as shown in Fig. 1.7. The microflap is controlled in

a binary fashion implying that it is either fully deployed or fully retracted.
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Figure 1.8: A voice coil actuator based setup for microflap actuation developed at
the Penn State University [132].

A microflap actuation system based on a voice coil actuator was developed and

tested in Ref. 132. The key features of this design are the frelon-lined bearings and

the cable and housing assembly, shown in Figs. 1.8 and 1.9. The bearings allow

for the tight tolerances that are required in order to hold the moving coil assem-

bly of the voice coil in place. Frelon bearing was chosen over a ball bearing in

order to avoid binding under the high centrifugal loads experienced in the heli-

copter blade. The cable and housing, shown in Fig. 1.9, are used to transfer the

motion from the voice coil to the flap arms. The voice coil is placed as far for-

ward in the airfoil as possible to locate the center of gravity of the assembly close

to the aerodynamic center (for aeroelastic stability). A concept involving the use

of a piezoelectric bimorph actuator was also considered as an actuation method in

Ref. 132. A piezoelectric bimorph is a cantilevered beam consisting of two ceramic

layers, which are glued together. When opposite electrical fields are applied to the

piezoceramics, pure bending occurs.

1.3 Objectives and Key Novel Contributions of this Dissertation

The literature review provided in the previous sections demonstrates the need

for a comprehensive and systematic assessment of the potential of microflaps for
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Figure 1.9: Microflap actuation setup developed at the Penn State University using
cables and bearings designed to transfer the motion from a voice coil
actuator to the microflap [132].

noise and vibration reduction in helicopters. Conducting such an assessment is

the overall objective of this thesis. Modeling the unsteady aerodynamics of a rotor

blade equipped with microflaps is the biggest challenge in conducting an aeroelas-

tic analysis of a helicopter rotor with on blade control. The complex unsteady flow

features around a microflap can not be modeled using conventional potential flow

methods. Even though CFD tools can be used to determine unsteady aerodynamic

characteristics of the microflap with reasonable accuracy, the computational costs

are prohibitive when conducting parametric trend studies involving active control.

Therefore, a reduced-order aerodynamic model (ROM) is essential for the conduct

of studies aimed at determining the helicopter noise and vibration reduction ca-

pabilities of microflaps. Such a ROM needs to have the capability to a) predict

unsteady aerodynamic load responses to arbitrary motion of the blade/microflap

combination, b) capture compressibility effects, and c) capture unsteady effects

due to variations in the free-stream velocity. Furthermore, such a ROM has to be
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expressed in time domain and a mathematical form suitable for coupling with the

structural dynamics equations of the helicopter rotor. One of the key contributions

of this thesis is the development of such a ROM based on CFD data. This CFD

based ROM has the capability to capture aerodynamic effects due to the microflap

and other nonlinear flow effects. The CFD based ROM is incorporated into the

comprehensive rotorcraft analysis code AVINOR, which is subsequently used to

conduct closed-loop active noise and vibration reduction studies using microflap

on a representative rotor configuration.

The specific objectives of this thesis are:

1. Use CFD to conduct a numerical investigation of the microflap under steady

and dynamic conditions, and determine the effects of the microflap on lift,

moment, and drag coefficients of a 2D airfoil.

2. Study and compare the aerodynamics of various oscillating microflap con-

figurations using time-accurate Navier-Stokes simulations, so as to identify

the configuration most suitable for rotorcraft applications.

3. Develop a CFD based nonlinear reduced-order aerodynamic model that can

capture the aerodynamic effects of a microflap and is suitable for incorpora-

tion in to a comprehensive rotorcraft simulation code.

4. Validate the aerodynamic load predictions from the CFD based ROM against

full order CFD simulations at various flow conditions.

5. Incorporate the CFD based ROM into the comprehensive rotorcraft simula-
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tion code AVINOR and validate the aerodynamic and acoustic computations

obtained from AVINOR against experimental data from the HART test.

6. Demonstrate the potential of various microflap configurations for vibration

reduction at a high BVI low-speed descending flight condition as well as a

high speed level flight condition with dynamic stall effects.

7. Explore the potential of various microflap configurations for active control

of BVI noise at a low-speed descending flight condition, on a representative

rotor configuration.

8. Study the effect of BVI noise reduction using microflaps on the vibration lev-

els and vice versa.

9. Explore the potential of various microflap configurations for simultaneous

noise and vibration reduction under BVI conditions.

10. Compare the microflap to a conventional trailing-edge plain flap in terms of

its vibration and noise reduction capabilities.

11. Examine the potential of microflap for rotor performance enhancement at a

high speed cruise condition.

Accomplishing these objectives represents a significant enhancement in the under-

standing of microflap’s potential as an active control device for rotorcraft applica-

tions.
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The last phase of this study examines the effect of actuator saturation on the

vibration reduction performance of the higher harmonic control algorithm, which

is used for all the closed-loop control studies performed in this thesis. The specific

objectives of this phase are:

1. Develop an efficient approach to handling actuator saturation in the HHC

algorithm, that does not compromise on the controller performance and is

suitable for multiple control surfaces.

2. Compare the effectiveness of the new approach, to the different existing ac-

tuator saturation approaches in reducing vibrations on a representative rotor

configuration using the single and dual configurations of a 20%c conven-

tional plain trailing-edge flap and a 1.5%c microflap.

The key novel contributions of this dissertation are:

1. Development of a CFD based nonlinear reduced-order aerodynamic model

which is expressed in a form suitable for use with a comprehensive rotor-

craft simulation code. The reduced-order model provides an estimate of the

unsteady drag force in addition to the unsteady lift and moment.

2. An assessment of the potential of microflap to reduce vibrations on a rep-

resentative rotor configuration at advance ratios corresponding to BVI and

dynamic stall conditions.

3. An assessment of the potential of different microflap configurations to reduce

BVI noise.
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4. Demonstration of simultaneous BVI noise and vibration reduction using dif-

ferent microflap configurations.

5. An assessment of the effectiveness of microflaps for rotor performance en-

hancement.

6. Development of a new efficient approach to handling actuator saturation in

the higher harmonic control algorithm.



CHAPTER II

A NUMERICAL STUDY OF GURNEY FLAPS AND

MICROFLAPS USING CFD

This chapter provides a detailed description of the CFD code and the com-

putational grids used in the current study. A CFD framework that can be used

to study and identify a microflap configuration suitable for rotorcraft applica-

tions is developed. A commercially available compressible Navier-Stokes solver

CFD++ [103, 104], developed by Metacomp Technologies Inc., is used for all the

CFD computations performed in this study. The effects of a Gurney flap on the

2D aerodynamic loads of an airfoil are first studied using the NACA0012 airfoil

profile. Grid refinement studies are conducted to validate the CFD grids. The CFD

setup is validated by comparing the 2D aerodynamic loads obtained from CFD

with the experimental results presented in Ref. 75. The computations are carried

out using two different turbulence models, namely the 1-equation SA (Spalart-

Allmaras) model and the 2-equation k-ω SST (Shear Stress Transport) model [85]

in order to determine the effect of turbulence modeling on the airloads and stall

32
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Sharp trailing-edge configuration

Blunt trailing-edge configuration

Plain microflap configuration

Figure 2.1: Various configurations of a dynamic microflap considered.

angle predictions.

Computations using time-accurate RANS simulations are carried out to deter-

mine unsteady aerodynamic loads on a NACA0012 airfoil with an oscillating mi-

croflap. Three different configurations of the oscillating microflap shown in Fig. 2.1

are studied and compared. The first configuration has a microflap sliding in and

out of a gap near the trailing-edge of the airfoil, the second has a microflap oscil-

lating up and down behind the blunt trailing-edge of the airfoil, and the third has

a microflap resembling a plain flap at the trailing-edge. Based on the comparisons,

the configuration best suitable for rotorcraft applications is selected.

2.1 The CFD Code and Grid Geometries

The CFD++ code is capable of solving compressible unsteady Reynolds-averaged

Navier-Stokes (RANS) equations. It uses a unified grid methodology that can han-
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dle a variety of grids including structured, unstructured, multi-block meshes and

cell types, including patched and overset grid features. The overset grid approach

is used extensively in this study. Spatial discretization of the Navier-Stokes equa-

tions is based on a second order multi-dimensional Total Variation Diminishing

(TVD) scheme [21]. For temporal discretization an implicit algorithm with dual

time-stepping and multigrid acceleration is used. Dual time-stepping schemes

are constructed by appending a pseudo time-derivative term to the Navier-Stokes

equations. The pseudo time-derivative term is solved using subiterations for im-

proved accuracy. The multigrid acceleration scheme uses levels of grid coarsening

to increase the speed of the simulation. Several turbulence models are available in

CFD++, ranging from 1-equation to 3-equation transport models. The CFD code

is Message Passing Interface (MPI) compatible, allowing the user to perform com-

putations on multiple CPU clusters.

The NACA0012 airfoil profile is used for all the CFD computations performed

in this study. The computations are carried out by solving the RANS equations

over structured grids. The flow is assumed to be fully turbulent in all of the sim-

ulations. For steady flow simulations involving a Gurney flap, the CFD code is

run until the aerodynamic forces converge to their asymptotic values or the resid-

uals converge to zero. For the oscillating microflap, where the flow is unsteady,

time-accurate simulations are run with time-steps sufficiently small to capture the

significant frequencies in the aerodynamic loads.

The computational grids used in this study are generated using the ANSYS
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ICEM CFD meshing software. The software has the facility to output the grid

files in the plot3D format which is compatible with the CFD++ code. The com-

putational domain is a C-shaped structured grid wrapped around the airfoil as

shown in Fig. 2.2. The far field boundary extends to 50 chord lengths in all direc-

tions. A distance of 30-50 chord lengths is typically used between the airfoil and

far field boundaries in order to diminish the effects of numerical reflection from

the far field boundary. The grids are clustered at the airfoil wall boundaries such

that the dimensionless distance of the first grid point from the boundary, defined

as y+ =
y
√
τw

µ
√
ρ

, is maintained below 1 and the equations are directly solved to the

walls without assuming any wall functions. Grids for the various microflap con-

figurations are generated using the overset approach. Overset grids are used to

simulate complex fluid flow problems where the geometry cannot be well repre-

sented using a single contiguous grid or where the geometry consists of moving

components with large relative motions. In this approach, different grids, typically

structured grids, representing the various features of the geometry are overlapped

to obtain a single grid representing the complete geometry.

The grid for the Gurney flap simulations is generated by oversetting a U-shaped

microflap grid on the airfoil grid near the trailing-edge as shown in Fig. 2.3. The

Gurney flap is 1.5%c in height and is fixed at a location 6%c from the trailing-edge

of the airfoil. The surface representing the airfoil and the microflap is set as an

adiabatic wall boundary for the simulations. Three candidate oscillating microflap

configurations are examined and compared in order to identify a configuration
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suitable for practical implementation in rotorcraft. The microflap height is set to

1.5%c in all the configurations. The first configuration consists of a microflap that

slides in and out of a cavity located at 6%c upstream from the sharp trailing-edge

of the airfoil, as shown in Fig. 2.4. The location of the microflap is chosen to be as

close to the trailing-edge as the thickness requirements permit. This configuration

is similar to that employed in Refs. 23 and 132. The grid for this configuration is

obtained by successive combination of several overset refinement grids for the mi-

croflap and the airfoil cavity housing the microflap. The first step of oversetting

creates a gap in the airfoil and in the next step the microflap grid is overset to fit

into the gap created in the airfoil as shown in Fig. 2.4. The second configuration

consists of a microflap that moves up and down behind the blunt trailing-edge of

the airfoil, shown in Fig. 2.5. The blunt trailing edge is created by removing the aft

portion of the airfoil such that there is enough space for accommodating the mi-

croflap when it is fully retracted. The third microflap configuration has a rotational

hinge at the trailing-edge and thus resembles a miniature plain flap, as shown in

Fig. 2.6. The total number of grid points for the three microflap configurations

depicted in Figs. 2.4, 2.5, and 2.6 is 120k, 138k and 124k, respectively.

For comparison purposes, computational studies were also conducted with a

20%c conventional plain flap. The details of the grid near the airfoil and the flap

are given in Fig. 2.7(a). The hinge gap is shown in Fig. 2.7(b). The flap is oscillating

about a hinge located at 0.80c. The nominal length of the flap is 0.225c, with a 0.005c

gap between the main airfoil and flap. The upper and lower surfaces of the main



37

Figure 2.2: C-grid around a plain NACA0012 airfoil.

Gurney flap

Figure 2.3: Overset grid showing the trailing-edge of a NACA0012 airfoil with a
1.5%c Gurney flap permanently attached at 6%c from the trailing-edge.
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Figure 2.4: Overset grid showing the trailing-edge of a NACA0012 airfoil with a
1.5%c microflap that can slide in and out of the gap located at 6%c from
the trailing-edge of the airfoil.

Figure 2.5: Overset grid showing a 1.5%c microflap that can slide up and down at
the blunt trailing-edge of a NACA0012 airfoil.
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Figure 2.6: Overset grid showing a 1.5%c microflap resembling a plain flap oscil-
lating at the trailing-edge of a NACA0012 airfoil.

(a) Airfoil and flap (b) Flap gap

Figure 2.7: Grid for the NACA0012 airfoil with a 20%c conventional plain flap.

airfoil extend aft in order to reduce the pressure losses between the upper and

lower surfaces, so that the effective length of the flap is 20% of the airfoil chord.

2.2 Gurney Flap Simulations

2.2.1 Grid refinement study

Grid refinement studies are performed first to examine the effect of grid reso-

lution on the CFD simulation results. Three different grids with varying levels of
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Number of Nodes Cl Cm Cd

α = 2◦, M = 0.1, Coarse 21540 0.2076 0.0023 0.0106
and Re = 2.1 x 106 Medium 55736 0.2156 0.0017 0.0095

Fine 122992 0.2156 0.0017 0.0095
α = 4◦, M = 0.3, Coarse 21540 0.4488 0.0031 0.0110

and Re = 6.3 x 106 Medium 55736 0.4583 0.0029 0.0084
Fine 122992 0.4586 0.0028 0.0084

Table 2.1: Grid refinement study for the plain NACA0012 airfoil at two different
flow conditions.

refinement are generated for the airfoil. The aerodynamic lift, moment, and drag

coefficients obtained from the various airfoil grids are listed in Table 2.1 for two

different flow conditions: 1) α = 2◦, M = 0.1, Re = 2.1 x 106 and 2) α = 4◦, M = 0.3,

Re = 6.3 x 106. The total number of nodes in each of the grids is also listed. The

aerodynamic load coefficients converge with increasing levels of grid refinement.

The medium refinement grid predicts the aerodynamic loads within 1% of those

predicted from the fine grid. Therefore, the medium airfoil grid is used for all the

subsequent simulations in this thesis. A similar study is performed for a 1.5%c

Gurney flap located at 6%c from the trailing-edge of the airfoil. The aerodynamic

lift, moment, and drag coefficients obtained from the Gurney flap grids with vary-

ing refinement are listed in Table 2.2. The medium refinement Gurney flap grid

predicts the aerodynamic loads within 1% of those predicted by the fine grid and

hence, it has been for all the simulations in this study.
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Number of Nodes Cl Cm Cd

α = 2◦, M = 0.1, Coarse 37890 0.5355 -0.0629 0.0167
and Re = 2.1 x 106 Medium 78056 0.5460 -0.0639 0.0151

Fine 101936 0.5454 -0.0637 0.0150
α = 4◦, M = 0.3, Coarse 37890 0.7888 -0.0639 0.0199

and Re = 6.3 x 106 Medium 78056 0.8258 -0.0700 0.0149
Fine 101936 0.8279 -0.0704 0.0148

Table 2.2: Grid refinement study for a 1.5%c Gurney flap located at 6%c from the
trailing-edge of a NACA0012 airfoil.

2.2.2 Validation of the CFD setup

The CFD setup is validated against experimental results presented in Ref. 75.

The experiments were performed on a NACA0012 airfoil section with a 1.5%c Gur-

ney flap located at 6%c from the trailing-edge. The free stream Mach number is 0.1

and the Reynolds number is 2.1 x 106. The experiments were conducted in the NF-

3 Low-speed Wind Tunnel at the Northwestern Polytechnical University of China.

The test-section of the wind tunnel is 8 m long with a constant height of 1.6 m

and a width of 3 m. The airfoil used in the experiments had a chord length of 1

m, spanning the 1.6 m height of the wind tunnel. The test-section turbulence in-

tensity level is estimated to be less than 0.45%. Turbulence intensity is defined as

u
′

U
where u′ is the root-mean-square of the turbulent velocity fluctuations and U is

the mean velocity. The turbulence intensity serves as a measure of the amount of

turbulence in the flow and is a user-prescribed parameter in the turbulence models

used in CFD++. The moment coefficient Cm is measured about the quarter chord

point which coincides with the aerodynamic center for the NACA0012 airfoil. The

stall angle is defined as the angle of attack where the lift coefficient attains its max-
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imum value. At high angles of attack the flow is unsteady due to flow separation

and vortex shedding resulting in time dependent aerodynamic loads. The mean

value of the aerodynamic coefficients is shown for all the results at high angles of

attack.

Lift coefficient Cl obtained from the experiments and the CFD code for a plain

airfoil and an airfoil with a Gurney flap is shown in Fig. 2.8. In the legend, ‘Exp’

refers to experimental results and ‘CFD’ refers to the computational results. The

computational results are shown for two different turbulence models namely, the

1-equation SA model (referred to as ‘SA’ in the legend) and the 2-equation k-ω SST

model (referred to as ‘SST’ in the legend). Also shown in Fig. 2.8 is the experi-

mental Cl curve for a plain NACA0012 airfoil obtained from the book Theory of

Wing Sections by Abbott and Doenhoff [1]. Attaching a Gurney flap to the airfoil

increases the Cl value by 25% at α = 0◦. The maximum Cl value is approximately

20% higher with the Gurney flap. The moment coefficient Cm obtained from ex-

periments and the CFD code for a plain airfoil and an airfoil with a Gurney flap

is shown in Fig. 2.9. The Gurney flap induces a negative pitching moment on

the airfoil. Flow behind the Gurney flap has low velocity and therefore a high

static pressure. The high static pressure combined with large moment arm near

the trailing-edge of the airfoil results in a negative pitching moment. It is evident

from Figs. 2.8 and 2.9 that the lift and moment predictions of the Gurney flap are

in reasonable agreement with the experiments for angles of attack less than 15◦.

In particular, the differences in the lift and moment due to the Gurney flap when
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compared to the clean airfoil are well captured by CFD. Note that the stall onset

angles predicted by CFD significantly exceed those obtained in the experiments,

for both the clean airfoil and the airfoil with the Gurney flap. The disagreement

in the stall onset predictions can be attributed to the limitations of the turbulence

model, as well as the fact that boundary layer transition is not considered in the

CFD calculations, where the boundary layer is assumed to be fully turbulent. It is

also important to note that the onset of stall is sensitive to factors such as freestream

turbulence level, airfoil skin roughness, etc., which are hard to measure. The lift

curve for a clean NACA0012 airfoil under similar flow conditions obtained from

another experiment [1] shows a stall onset angle closer to the CFD prediction. The

large variance in stall angle predictions from various experiments found in litera-

ture is an indication of the difficulties involved in modeling flow separation. Other

studies comparing experimental and computational aerodynamic coefficients of

airfoils with Gurney flaps have also shown discrepancies in the stall angle predic-

tion [59,121,127]. Note that the aerodynamic loads are relatively insensitive to the

choice of turbulence model at low angles of attack.

The drag coefficient Cd obtained from experiments and the CFD code for a plain

airfoil and an airfoil with a Gurney flap is shown in Fig. 2.10. Drag for the clean air-

foil is over-predicted by CFD for angles of attack less than 12◦, which is mainly due

to the fact that the boundary layer is assumed to be fully turbulent and no bound-

ary layer transition is considered in the CFD calculations. Drag over-prediction by

CFD when compared to experimental data was also noted in Ref. 66. The drag due
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Figure 2.8: Validation of the lift curve prediction for a NACA0012 airfoil with a
1.5%c Gurney flap located at 6%c from the trailing-edge. Lift curve is
also shown for a plain airfoil.
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Figure 2.9: Validation of the moment coefficient prediction for a NACA0012 airfoil
with a 1.5%c Gurney flap located at 6%c from the trailing-edge. Mo-
ment coefficient is also shown for a plain airfoil.
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to the 1.5%c Gurney flap predicted from the experiments does not show a smooth

variation with angle of attack. However, the computed drag due to the Gurney

flap is in reasonable agreement with the experimental predictions. Variation of the

lift-to-drag ratio with Cl is shown in Fig. 2.11. The Gurney flap has a beneficial

effect on the lift-to-drag ratio at high values of Cl, that is, around the stall region.

The maximum lift-to-drag ratio obtained with the 1.5%c Gurney flap is smaller

when compared to a plain NACA0012 airfoil. Experiments conducted in Ref. 134

observed an increase in the airfoil maximum lift-to-drag ratio due to a Gurney flap.

A Gurney flap smaller than 1%c was found to increase the maximum lift-to-drag

ratio [127]. Variation of the lift-to-drag ratio with angle of attack α is shown in

Fig. 2.12.

2.3 Oscillating Microflap Simulations

Various oscillating microflap configurations, described in Section 2.1, are stud-

ied using unsteady RANS simulations. In the computations, the flow is first al-

lowed to reach steady state before starting time-accurate simulations. The 2-equation

k-ω SST model is used for turbulence modeling. The time step used for the un-

steady simulations is 0.0001 sec and 5 sub-iterations were used in each global time

step in order to ensure convergence. The free stream Mach number is 0.5142 and

the Reynolds number is 3.36 x 106. These flow conditions correspond to 80% span

location on a MBB BO-105 helicopter rotor blade (dimensions listed in Table 2.3) in

hover.
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Figure 2.10: Validation of drag coefficient predictions for a NACA0012 airfoil with
a 1.5%c Gurney flap located at 6%c from the trailing-edge. Drag coef-
ficient is also shown for a plain airfoil.

Rotor Blade Data
R = 4.91 m
c = 0.27 m

Ω = 425 RPM
80% Span Location

M = 0.5142
Re = 3.36x106

2/rev ∼ 14 Hz

Table 2.3: Dimensions for a MBB BO-105 rotor blade.
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Figure 2.11: Lift-to-drag ratio vs Cl for a NACA0012 airfoil with a 1.5%c Gurney
flap located at 6%c from the trailing-edge.
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Figure 2.12: Lift-to-drag ratio vs α for a NACA0012 airfoil with a 1.5%c Gurney
flap located at 6%c from the trailing-edge.
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Computations are performed for frequencies ν = 14 and 28 Hz which approx-

imately correspond to the 2/rev and 4/rev rotor frequencies. The equivalent re-

duced frequencies are k = 0.0688 and 0.1376 based on the chord length of the airfoil

section. Note that the reduced frequency is defined as

k =
ωb

U
, (2.1)

where ω is the radian frequency, b = c
2

is the semi-chord, and U is the free-stream

velocity. The airfoil is set at 0◦ angle of attack.

2.3.1 Sharp trailing-edge configuration

The first configuration has a microflap oscillating in and out of the airfoil as

shown in Fig. 2.13. The microflap is 1.5%c in height and is located in a gap at 6%c

from trailing edge of the airfoil. The width of the gap is 0.6%c. The microflap

is 0.3%c wide and is centered in the gap. Microflap deflection δf at any given

instance in time is defined as the distance from the bottom surface of the flap to

the bottom surface of the airfoil as shown in Fig. 2.13. The deflection profile used

for the microflap is given by

δf = A sin(2πνt− π

2
) + A, (2.2)

⇐⇒ δf = A[1− cos(2πνt)], (2.3)
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where A = 0.75%c is the amplitude and ν is the frequency of oscillation. Equation

2.2 indicates that the microflap deflection profile is a sine waveform with a phase

shift of π
2

radians and an amplitude offset equal to A. The microflap starts from the

totally retracted position, δf = 0 and slides completely out of the gap to attain a

peak deflection of δf = 1.5%c. Time history of the microflap deflection δf given by

Eq. (2.2) is shown in Fig. 2.14 for ν = 14 Hz.

The lift coefficient is plotted against the non-dimensional reduced time t =

1
b

∫ t
0
U(τ)dτ and the microflap deflection δf in Figs. 2.15 and 2.16, respectively.

For comparison, all the figures in this section presenting unsteady aerodynamic

coefficients also show the static value of the coefficient with a fully deployed mi-

croflap indicated as ‘δf = 1.5%c’ and with a fully retracted microflap indicated as

‘δf = 0%c’. The peak value of Cl for ν = 14 Hz is approximately 27% less than

the Cl value obtained with a static microflap, indicating lift deficiency due to un-

steady effects. Amplitude of the lift coefficient decreases by 7% when ν increases

from 14 Hz to 28 Hz. The moment coefficient plotted against reduced time and the

microflap deflection is shown in Figs. 2.17 and 2.18, respectively. The peak value

of the unsteady moment coefficient is same as obtained with a static microflap im-

plying that the effect of the unsteady flow dynamics on the moment coefficient

is negligible. The drag coefficient plotted against reduced time and the microflap

deflection is shown in Figs. 2.19 and 2.20, respectively. The peak value of Cd for

ν = 14 Hz is 25% larger than the Cd value obtained using a static microflap, which

again is due to the unsteady flow effects. Amplitude of the drag coefficient in-
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Figure 2.13: An illustration of the sharp trailing-edge microflap configuration.

creases by 5% when ν increases from 14 Hz to 28 Hz. As evident from Figs. 2.16,

2.18, and 2.20, the aerodynamic load responses to the microflap’s motion are not

simple harmonic. This is because the flow takes time to turn around the trailing-

edge and form a vortex behind the microflap as it is sliding out. Consequently, the

variation in the aerodynamic loads when the microflap is sliding out is sluggish

compared to when the microflap is sliding in.

2.3.2 Blunt trailing-edge configuration

The second configuration has a microflap oscillating behind the trailing-edge

of a NACA0012 airfoil as shown in Fig. 2.21. The blunt trailing-edge is created by

removing a part of the aft portion of the airfoil. The microflap can be deflected both

up and down from the neutral starting position. For comparison with the sharp
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Figure 2.14: Time history of the microflap deflection given by (2.2) for ν = 14 Hz.
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Figure 2.15: Unsteady lift coefficient versus reduced time for a NACA0012 airfoil
with a 1.5%c microflap oscillating at 6%c from the trailing-edge. The
free stream Mach number and Reynolds number are 0.5142 and 3.36 x
106, respectively.
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Figure 2.16: Unsteady lift coefficient versus microflap deflection for a NACA0012
airfoil with a 1.5%c microflap oscillating at 6%c from the trailing-edge.
The free stream Mach number and Reynolds number are 0.5142 and
3.36 x 106, respectively.
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Figure 2.17: Unsteady moment coefficient versus reduced time for a NACA0012
airfoil with a 1.5%c microflap oscillating at 6%c from the trailing-edge.
The free stream Mach number and Reynolds number are 0.5142 and
3.36 x 106, respectively.
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Figure 2.18: Unsteady moment coefficient versus microflap deflection for a
NACA0012 airfoil with a 1.5%c microflap oscillating at 6%c from the
trailing-edge. The free stream Mach number and Reynolds number
are 0.5142 and 3.36 x 106, respectively.
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Figure 2.19: Unsteady drag coefficient versus reduced time for a NACA0012 airfoil
with a 1.5%c microflap oscillating at 6%c from the trailing-edge. The
free stream Mach number and Reynolds number are 0.5142 and 3.36 x
106, respectively.
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Figure 2.20: Unsteady drag coefficient versus microflap deflection for a
NACA0012 airfoil with a 1.5%c microflap oscillating at 6%c from the
trailing-edge. The free stream Mach number and Reynolds number
are 0.5142 and 3.36 x 106, respectively.

trailing-edge configuration, the simulations were performed only with downward

deflection of the microflap. The flow conditions, the time step settings, and the

microflap deflection time histories are identical to those used for the sharp trailing-

edge configuration.

The lift coefficient is plotted against the non-dimensional reduced time t and

the microflap deflection δf in Figures 2.22 and 2.23, respectively. The peak value

of Cl for ν = 14 Hz is approximately 10% less than the Cl value obtained with

a static microflap fully deployed at the blunt trailing-edge. Amplitude of the lift

coefficient decreases by 7% when ν increases from 14 Hz to 28 Hz. The moment

coefficient plotted against reduced time is shown in Fig. 2.24. The frequency of

the microflap oscillation has a negligible effect on the peak value of the moment
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Figure 2.21: An illustration of an oscillating microflap at a blunt trailing-edge of a
NACA0012 airfoil.

coefficient. The drag coefficient is plotted against reduced time and the microflap

deflection δf in Figures 2.25 and 2.26, respectively. The peak value of Cd for ν = 14

Hz is 10% larger than the Cd value obtained using a static microflap, which again

is due to the unsteady flow effects. Amplitude of the drag coefficient increases by

3% when ν increases from 14 Hz to 28 Hz. Overall, the observations are similar to

those made for the sharp trailing-edge configuration.

2.3.3 Plain microflap configuration

The third microflap configuration, shown in Fig. 2.27, resembles a conventional

plain flap. For the purpose of comparison, simulations are conducted with the

microflap deflecting downward only, that is, between δf = 0◦ and δf = 90◦. The
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Figure 2.22: Unsteady lift coefficient versus reduced time for a NACA0012 air-
foil with a blunt trailing-edge and a 1.5%c microflap oscillating at the
trailing-edge.
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Figure 2.23: Unsteady lift coefficient versus microflap deflection for a NACA0012
airfoil with a blunt trailing-edge and a 1.5%c microflap oscillating at
the trailing-edge.
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Figure 2.24: Unsteady moment coefficient versus reduced time for a NACA0012
airfoil with a blunt trailing-edge and a 1.5%c microflap oscillating at
the trailing-edge.
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Figure 2.25: Unsteady drag coefficient versus reduced time for a NACA0012 air-
foil with a blunt trailing-edge and a 1.5%c microflap oscillating at the
trailing-edge.
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Figure 2.26: Unsteady drag coefficient versus microflap deflection for a
NACA0012 airfoil with a blunt trailing-edge and a 1.5%c microflap
oscillating at the trailing-edge.

flow conditions and time-step settings are identical to those used for the previous

two configurations.

The lift coefficient is plotted against the non-dimensional reduced time t in

Fig. 2.28. The peak value of Cl for ν = 14 Hz is approximately 5% less than the

Cl value obtained with a static microflap fully deployed. Amplitude of the lift

coefficient decreases by about 5% when ν increases from 14 Hz to 28 Hz. The mo-

ment coefficient plotted against reduced time is shown in Fig. 2.29. The frequency

of the microflap oscillation does not show a significant effect on the peak value

of the moment coefficient. The drag coefficient is plotted against reduced time in

Fig. 2.30. The peak value of Cd for ν = 14 Hz is 20% higher than the Cd value

obtained using a static microflap.
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Figure 2.27: An illustration of an oscillating microflap resembling a plain flap on a
NACA0012 airfoil.
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Figure 2.28: Unsteady lift coefficient versus reduced time for a NACA0012 airfoil
with an oscillating 1.5%c plain microflap. The free stream Mach num-
ber and Reynolds number are 0.5142 and 3.36 x 106, respectively.
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Figure 2.29: Unsteady moment coefficient versus reduced time for a NACA0012
airfoil with an oscillating 1.5%c plain microflap. The free stream Mach
number and Reynolds number are 0.5142 and 3.36 x 106, respectively.
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Figure 2.30: Unsteady drag coefficient versus reduced time for a NACA0012 air-
foil with an oscillating 1.5%c plain microflap. The free stream Mach
number and Reynolds number are 0.5142 and 3.36 x 106, respectively.
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2.3.4 Comparison between the three microflap configurations

The three different microflap configurations discussed in the previous sections

are compared in terms of their aerodynamic effectiveness. The unsteady lift co-

efficients corresponding to the three oscillating microflap configurations are com-

pared in Fig. 2.31 for ν = 14 Hz. The peak lift on the airfoil with a blunt trailing-

edge is 20% less than the airfoil with a sharp trailing-edge. The lift coefficient

for the airfoil with a plain microflap is same as that for the airfoil with a blunt

trailing-edge at all times except at the maximum deflection position where the

plain microflap generates a 25% smaller lift coefficient. The reason for the decrease

in the peak lift coefficient is that the plain microflap when deflected by 90◦ is not

completely exposed to the oncoming flow thus decreasing its effective size. The

similarity between the sliding microflap at the blunt trailing-edge and the plain

microflap configurations is not surprising since the comparison is done using a

symmetric airfoil at α = 0◦. The plain microflap when deflected by 90◦ has the

same effects on the flow as a sliding microflap placed at a blunt trailing-edge, the

only difference being the thickness of the blunt trailing-edge which has an effect

on the drag acting on the airfoil. The time-histories of the lift-to-drag ratios cor-

responding to the three oscillating microflap configurations are compared in Fig.

2.32. The configuration with a sharp trailing edge yields the best lift-to-drag ratio,

followed by the plain microflap and the blunt trailing-edge configurations, in that

order. The unsteady moment coefficients corresponding to the three oscillating

microflap configurations are compared in Fig. 2.33. The sharp trailing-edge con-
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Figure 2.31: Comparison of the unsteady lift coefficient obtained for three different
microflap configurations on a NACA0012 airfoil. All the three config-
urations are equipped with a 1.5%c microflap. M = 0.5142, ν = 14 Hz,
and Re = 3.36 x 106.

figuration generates about 16% higher pitch-down moment when fully deployed

compared to the other two configurations.

Similar comparisons are performed at a non-zero angle of attack α = 6◦ and

ν = 14 Hz, where the flow conditions are similar to the earlier simulations. The

unsteady lift coefficients corresponding to the three oscillating microflap config-

urations are compared in Fig. 2.34. The sharp trailing-edge configuration gener-

ates approximately 10% higher lift compared to the plain microflap and approx-

imately 13% higher lift compared to the blunt trailing-edge configuration. The

time-histories of the lift-to-drag ratios corresponding to the three oscillating mi-

croflap configurations at α = 6◦ are compared in Fig. 2.35. The plain microflap

yields a lift-to-drag ratio similar to the sharp trailing-edge configuration. The
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Figure 2.32: Comparison of lift-to-drag ratio obtained for three different microflap
configurations on a NACA0012 airfoil. All the three configurations
are equipped with a 1.5%c microflap. M = 0.5142, ν = 14 Hz, and
Re = 3.36 x 106.
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Figure 2.33: Comparison of the unsteady moment coefficient obtained for three
different microflap configurations on a NACA0012 airfoil. All the
three configurations are equipped with a 1.5%c microflap. M =
0.5142, ν = 14 Hz, and Re = 3.36 x 106.
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Figure 2.34: Comparison of lift coefficients corresponding to three different mi-
croflap configurations on a NACA0012 airfoil at α = 6◦. All the three
configurations are equipped with a 1.5%c microflap. M = 0.5142,
ν = 14 Hz, and Re = 3.36 x 106.

peak lift-to-drag ratio generated by the blunt trailing-edge configuration is approx-

imately 30% less compared to the other two configurations. From an implementa-

tion point of view, the blunt trailing edge configuration may be the most feasible,

followed by the sharp trailing-edge and the plain microflap configurations. Prac-

tical implementation of the plain microflap configuration on a rotor blade can be

very difficult due to the stringent size limitations on the actuator and hinge setup.

Overall, the sharp trailing-edge configuration is a good compromise between the

aerodynamic benefits and the ease of implementation.

In order to provide an insight into the flow features behind an oscillating mi-

croflap, the pressure contour plot near the trailing edge of the airfoil is shown in

Fig. 2.36 along with the evolution of streamlines during one cycle of microflap os-
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Figure 2.35: Comparison of lift-to-drag ratio obtained for three different microflap
configurations on a NACA0012 airfoil at α = 6◦. All the three configu-
rations are equipped with a 1.5%c microflap. M = 0.5142, ν = 14 Hz,
and Re = 3.36 x 106.

cillation. The plain microflap configuration is used. Figure 2.36 clearly illustrates

the development of the vortical structure behind the microflap which consists of

two counter-rotating vortices when the microflap is fully deployed, and the pattern

displayed in Fig. 2.36(b) is similar to that found on static Gurney flaps [59, 60].

2.3.5 Hinge Moment Comparison

One of the primary advantages of using the microflap for active control appli-

cations is the relatively low actuation power required for its deployment. In order

to illustrate this, torque required to actuate a 1.5%c sliding sharp trailing-edge mi-

croflap using a lever arm (hinged at 75% chordwise location as shown in Fig. 2.37)

is compared to the torque required to actuate a 20%c conventional plain flap. The
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Figure 2.36: Pressure contours and streamlines showing evolution of vortical struc-
ture during one cycle of oscillation behind the plain microflap at M =
0.51 and α = 0◦.
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Figure 2.37: An illustration of microflap actuation using a lever arm.
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Figure 2.38: Unsteady hinge moments corresponding to a 1.5%c sharp trailing-
edge microflap and a 20%c plain flap. The free stream Mach number
and Reynolds number are 0.5142 and 3.36 x 106, respectively.

plain flap is deflected between ±4◦ about a hinge located at 80% chordwise lo-

cation. The unsteady hinge moments corresponding to oscillating microflap and

plain flap are compared in Fig. 2.38 for M = 0.5142, Re = 3.36 x 106, and ν = 14

Hz. The hinge moment required to actuate the microflap is approximately 7 times

lower compared to the plain flap.



CHAPTER III

A NONLINEAR UNSTEADY REDUCED-ORDER

AERODYNAMIC MODEL

The importance of arbitrary motion unsteady aerodynamic models for accu-

rate rotary-wing aeroelastic analysis is well discussed [42]. Two-dimensional un-

steady aerodynamic theories such as Greenberg’s theory, provide analytic expres-

sions for the unsteady loads on a moving airfoil, but are usually based on the

assumption of simple harmonic motion of the airfoil. These aerodynamic mod-

els are not expressed in a form directly compatible with the structural equations

of motion which are usually expressed in the state variable form or as Laplace

transforms. To overcome this issue, the rational function approximation (RFA) has

been used to generate Laplace transform or state space representations of unsteady

aerodynamic models based on oscillatory response data [35, 64, 110, 136, 137]. An

RFA based state-space, time domain unsteady aerodynamic model that accounts

for unsteady free-stream and compressibility effects was first developed and used

for rotary-wing applications by Myrtle and Friedmann [92]. A two-dimensional

69
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doublet-lattice (DL) method was used to obtain unsteady aerodynamic loading on

an airfoil/trailing-edge flap combination over a range of reduced frequencies. Sub-

sequently, the RFA approach was used to convert the frequency domain aerody-

namic loads into the time domain. The resulting aerodynamic model, denoted here

as the RFA model, is an unsteady, compressible state-space aerodynamic model,

which has several important features: 1) it allows a convenient combination of the

aerodynamics with the structural dynamic model; 2) it facilitates direct numeri-

cal integration for solving the combined system, which is governed by equations

with periodic coefficients; and 3) it provides a degree of computational efficiency

required for the study of active control devices such as conventional trailing-edge

flaps. The RFA model was also incorporated into the comprehensive rotorcraft

simulation code AVINOR. The code has been extensively used to examine the ef-

fect of active flaps on helicopter vibration and noise reduction as well as perfor-

mance enhancement [44, 79, 102].

The DL method is based on linear potential flow theory and thus cannot predict

the drag coefficient or account for the airfoil thickness effects. Furthermore, the

flow characteristics behind a deployed microflap, which are dominated by viscous

effects, cannot be determined by the DL method. These limitations are overcome

in the present study by using a compressible unsteady RANS CFD solver to gen-

erate the frequency domain unsteady aerodynamic loads. These CFD based loads

replace the DL based frequency domain unsteady loads used in earlier studies.
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3.1 Description of the RFA Model

The RFA model developed in Ref. 92 is based on a Laplace domain represen-

tation of generalized aerodynamic load responses to generalized motions given

by

G(s̄) = Q(s̄)H(s̄), (3.1)

where G(s̄) and H(s̄) represent Laplace transforms of the generalized aerodynamic

load and motion vectors, respectively. A schematic description of the original

doublet-lattice based RFA model is shown in Fig. 3.1. The aerodynamic transfer

function matrix Q(s̄) is approximated as

Q̃(s̄) = C0 + C1s̄+

nL∑
n=1

s̄

s̄+ γn
Cn+1. (3.2)

where Q̃(s̄) is a rational function approximation of Q(s̄). Equation (3.2) is usually

referred to as the Roger’s approximation [110] and the nL terms in the summation

are referred to as the aerodynamic lag terms. The poles γ1, γ2, ..., γnL are chosen

to be real and positive valued to ensure stability of the model. General guidelines

for pole placement based on Bode plot methods will be discussed in the next sec-

tion. The coefficient matrices C0,C1, . . . ,Cn+1 in Eq. (3.2) are evaluated using least

squares methods to provide the best fit for a given frequency domain aerodynamic
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Figure 3.1: A schematic description of the original doublet lattice based RFA
model.
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response data, represented as

Q(ıkm), m = 1, . . . , nd, (3.3)

where km represents the reduced frequency value at which aerodynamic response

data is provided and nd is the number of such reduced frequency values. The RFA

model can be constrained at particular frequencies where an improved accuracy

is desired. In the current model, a constraint is imposed at k = 0 to recover the

steady state response by setting

Q̃(0) = C0 = Q(0). (3.4)

Thus C0 represents the generalized load response to a static variation in the gen-

eralized motion. The fitting method used to determine the coefficients in the RFA

approximation is similar to that described in Ref. 91. The first step is to replace the

non-dimensional Laplace variable s̄ in the Roger’s approximation by ık,

Q̃(ık) = C0 + C1ık +

nL∑
n=1

ık

ık + γn
Cn+1. (3.5)

Using the relation

ık

(ık + γn)
=
k2 + ıkγn
(γ2
n + k2)

, (3.6)
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and the aerodynamic load responses given in Eq. (3.3), a set of algebraic equations

corresponding to the ith generalized load and the jth generalized motion are ob-

tained

 0 k2m
k2m+γ21

· · · k2m
k2m+γ2nL

km
kmγ1
k2m+γ21

· · · kmγnL
k2m+γ2nL




(C1)ij

...

(CnL+1)ij


=


Re[Qij(ıkm)]−Qij(0)

Im[Qij(ıkm)]

 , (3.7)

which can be expressed as

l(km)c = r(km), (3.8)

where,

l(km) =

 0 k2m
k2m+γ21

· · · k2m
k2m+γ2nL

km
kmγ1
k2m+γ21

· · · kmγnL
k2m+γ2nL

 , c =


(C1)ij

...

(CnL+1)ij


, and (3.9)

r(km) =


Re[Qij(ıkm)]−Qij(0)

Im[Qij(ıkm)]

 . (3.10)

The curly braces are used to represent a vector whereas the square braces are used

to represent a matrix. Equation (3.7) is generated for all the nd frequency values at
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which aerodynamic load response data is available, thus,



l(k1)

l(k2)

...

l(knd)


{c} =



r(k1)

r(k2)

...

r(knd)


. (3.11)

The coefficients in c are solved for using least squares methods. This process is

repeated for every generalized load corresponding to each generalized motion.

A two-dimensional unsteady aerodynamic model for rotary-wing applications

needs to have the capability to accurately model the response to arbitrary pitch and

plunge motions in an unsteady freestream. For the RFA model used in this study,

an orthogonal set of normal velocity distributions on the airfoil chord are selected

such that a linear combination of these normal velocity modes can completely de-

scribe the boundary conditions at the airfoil surface due to arbitrary pitching and

plunging motion of the airfoil and unsteady freestream. Following the approach

used in Ref. 92, arbitrary motion of an airfoil and trailing-edge flap combination

can be represented by four generalized motions shown in Fig. 3.2. These normal

velocity distributions correspond to two generalized airfoil motions (denoted by

W0 and W1) and two generalized flap motions (denoted by D0 and D1). The gener-

alized airfoil motions are assigned magnitudes equal to the normal velocity at the

3/4 chord and can be expressed in terms of the classical pitch and plunge modes
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Figure 3.2: Normal velocity distribution corresponding to generalized airfoil and
flap motions.
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Figure 3.3: Airfoil undergoing pitching and plunging motion.

α and h, depicted in Fig. 3.3, as

W0 = Uα + ḣ, (3.12)

W1 = bα̇. (3.13)

In order to find the Least Squares approximations for the coefficient matrices

C0,C1, . . . ,Cn+1 in Eq. (3.2), aerodynamic frequency response data Q(km) cor-

responding to each of the four generalized motions must be obtained. In the orig-
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inal RFA implementation, the oscillatory airloads in the frequency domain were

obtained from a two-dimensional doublet lattice (DL) solution [109] of Possio’s

integral equation [12] which relates the normal velocity distribution w̄(x) on the

surface of an oscillating airfoil to the surface pressure distribution p̄(x) as

w̄(x) =
1

8π

∫ 1

−1

p̄(ζ)Kp(M,x− ζ)dζ, (3.14)

where kernel Kp is given by:

Kp(M,x) =
πk

β
e−ikx

{
ekx/β

2

(
M
|x|
x
H

(2)
1 (Mk|x|/β2)−H(2)

0 (Mk|x|/β2)

)
+
i2β

π
log(

1 + β

M
) + iβ2

∫ kx/β2

0

kx

2β2
eiuH

(2)
0 (M |u|)du

}
. (3.15)

Approximate solutions for p̄ were obtained from Eq. (3.14) for a given normal ve-

locity distribution w̄ using the doublet lattice method. This approach was found

to be very efficient for generating a set of aerodynamic response data for the gen-

eralized motions of airfoil/flap combination. The frequency domain information

was generated for an appropriate set of reduced frequencies and Mach numbers,

corresponding to the unsteady flow conditions encountered on a given rotor.

To derive a state space representation of the RFA aerodynamic model, a gener-
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alized motion vector h and a generalized load vector f are defined as:

h =



W0

W1

D0

D1


and f =


Cl

Cm

Chm


. (3.16)

These vectors are related to the generalized motions and the generalized forces in

the Laplace transform representation, given in Eq. (3.1), as follows:

G(s̄) = L[f(t̄)U(t̄)] and H(s̄) = L[h(t̄)], (3.17)

where reduced time t̄ = 1
b

∫ t
0
U(τ)dτ , interpreted as the distance traveled by the

airfoil measured in semi-chords, is used in order to properly account for the un-

steady freestream effects [92]. Finally, the rational function Q̃ in Eq. (3.2) can be

transformed to the time domain using inverse Laplace transform, which yields the

final form of the state space model,

ẋ(t) =
U(t)

b
Rx(t) + Eḣ(t), (3.18)

f(t) =
1

U(t)

(
C0h(t) + C1

b

U(t)
ḣ(t) + Dx(t)

)
. (3.19)
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where

D =

[
I I . . . I

]
,R = −



γ1I

γ2I

. . .

γnLI


,

E =



C2

C3

...

CnL+1


,

and I is an identity matrix with size equal to the number of generalized forces.

Note that the relation d
dt̄

= b
U(t)

d
dt

can be used to switch between the independent

variables t and t̄. The vector x(t) has 3nL elements which are referred to as the

aerodynamic states of the model.

3.2 A CFD-based RFA Model

The DL method is based on linear potential flow theory; as a result, the RFA

model constructed based on oscillatory responses generated using the DL method

is no longer valid when significant flow nonlinearities associated with viscous ef-

fects or shock wave formation are present. As mentioned earlier, flow character-

istics of a fully deployed microflap are governed by viscous effects and therefore

cannot be predicted from the DL method. Furthermore, unsteady drag due to the
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Figure 3.4: A schematic description of the new CFD based RFA model.

microflap motion, which is important for estimating the performance penalty due

to such devices, cannot be obtained from potential flow theory. Therefore, in or-

der to construct a ROM for the microflap, the frequency domain solutions required

for the construction of the RFA model are obtained from a compressible unsteady

RANS solver, CFD++. A schematic description of the new CFD based RFA model

is shown in Fig. 3.4. When using this approach the generalized load vector f is
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written as

f =



Cl

Cm

Cd

Chm


(3.20)

The hinge moment as defined for a regular flap is not applicable for the microflap.

The actuation power required to deploy the microflap is a function of the vertical

force exerted by the flow on the bottom surface of the microflap. The CFD simula-

tions have indicated that this force is negligible and therefore it is not considered

in the aerodynamic model.

The description of the airfoil motion is based on the two generalized airfoil mo-

tions represented by W0 and W1 and is identical to that used in the original RFA

model. The two generalized flap motions, D0 and D1, that were used in the origi-

nal RFA model are valid when constructing the CFD based RFA model for a con-

ventional plain flap. However, for the microflap, these normal velocity distribu-

tions are no longer meaningful; therefore, the microflap is simply characterized by

one generalized motion, namely, the deflection δf , where the deflection represents

the deployment amplitude. The generalized motion D1, used in the original RFA

model to describe the motion of conventional flaps, is not used when constructing

the CFD based RFA model for a microflap. This is justified because the general-

ized motion D1 primarily represents the apparent mass effect, which is found to be
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insignificant for the microflap in the CFD simulations. Therefore, the generalized

motion vector h for the microflap is expressed as

h =


W0

W1

D0


(3.21)

where

D0 = δf (3.22)

3.2.1 Model scheduling and interpolation

In order to account for flow nonlinearities encountered at high Mach numbers,

large angles of attack, and large amplitudes of microflap deflection, the RFA model

is modified using a technique referred to as model scheduling [4]. This procedure re-

sembles the gain scheduling approach commonly used in nonlinear control system

design [4, 72]. In this approach the different sets of RFA coefficients are generated

at appropriate combinations of the Mach number, angle of attack, and microflap

deflection. Specifically, the RFA model is modified by allowing the coefficient ma-

trices in the time domain RFA model, R,E,C0,C1, . . . ,CnL+1 to vary with M , α,
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and δf . The resulting state space model in the time domain can be written as

ẋ(t) =
U(t)

b
R(M,α, δf )x(t) + E(M,α, δf )ḣ(t),

f(t) =
1

U(t)

(
C0(M,α, δf )h(t)

+ C1(M,α, δf )
b

U(t)
ḣ(t) + Dx(t)

)
.

(3.23)

Coefficients of the RFA model are evaluated at various flow conditions (com-

binations of M , α, and δf values) and then a two-dimensional shape-preserving

piecewise cubic Hermite polynomial interpolation scheme [13, 63, 106] is used to

evaluate the coefficients at intermediate flow conditions. To illustrate this interpo-

lation scheme, consider a set of data points (x1, y1), (x2, y2), . . . , (xn, yn) that satisfy

a nonlinear function y = f(x). Let hk denote the kth interval

hk = xk+1 − xk. (3.24)

The corresponding divided difference is defined as

δk =
yk+1 − yk

hk
. (3.25)

Consider the following cubic function over the interval xk ≤ x ≤ xk+1, expressed

in terms of local variables s = x− xk and h = hk

P (x) =
3hs2 − 2s3

h3
yk+1 +

h3 − 3hs2 + 2s3

h3
yk +

s2(s− h)

h2
dk+1 +

s(s− h)2

h2
dk. (3.26)
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The polynomial P (x) satisfies four interpolation conditions, two corresponding to

the function values and two corresponding to the derivative values:

P (xk) = yk, P (xk+1) = yk+1, (3.27)

P ′(xk) = dk, P
′(xk+1) = dk+1. (3.28)

Interpolating functions that satisfy conditions on the function values as well as

the derivatives are known as Hermite interpolants. If the derivative values are

not provided, the slopes dk can be defined. For the shape-preserving piecewise

cubic Hermite polynomial interpolation scheme, the slopes dk are defined so that

the interpolation error is minimized at the given data points. As illustrated in

Fig. 3.5(a), if the divided differences δk and δk−1 have opposite signs or if either of

them is zero, implying that xk is a local minimum or maximum, then,

dk = 0. (3.29)

The solid curved line in Fig. 3.5(a) is the shape-preserving interpolating polyno-

mial, formed from two different cubic polynomials. The two cubic polynomials

have a derivative equal to 0 at x = xk. If δk and δk−1 have the same sign, as il-

lustrated in Fig. 3.5(b), then the slope dk is defined as the harmonic mean of the

divided differences:

1

dk
=

1

2
(

1

δk−1

+
1

δk
). (3.30)
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Figure 3.5: An illustration of the shape-preserving piecewise cubic Hermite poly-
nomial interpolation scheme.

The solid curved line in Fig. 3.5(b) is the shape-preserving interpolating polyno-

mial, formed from two different cubic polynomials. The two cubic polynomials

have a derivative equal to dk at x = xk.

3.2.2 Pole placement

In the original RFA model, locations of the poles (represented by γ1, γ2, ..., γnL in

Eq. 3.2) were not considered to be critical for an accurate approximation [91]. The

poles were assigned certain initial values and a standard numerical optimization

routine was used to adjust the pole locations such that the fitting error is mini-

mized. The initial values of the poles have a significant influence on the final val-

ues of the poles obtained from the optimization routine. How these initial values

were determined was not clear.

The pole locations can have a significant effect on the accuracy of the RFA ap-

proximation and choosing the pole locations appropriately can help improve ac-
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curacy without having to increase the order of the reduced order model. Insights

from the standard Bode plot design techniques [41] used in control systems design

and analysis can be helpful in determining appropriate pole locations for the RFA

aerodynamic model. Bode plot techniques were used in Ref. 136 to construct finite

state approximations to Loewy’s lift deficiency function, which is the rotary-wing

counterpart of Theodorsen’s lift deficiency function. The standard representation

of a Bode plot consists of logarithmic magnitude of a transfer function G(ω) in

decibels, where |G(ω)|dB = 20 log10 |G(ω)|, and the phase of the transfer function

plotted against frequency ω.

For the purpose of illustration, consider a transfer function G(ω) = ω+1
ω+0.1

. The

Bode magnitude and phase plots for G(ω) are shown in Fig. 3.6 (note that a a log-

arithmic scale is used to represent frequency ω on the horizontal axis). Around the

frequency value 0.1 rad/sec, the slope of the Bode magnitude plot changes from

0 db/decade to -20 db/decade, indicating the presence of a real pole at 0.1 in the

transfer function. At frequency 1 rad/sec, the slope of the Bode magnitude plot

changes from -20 db/decade to 0 db/decade, indicating the presence of a real zero

at 1 in the transfer function. The frequencies at which the Bode magnitude plot

undergoes a change in slope are referred to as corner frequencies. These frequen-

cies correspond to the pole and zero locations in the transfer function. The corner

frequencies also mark changes in slope of the Bode phase plot. Thus, the loca-

tions of the poles and zeros have a significant influence on the overall shape and

orientation of the Bode plots.
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.

To illustrate the effect of pole locations in the RFA model, the CFD based RFA

approximation is constructed using two different sets of poles, listed in Table 3.1,

for a sinusoidal pitching motion of the airfoil with amplitude 1◦ at M = 0.3 and

α = 2◦. The Cl amplitude and phase response corresponding to various reduced

frequencies obtained from CFD simulations and the two CFD based RFA approx-

imations are compared are shown in Fig. 3.7. The CFD data is generated over the

reduced frequency range 0.02-0.2. The RFA approximation in Fig. 3.7(a) is based on

the 7 poles in Set 1 whereas the approximation in Fig. 3.7(b) is based on the 7 poles

in Set 2. The poles in Set 2 were calculated by the optimization routine in the code.

The first set which has all the poles located close to the frequency range of interest

(0.02 rad/sec - 0.2 rad/sec) clearly yields an accurate approximation compared to
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Set 1 Set 2
0.0100000 0.0532568

0.0150000 1.3066788

0.0560000 2.9389403

0.0920000 5.2245369

0.1280000 8.1632758

0.1640000 11.7551047

0.3500000 16.0000008

Table 3.1: Two sets of poles used to demonstrated the effect of pole locations on the
accuracy of the RFA model.

the second set which has only one pole in the frequency range 0.02 rad/sec - 0.2

rad/sec.

Based on this illustration, one can conclude that placing poles close to the fre-

quency range being modeled is beneficial for obtaining an accurate RFA approxi-

mation. In the current study, poles are evenly distributed over the relevant reduced

frequency range 0.02 rad/sec - 0.2 rad/sec. In order to accurately capture the fre-

quency response at the edges of the relevant frequency range, poles are placed at

0.015 and 0.35. As mentioned earlier, the RFA model is constrained at k = 0 in

order to recover the steady state value. For high angles of attack, difference in the

magnitude of steady state aerodynamic loads corresponding to k = 0 and the un-

steady aerodynamic load amplitudes at reduced frequency k = 0.02 is significant.

To capture this transition, an additional pole is placed at 0.01. Moving the pole
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Figure 3.7: Comparison of Cl frequency response to a sinusoidal pitching motion of
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0.3 and α = 2◦.
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too close to 0 should be avoided since it reduces the damping in the model and

increases the settling time.

3.3 Constructing the CFD-based RFA Model

Procedure used for constructing the CFD-based RFA model is described in this

section. Based on the studies described in Chapter II, the sharp trailing-edge mi-

croflap configuration with a 1.5%c microflap, shown in Fig. 2.13, was selected as

the basic configuration. In order to generate a reduced order model that can repre-

sent the entire range of flow conditions encountered by the rotor blades at various

advance ratios, CFD based aerodynamic load responses to various generalized mo-

tions are obtained for Mach number range 0.05 to 0.8 with an increment of 0.05 and

an angle of attack range−2◦ to 15◦ with an increment of 1◦. At each flow condition

defined by the free stream Mach number and the airfoil mean angle of attack, sim-

ulations are performed to generate frequency domain load responses for reduced

frequency values ranging from 0.02 to 0.2 with an increment of 0.02. Note that the

5/rev frequency, which is the highest actuation frequency used for vibration re-

duction in this study, corresponds to a reduced frequency value of approximately

0.18 based on the average local freestream velocity for a blade section at 0.75R span

location. A 1◦ oscillation amplitude is used for the generalized motionsW0 andW1.

In the case of a conventional plain flap, a 1◦ flap deflection amplitude is used for the

D0 and D1 generalized motions and for the microflap, 1.5%c flap deflection ampli-

tude is used for the D0 generalized motion. Each simulation is run for 4 complete
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oscillation cycles with 400 time steps in each cycle. Some transients are observed

during the first cycle but a periodic steady state response is achieved by the third

cycle. Sensitivity of the aerodynamic load predictions to the number of time steps

used in each cycle was examined at Mach number M = 0.6 and static airfoil angle

of attack α = 5◦. The Cl amplitude predictions corresponding to various number

of time steps are shown in Fig. 3.8 for the W0 generalized motion. The predictions

converge with increasing number of time steps. A good compromise between the

accuracy of the aerodynamic load predictions and the computational time require-

ments can be obtained when using 400 time steps per cycle. Each simulation takes

approximately 45 minutes to finish when run using 4 Intel 2.6 GHz Xeon parallel

processors. The aerodynamic load response data obtained from CFD is processed

using the FFT (Fast Fourier Transform) tool in MATLAB. The frequency domain

data thus obtained is tabulated and used to generate the coefficients C0, C1, ... ,

CnL+1 in the RFA model (see Eq. 3.23). The dependence of the RFA coefficients on

the microflap deployment δf is not considered in this study. The Reynolds number

is 2.1 x 106 for all the simulations.

3.4 Verifications and Discussion

3.4.1 Verifications for the Microflap

In order to verify the reduced order aerodynamic model, predictions from the

CFD based RFA model are compared to direct CFD simulations at various reduced
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Figure 3.8: Cl amplitude corresponding to the W0 generalized motion predicted
using various number of time steps per cycle. Mach number M = 0.6
and static airfoil angle of attack α = 5◦.

frequencies and flow conditions. The microflap motion is given by Eq. (2.2) with A

= 0.75%c. In the figures, predictions from the CFD based RFA model are referred

to as the CFD+RFA model. The first set of results are generated at Mach number

M=0.6 and the airfoil angle of attack α = 0◦. Figures 3.9(a), 3.9(d), and 3.9(g)

show the unsteady lift variation corresponding to the microflap motion at reduced

frequencies 0.06, 0.1, and 0.2, respectively. The direct CFD results, indicated by

the circles, are compared to the CFD based RFA model predictions represented by

the full line. The agreement for all reduced frequencies shown is excellent and the

CFD based RFA model captures the unsteady lift deficiency effect as the reduced

frequency is increased from 0.06 to 0.2. Similarly, the unsteady moment is also

captured accurately by the CFD based RFA model, as shown in Figs. 3.9(b), 3.9(e),
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and 3.9(h). The unsteady drag predictions are compared in Figs. 3.9(c), 3.9(f), and

3.9(i). The unsteady drag predictions exhibit some error in the mean values (less

than 10%) when compared to the CFD calculations. This error in the mean value

predictions may be reduced by using more CFD fitting points when generating the

reduced order model. Nevertheless, it is evident from Fig. 3.9 that the oscillating

amplitudes of lift, moment and drag coefficients due to the microflap motion are

captured well.

Another set of results comparing the CFD based RFA model predictions to di-

rect CFD simulations at Mach numbers between 0.3-0.7 is shown in Fig. 3.10. The

airfoil angle of attack α = 5◦ and the microflap oscillating frequency is k = 0.1.

Again, excellent agreement is found between the model predictions and direct

CFD simulations. These comparisons indicate that the CFD based RFA model is

accurate for the range of Mach numbers examined.

The comparisons for the CFD based RFA model and direct CFD simulations at

airfoil angles of attack up to α = 10◦ are shown in Fig. 3.11, at M = 0.6 and k = 0.1.

It is evident from Fig. 3.11 that the reduced order model does not capture some

of the strong nonlinear effects in the unsteady responses due to substantial flow

separation, particularly at higher angles of attack α = 8◦ and 10◦. Nevertheless,

good agreement in the overall trend and reasonable estimates in the mean values

as well as oscillating magnitudes due to the microflap deflections are obtained.

Finally, comparisons of the ROM with direct CFD simulations conducted at

an unsteady flow condition, that is representative of rotorcraft aerodynamic en-
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vironment are shown in Fig. 3.12. The combined airfoil and microflap motion

corresponds to a typical section on a rotor blade, with the airfoil rotating about

the quarter chord and the microflap deflecting simultaneously. The unsteady mo-

tion time histories are plotted against the azimuth angle during one rotor revolu-

tion, shown in Figs. 3.12(a)-3.12(c). The overall airfoil pitching motion includes the

effect of geometric pitch setting (collective and blade pretwist), as well as 1/rev

cyclic pitch angles for rotor control, shown in Fig. 3.12(a). The microflap deflec-

tion consists of 2-5/rev harmonics (Fig. 3.12(b)), where each harmonic component

is randomly phased with the same peak-to-peak amplitude of 0.375%c. Further-

more, the simultaneous airfoil/microflap motion is subject to freestream veloc-

ity variations, shown in Fig. 3.12(c), representing the influence of helicopter for-

ward speed. The lift, moment and drag variations due to the combined motion are

shown in Figs. 3.12(d)-3.12(f). The baseline in Figs. 3.12(d)-3.12(f) denotes the case

in which the airfoil has a pitching motion given by Fig. 3.12(a) and is subject to the

freestream variation shown in Fig. 3.12(c), but without the microflap deflection,

which is intended to be used to identify the effects of the microflap deflection. As

can be seen from Fig. 3.12(d), the unsteady lift predictions from the ROM, with or

without microflap deflection, are in excellent agreement with the direct CFD cal-

culations. It is also evident from Fig. 3.12(e) that the moment predictions agree

quite well with the direct CFD results. The agreement in unsteady drag predic-

tions (Fig. 3.12(f)) is not as good compared to lift and moment; however, the effect

of the microflap on unsteady drag is captured, when comparing the unsteady drag

due to the microflap to the baseline.
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Overall, for a wide range of flow conditions representative of the operating con-

ditions encountered in rotorcraft applications, the CFD based RFA model for the

microflap provides excellent accuracy when compared to direct CFD calculations.

Furthermore, the ability of the CFD based model to account for unsteady drag is a

large improvement when compared to the original RFA model.

3.4.2 Verifications for a Conventional Plain Flap

In order to demonstrate the advantage of the new CFD based RFA model com-

pared to the original DL based RFA model, sectional airloads obtained using the

two models are compared to direct CFD computations. Since the DL based ROM

can not predict the aerodynamic loads due to a microflap, a 20%c conventional

plain flap configuration shown in Fig. 3.13 is used. In the figures illustrating the

aerodynamic comparisons, the new reduced order model developed in this study

using CFD data obtained from CFD++ is referred to as the CFD+RFA model. The

previous potential flow solver based RFA model is referred to as the DL+RFA

model. Oscillatory sectional aerodynamic loads on a NACA0012 airfoil at various

angles of attack and Mach numbers were calculated using these two ROMs and

compared to direct CFD simulations. The test cases were selected to be represen-

tative of the rotorcraft aerodynamic environment encountered by active flaps on

a full-scale vehicle. For an MBB BO-105 hingeless rotor configuration, which has

been widely used in the active flap studies conducted at the University of Michi-

gan (Ref. 102), the hover tip speed corresponds to M=0.64. Since the flap is most
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Figure 3.9: Unsteady load coefficients for an oscillating 1.5%c sharp TE microflap
with varying frequencies; α = 0◦ and M = 0.6.
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Figure 3.10: Unsteady load coefficients for an oscillating 1.5%c sharp TE microflap
with varying Mach numbers; α = 5◦ and k = 0.1.
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Figure 3.11: Unsteady load coefficients for an oscillating 1.5%c sharp TE microflap
with varying α; M = 0.6 and k = 0.1.



99

0 90 180 270 360
0

2

4

6

8

10

Azimuth (deg)

A
ng

le
 o

f a
tta

ck
, α

 (
de

g)

(a) angle of attack

0 90 180 270 360
0

0.5

1.0

1.5

2.0

Azimuth (deg)

M
ic

ro
fla

p 
de

fle
ct

io
n 

(%
c)

(b) microflap deflection

0 90 180 270 360
0.4

0.45

0.5

0.55

0.6

0.65

Azimuth (deg)

M
ac

h

(c) Mach number

0 90 180 270 360
0

0.5

1

1.5

Azimuth (deg)

C
l

 

 

CFD+RFA: MF
CFD: MF
CFD+RFA: Baseline
CFD: Baseline

(d) lift

0 90 180 270 360
−0.15

−0.1

−0.05

0

0.05

Azimuth (deg)

C
m

 

 

CFD+RFA: MF
CFD: MF
CFD+RFA: Baseline
CFD: Baseline

(e) moment

0 90 180 270 360
0

0.01

0.02

0.03

0.04

Azimuth (deg)

C
d

 

 

CFD+RFA: MF
CFD: MF
CFD+RFA: Baseline
CFD: Baseline

(f) drag

Figure 3.12: Comparison of ROM predictions to direct CFD results for a 1.5%c
sharp TE microflap deflecting with randomly generated multi-
harmonic motion, at varying angles of attack subject to freestream ve-
locity variations.
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Figure 3.13: A 20%c conventional plain flap configuration.

effective on the outboard portion of the blade (0.75-0.95R), the free stream Mach

number for the bulk of the study was chosen as 0.6. The unsteady effects of the

flaps are examined for airfoil angles of attack of α = 0◦ − 10◦. The flap deflection

amplitude δf is 1◦− 2◦. Two reduced frequencies of flap oscillation, corresponding

to typical 2/rev and 6/rev harmonics, were selected since they represent the lower

and upper bounds of the actuation frequencies employed in active flap control

studies for a four or five-bladed rotor.

The unsteady aerodynamic loads due to sinusoidal pitch oscillation of an airfoil

(without flap) about the quarter-chord point are compared first. The unsteady

airfoil motion is given by

α = α0 + ᾱ sin(kt̄) (3.31)

Results are shown for ᾱ = 1◦ and the reduced frequency k = 0.062. The mean angle

of attack of the airfoil is α0 = 5◦, and the free stream Mach number M = 0.6. Figure

3.14(a) shows the oscillatory lift coefficient obtained from the three approaches.

The DL+RFA model overpredicts the unsteady amplitude of liftCl, with 8.5% error



101

between the DL+RFA model and the direct CFD simulations. By comparison, the

Cl predictions obtained from the CFD+RFA model are significantly improved with

only 1% error in the amplitude. The moment coefficients obtained from the three

approaches are shown in Fig. 3.14(b), where predictions from the linear potential

flow theory based DL+RFA model have a large error in the mean value of unsteady

moment, due to viscous effects. The new CFD based ROM provides a much better

moment prediction, with 12% error in the mean value. As noted earlier, the ability

to provide drag predictions distinguishes the CFD based ROM from the DL+RFA

model. The drag comparisons from the CFD based RFA model and the direct CFD

results are shown in Fig. 3.14(c). As is evident from Fig. 3.14(c), the agreement

between the CFD+RFA model and CFD results is excellent with an error of only

1.25% in the amplitude. This clearly demonstrates the accuracy of the CFD based

RFA model, for the case of an oscillating airfoil.

Next, the oscillatory aerodynamic loads generated by the three aerodynamic

models are shown for a sinusoidal flap deflection given by

δf = δ̄f sin(kt̄) (3.32)

The results shown are obtained for the flap amplitude δ̄f = 1◦ and two reduced

frequency values of k = 0.062 and 0.187. The reduced frequency of k = 0.062

corresponds to 2/rev on a full-scale helicopter rotor, while k = 0.187 corresponds

to 6/rev. These flap frequency harmonics represent the lower and upper frequency

bounds typically employed in active control of vibrations and noise. The static



102

angle of attack of the airfoil is α = 5◦, and the free stream Mach number is 0.6.

For the flap frequency of k = 0.062, the oscillatory lift predictions using the

two ROMs are shown in Fig. 3.15(a), along with direct CFD computations denoted

by circles. While there are significant errors between the amplitude predictions

of the Cl values obtained from DL+RFA compared to direct CFD simulations, the

predictions obtained from the CFD+RFA model are very good when compared

to the CFD simulations, with less than 2% error in oscillating amplitude. From

Fig. 3.15(b), it is evident that the moment coefficients obtained from the CFD+RFA

model and the CFD simulations agree closely, with less than 1% error in the ampli-

tude. By comparison, predictions of the moment from the DL+RFA model show

a large discrepancy in the mean values when compared to those from direct CFD

computations, due to viscous effects. Furthermore, there is also substantial er-

ror in the oscillatory moment amplitude. The hinge moment coefficient is shown

in Fig. 3.15(c), where a nearly 400% error in the mean value and 200% error in

the unsteady amplitude are observed comparing the DL+RFA model predictions

to the CFD simulations. By comparison, the hinge moment from the CFD+RFA

model is in excellent agreement with the CFD simulations, with less than 1% er-

ror in the amplitude. Clearly, the difficulties encountered for providing accurate

moment predictions when using the DL+RFA model (Ref. 80) have been overcome

with the new CFD based RFA approach. Furthermore, an important feature of

the CFD+RFA model is demonstrated, as evidenced by its capability to provide

unsteady drag predictions which are not available from potential flow based mod-
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els. From Fig. 3.15(d), it is clear that the CFD+RFA model provides a reasonable

unsteady drag estimation, with less than 10% error in the amplitude compared to

direct CFD simulations.

Similar plots of unsteady aerodynamic responses due to flap motion are shown

in Fig. 3.16(a)–3.16(b), for the higher flap reduced frequency of k = 0.187. The

agreement between the different approaches is similar to those indicated earlier

at lower reduced frequencies, which confirms the validity of the CFD based ROM

across the practical range of unsteady flap motion.

In order to examine the accuracy of the ROMs in presence of strong nonlinear

flow effects, both potential flow and CFD based ROMs are compared to direct CFD

simulations at a higher angle of attack α = 10◦ whenM = 0.6. At this condition the

airfoil encounters substantial flow separation. The oscillatory aerodynamic loads

generated by the three methods are again compared for a sinusoidal flap motion,

with the reduced frequency k = 0.064 and δ̄f = 1◦. Oscillatory lift coefficients are

shown in Fig. 3.17(a). Clearly the DL+RFA model cannot account for the stalled

flow, producing a much higher Cl value compared to the CFD simulations. By

comparison, the CFD+RFA model provides a reasonable prediction as is evident

from Fig. 3.17(a). A similar conclusion can be drawn from the inspection of the un-

steady moment and hinge moment predictions, shown in Figs. 3.17(b) and 3.17(c),

respectively. The drag coefficient obtained from the CFD+RFA model and the CFD

simulations is shown in Fig. 3.17(d). It is evident that the ROM still provides a rea-

sonable approximation despite the fact that it fails to capture the high frequency
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fluctuations in CFD. These results clearly demonstrate the advantages of the new

CFD based reduced order model.

The aerodynamic models were also compared at transonic free stream Mach

number M = 0.85 and static angle of attack α = 3◦. For this condition the flow is

nonlinear due to the formation of strong shocks on the upper surface of the airfoil.

The oscillatory aerodynamic loads for a sinusoidal flap deflection of δ̄f = 1◦ and

k = 0.1 are presented. As shown in Fig. 3.18(a), the differences between unsteady

lift coefficients Cl obtained from DL+RFA and CFD are in excess of 400%, indicat-

ing the shortcomings of the DL+RFA model at this flow condition. By comparison,

there is less than 2% error in the amplitude of Cl obtained from the CFD+RFA

model, even though high frequency oscillations, which may be attributed to shock

wave motion, are not captured. The substantial improvement in accuracy in pre-

dicting unsteady airloads suggests that the new ROM may be applied to evaluate

the performance of active flap systems at transonic flow regimes. The unsteady

moments are shown in Fig. 3.18(b), where predictions from the CFD+RFA model

have approximately 5% error in the mean value as well as noticeable error in

phase. However, the ROM is still sufficient for flap performance studies since this

new ROM provides vastly improved predictions when compared to the DL+RFA

model. The hinge moment coefficient is also shown in Fig. 3.18(c). Similar to

moment predictions, the CFD+RFA model demonstrates substantial improvement

when compared to CFD simulations, with less than 3% error in the amplitude.

Finally, comparisons of drag coefficients obtained from the CFD+RFA model and
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Figure 3.14: Unsteady sectional loads for sinusoidal pitch oscillation of the airfoil;
k = 0.062, α0 = 5◦, ᾱ = 1◦, M = 0.6.

the CFD simulations are shown in Fig. 3.18(d). There is approximately 3% error

in the mean value of the unsteady drag, while the oscillating amplitudes are simi-

lar. From the comparisons shown in Fig. 3.18, it is clear that the CFD based ROM

provides a good estimate even for the transonic Mach number range.
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Figure 3.15: Unsteady sectional loads for sinusoidal flap oscillation; k = 0.062, α =
5◦ and M = 0.6.
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Figure 3.16: Unsteady sectional loads for sinusoidal flap oscillation; k = 0.187, α =
5◦ and M = 0.6.
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Figure 3.17: Unsteady sectional loads for sinusoidal flap oscillation; k = 0.062, α =
10◦ and M = 0.6.



109

0 50 100 150 200
0

0.2

0.4

0.6

0.8

Reduced Time

C
l

 

 

DL+RFA
CFD
CFD+RFA

(a) Lift

0 50 100 150 200
−0.05

0

0.05

0.1

Reduced Time

C
m

(b) Moment

0 50 100 150 200
−4

−2

0

2
x 10

−3

Reduced Time

C
hm

(c) Hinge moment

0 50 100 150 200
0.06

0.062

0.064

0.066

0.068

0.07

Reduced Time

C
d

 

 
CFD
CFD+RFA

(d) Drag

Figure 3.18: Unsteady sectional loads for sinusoidal flap oscillation; k = 0.1, α = 3◦
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CHAPTER IV

DESCRIPTION OF THE ROTORCRAFT

AEROELASTIC ANALYSIS CODE

The comprehensive rotorcraft simulation code AVINOR (Active VIbration and

NOise Reduction), which has been extensively validated in earlier studies [32, 52,

102], is used for all the active vibration and noise reduction studies presented in

this thesis. A brief description of the principal components of the code is provided

in this chapter.

4.1 Structural dynamics model

The structural dynamic model used for the present study consists of a four-

bladed hingeless rotor undergoing moderate deflections with fully coupled flap-

lag-torsional dynamics. The structural equations of motion are discretized using

the global Galerkin method, based upon the free vibration modes of the rotating

blade. The dynamics of the blade are represented by three flap, two lead-lag, and

110
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two torsional modes. The structural dynamics model used in this study is similar

to that developed in Refs. 87, 112 and is described in Appendix A along with the

modeling assumptions, coordinate systems, and coordinate transformation rela-

tions used in the aeroelastic analysis model. The effect of microflaps on the rotor

blade structural dynamics is assumed to be negligible, therefore no modifications

have been made to the existing structural dynamics model. Control surfaces such

as the trailing-edge plain flap or the microflap influence the behavior of the blade

only through their effect on the aerodynamic and inertial loads.

4.2 Aerodynamic model

Aerodynamic loads for the attached flow regions on the rotor blade are calcu-

lated using the CFD based RFA model described in Chapter III. The CFD based

RFA model provides the aerodynamic loads at various span-wise locations along

the blade. The resulting spanwise lift distribution is used in the circulation distri-

bution calculation for the free-wake analysis, while the free-wake influences aero-

dynamic loads by changing the local velocities.

The CFD based RFA aerodynamic model is based on the generalized loads

f =



Cl

Cm

Cd

Chm


, (4.1)
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and the generalized motions

h =



W0

W1

D0

D1


. (4.2)

As mentioned in Chap. III, the hinge moment Chm and the response to generalized

motion D1 are not considered in the case of a microflap. Due to the presence of the

partial span control surface, two forms of this aerodynamic model are necessary.

The first form is described by the generalized load vector and generalized motion

vector given in Eqs. 4.1 and 4.2, and is designed for blade stations with a control

surface. For span-wise stations where no control surface is present, a simplified

“airfoil-only” aerodynamic model is used, where the generalized load vector f and

the generalized motion vector h are given by

f =


Cl

Cm

Cd


, h =


W0

W1

 , (4.3)

reducing the dimensions of the aerodynamic transfer matrix Q from 4× 4 to 3× 2.

The sectional lift, moment, and drag are given by:

L = ρU2b(Cl), (4.4)
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M = 2ρU2b2(Cm), (4.5)

D = ρU2b(Cd). (4.6)

4.2.1 Derivation of UT and UP

To incorporate the aerodynamic model in the present analysis, expressions for

W0, W1, U and α in terms of the blade degrees of freedom and modal parameters

are needed:

α = θG + φ (4.7)

U = UT (4.8)

ḣ = −UP (4.9)

W0 = Uα + ḣ (4.10)

W1 = bα̇ (4.11)

where UT and UP correspond to the components of the total air velocity VA taken

in the −êy5 and −êz5 directions, respectively, as illustrated in Figure 4.1. The total

air velocity VA is calculated as the sum of airflow velocity due to forward flight,

blade rotation and induced inflow VA1 and airflow velocity due to blade dynamics

VA2:

VA = VA1 −VA2, (4.12)
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Figure 4.1: Orientation of tangential and perpendicular air velocities and aerody-
namic loads.

where,

VA1 = ΩR[(µ+ λx)êx1 + λyêy1 + λz êz1] (4.13)

and

VA2 = ṙEA + Ωêz2 × rEA. (4.14)

The advance ratio µ and inflow ratio λ are given by

µ =
VF cosαR

ΩR
, (4.15)

λ =
VF sinαR + ν

ΩR
, (4.16)

where VF is the freestream velocity, αR is the rotor shaft angle, and ν is the induced

flow velocity. The position vector for a point on the elastic axis rEA is given by:

rEA = eêx2 + (x+ u)êx3 + vêy3 + wêz3. (4.17)
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The resultant velocity VA is expressed in the (êx5, êy5, êz5) coordinate system us-

ing appropriate coordinate transformations, described in the previous section. As

mentioned earlier, UT and UP correspond to the components of the total air ve-

locity VA in the −êy5 and −êz5 directions, respectively, which are given by the

expressions [Ref. 91, Eqs. (5.176)-(5.177)]:

UT = Ω(x+ e+ u) + Ωvv,x−Ωwβp + v̇

+(µ+ λx)ΩRv,x cosφ+ λyΩRv,x sinφ

+(µ+ λx)ΩR sinφ− λyΩR cosφ, (4.18)

UP = ẇ + Ωv(w,x +βp)− λzΩR + (µ+ λx)ΩR(w,x +βp) cosφ

−λyΩR(w,x +βp) cosφ. (4.19)

These expressions for UT and UP are then substituted into Eqs. (4.7-4.11) to pro-

duce explicit expressions for U , ḣ, and the generalized airfoil and flap motions.

4.2.2 Distributed Aerodynamic Loads

Expressions for sectional lift and drag have been obtained in Eqs. (4.4) and

(4.6), respectively. Lift is assumed to act normal to the total air velocity, and drag is

assumed to act parallel to it. Furthermore, all aerodynamic forces act at the quarter

chord, which is assumed to coincide with the elastic axis, thus XA = 0. Following

these assumptions, the spanwise distributed aerodynamic force in the “5” system
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is given by:

pA = pAy5êy5 + pAz5êz5, (4.20)

where:

pAy5 = −D cosφin − L sinφin, (4.21)

pAz5 = −D sinφin + L cosφin, (4.22)

The inflow angle φin is the angle between UT and the resultant air velocity, given

by:

cosφin =
UT√

U2
T + U2

P

. (4.23)

The distributed aerodynamic moment in Eq. (4.5) is assumed to act about the elas-

tic axis of the blade. It can be expressed in the “5” system as:

qA = qAx5êx5, (4.24)

where:

qAx5 = M. (4.25)

Using appropriate transformations, the distributed aerodynamic force in the “3”

system is given by:

pA = pAx3êx3 + pAy3êy3 + pAz3êz3, (4.26)
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where:

pAx3 = −v,x pAy5 − w,x pAz5, (4.27)

pAy3 = pAy5, (4.28)

pAz3 = −v,xw,x pAy5 + pAz5. (4.29)

Similarly, the distributed aerodynamic moment is expressed in the “3” system as:

qA = qAx3êx3 + qAy3êy3 + qAz3êz3, (4.30)

where:

qAx3 = qAx5, (4.31)

qAy3 = v,x qAx5, (4.32)

qAz3 = w,x qAx5. (4.33)

The CFD based RFA model is linked to a free wake model, which produces

a spanwise and azimuthally varying inflow distribution. An accurate free-wake

analysis is crucial for capturing BVI noise and vibrations at low speed flight condi-

tions. The free-wake model used in this study is based on the CAMRAD/JA wake

analysis and was incorporated into the AVINOR code by de Terlizzi and Fried-

mann [31, 32]. This model was later modified by Patt, Liu, and Friedmann [78, 98]

to provide the desired resolution for acoustic calculations.
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At high speeds, dynamic stall is a dominant source of vibratory loads. In this

study, dynamic stall effects are modeled using a modified version of the ONERA

dynamic stall model [105]. This model was incorporated into the AVINOR code

by Depailler and Friedmann [33, 34]. The aerodynamic states associated with the

dynamic stall model and the CFD based RFA model are combined to produce a

time-domain, state-space aerodynamic model. The free wake model and the dy-

namic stall model are described in Appendix B.

4.2.3 Reversed-flow model

In forward flight, there is a region on the retreating side of the rotor disk, repre-

sented in Fig. 4.2, where the airflow encountered by the blade is reversed, flowing

from the trailing edge to the leading edge. The boundary of this reverse flow re-

gion is described by the locus of points on the rotor disk where the velocity of the

airflow parallel to the blade is zero. The approximate boundary of this region on

the blade span as a function of azimuth ψ and advance ratio µ is given by

xrev(ψ) = −(e+ µR sinψ). (4.34)

In the present analysis, it is assumed that the aerodynamic lift and moment are

zero within the reverse flow region. This is accomplished by multiplying the aero-

dynamic lift and moment expressions by the reverse flow parameter RLM , defined
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Figure 4.2: Position of the reversed flow region in forward flight

as follows:

RLM =


0 for 0 ≤ x ≤ xrev(ψ)

1 for x > xrev(ψ)

4.3 Coupled aeroelastic response/trim solution

The combined structural and aerodynamic equations form a system of coupled

differential equations that are written in a state-variable form. These equations are

further coupled with the rotor trim equations. The trim procedure used is based

on a propulsive trim with three force equations (longitudinal, lateral, and vertical)

and three moment equations (roll, pitch, and yaw) corresponding to a helicopter

in free flight. A simplified tail rotor model, based on uniform inflow and blade

element theory, is used. A detailed description of the procedure used to solve
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the combined system of equations is provided in Appendix C. Spatial discretiza-

tion of the aeroelastic equations of motion is performed using Galerkin’s method

of weighted residuals. This procedure is similar to the one developed in Ref. 91.

The coupled trim/aeroelastic equations are solved in time using the ordinary dif-

ferential equation solver DDEABM, which is a predictor-corrector based Adams-

Bashforth differential system solver. The acoustic calculations do not influence the

aeroelastic solution, and hence are performed separately after the aerodynamic

and structural time histories of the blade have been determined.



CHAPTER V

ACOUSTIC MODEL

The noise prediction code used in this study is based on a modified version of

the WOPWOP code and was incorporated into the AVINOR code by Patt, Liu, and

Friedmann [101, 102]. Acoustic formulation in the WOPWOP code is based on the

Ffowcs Williams-Hawkings (FW-H) equation:

4πp′(x, t) =
∂2

∂xi∂xj

∫∫∫ [
Tij

r|1−Mr|

]
dV

− ∂

∂xi

∫∫ [
Pijnj

r|1−Mr|

]
dS +

∂

∂t

∫∫ [
ρovn

r|1−Mr|

]
dS (5.1)

which was derived from first principles following the acoustic assumption of small

disturbances in Ref. 39. Under these assumptions, it is the exact solution for

the noise generated by a rotor blade or any other object in arbitrary motion. The

sources of rotational noise are best described using the three terms of Eq. (5.1):

1. Quadrupole noise:

∂2

∂xi∂xj

∫∫∫ [
Tij

r|1−Mr|

]
dV,
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this noise is due to fluid stress and becomes important only at high Mach

numbers

2. Dipole (loading) noise:

∂

∂xi

∫∫ [
Pijnj

r|1−Mr|

]
dS,

this noise is due to the surface pressures on the blade pushing back against

the fluid.

3. Monopole (thickness) noise:

∂

∂t

∫∫ [
ρovn

r|1−Mr|

]
dS,

this source of noise is caused by the displacement of the fluid by the volume

of the rotating blade.

The rotational noise (thickness and loading noise) and BVI noise can be pre-

dicted with sufficient accuracy using the FW-H equation, neglecting the quadrupole

source term [101].

5.1 Solution to the FW-H Equation

There exist a number of solutions to the FW-H equation, as documented in

Ref. 37. One of Farassat’s solutions known as Formulation 1A [38] has been imple-
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mented in several helicopter noise prediction codes due to its numerical efficiency.

Using Green’s function of the wave equation in the unbounded domain δ(g)/4πr,

where

g = τ − t+ r/c (5.2)

a retarded time solution to FW-H equation is obtained

4πp′(x, t) =
1

c

∂

∂t

∫
f=0

[
ρ0cvn + lr
r(1−Mr)

]
ret

dS +

∫
f=0

[
lr

r2(1−Mr)

]
ret

dS (5.3)

To improve the speed and accuracy of the solution, mathematical manipulations

are carried out to move the time derivative inside the first integral of Eq. (5.3) by

using the following relation

∂

∂t

∣∣∣∣
x

=

[
1

1−Mr

∂

∂τ

∣∣∣∣
x

]
ret

(5.4)

this yields Formulation 1A

4πp′L(x, t) =
1

c

∫
f=0

[
l̇ir̂i

r(1−Mr)2

]
ret

dS +

∫
f=0

[
lr − liMi

r2(1−Mr)2

]
ret

dS

+
1

c

∫
f=0

[
lr(rṀir̂i + cMr − cM2)

r2(1−Mr)3

]
ret

dS (5.5a)

4πp′L(x, t) =

∫
f=0

[
ρ0vn(rṀir̂i + cMr − cM2)

r2(1−Mr)3

]
ret

dS (5.5b)

p′(x, t) = p′L(x, t) + p′T (x, t) (5.5c)

where p′L, p
′
T , p

′ denotes the loading noise, thickness noise and overall noise, re-
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spectively.

5.2 BVI Noise Prediction

As described in Chapter I, BVI noise dominates the low speed descent flight

regime, and is characterized by its impulsiveness and high intensity. The fre-

quency contents of BVI noise mostly fall in the mid-frequency range, which is most

sensitive to human hearing. A widely accepted definition of BVI noise frequency

range is the sum of 6th − 40th harmonics of blade passage frequency [122].

5.2.1 Calculation of Chord-wise Pressure Distribution

The BVI noise is generated by unsteady pressure fluctuations on the blade in-

duced by interaction with trailed vortices. More specifically, it originates primarily

from the dipole or loading source term p′L in Eq. (5.5). In previous studies con-

ducted in Refs. 101 and 102, the chordwise pressure distribution on the surface of

the blade, required as input to the acoustic computations, was calculated using an

extended RFA approach that produces the unsteady compressible chordwise and

spanwise pressure distribution over the entire rotor disk. This extended RFA ap-

proach to obtain pressure distribution was based on pressure fitting data in the

frequency domain generated from a DL based potential flow solver, described in

detail in Ref. 101. This approach is not feasible for the present study, because gen-

eration of RFA models using CFD based pressure distribution data is computation-

ally too expensive. Therefore, the blade pressure distributions are estimated using
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the velocity superposition method [1,2], where the pressures are obtained from the

sectional lift coefficients. Specifically, based on potential flow theory the pressure

distribution on the surface of the airfoil is related to the local velocity distribution,

which can be considered to be composed of three independent components

cp =

(
v

V
± ∆v

V
± ∆va

V

)2

(5.6)

where the velocity ratios
v

V
,

∆v

V
, and

∆va
V

represent the contributions due to air-

foil thickness, camber, and angle of attack, respectively. The signs in Eq. 5.6 are

positive for the upper surface and negative for the lower surface. For the sym-

metric NACA0012 airfoil used in the present study,
∆v

V
= 0, and the values of the

other two components can be found using the approach outlined in Ref. 2. Clearly

this approach can introduce errors because it is based on potential flow theory.

However, reasonable approximations are obtained since the integrated lift coeffi-

cients, used to generate the pressure, are obtained with the CFD based model that

accounts for compressibility and unsteady effects.

5.3 Modified WOPWOP Code

The present study is based on a modified version of the helicopter aeroacoustic

code WOPWOP [15] developed at NASA Langley. The WOPWOP code imple-

ments Farassat’s Formulation 1A(Eq. (5.5)), and has been extensively validated

[16, 17] for helicopter noise predictions.
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The original version of the WOPWOP code requires blade harmonics and sur-

face loading information as input. A simple blade model based on the assumption

of an offset hinged rigid blade was used in the original WOPWOP code. However,

this simplified assumption is incompatible with realistic elastic blade model used

in this study. In order to take into account the effects of blade flexibility, the blade

dynamics in WOPWOP were replaced by the fully flexible blade model with par-

tial span trailing-edge flaps and microflaps [78, 98, 102]. This was accomplished

by discretizing the blade into a number of individual panels as shown in Fig. 5.1.

The acoustic code then calculates the contribution from each panel, each having its

own velocity, normal vector and pressure distribution. The time domain response

of each of these panels was obtained from the aeroelastic response analysis. This

information, together with the unsteady pressure distribution on the panel, serves

as the basis of the acoustic computations. Unlike some computational studies per-

formed with WOPWOP [14], a surface pressure distribution is used in the acoustic

calculation, such that no reduction to a chordwise compact loading is made. Tail

rotor and engine noise were not considered in this study. Further, aerodynamic

effects of the fuselage have been excluded, and thus the acoustic results represent

the noise generated by the main rotor only.

After the acoustic-pressure time history at an observer location (such as the

noise feedback locations on the helicopter or points on the carpet plane) is ob-

tained, discrete frequency components of the sound pressure level are calculated

using conventional Fourier analysis. Fourier coefficients are calculated through
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Figure 5.1: Rigid and flexible blade representations

an integration of the acoustic-pressure time history. The numerical integration is

done using Simpson’s rule [15]. The BVI noise level is then obtained by summing

the 6th − 40th harmonic components of the blade passage frequency. The acoustic

computations are time-consuming, hence, the full sound pressure levels on a car-

pet plane beneath the rotor are not evaluated until the trim solution or controller

reaches a fully-converged solution.



CHAPTER VI

CONTROL APPROACHES

This chapter provides a description of the higher harmonic control (HHC) algo-

rithm, used for all the closed-loop control studies performed in this thesis. A com-

prehensive review of the HHC algorithm and its variants was written by Johnson

in Ref. 61. Since then, numerous studies have employed the HHC algorithm. The

implementation of the HHC algorithm in the AVINOR code has been described

in Ref. 99, which contains a detailed description of three versions of the HHC

algorithm: 1) the classical, invariant version, 2) an adaptive version, wherein a

recursive least-squares method is used for online identification, and 3) a relaxed

variant. Robustness of all three versions including their convergence and stability

characteristics was analyzed from a control theory perspective. The primary rea-

sons for the success of this disturbance rejection algorithm are its simplicity and the

a priori knowledge of the frequencies of the disturbance. For general boradband

disturbance rejection, fundamental tradeoffs exist such that disturbance reduction

over a frequency range entails amplification at other frequencies [55]. However, in

the case where disturbances have specific frequencies (tonal disturbances) known

128
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a priori, very high gain can be applied at these frequencies of disturbance, and

excellent reduction can be achieved without significant compromise. Thus, the

HHC disturbance rejection algorithm is particularly suitable for rotorcraft since

the disturbance is largely tonal, and the frequency of the disturbance is known a

priori [99]. Application of the HHC algorithm for active noise control and simul-

taneous vibration and noise control using actively controlled flaps was demon-

strated in Ref. 102. Flap effectiveness was examined with practical flap saturation

limits imposed using an approach described in Ref. 28. A comparatively efficient

approach to handling actuator saturation in the HHC algorithm developed as part

of this study based on nonlinear constrained optimization techniques is discussed

extensively in Chapter VIII.

6.1 The Classical HHC Algorithm

The HHC algorithm is based on the assumption that the helicopter can be rep-

resented by a linear model relating output z to control inputs u. In previous studies

dealing with the vibration reduction of a four-bladed rotor [34, 46, 102], the output

z consisted of 4/rev hub shears and moments, while the input vector u contained

harmonic control inputs including 2/rev, 3/rev, 4/rev, and 5/rev components.

The HHC algorithm is a frequency-domain approach applied to disturbances

(vibrations or noise) having known frequency content that is predominantlyNb/rev,

whereNb is the number of rotor blades. In the HHC algorithm, the measurement of

the plant output and update of the control input are not performed continuously,
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but rather at specific times tk = kτ , where τ is the time interval between updates

during which the plant output reaches a steady state. In actual implementation of

the algorithm, this time interval may be one or more revolutions. The system is

allowed to reach a steady-state (converged) condition, and measures of the vibra-

tory response amplitude and phase are used to determine the amplitude and phase

of the required control input signal for vibration reduction. This approach is de-

signed for a steady trimmed flight. Maneuvering flight introduces transients that

would prevent the steady-state condition from being satisfied and thus the perfor-

mance of the algorithm will be degraded. A schematic of the HHC architecture as

implemented on a helicopter is shown in Fig. 6.1. Introduction of a disturbance

Figure 6.1: Higher harmonic control architecture

w, representative of the helicopter operating condition, and recognizing that sys-

tem updates are performed at times tk = kτ , allows one to represent the system

dynamics by

zk = Tuk + Ww. (6.1)
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At the initial condition, k = 0,

z0 = Tu0 + Ww. (6.2)

Subtracting Eq. (6.2) from Eq. (6.1) to eliminate the unknown w yields

zk = z0 + T(uk − u0). (6.3)

where the sensitivity T is given by:

T =
∂z

∂u
. (6.4)

Equation (6.3) is referred to as the global model of helicopter response [61].

Note that this model depends on the assumption of linearity, and that the sensitiv-

ity T (and the starting condition z0) are invariant and known without error either

through an identification procedure or direct measurement (offline identification).

The controller is based on the minimization of a general quadratic cost function

J(zk,uk) = zT
kQzzk + 2zT

kSuk + uT
kRuk. (6.5)

However, in most applications, the cross-weighting term in Eq. (6.5) is neglected

and the cost function simplifies to

J(zk,uk) = zT
kQzzk + uT

kRuk. (6.6)
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The optimal control input is determined from the requirement

∂J(zk,uk)

∂uk
= 0, (6.7)

which yields the optimal control law uk,opt, given by

uk,opt = −(TTQzT + R)−1(TTQz)(z0 −Tu0). (6.8)

Combining Eqs. (6.6) and (6.8), the minimum cost is found to be

J(zk,uk,opt) = (z0 −Tu0)T
[
Qz − (QzT)D−1(TTQz)

]
(z0 −Tu0). (6.9)

where

D = TTQzT + R (6.10)

This is the most basic version of the HHC algorithm and it yields an explicit relation

for optimal control input.

It is also useful to consider another, recursive, form of Eq. (6.3), where subse-

quent control updates are written as

zk+1 = zk + T(uk+1 − uk). (6.11)
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the optimal control law is given by

uk+1,opt = −D−1(TTQz)(zk,opt −Tuk,opt). (6.12)

In this equation, the index k refers to the controller update number, an integer

corresponding to each time the control algorithm updates the values of the input

vector uk which results in a new output vector zk. Note that Eq. (6.3) is a special

case of Eq. (6.11), where k = 0. It can be shown that uk,opt is independent of k,

and remains constant for all future control updates k ≥ 1 [99]. Thus the algorithm

converges to the optimum value in a single step, for a well-identified linear system.

Equation (6.11) is referred to as the local controller, and it represents a linearization

of the response about the current control value [61].

6.2 Relaxed HHC for Enhanced Robustness

An alternative to conventional HHC is designated “relaxed HHC”, where a

relaxation coefficient is introduced into the algorithm. This technique was pio-

neered by Depailler [33]. This variation on the HHC algorithm has proved itself

useful under highly nonlinear condition induced by dynamic stall, where any es-

timate of T is uncertain. This variant of the algorithm compromises the one-step

convergence property of the algorithm shown earlier, but improves robustness.

Recall that when T is known, the optimal control law uk+1 from Eq. (6.12) can be
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expressed as:

uk+1 = uk + ∆uk, (6.13)

where one can define

∆uk = −D−1TTQzzk + (D−1TTQzT− I)uk. (6.14)

Replacing ∆uk in Eq. (6.13) by αre∆uk,α, yields the relaxed control update law,

uk+1,α = uk,α + αre∆uk,α, (6.15)

where u0,α = u0.

A detailed analysis of the convergence, stability, and robustness characteristics

of the relaxed HHC algorithm can be found in Ref. 99. Relaxed HHC is only useful

in the cases where T is uncertain (it increases convergence time in all other cases).

6.3 Adaptive HHC Algorithm

A third version of the HHC algorithm, discussed in Ref. 61, is known as adap-

tive or recursive HHC. In this version, the sensitivity T is identified online, and

is used to implement an adaptive extension of the classical HHC. To pursue this,
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relative parameters are defined, ∆zk, with length 2p and ∆uk with length 2m as

∆zk = zk − zk−1, ∆uk = uk − uk−1, (6.16)

and, ∆Zk of size 2p× k and ∆Uk of size 2m× k as

∆Zk =

[
∆z1 · · · ∆zk

]
, ∆Uk =

[
∆u1 · · · ∆uk

]
. (6.17)

The relation between the successive updates of vibration levels zk is

zk+1 = zk + T(uk+1 − uk). (6.18)

This can be represented in another form,

∆zk = T∆uk. (6.19)

Hence, it follows from Eqs. (6.19) and (6.17) that

∆Zk = T∆Uk. (6.20)

Assuming ∆Uk∆UT
k is nonsingular, one can define

Pk = (∆Uk∆UT
k )−1, (6.21)
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and from Eq. (6.20) the least squares estimate T̂LSk of T is given by

T̂LSk = ∆Zk∆UT
kPk. (6.22)

The recursive least squares method is used to iteratively update T̂LSk based on

the past and current values of ∆zk and ∆uk. The updated estimate T̂LSk is used at

each control update step to calculate the control law uk+1.

6.4 Implementation of the HHC Algorithm

The higher-harmonic control algorithm is used in this study for three different

problems. Hub load vibration reduction, BVI noise reduction, and simultaneous

BVI noise and vibration reduction. For a 4-bladed rotor, the control input u is a

combination of 2/rev, 3/rev, 4/rev, and 5/rev harmonics components of the con-

trol surface deflection. The term ‘control surface’ refers to both the microflap and

the conventional plain trailing-edge flap. The total control surface deflection is

given by

δ(ψ) =
5∑

N=2

[δNc cos(Nψ) + δNs sin(Nψ)] . (6.23)

where the quantities δNc and δNs correspond to the cosine and sine components of

the N/rev control input harmonic. Thus, the control vector u is given by

u = {δ2c, δ2s, ..., δ5c, δ5s}T . (6.24)
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The AVINOR code was modified as part of the current study to accommodate more

than two control surfaces. When multiple control surfaces are used, the control

inputs are given by

δi(ψ) =
5∑

N=2

(δNci cos(Nψ) + δNsi sin(Nψ)), (6.25)

(6.26)

where i = 1, . . . , Nδ and Nδ is the total number of control surfaces. The control

vector u then becomes

u = {δ2c1, δ2s1, ..., δ5c1, δ5s1, . . . , δ2cNδ , δ2sNδ , ..., δ5cNδ , δ5sNδ}T . (6.27)

Unlike a conventional plain flap, the microflap deflects only downward. In order

to be able to use the HHC algorithm for the microflap, a two step approach has

been used. In the first step, the microflap is given a constant deflection δmf

2
, where

δmf is the size of the microflap. In the next step, the HHC algorithm is engaged to

determine the 2/rev-5/rev harmonic control inputs given in Eq. 6.27 with a satura-

tion limit of δmf

2
. Thus the microflap deflection determined by the HHC algorithm

is restricted to ± δmf

2
. Combined with the constant deflection δmf

2
, provided during

the first step, the overall microflap deflection is restricted to lie between 0 and δmf .

For vibration reduction (VR) studies, the output vector zk consists of 4/rev vi-
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bration levels as given in Eqs. (C.46-C.49),

zVR =



FHX4

FHY 4

FHZ4

MHX4

MHY 4

MHZ4



(6.28)

Recall that the weighting matrix Qz in the cost function is a diagonal matrix, and,

for vibration control, is described by six weights corresponding to the three vibra-

tory hub shears and the three vibratory hub moments. Based on previous stud-

ies [78, 98], the weights for the hub shears were assumed to be identical, and a

similar assumption was used for the weights of the hub moments. The weighting

matrix used in this study for vibration reduction, QVR, is:

QVR =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 10 0 0

0 0 0 0 10 0

0 0 0 0 0 10



. (6.29)

For BVI noise reduction (NR) studies, the output vector consists of the 6th-17th
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harmonic components of BVI noise, as measured at a microphone installed at a

suitable location. This location is usually on the skid or landing gear of the heli-

copter, and

zNR =



NH06

NH07

NH08

...

NH17


(6.30)

The noise control law is identical to the control law used for vibration reduction

except that the objective function J consists of the 6th-17th blade passage frequency

harmonic components of acoustic pressure (the most significant part of BVI noise)

in quadratic form. The weighting matrix used in this study for noise reduction is:

QNR =



1 0 0 0 . . . . . . 0

0 1 0 0 . . . . . . 0

0 0 1 0 . . . . . . 0

. . .

0 . . . . . . 0 1 0 0

0 . . . . . . 0 0 1 0

0 . . . . . . 0 0 0 1



. (6.31)

Note that all the components of the BVI noise are weighted equally.
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For rotor performance enhancement studies, the output vector is defined as

zPWR = [PR] (6.32)

where PR denotes the average rotor shaft power. The average rotor shaft power is

defined as the power required to drive the rotor at a constant angular velocity Ω

averaged over one revolution,

PR =
Ω

2π

∫ 2π

0

−MHz1(ψ)dψ, (6.33)

where MHz1 is the total yawing moment about the hub and includes the effect of

unsteadiness, compressibility, dynamic stall, and the additional drag due to con-

trol surface deflection.

6.5 Actuator Saturation

For microflaps, the thickness of the airfoil imposes a limitation on the size of

the microflap thus constraining the maximum deflection of the microflap. For the

active control simulations conducted in this study using a microflap, the issue of

restricting microflap’s maximum deflection to be less than its size is implemented

as an actuator saturation problem. Similarly, for a conventional trailing-edge flap,

the maximum acceptable deflection is set to 4◦ so as to avoid interactions with the

flight control system. The effect of actuator saturation on active vibration reduc-

tion using conventional plain flaps was studied by Cribbs and Friedmann [28].
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Three different approaches, namely truncation, scaling, and auto-weighting, to

constraining the flap deflections were considered. It was observed that the auto-

weighting approach produced the best vibration reduction performance. Hence, it

has been used in the active control simulations conducted in this study. However,

the auto-weighting approach has several shortcomings. It is computationally ex-

pensive and in the case of multiple control surfaces, it does not utilize all of them

to the maximum possible extent. These shortcomings can be remedied using a new

approach developed in this study, based on constrained nonlinear optimization. A

detailed description of this approach and a comparison of its performance to the

various existing actuator saturation approaches is provided in Chapter VIII.

6.6 Control With Multiple Objectives

6.6.1 Approach for Minimizing Noise and Vibration

For simultaneous vibration and noise reduction (SR) problems, a combined out-

put vector can be defined

zSR =

 zVR

zNR

 , (6.34)

where the vector zSR is simply a partitioned combination of the vibration and noise

levels. The weighting matrix Qz can be used to adjust the control effort so as to

achieve a desirable balance between the vibration reduction and noise reduction.

For the combined noise and vibration problem, when the output vector is de-
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fined by Eq. (6.34), the weighting matrix QSR becomes

QSR =

 [QVR] 0

0 [QNR]

 . (6.35)

A scalar factorWα can be introduced to adjust the relative weighting between noise

and vibration as objectives for the controller. The weighting matrix then appears

as:

QSR =

 (Wα) · [QVR] 0

0 (1−Wα) · [QNR]

 . (6.36)

When the factor Wα = 1, full control effort is focused on vibration reduction, while

when Wα = 0, only noise is reduced by the controller. During landing approach,

BVI noise might be the reduction priority, while vibration might be the concern

at higher-speed cruise flight. The system could adjust between these objectives.

The weighting matrices QVR and QVR used for simultaneous noise and vibration

reduction performed in this study are:

QVR =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 10 0 0 0

0 0 0 10 0 0

0 0 0 0 10 0

0 0 0 0 0 10



, (6.37)
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and

QNR =



100 0 0 0 . . . . . . 0

0 100 0 0 . . . . . . 0

0 0 100 0 . . . . . . 0

. . .

0 . . . . . . 0 100 0 0

0 . . . . . . 0 0 100 0

0 . . . . . . 0 0 0 100



. (6.38)

Note that these weighting matrices are different from those used for individual vi-

bration or noise control, shown in Eqs. 6.29 and 6.31. Specifically, the weighting on

the vertical hub shear is increased 10 times and the weighting on the noise compo-

nents is increased 100 times. Its not the actual weights but the relative weighting

between the vibration and noise components that is important for simultaneous

noise and vibration reduction.

6.6.2 Approach for Minimizing Vibration and Rotor Power

For simultaneous vibration and power reduction, a combined output vector

can be defined as

zPV =

 zVR

zPWR

 . (6.39)
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The combined weighting matrix with a relative weighting parameter Wα is given

as

QPV =

 (Wα) · [QVR] 0

0 (1−Wα) · [QPWR]

 . (6.40)

The weighting matrices QVR and QPWR used for simultaneous vibration and power

reduction performed in this study are:

QVR =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



, (6.41)

and

QPWR = [1]. (6.42)

Note that the vibration components and the rotor power consumption are weighted

equally.



CHAPTER VII

RESULTS AND DISCUSSION

This chapter presents results demonstrating the effectiveness of a microflap in

reducing rotor vibrations and noise. The relaxed and adaptive versions of the HHC

algorithm are used. Various spanwise configurations of the microflap are consid-

ered. The effects of BVI noise reduction on the vibration levels and vice versa are

studied. Subsequently, simultaneous BVI noise and vibration reduction using var-

ious microflap configurations is examined. Vibration reduction using microflap

is also studied at a high speed level cruise flight condition. Combined vibration

and power reduction is examined at the high speed flight condition. The capabil-

ities of the microflap in reducing rotor noise and vibration are evaluated through

comparisons to a conventional trailing-edge plain flap.

145
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7.1 Simulation Setup

7.1.1 Rotor and Control Surface Configurations

The results presented in this chapter are obtained for a helicopter configuration

resembling a full-scale four-bladed MBB BO-105 hingeless rotor. The rotor param-

eters are listed in Table 7.1. The data in the table (except CW , γ, and σ) have been

nondimensionalized using Mb, Lb, and 1/Ω for mass, length and time, respectively.

The mass and stiffness distributions are assumed to be constant along the span

of the blade. Additional information on nondimensionalization can be found in

Section 9.2.

The vibratory hub shears and moments are obtained from the integration of the

distributed inertial and aerodynamic loads over the entire blade span in the rotat-

ing frame. Subsequently, the loads are transformed to the hub-fixed non-rotating

system, and the contributions from the individual blades are combined. In this

process, the blades are assumed to be identical. Reduction is performed on the

Nb/rev components, which are the dominant components, of the hub shears and

moments. The rotor is trimmed using a propulsive trim procedure where six equi-

librium equations (three forces and three moments) for the helicopter in a steady

forward flight condition are enforced.

The acoustic environment in the vicinity of the helicopter is characterized by

the noise decibel levels computed on a carpet plane located 1.15R beneath the ro-

tor, as depicted in Fig. 7.1. Various potential locations for placing a feedback mi-
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Table 7.1: Rotor parameters used for the computations.

Dimensional Rotor Data
R = 4.91 m
Mb = 27.35 kg
Ω = 425 RPM
Nondimensional Main Rotor Data
Nb = 4 cb = 0.05498R
Lb = 1.0 e = 0
XA = 0 βp = 2.5◦

XIb = 0 XIIb = 0
XIc = 0 XIIc = 0
IMB2 = 0 IMB3 = 0.0004
EIηη = 0.0302 EIζζ = 0.0105
GJb = 0.0015 ωF1 = 1.124
ωF2 = 3.404 ωF3 = 7.606
ωL1 = 0.732 ωL2 = 4.458
ωT1 = 3.170 ωT2 = 9.079
γ = 5.5 σ = 0.07
θtw = −8◦

Nondimensional Tail Rotor Data
Xt = 1.20 Zt = 0
Helicopter Data
CW = 0.005 fCdf = 0.031
XFA = 0.0 ZFA = 0.3
XFC = 0.0 ZFC = 0.3

crophone on a helicopter, shown in Fig. 7.1, were examined in Ref. 78 for effective

advancing side BVI noise reduction. A feedback microphone located at the rear

of the right skid was found to be most effective for reducing advancing side noise

on the carpet plane. This location is used as the feedback microphone location

supplying noise output signal to the controller in this study.

The sharp trailing edge configuration, shown in Fig. 7.2, was chosen as the mi-

croflap configuration. The microflap, 1.5%c in height, slides in and out of a cavity,

located at 6%c from the sharp trailing edge of the airfoil. Three different span-
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Onboard Microphones
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SKID MIDDLE

SKID REAR
BOOM

Figure 7.1: Microphone locations on and around the helicopter for noise measure-
ments.

1.5%c

0.6%c
0.3%c

6%c

δf

Figure 7.2: Oscillating microflap referred to as the sharp trailing-edge configura-
tion used for active control studies.
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0.69R

0.12R

(a) Single Microflap
0.69R

0.06R 0.06R0.14R

(b) Dual Microflap
0.70R

0.05R 0.05R 0.05R 0.05R 0.05R

(c) Five Microflaps

Figure 7.3: Various spanwise configurations of the microflap on the rotor blade

wise configurations of microflaps on the rotor blade are considered in this study.

The first configuration, shown in Figure 7.3(a), consists of a single microflap with

0.12R spanwise length centered at 0.75R. The second configuration, shown in Fig-

ure 7.3(b), consists of two microflaps each with 0.06R spanwise length centered

at 0.72R and 0.92R, respectively. The first two configurations are similar to those

used in Ref. 91 for active control studies with conventional flaps. A new configu-

ration used in this study for the microflaps consists of five microflaps each 0.05R

in spanwise length placed next to each other, as shown in Figure 7.3(c). Such a

configuration consisting of multiple adjacent microflaps has been used in several

microflap application studies mentioned in Chapter I.

For comparison, active control studies were also conducted using a 20%c con-

ventional plain flap, shown in Fig. 7.4. Single and dual spanwise configurations,
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Figure 7.4: A 20%c conventional plain flap configuration.
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(a) Single plain flap
0.69R

0.06R 0.06R0.14R

(b) Dual plain flap

Figure 7.5: Single and dual spanwise configurations of the 20%c plain flap on the
rotor blade

shown in Fig. 7.5, are considered for the plain flap. The spanwise configurations

are similar to those used for the microflap.

7.1.2 Aerodynamic Model Setup

The CFD based RFA model, described in Chapter III, is a 2-dimensional model

and is implemented at various spanwise locations on the rotor blade. The number

of spanwise locations have to be chosen such that the aerodynamic loading distri-

bution over the entire rotor disk is properly captured. However, each implementa-

tion of the aerodynamic model at a specific spanwise location contributes a certain

number of aerodynamic states which is proportional to the number of generalized

aerodynamic loads being modeled and the number of lag terms used in the RFA
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approximation. To develop a computationally efficient aeroelastic simulation, the

number of aerodynamic states used has to be minimized.

Optimization studies were conducted in Ref. 91 to determine the appropriate

number of spanwise locations and lag terms required for the RFA model. Based

on studies described in Ref. 91, the blade is partitioned into segments as shown

in Fig. 7.6. The aerodynamic loading on the inner 20% of the blade, represented

by segment A, is assumed to be negligible and hence aerodynamic loads in this

region are neglected. For consistency with the structural dynamic model, within

each of the remaining segments, aerodynamics are modeled at a selected number

of stations located at the Gaussian integration points of the segment. The number

of stations and the corresponding number of aerodynamic states used are listed

in Tables 7.2 and 7.3 for the single and dual microflap configurations, respectively.

The aerodynamic lift, moment, and drag forces are modeled using 6 RFA poles

each. In order to determine the optimum number of poles to be used, a sensitivity

analysis was performed by varying the number of RFA poles. The 4/rev vibratory

hub loads obtained at µ = 0.3 using 9, 8, 7, 6, and 5 RFA poles are compared in

Fig. 7.7. The vibratory loads corresponding to 9 poles are chosen as the reference.

The vibratory objective function, which is a weighted sum of the squares of the

vibratory loads, corresponding to 8, 7, 6, and 5 poles is compared to the objective

function corresponding to 9 poles. The percentage error is shown in the Fig. 7.7.

The minimum number of poles to yield less than 10% error is 6, which is chosen

for the aerodynamic model setup. The number of generalized motions is 2 (W0
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Figure 7.6: Segments on the rotor blade used for aerodynamic modeling.

and W1) for the stations without a microflap and 3 (W0, W1, and D0) for those with

a microflap. For the simulations conducted with a conventional plain flap, all 4

generalized motions (W0, W1, D0, and D1) are considered. For acoustic calcula-

tions, based on the studies described in Ref. 98, additional blade stations are used

in order to improve the accuracy of noise predictions. The number of stations and

the corresponding aerodynamic states used for acoustic calculations are listed in

Tables 7.4 and 7.5.

Segment Blade Poles Generalized Generalized Aerodynamic
stations forces motions states

B 4 6 3 2 144
C 5 6 3 3 270
D 4 6 3 2 144

Total 558

Table 7.2: Aerodynamic states of the CFD+RFA aerodynamic model setup used for
the single microflap configuration.
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Segment Blade Poles Generalized Generalized Aerodynamic
stations forces motions states

B 4 6 3 2 144
C 2 6 3 3 108
D 2 6 3 2 72
E 2 6 3 3 108
F 2 6 3 2 72

Total 504

Table 7.3: Aerodynamic states of the CFD+RFA aerodynamic model setup used for
the dual microflap configuration.

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

9 poles

8 poles (< 1%)

7 poles (6%)

6 poles (5%)

5 poles (10%)

Long. shear Lat. shear RollingVert. shear Pitching Yawing

Figure 7.7: Effect of change in number of RFA poles on the 4/rev vibratory hub
shears and moments obtained at µ = 0.3.

7.2 Validation Studies

In this section, the combined aeroelastic-aeroacoustic simulation code using

the CFD based ROM is validated against the experimental data obtained in the

Higher-harmonic-control Aeroacoustic Rotor Tests (HART) program conducted in

the German-Dutch wind tunnel [122]. The HART rotor is a 40% dynamically and

Mach-scaled model of a 4-bladed hingeless MBB BO-105 main rotor, with -8◦ linear
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Segment Blade Poles Generalized Generalized Aerodynamic
stations forces motions states

B 10 6 3 2 360
C 4 6 3 3 216
D 8 6 3 2 288

Total 864

Table 7.4: Aerodynamic states of the CFD+RFA aerodynamic model setup used for
noise calculation with the single microflap configuration.

Segment Blade Poles Generalized Generalized Aerodynamic
stations forces motions states

B 10 6 3 2 360
C 2 6 3 3 108
D 4 6 3 2 144
E 2 6 3 3 108
F 2 6 3 2 72

Total 792

Table 7.5: Aerodynamic states of the CFD+RFA aerodynamic model setup used for
noise calculations with the dual microflap configuration.

twist and standard rectangular planform. The test setup is depicted in Fig. 7.8. One

of the blades was equipped with pressure transducers so that the blade airloads

could be measured at various radial locations. Microphone arrays were placed on

a traverse stand at a distance of 1.15 rotor radius underneath the rotor hub, and

moved across the horizontal plane to measure the rotor noise at various locations.

The rotor was trimmed for a given advance ratio µ, thrust coefficient CT , and rotor

shaft angle αR, using collective and 1/rev cyclic pitch inputs. The comparisons

presented in this section correspond the baseline condition (i.e. no active control)

in the HART experiments. The baseline flight condition corresponds to a typical

BVI flight condition, with µ = 0.15, CT = 0.044 and αR = 5.3◦.
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Figure 7.8: HART test setup.

The aerodynamic loads measured at a location r/R = 0.87 along the span of

the blade obtained from the simulation and those measured in the HART study

are compared in Fig. 7.9. Aerodynamic loads obtained using the original Doublet-

Lattice based and the new CFD based aerodynamic models are shown in Fig. 7.9.

The vertical axis in Fig. 7.9 represents a non-dimensional quantity equal to the

product of the normal force coefficient and the square of the local Mach number.

Both simulations capture the BVI events represented by the high frequency fluc-

tuations in the aerodynamic loads, also found in the experimental data. Note that

the prediction from the CFD+RFA model captures the overall shape of the aerody-

namic load time histories better than the DL based aerodynamic model.

As indicated earlier, the acoustic environment was measured by traversing a

microphone array positioned 1.15 R below the rotor, as shown in Fig. 7.8. From

these data, time-averaged noise levels in decibel (dB) could be computed on a “car-

pet plane” parallel to and below the rotor. Comparison of the noise levels obtained

from the simulations and the HART experiments is shown in Fig. 7.10, where the
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Figure 7.9: Validation of the aerodynamic load computations with the HART ex-
perimental data at r/R = 0.87.

noise predicted by the DL+RFA model was obtained from Ref. 101. The magni-

tudes of the BVI noise levels are predicted reasonably well by both the DL+RFA

and CFD+RFA aerodynamic models. However, the DL+RFA model produced bet-

ter agreement with the experimental data than the CFD+RFA model in the location

of the high BVI noise region on the advancing side. As noted in Chapter V, the

unsteady chordwise pressure distribution, required as input to the acoustic com-

putations, is calculated differently for the two models. In Ref. 101, the chordwise

pressure distribution was calculated using an extended RFA approach which was

based on pressure data in the frequency domain generated from a DL based po-

tential flow solver. For the present study, generating RFA models using CFD based

pressure distribution data is computationally expensive. Therefore, the chordwise

pressure distributions are estimated using the potential flow theory based velocity

superposition method, described in Section 5.2.1, where the pressures are obtained

from the sectional lift coefficients. The discrepancies observed in Fig. 7.10 can be
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Figure 7.10: Validation of the acoustic computations with the HART experimental
data.

attributed to the differences in pressure calculations.

7.3 Open Loop Phase Sweep

First, results simulating vibration reduction with the microflap operating in

the open loop mode are presented. An open loop phase sweep is conducted by

varying the phase angle φc for four discrete oscillating frequencies corresponding

to 2/rev-5/rev, where the microflap motion is defined by

δf = A[1− cos(ωt+ φc)] (7.1)

whereA = 0.75%c for the 1.5%c microflap. The effect of the open loop sweep on the

4/rev vertical hub shear vibratory component is examined at a level forward flight

condition with µ = 0.15. Figure 7.11 shows the effects of each microflap harmonic

on the 4/rev vertical shear. The results indicate that the microflap control inputs
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have a significant effect on the 4/rev vertical shear. This suggests that the microflap

has sufficient control authority for vibration reduction. It was found that the 3/rev

and 4/rev harmonics are most effective and capable of producing maximum vi-

bration reduction of approximately 80%, at phase angle settings of φc = 180◦ and

330◦, respectively. The 2/rev and 5/rev control inputs produce somewhat smaller

vertical shear reduction levels, with maximum reductions of 17% and 38%, re-

spectively. When compared to a conventional flap configuration with a servo flap

having chord of 25%c [100], which produced 90% maximum vibration reduction

with 3/rev harmonics, the microflap generates comparable amount of vibration

reduction.

7.4 Vibration Reduction

Vibration reduction is examined in the closed-loop mode using the relaxed

HHC algorithm described in Chapter VI. The three spanwise microflap config-

urations shown in Fig. 7.3 are considered at a heavy BVI descending flight con-

dition with advance ratio µ = 0.15 and descent angle αD = 6.5◦. The control

objective function is a weighted sum of the squares of the 4/rev vibratory hub

shears and moments. The control input is a combination of the 2/rev, 3/rev, 4/rev,

and 5/rev harmonic components of the microflap deflection. The baseline vibra-

tory hub shears and moments as well as the reduced vibrations obtained using

the three microflap configurations are shown in Fig. 7.12. All three configurations

yield a significant reduction in the vibration levels demonstrating excellent con-
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Figure 7.11: Effect of phase sweep on 4/rev vertical hub shear FHZ4 with the mi-
croflap at µ = 0.15.
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Figure 7.12: Reduction in 4/rev vibratory hub shears and moments obtained us-
ing the single, dual, and 5 microflap configurations for a heavy BVI
descending flight condition.

trol authority. The single microflap yields a 73% reduction in the vibration control

objective, while the dual microflap and the five-microflap configurations produce

84% and 92% reduction, respectively. The microflap deflection histories for the sin-

gle and dual microflap configurations over one complete revolution are shown in

Figs. 7.13(a) and 7.13(b).

In order to assess the effect of vibration reduction on the noise levels, the noise

levels on the carpet plane were computed during active vibration reduction using

microflaps. The noise contours on the carpet plane are shown in Fig. 7.18(a) for

the baseline case. The noise contours computed during active vibration reduction

using the single, dual, and five-microflap configurations are shown in Figs. 7.14 (b),

7.14 (c), and 7.14 (d), respectively. During vibration reduction, the single microflap

generated a significant increase of about 2-3 dB in the noise levels on the advancing

side. By comparison, the dual microflap configuration produced a smaller noise
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Figure 7.13: Microflap deflection histories over one complete revolution for the sin-
gle and dual microflap configurations during active vibration reduc-
tion at a heavy BVI flight condition.

penalty on the advancing side noise of about 1 dB. It is very interesting to note that

the five-microflap configuration does not produce a significant noise penalty. The

noise levels on the retreating side are not affected significantly by any of the three

configurations.

7.4.1 Comparison to a Plain Flap

Next, the vibration reduction capabilities of the microflap are compared to

those of a 20%c trailing-edge plain flap. The plain flap deflection is constrained

between ±4◦. The 4/rev vibratory hub loads computed during active vibration

control using the single microflap and the single plain flap configurations are com-

pared to the baseline vibration levels in Fig. 7.15. The microflap and the plain flap

show similar effectiveness producing 73% and 76% reductions in the virbation ob-

jective, respectively. The noise contours computed on the carpet plane during ac-

tive vibration control using the single microflap and the single plain flap are shown
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Figure 7.14: Noise levels computed on the carpet plane during active vibration re-
duction using microflaps at a heavy BVI flight condition.
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Figure 7.15: Comparison of the vibration levels computed during active vibration
control using a single microflap and a single plain flap for a heavy BVI
descending flight condition.

in Fig. 7.16. The plain flap causes a 2 dB increase in the noise levels on the advanc-

ing side while the microflap causes up to 3 dB increase in the advancing side noise

levels. Neither of the two flaps shows any significant effect on the retreating side

noise levels.

The flap deflection histories for the single microflap and the single plain flap

configurations over one complete revolution are shown in Figures 7.17(a) and 7.17(b),

respectively. The deflection histories for the microflap and the plain flap show sim-

ilarity in the overall shape.

7.5 BVI Noise Reduction

Noise reduction studies are conducted using the three spanwise microflap con-

figurations for a heavy BVI descending flight condition with advance ratio µ = 0.15

and descent angle αD = 6.5◦. The adaptive HHC control algorithm is used to re-
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Figure 7.17: Deflection histories over one complete revolution for the single mi-
croflap and the single plain flap configurations during active vibration
reduction at a heavy BVI flight condition.
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duce noise levels at the feedback microphone located on the right rear skid. The

BVI noise contours on the carpet plane are shown in Fig. 7.18(a) for the base-

line case. The noise levels computed after active noise control using the single,

dual, and the five-microflap configurations are shown in Figs. 7.18(b), 7.18(c), and

7.18(d), respectively. The single microflap configuration yields up to 3 dB noise

reduction on the advancing side and 2 dB reduction on the retreating side of the

rotor disk. The dual microflap configuration yields up to 5 dB noise reduction on

the advancing side and close to 3 dB reduction on the retreating side. Clearly, it is

beneficial for noise reduction to have a control device placed closer to the blade tip

as in the case of the dual microflap configuration. The five-microflaps configura-

tion reduces the advancing side noise by almost 6 dB and the retreating side noise

by 3 dB. It is interesting to note that the BVI noise is reduced by the microflap con-

figurations for the whole carpet plane; this is in contrast to the earlier active control

studies performed using the single and dual conventional ACFs, where a noise in-

crease of 1 dB on the retreating side was observed [102]. Overall, significant control

authority is demonstrated by the microflaps for rotorcraft noise reduction.

The vibration levels were also monitored during the active noise reduction pro-

cess. The vibration levels obtained after active noise reduction using the single,

dual, and five-microflaps configurations are compared to the baseline vibration

levels in Fig. 7.19. The vertical hub shear is increased by 45% in the case of the

single and dual microflap configurations and by 100% in the case of the five-

microflaps configuration. An increase in vibration levels during active noise re-
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duction was also noticed in the earlier active control studies using conventional

flaps [102, 128], as well as in noise control studies using other active control ap-

proaches [122]. The microflap deflection histories for the single and dual mi-

croflap configurations over one complete revolution are shown in Figures 7.20(a)

and 7.20(b).

7.5.1 Comparison to a Plain Flap

Next, the noise reduction capabilities of the microflap are compared to those of

a 20%c trailing-edge plain flap. The plain flap deflection is constrained between

±4◦. The noise levels computed on the carpet plane during active noise control

using the single microflap and the single plain flap configurations are shown in

Figs. 7.21(b), 7.21(c). It is interesting to note that although the plain flap and the

microflap configurations seem to yield similar overall reductions on the advancing

side, the single plain flap yields 1 dB less reduction on the retreating side when

compared to the single microflap configuration. The vibration levels computed

during active noise control using the single plain flap and the single microflap

configurations are compared to the baseline levels in Fig. 7.22. The vertical hub

shear is increased by 23% in the case of the plain flap and by 45% in the case of the

microflap.

The flap deflection histories for the single microflap and the single plain flap

configurations over one complete revolution are shown in Figures 7.29(a) and 7.29(b),

respectively. The flap deflection histories are fairly similar in overall shape.



167

Baseline Simulation 

St
re

am
w

is
e 

Po
si

tio
n 

X/
R 

Crossflow Position Y/R

−1 0 1 

−1 

−2 

0 

1 

2 

114

113

112

118

117

116

116

115

114

114

114

115

113

112

Noise Reduction, Single Microflap

Noise Reduction, Dual Microflap

114

113

111

111

110
109

115

116

113

112
111

110

109

114

113

112

111

110

113

112 111

110

109
108

( a. ) ( b. ) 

( c. )

113

112

120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100

B V I S PL  -  d B

St
re

am
w

is
e 

Po
si

tio
n 

X/
R

−1

−2

0

1

2

Noise Reduction, 5 Microflaps

112

111

110

109

112

113

112

113112

111

( d. )

Crossflow Position Y/R

−1 0 1

−1 0 1 −1 0 1

111

113
115

Figure 7.18: Noise levels computed on the carpet plane during active noise reduc-
tion using microflaps.
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Figure 7.19: Vibration levels during active noise reduction using microflaps.
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Figure 7.20: Microflap deflection histories over one complete revolution for the sin-
gle and dual microflap configurations during active noise reduction.
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Figure 7.21: Comparison of the noise levels computed on the carpet plane during
active noise control using a single microflap and a single plain flap.
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Figure 7.22: Comparison of the vibration levels computed during active noise con-
trol using a single microflap and a single plain flap.
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Figure 7.23: Deflection histories over one complete revolution for the single mi-
croflap and the single plain flap configurations during active noise
reduction.

7.6 Simultaneous BVI Noise and Vibration Reduction

As indicated by the results presented in the preceding sections, BVI noise re-

duction using microflaps is often accompanied by increased vibration levels and

vice versa, a phenomenon similar to that encountered with other active control im-

plementations. The feasibility of reducing both BVI noise and vibrations simulta-

neously using microflaps is explored in this section. The adaptive HHC algorithm

is implemented for simultaneous noise and vibration reduction using the output

weighting matrix, QSR described in Section 6.6

QSR =

 (Wα) · [QVR] 0

0 (1−Wα) · [QNR]

 , (7.2)

where Wα can be used to adjust the relative weighting between noise and vibra-

tions. For Wα = 1, full control effort is focused on vibration reduction, where as

Wα = 0 corresponds to exclusive noise reduction. Simulations were performed us-
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Table 7.6: Simultaneous vibration and noise reduction using the dual microflap
configuration.

Wα % change in 4/rev dB change in right
vertical hub shear rear skid noise

0.1 16 -3.0
0.2 14 -2.5
0.3 -2 -2.4
0.4 -2 -2.3
0.5 -20 -1.8
0.6 -34 -1.6
0.7 -31 -1.3
0.8 -38 -0.3
0.9 -44 0.8

ing the dual and five-microflap configurations over a range of Wα values. Changes

in the 4/rev vertical hub shear and the noise levels at the right rear skid location

corresponding to various Wα values are given in Table 7.6 for the dual microflap

configuration. The Wα = 0.6 value yields the best combination of reductions in

the vertical hub shear and the noise levels representing a Pareto optimal location.

Similar information is provided for the five-microflap configuration in Table 7.7,

where the best combination of reductions in the vertical hub shear and the noise

levels is found at Wα = 0.7. Simultaneous reduction is performed using the dual

and five microflap configurations for the selected Wα values.

Noise levels computed during simultaneous vibration and noise reduction us-

ing dual and five microflap configurations are compared to the baseline noise lev-

els in Fig. 7.24. The dual microflap configuration yields up to 2 dB noise reduction

on both the advancing and retreating sides. The five microflap configuration yields

up to 3 dB noise reduction on the advancing side and up to 2 dB on the retreating
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Table 7.7: Simultaneous vibration and noise reduction using the five microflap
configuration.

Wα % change in 4/rev dB change in right
vertical hub shear rear skid noise

0.1 55 -6.4
0.2 55 -6.2
0.3 42 -6.2
0.4 -2 -5.7
0.5 -16 -4.8
0.6 -25 -3.6
0.7 -55 -2.5
0.8 -56 -2.1
0.9 -64 -1.7

side. The corresponding vibration levels are compared to the baseline levels in

Fig. 7.25. The dual and five microflap configurations yield 34% and 55% reduction

in the 4/rev vertical hub shear, respectively. This clearly demonstrates that simul-

taneous reduction of vibrations and noise is feasible using microflaps. Microflap

deflection histories over one complete revolution during simultaneous reduction

using the dual and five microflap configurations are shown in Fig. 7.26. Microflap

numbering for the five microflap configuration begins from the inboard microflap,

i.e. ‘Flap1’ in the legend refers to the inboard microflap and ‘Flap5’ refers to the

outboard microflap. It is interesting to note that the deflection histories for the

outboard microflaps in both the configurations are predominantly 4/rev.

7.6.1 Comparison to a Plain Flap

Simultaneous vibration and noise reduction capabilities of the dual microflap

configuration are compared to those of the dual plain flap configuration. The noise
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Figure 7.24: Noise levels computed on the carpet plane during simultaneous vi-
bration and noise reduction using microflaps.
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Figure 7.26: Microflap deflection histories over one complete revolution for the
dual and five microflap configurations during simultaneous vibration
and noise reduction.

levels computed during simultaneous reduction using dual microflap and the dual

plain flap are compared to the baseline levels in Fig. 7.27. On the advancing side,

the dual plain flap yields up to 3 dB noise reduction whereas the dual microflap

yields up to 2 dB. However, on the retreating side, the dual microflap configuration

yields up to 2 dB noise reduction while the dual plain flap shows no effect. The

vibration levels computed during simultaneous reduction using dual microflap

and dual plain flap configurations are compared in Fig. 7.28. The dual plain flap

yields up to 51 % reduction in the 4/rev vertical hub shear compared to 34% by

the dual microflap. It is interesting to note that compared to the plain flap, the

microflap demonstrates better effectiveness in reducing the noise levels over the

entire carpet plane, i.e. both the advancing and the retreating sides, but yields

less reduction in vibrations. This observation further illustrates the difficulty in

simultaneously reducing vibrations and noise in helicopters. Similar trends were

encountered in earlier simultaneous reduction studies conducted using conven-
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Figure 7.27: Comparison of the noise levels computed on the carpet plane dur-
ing simultaneous vibration and noise reduction using a dual microflap
and a dual plain flap.

tional active flaps [102, 128]. The dual microflap and dual plain flap deflection

histories over one completer rotor revolution during simultaneous reduction are

shown in Fig. 7.29. The deflection histories for the microflap and the plain flap

show resemblance in the overall shape.

7.7 Vibration Reduction at a High Advance Ratio

In this section, results for vibration reduction using the various spanwise mi-

croflap configurations are presented for a high speed level cruise flight with µ =

0.3. Vibratory hub loads obtained using the single, dual, and five-microflap con-

figurations are shown in Fig. 7.30. All three configurations considered here pro-

duce a substantial amount of vibration reduction, again demonstrating the control

authority of the microflap at the cruise flight condition. The single and dual mi-

croflap configurations yield similar reduction levels of 92% in the vibration objec-
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Figure 7.28: Comparison of the vibration levels computed during simultaneous vi-
bration and noise reduction using a dual microflap and a dual plain
flap.
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Figure 7.29: Deflection histories over one complete revolution for the dual mi-
croflap and the dual plain flap configurations during simultaneous
vibration and noise reduction.
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Figure 7.30: Reduction in 4/rev vibratory hub shears and moments obtained us-
ing the single, dual, and 5 microflap configurations at a high speed
forward flight condition.

tive. The five-microflap configuration also provides a very similar 93% reduction

in the overall vibration levels, as can be seen from Fig. 7.30.

The microflap deflection histories for the single and dual microflap configura-

tions over one complete revolution are shown in Figs. 7.31(a) and 7.31(b), respec-

tively. The microflap deflection is restricted between 0%c and 1.5%c.

7.7.1 Comparison to a Plain Flap

Next, the vibration reduction capabilities of the microflap are compared to

those of a 20%c trailing-edge plain flap at the high speed forward flight condition.

Vibration levels obtained using the single and dual flap configurations of the con-

ventional plain flap and the microflap are shown in Figure 7.32. The single plain

flap and the single microflap configurations yield 94% and 92% reduction in the
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Figure 7.31: Microflap deflection histories over one complete revolution for the sin-
gle and dual microflap configurations during active vibration reduc-
tion at a high speed forward flight condition.

vibration objective, respectively. The dual plain flap and the dual microflap con-

figurations yield 96% and 92% reduction in the vibration objective, respectively.

Therefore, the overall vibration reduction levels obtained using the microflaps and

conventional plain flaps are similar. It is also important to note that the single

and dual microflap configurations incur 3.4% and 5.3% performance penalties as

evidenced by the increased rotor power requirement, during active vibration re-

duction at the cruise condition. By comparison, the corresponding plain flap con-

figurations incur less than 1% performance penalty during vibration reduction.

This significant penalty in rotor performance during vibration reduction is a result

of higher sectional drag incurred by the microflaps during its deployment.

The plain flap deflection histories for the single and dual plain flap configura-

tions over one complete revolution are shown in Figures 7.33(a) and 7.33(b), re-

spectively. The angular deflection of the plain flap is restricted to ±4◦ as practical

saturation limits. The plain flap deflection histories display a notable resemblance
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Figure 7.32: Reduction in 4/rev vibratory hub shears and moments obtained using
the single and dual flap configurations of the 20%c trailing-edge plain
flap and the 1.5%c microflap at a high speed forward flight condition.

to the microflap deflection histories (see Fig. 7.31), where the peaks and troughs of

the deflections occur at approximately same azimuthal locations.

7.8 Performance Enhancement

In this section, the effect of microflaps on rotorcraft performance at a high speed

flight condition with µ = 0.30 is examined. As was mentioned earlier, vibration re-

duction using microflaps at a high speed forward flight condition results in a sig-

nificant performance penalty. To further examine the effect of microflaps on rotor

performance, closed loop control studies were conducted with a combined objec-

tive function consisting of both vibratory loads and rotor power. As was described
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Figure 7.33: Flap deflection histories over one complete revolution for the single
and dual plain flap configurations during active vibration reduction
at a high speed forward flight condition..

in Chapter VI, the combined weighting matrix is given as

QPV =

 (Wα) · [QVR] 0

0 (1−Wα) · [QPWR]

 . (7.3)

where the parameter Wα is used to vary the relative weighting between the vibra-

tory loads and the rotor power. As can be noted from Eq. 6.41, all the vibratory hub

shears and moments are penalized equally. The single microflap configuration is

used and it is employed for control of the combined vibration and power objective.

Changes in vibration levels and the corresponding changes in the rotor power ob-

tained for various values of Wα are listed in Table 7.8. The rotor power consump-

tion is reduced by 0.57% and 1.2% for Wα values of 0.3 and 0.25, respectively. The

reduced power requirement indicates that the microflap has potential for perfor-

mance enhancement. However, the reductions in rotor power consumption are

also accompanied by increases in the 4/rev vibratory hub loads by 78% and 171%,



181

Table 7.8: Effect of a single microflap on the vibratory hub loads and the rotor per-
formance using a combined objective function.

Wα 0.45 0.4 0.35 0.3 0.25
Baseline power 0.00519928 0.00519928 0.00519928 0.00519928 0.00519928

Power after 0.0052977 0.00527816 0.00521893 0.00516958 0.00513685active control
% change in 1.89 1.51 0.37 -0.57 -1.2Power
% change in -33 -8 8 78 171
Vibrations
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Figure 7.34: Effect of a single microflap on the vibratory hub loads during active
control of vibrations and rotor power consumption using a combined
objective function.

respectively, as shown in the table. The vibratory hub loads corresponding to sev-

eral values of Wα are shown in Fig. 7.34. The longitudinal and lateral shear forces

are significantly increased during performance enhancement, particularly for the

relative weight Wα = 0.25. Also note that for the single microflap configuration

and the relative weighting range considered here, simultaneous vibration reduc-

tion and performance enhancement was not found.



CHAPTER VIII

ACTUATOR SATURATION IN INDIVIDUAL BLADE

CONTROL

The actuation devices used to operate the ACFs have limited torque capacities

and hence are subject to amplitude saturation. Similarly for microflaps, the thick-

ness of the airfoil imposes a limitation on the size of the microflap thus constrain-

ing the maximum deflection of the microflap. Saturation introduces nonlinearities

into a linear system thus forcing it to operate in a mode for which it was not de-

signed [10]. Therefore, it is important to consider the effects of actuator saturation

in the various active control approaches since ignoring them results in a significant

degradation in the performance of the control-system. The effect of actuator satu-

ration on the performance of the HHC algorithm has not been extensively studied.

A preliminary investigation of the effect of actuator saturation on the vibration

reduction capabilities of the HHC algorithm using a conventional plain flap was

performed in Ref. 28. Three different approaches to constraining the flap deflec-

tions were considered. Two approaches which involve an a posteriori modification

182
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of the optimal control input obtained from the HHC algorithm are: 1) truncation

(TR): simply clipping the optimal flap deflection whenever it exceeds the satu-

ration limits, 2) scaling (SC): uniformly scaling down the optimal flap deflection

such that it never exceeds the saturation limits. A third approach referred to as

the auto-weighting (AW) approach which involves iteratively adjusting the control

weighting matrix in the HHC algorithm such that flap deflection is properly con-

strained was presented in Ref. 28. The AW approach also involves an a posteriori

design modification to the controller, by modifying the control weighting matrix

after obtaining the optimal control input from the HHC algorithm. It was shown

that the AW approach produced excellent performance by reducing the vibration

levels by up to 90%. By comparison, the TR and SC approaches were inconsistent

and produced only limited vibration reduction. However, the AW approach has

several shortcomings. It is based on a simplistic iterative approach which requires

the user to guess a value for the upper bound on the control weighting. Depending

on this value, the AW approach can take several iterations to converge, and thus

can be computationally expensive. Furthermore, in the case of multiple flaps (or

microflaps), the control weighting corresponding to the various control surfaces

used in the AW approach is identical. This produces an optimal control input only

for one of the control surfaces leaving the others under-utilized.

The shortcomings of the AW approach can be remedied by a new approach

based on constrained nonlinear optimization. In this approach, actuator saturation

constraints formulated as inequality constraints on the control surface deflection
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are combined with the minimization of the quadratic cost function in the HHC

algorithm resulting in a constrained nonlinear optimization problem. Unlike the

approaches described in Ref. 28, this approach (referred to in this chapter as the

optimization (OPT) approach) accounts for the presence of saturation nonlinearities

in an a priori manner involving direct modifications to the HHC algorithm. The

OPT approach is elegant and computationally inexpensive compared to the AW

approach. It also optimizes the deflections corresponding to the various control

surfaces independently thus utilizing all of them to the maximum possible extent.

A similar approach to handling actuator saturation using optimization techniques

was proposed in Ref. 111 for vibration reduction using a single trailing-edge flap.

However, the performance of the approach was never examined in detail. Fur-

thermore, the principal advantages of using the OPT approach over the other ap-

proaches is its effectiveness when dealing with multiple control surfaces such as

the trailing-edge flaps or the microflaps. Due to the potential of the OPT approach,

particularly when implemented for multiple control surfaces, it was decided to

compare it in detail to the TR, SC, and AW approaches. The effectiveness of the

various actuator saturation approaches for reducing vibrations is compared using

the single and dual configurations of a 20%c conventional plain trailing-edge flap

and a 1.5%c microflap at two different flight conditions: (a) low-speed descending

flight where vibrations are high due to blade-vortex interaction and (b) high-speed

cruise conditions. The effectiveness of the various saturation approaches is also

compared for BVI noise reduction using a dual microflap configuration.
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8.1 Approaches to Handling Actuator Saturation

For the active control simulations conducted in this study, a 1.5%c microflap is

used. Similarly, for a conventional trailing-edge flap, the maximum acceptable de-

flection is set to 4◦ so as to avoid interactions with the flight control system. Actua-

tor saturation in the HHC algorithm is examined using four different approaches:

truncation, scaling, auto-weighting, and optimization.

In the truncation approach, the unconstrained optimal control input is clipped

whenever it exceeds the limiting amplitude. The control surface deflection is thus

defined as

δ(ψ,uk) =


δ(ψ,uk), |δ(ψ,uk)| < δlimit

sgn(δ(ψ,uk)) · δlimit, |δ(ψ,uk)| ≥ δlimit

(8.1)

where δlimit is the saturation limit on the control surface deflection.

The scaling approach uniformly scales down the optimal control input as

δ(ψ,uk) =
δlimit

max(|δopt(ψ,uk)|)
· δopt(ψ,uk), (8.2)

where δopt(ψ,uk) is the optimal control input obtained using the HHC algorithm.

Each harmonic component of the optimal control surface deflection is scaled by a

common factor such that the maximum deflection satisfies the saturation limit.

The auto-weighting approach updates the control weighting matrix, R in Eq. (6.6),

in order to restrict the control surface deflection. The control weighting matrix R
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penalizes the control amplitude and thus can be used to constrain the optimal con-

trol surface deflection. However, the exact value of R required to constrain the

control input amplitude within the saturation limits is not known a priori. Hence,

an iterative approach which adjusts the value of R is used. The weighting matrix

R is represented in a form which allows its modification:

R = cwuI. (8.3)

Note that all harmonic components are equally weighted. If the control surface

deflection is overconstrained, the controller reduces the value of cwu and a new

optimal control is calculated. If the control surface deflection is underconstrained,

the controller increases the value of cwu and a new optimal control is calculated.

The modifications to cwu are made in the following manner:

1. Set c−wu = 0 and c+
wu = cmax.

2. Set cwu = 1
2
(c−wu + c+

wu)

3. Calculate a new optimal control.

If the flap deflection is properly constrained (|δmax| = δlimit± 5%), end the

algorithm.

If the flap deflection is underconstrained (|δmax| > δlimit), set c−wu = 1
2
(c−wu+

c+
wu). Return to step 2.

If the flap deflection is overconstrained (|δmax| < δlimit), set c+
wu = 1

2
(c−wu +

c+
wu). Return to step 2.



187

The iterative procedure increases or decreases cwu until the optimal control con-

verges to the desired deflection limits within a prescribed tolerance. This approach

requires the user to guess the maximum value cmax. The cmax value needs to be

greater than or equal to the optimum value of cwu that properly constrains the con-

trol input. Choosing a very large value for cmax is not recommended since depend-

ing on the proximity of cmax to the optimum value of cwu, the AW approach can

take several iterations increasing its computational costs. Furthermore, in the case

of multiple control surfaces, the number of iterations required for all of them to be

properly constrained can be quite high rendering the AW approach impractical.

8.1.1 Actuator saturation using optimization techniques

The deficiencies of the approaches described above can be remedied by using

constrained nonlinear optimization to handle actuator saturation in the HHC algo-

rithm. Recall from Eq. (6.6) that the HHC algorithm is based on the minimization

of a quadratic cost function

J(zk,uk) = zT
kQzzk + uT

kRuk. (8.4)
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The saturation limits on the control input can be combined with the minimization

of the cost function resulting in a constrained optimization problem:

minimize
uk

J(zk,uk) = zT
kQzzk + uT

kRuk, (8.5)

subject to |δi(ψ,uk)| ≤ δlimit, i = 1, . . . , Nδ (8.6)

where Nδ is the total number of control surfaces. The optimization problem rep-

resented by Eqs. (8.5) and (8.6) is a typical nonlinear constrained optimization

problem with a quadratic objective function and nonlinear inequality constraints,

known as the Nonlinear Programming (NP) problem. Unlike the approaches de-

scribed earlier, this approach involves direct modifications to the HHC algorithm

accounting for the presence of saturation nonlinearities in an a priori manner. The

resulting optimal control input always satisfies the saturation limits irrespective of

the values of R and Q.

A NP method, Sequential Quadratic Programming (SQP) [40, 114], available as

part of the FMINCON tool in MATLAB, is used to solve the optimization problem

represented by Eqs. (8.5) and (8.6). The SQP method solves a quadratic program-

ming subproblem at each iteration based on a quadratic approximation of the La-

grangian function. A stand-alone application (a .exe file) capable of performing the

optimization is generated using Matlab. Subsequently, this application is invoked

from the AVINOR code in order to evaluate the optimum uk. The stand-alone ap-

plication requires approximately 1 sec to run on a 2.53 GHz Intel Xeon processor in

the case of a single control surface. Note that the nonlinear constraints described
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in Eq. (8.6) have to be satisfied for all values of the azimuthal angle ψ ∈ [0◦ 360◦].

For the numerical implementation, the nonlinear constraints are evaluated and en-

forced at various values of ψ over the range [0◦ 360◦].

8.2 Vibration and Noise Reduction Using the Saturation Approaches

Discussed

8.2.1 Low-speed results

Vibration reduction studies are conducted using the various saturation approaches

described earlier for a heavy BVI descending flight condition with advance ratio

µ = 0.15 and descent angle αD = 6.5◦. The non-dimensional 4/rev vibratory hub

shears and moments obtained using the four different saturation approaches for

the single plain flap configuration are compared to the baseline vibration levels in

Fig. 8.1. The TR approach yields only a 5% reduction in the vibration objective

while causing some of the vibratory hub loads to increase from the baseline lev-

els. The SC approach yields a 38% reduction in the vibration objective. The AW

and OPT approaches yield similar performance yielding 76% and 78% reduction

in the vibration objective, respectively. However, the OPT approach takes only 10

control updates (80 rotor revolutions) to converge compared to over 100 control

updates (800 rotor revolutions) taken by the AW approach. The flap deflection his-

tories over one complete rotor revolution corresponding to the various saturation

approaches are shown in Fig. 8.2. The flap deflection histories corresponding to
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Figure 8.1: Reduction in 4/rev vibratory hub shears and moments obtained using
the various saturation approaches for the single plain flap configuration
at a heavy BVI descending flight condition with µ = 0.15.

the AW and OPT approaches show similarities in the azimuthal locations of the

peaks and troughs. However, the maximum flap deflection obtained using the

OPT approach is closer to the saturation limit thus utilizing the flap to the maxi-

mum possible degree. This results from the fact that a small tolerance, typically of

the order of 10−6, is used on the constraint violation in the OPT approach.

The 4/rev vibratory hub loads obtained using the dual plain flap configuration

are compared to the baseline levels in Fig. 8.3. The TR and SC approaches yield

81% and 57% reduction in the vibration objective, respectively. The AW approach

yields 95% reduction whereas the OPT approach yields the best performance with

a 98% reduction in the vibration objective. Significantly better performance ob-

tained using the OPT approach is evident in the vertical shear component. The

inboard and outboard flap deflection histories corresponding to the various sat-

uration approaches are shown in Fig. 8.4. In the AW approach, the maximum
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Figure 8.2: Single plain flap deflection histories corresponding to the various sat-
uration approaches at a heavy BVI descending flight condition with
µ = 0.15.
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Figure 8.3: Reduction in 4/rev vibratory hub shears and moments obtained using
the various saturation approaches for the dual plain flap configuration
at a heavy BVI descending flight condition with µ = 0.15.

deflection of the inboard flap is significantly less than the saturation limit. This

is primarily because the same control weighting (cwu in Eq. (8.3)) is used for both

the flaps which results in the under-utilization of one of the flaps. As is evident

from the constraint inequalities in Eq. (8.6), the two flaps are optimized individ-

ually in the OPT approach, thus the maximum deflection corresponding to each

of the flaps is almost equal to the saturation limit. This feature of the OPT approach

facilitates the use of both the flaps to the maximum possible extent resulting in a better

vibration reduction performance.

Similar comparisons were performed for the single and dual microflap con-

figurations. The 4/rev vibratory hub loads obtained using the various saturation

approaches for a single microflap configuration are compared to the baseline lev-

els in Fig. 8.5. The TR approach yields a 64% reduction in the vibration objective

whereas the SC approach yields no significant reduction. The AW and OPT ap-
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Figure 8.4: Dual plain flap deflection histories corresponding to the various sat-
uration approaches at a heavy BVI descending flight condition with
µ = 0.15.
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Figure 8.5: Reduction in 4/rev vibratory hub shears and moments obtained using
the various saturation approaches for the single microflap configura-
tion at a heavy BVI descending flight condition with µ = 0.15.

proaches yield similar performance with 71% and 70% reductions in the vibration

objective, respectively. The flap deflection histories corresponding to the various

approaches are shown in Fig. 8.6 for one complete rotor revolution. The flap de-

flection histories obtained from the SC, AW, and OPT approaches show similarities

in the azimuthal locations of the peaks and troughs.

The 4/rev vibratory hub loads obtained using the various saturation approaches

for the dual microflap configuration are compared in Fig. 8.7. The TR and SC ap-

proaches yield marginal performance with 13% and 11% reductions in the vibra-

tion objective, respectively. The AW approach reduces the vibration objective by

88% whereas the OPT approach yields the best performance with 97% reduction

in the vibration objective. The inboard and outboard flap deflection histories cor-

responding to the various saturation approaches are shown in Fig. 8.8. As in the

case of the plain flaps, the AW approach under-utilizes the inboard control surface
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Figure 8.6: Single microflap deflection histories corresponding to the various sat-
uration approaches at a heavy BVI descending flight condition with
µ = 0.15.
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Figure 8.7: Reduction in 4/rev vibratory hub shears and moments obtained using
the various saturation approaches for the dual microflap configuration
at a heavy BVI descending flight condition with µ = 0.15.

whereas the OPT approach utilizes both the control surfaces to the fullest possible

extent resulting in a significantly better vibration reduction performance.

The different saturation approaches were also compared in terms of their BVI

noise reduction capabilities using the dual microflap configuration. Noise levels

computed on the carpet plane (depicted in Fig. 7.1) during active noise reduction

using the different saturation approaches are compared to the baseline noise levels

in Fig. 8.9. The TR and SC approaches yield similar performance with approxi-

mately 1 dB noise reduction on the advancing side and up to 2 dB reduction on the

retreating side of the rotor disk. By contrast, the AW and OPT approaches yield

significantly better performance with 4 dB noise reduction on both the advancing

and the retreating sides of the rotor disk. The inboard and outboard microflap de-

flection histories corresponding to the various saturation approaches are shown in

Fig. 8.10.
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Figure 8.8: Dual microflap deflection histories corresponding to the various sat-
uration approaches at a heavy BVI descending flight condition with
µ = 0.15.
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Figure 8.9: Reduction in noise levels obtained using the various saturation ap-
proaches for the dual microflap configuration at a heavy BVI descend-
ing flight condition with µ = 0.15.
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Figure 8.10: Dual microflap deflection histories corresponding to the various sat-
uration approaches during active noise reduction at a heavy BVI de-
scending flight condition with µ = 0.15.
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8.2.2 High-speed Results

Results of the vibration reduction studies conducted using the various satura-

tion approaches at a high speed level flight condition with µ = 0.3 and weight coef-

ficient CW = 0.005 are presented in this section. The 4/rev vibratory hub loads ob-

tained using the various saturation approaches are compared to the baseline levels

in Fig. 8.11. The TR and SC approaches yield 82% and 71% reduction in the vibra-

tion objective, respectively. By comparison, the AW and OPT approaches yield ex-

cellent performance reducing the vibration objective by 93% and 97%, respectively.

The deflection time histories corresponding to the various saturation approaches

over one rotor revolution are shown in Fig. 8.12. A relatively good performance ob-

tained from the TR approach can be attributed to the fact that only a small portion

of the flap deflection shown in Fig. 8.12(a) is being truncated. The flap deflection

histories corresponding to the SC, AW, and OPT approaches show a qualitative

resemblance with similar azimuthal locations for the peaks and troughs.

The vibratory hub loads obtained using the various saturation approaches for

the dual plain flap configuration are shown in Fig. 8.13. The TR approach causes an

increase in the longitudinal and lateral shears and yields no significant reduction

in the vibration objective. The SC approach reduces the vibration objective by

62% whereas the AW and the OPT approaches yield exceptional performance with

95% and 99% reductions in the vibration objective, respectively. The inboard and

outboard flap deflection time histories corresponding to the various approaches

are shown in Fig. 8.14. In the TR approach, significant portions of the inboard and
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Figure 8.11: Reduction in 4/rev vibratory hub shears and moments obtained using
the various saturation approaches for the single plain flap configura-
tion at a high-speed flight condition with µ = 0.3.
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Figure 8.12: Single plain flap deflection histories corresponding to the various sat-
uration approaches at a high-speed flight condition with µ = 0.3.
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Figure 8.13: Reduction in 4/rev vibratory hub shears and moments obtained using
the various saturation approaches for the dual plain flap configuration
at a high-speed flight condition with µ = 0.3.

outboard flap deflections are truncated, as shown in Fig. 8.14(a), resulting in its

poor performance. The outboard flap is significantly under-utilized by the AW

approach, shown in Fig. 8.14(c), whereas the OPT approach utilizes both the flaps

to the maximum possible extent.

Similar comparisons are performed using single and dual microflap configura-

tions as well. The 4/rev vibratory hub loads acquired from the various saturation

approaches are compared in Fig. 8.15 for the single microflap configuration. The

TR approach reduces the vibration objective by 38%. The SC approach causes a

significant increase in the vertical hub shear resulting in a 5% increase in the vi-

bration objective. The AW and OPT approaches yield 91% and 94% reductions in

the vibration objective, respectively. The microflap deflection time histories cor-

responding to the various saturation approaches are shown in Fig. 8.16 for one

complete rotor revolution. The microflap deflection histories corresponding to the
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Figure 8.14: Dual plain flap deflection histories corresponding to the various satu-
ration approaches at a high-speed flight condition with µ = 0.3.
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Figure 8.15: Reduction in 4/rev vibratory hub shears and moments obtained using
the various saturation approaches for the single microflap configura-
tion at a high-speed flight condition with µ = 0.3.

AW and OPT approaches show similarity in the overall shape.

Vibratory hub loads obtained from the different saturation approaches for the

dual microflap configuration are shown in Fig. 8.17. The TR and SC approaches

yield 25% and 28% reductions in the vibration objective, respectively. However,

both of them cause a small increase in the vertical hub shear. The AW and the OPT

approaches perform exceptionally well with 94% and 98% reductions in the vi-

bration objective, respectively. The microflap deflection histories corresponding to

the various saturation approaches are shown in Fig. 8.18. The AW approach signif-

icantly under-utilizes the outboard microflap whereas the OPT approach utilizes

both the microflaps to the maximum possible extent.
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Figure 8.16: Single microflap deflection histories corresponding to the various sat-
uration approaches at a high-speed flight condition with µ = 0.3.
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Figure 8.17: Reduction in 4/rev vibratory hub shears and moments obtained using
the various saturation approaches for the dual microflap configuration
at a high-speed flight condition with µ = 0.3.
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Figure 8.18: Dual microflap deflection histories corresponding to the various satu-
ration approaches at a high-speed flight condition with µ = 0.3.



CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE RESEARCH

This study demonstrated the potential of microflaps for noise and vibration re-

duction on a helicopter rotor using closed-loop control methods. A CFD based

reduced order aerodynamic model that can capture the aerodynamic effects of a

microflap was developed and incorporated in to a comprehensive rotorcraft simu-

lation code. This comprehensive code, which has the capability to perform aeroe-

lastic and aeroacoustic calculations on various rotor configurations was used to

investigate microflap’s effectiveness for vibration reduction at various flight con-

ditions and noise reduction under BVI conditions. Simultaneous vibration and

noise reduction under BVI conditions was also examined. The effectiveness of the

microflap in reducing vibration and noise was compared to that of a 20%c plain

trailing-edge flap. Finally, a new approach for dealing with actuator saturation in

the HHC algorithm was developed using nonlinear constrained optimization tech-

niques. The vibration reduction performance of this new approach was compared

207
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to the previous approaches.

9.1 Conclusions and New Contributions

The principal conclusions and contributions of this dissertation are summa-

rized below:

1. Effects of a Gurney flap on the aerodynamic characteristics of a NACA0012

airfoil were studied using Reynolds Averaged Navier-Stokes (RANS) CFD

computations and the results were compared with experiments. The max-

imum lift coefficient was approximately 20% higher with the Gurney flap.

The Gurney flap also induced a negative pitching moment on the airfoil.

2. The unsteady aerodynamic characteristics of three different microflap con-

figurations were studied using CFD computations. The simulation results

indicate that the configuration with sharp trailing-edge yields the best lift-to-

drag ratio and the highest pitch-down moment compared to the other con-

figurations and hence was chosen for all the active control studies performed

in this thesis.

3. A nonlinear, rational function approximation (RFA) based reduced-order aero-

dynamic model (ROM) was developed for the microflap using CFD based

aerodynamic load response data. This model accurately reproduces the CFD

results at a fraction of the computational cost for flow conditions that are

characteristic of rotorcraft aerodynamic environment. However, the ROM
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fails to capture strong nonlinear effects under stall conditions. This short-

coming does not detract from its effectiveness since the ROM is ideally suited

for incorporation into a comprehensive rotorcraft simulation codes.

4. The aerodynamic load predictions from the CFD based and doublet-lattice

(DL) based RFA models were compared to direct CFD calculations over a

range of flow conditions. The new CFD based RFA model represents a huge

improvement over the earlier potential flow based DL+RFA model.

5. The CFD based RFA model was incorporated into a comprehensive rotorcraft

simulation code AVINOR. The control authority of microflaps for on-blade

noise and vibration reduction in rotorcraft was examined using three span-

wise microflap configurations: single, dual, and a segmented five-microflap

configuration. The HHC control algorithm was employed for active noise

and vibration reduction studies in closed-loop.

6. Active noise reduction using the microflaps was examined under a heavy

BVI descending flight condition with the advance ratio µ = 0.15 and descent

angle αD = 6.5◦. Depending on the configuration, 3-6 dB noise reduction

was obtained on the advancing side and 2-3 dB reduction was achieved on

the retreating side, demonstrating the microflap’s effectives in reducing BVI

noise.

7. It was also found that active noise reduction using the single and dual mi-

croflap configurations produced a 45% increase in the 4/rev vertical shear
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whereas the five-microflap configuration resulted in a 100% increase in the

vertical shear. Similar increase in the vibratory loads during noise reduction

has been identified computationally and experimentally with other active

control approaches such as the conventional HHC and the ACF [102,122,128].

8. The 1.5%c microflap was compared and found to be similar in its effective-

ness to a 20%c plain flap configuration for noise reduction. While both the

devices yield similar reduction levels on the advancing side, the microflap

yields 1 dB higher reduction on the retreating side.

9. Active vibration reduction was demonstrated using the microflap under heavy

BVI descending flight condition. The single, dual, and the five-microflap con-

figurations produced 73%, 84%, and 92% reduction in the vibration objective,

respectively, demonstrating very good control authority for rotorcraft vibra-

tion reduction. However, vibration reduction using a single microflap con-

figuration produced a 2-3 dB noise penalty on the carpet plane. This penalty

was reduced for the dual and five-microflaps configurations.

10. The 1.5%c microflap and the single 20%c plain flap configuration show sim-

ilar effectiveness in vibration reduction capabilities producing 73% and 76%

reduction in the vibration objective, respectively.

11. Simultaneous vibration and noise reduction was examined at the heavy BVI

flight condition. The dual microflap configuration yields 2 dB noise reduc-

tion on both the advancing and the retreating sides while simultaneously
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reducing the 4/rev vibratory vertical hub shear magnitude by 34%. The five

microflap configuration yields 3 dB noise reduction on the advancing side

and 2 dB reduction on the retreating side while simultaneously reducing the

4/rev vibratory vertical hub shear magnitude by 55%. This demonstrates

that simultaneous BVI noise and vibration reduction is feasible using mi-

croflaps.

12. Simultaneous vibration and noise reduction capabilities of the dual microflap

were compared to that of a dual 20%c plain flap configuration. Interestingly,

the microflap shows better effectiveness in reducing the noise over the entire

carpet plane (both the advancing and the retreating sides) whereas the plain

flap reduces only the advancing side noise. The plain flap demonstrates bet-

ter effectiveness in reducing vibrations.

13. Vibration reduction was examined at a high speed cruise flight condition

with µ = 0.3. All three microflap configurations produced over 90% re-

duction in the vibration objective. Similar vibration reduction levels were

obtained using the microflaps and the conventional plain flaps.

14. The microflaps were also considered for rotor performance enhancement at

the high speed forward flight condition with µ = 0.3, using closed loop

control with combined vibration and rotor power objectives. A 1.2% perfor-

mance enhancement was observed using the single microflap configuration,

however, it was accompanied by a 170% increase in the vibration objective.
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15. The effect of actuator saturation on the active vibration reduction perfor-

mance of the HHC control algorithm was also examined. A new approach

to handling actuator saturation in the HHC algorithm based on constrained

nonlinear optimization techniques was developed and compared to the trun-

cation, scaling, and auto-weighting approaches at various flight conditions.

The truncation and scaling approaches were inconsistent yielding only lim-

ited vibration reduction in most cases. By comparison, the auto-weighting

and optimization approaches showed very good performance. However, the

optimization approach takes significantly less computational time and in the

case of multiple control surfaces, it utilizes all of them to the maximum pos-

sible extent resulting in better performance.

These conclusions demonstrate the effectiveness and control authority of the

microflap for vibration reduction, noise reduction, and also multi-objective control

in rotorcraft. The excellent control authority of the microflap combined with its

size advantage compared to the conventional plain trailing-edge flaps establish

the microflap as a viable active device for on-blade rotor control.

9.2 Future Work

The present study has examined active noise reduction using microflaps un-

der BVI conditions, which is critical for improving the community acceptance of

a helicopter. However, noise reduction at high-speed cruise flight conditions still
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needs to be addressed. Noise prediction at high-speed conditions will require in-

clusion of the quadrupole source term in the noise computations. Furthermore, it

will require unsteady pressure data for the blade sections encountering transonic

flow. Future studies could take these factors in to consideration and perform active

noise reduction studies using microflaps at high-speed flight conditions.

The simultaneous vibration and noise reduction studies presented in this thesis

have shown that active flaps and microflaps can reduce one objective while pe-

nalizing the other. Combining active control devices such as the microflap with

passive structural optimization approaches that minimize vibrations and noise

through modifying the mass, stiffness, and geometrical properties of the rotor

blade can be an effective solution to developing quieter and smoother helicopters.

Furthermore, optimization studies considering different geometries, placement schemes,

and numbers of microflaps can be performed in order to develop blade designs

that properly utilize microflap’s control potential.
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Appendix A: Structural Dynamic Model and Generalized Loads

Modeling Assumptions

The basic assumptions used to develop the aeroelastic analysis model for the

rotor blade are as follows:

1. The rotor blade is cantilevered at the hub, with a root offset e from the axis of

rotation (see Fig. A.2).

2. The blade has a precone angle βp (see Fig. A.2) and it has built-in pretwist

distribution θtw about the elastic axis of the blade.

3. The blade has no sweep, droop or torque offset.

4. The blade cross section is assumed to be symmetric with respect to its major

principal axes.

5. The blade feathering axis is coincident with the elastic axis.

6. The deflections in the blade are assumed to be moderate and the strains to be

small.

7. The blade has completely coupled flap, lead-lag, torsional and axial dynam-

ics.

8. The blade is assumed to be inextensible.
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9. The rotor shaft is assumed to be rigid and body degrees of freedom are sup-

pressed.

10. The structural effects of the microflap and the conventional trailing edge flap

are neglected.

11. The distributed aerodynamic loads are obtained using CFD-based RFA aero-

dynamic model.

12. The induced inflow is nonuniform and is obtained by a free wake analysis

included in the aeroelastic model.

13. Reverse flow effects are included by setting the lift and moment equal to zero

and by changing the sign of the drag force inside the reverse flow region.

14. The speed of rotation Ω of the rotor is constant.

15. The helicopter is in trimmed, steady, level or descending flight. Either propul-

sive or wind tunnel trim can be implemented.

Coordinate Systems

The following six coordinate systems are used to formulate the aeroelastic model:

“0” System: This is an inertial reference frame with origin at the hub center OH

oriented such that the gravitational vector is aligned along the negative z0

axis. The tail of the helicopter is assumed to lie in the x0z0 plane in the direc-

tion of the positive x0 axis.
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“1” System: This is an inertial reference frame with origin at OH . The y1 axis is

coincident with the y0 axis, and the z1 axis pitched forward at an angle αR

about the y0 axis so that it is aligned with the rotor axis of rotation. The “1”

system provides the non-rotating reference frame. The “0” and “1” systems

are depicted in Fig. A.1.

DEFORMING BLADE

NOMINAL HUB PLANE

WEIGHTGRAVITY (g)

VELOCITY (V)
DRAG

XFC

THRUST TR

ZFC

�R

Z0

X0

X1

Z1

OH

Figure A.1: Transformation from the “0” system to the “1” system

“2” System: This system has its origin at OH . The z2 axis is coincident with the

z1 axis but rotates with the blades about the z1 axis. The “2” system is the

rotating reference frame.

“3” System: This system rotates with the blades and has its origin at the blade

root located at a distance e away from the axis of rotation along the x2 axis,

as shown in Figure A.2. The x3 axis is “preconed” by an angle βp around

the y2 axis such that the x3 axis lies along the undeformed elastic axis of the
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blade. The principal axes of the undeformed blade cross-section at any point

along the span lie in a plane parallel to the y3z3 plane and are oriented at an

angle θG(x) about the x3 axis. Angle θG(x) is the sum of collective and cyclic

pitch inputs at the root and geometric pretwist of the blade at the particular

point along the span. The “3” system provides the undeformed reference

frame.

“4” System: This is a blade attached system. Before deformation, the “3” and “4”

systems are parallel. After deformation, the “4” system is translated and ro-

tated such that the x4 axis is tangent to the elastic axis of the blade at each

blade cross-section along the span. The principal axes of the blade cross-

section lie in the y4z4 plane, rotated at an angle θG(x) about the x4 axis. The

“4” system provides the deformed reference frame. The relationships be-

tween the “2”, “3” and “4” systems are depicted on Fig. A.2.

“5” System: This is also a blade attached system and represents the “4” system

with the torsional deformation removed, as shown in Figure A.3. Thus, the

principal axes of the blade cross section are rotated at an angle θG(x) + φ(x)

about the x5 axis where φ(x) is the elastic twist. This reference frame is conve-

nient in the derivation of the aerodynamic loads. The relationships between

the “3”, “4” and “5” systems are depicted on Fig. A.3.
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Figure A.2: The transformation from the “2” system to the “4” system
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Figure A.3: The transformation from the “3” system to the “5” system
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Coordinate Transformations

The set of coordinate transformation matrices that were used to move between

the various systems listed above are presented below [Ref. 91, Eq. (4.1)-(4.20)]:

“0” system to “1” system


êx1

êy1

êz1


=


cosαR 0 sinαR

0 1 0

− sinαR 0 cosαR




êx0

êy0

êz0


(A.1)

“1” system to “2” system


êx2

êy2

êz2


=


cosψ sinψ 0

− sinψ cosψ 0

0 0 1




êx1

êy1

êz1


(A.2)

“2” system to “3” system


êx3

êy3

êz3


=


1 0 βp

0 1 0

−βp 0 1




êx2

êy2

êz2


(A.3)

“3” system to “4” system The coordinate transformation from the undeformed “3”

system to the deformed “4” system is obtained using a sequence of angular

rotations. The sequence used in this study is flap-lag-torsion, and consists of
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1) a flap rotation by the angle w,x clockwise about the y3 axis, 2) a lead-lag ro-

tation by the angle v,x counterclockwise about the z3 axis, and 3) a torsional

rotation given by the twist angle φ counterclockwise about the x4 axis, in

that order. Hence, the coordinate transformation from the undeformed “3”

system to the deformed “4” system is given by the matrix product:


êx4

êy4

êz4


=


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 .


1 v,x 0

−v,x 1 0

0 0 1

 .


1 0 w,x

0 1 0

−w,x 0 1




êx3

êy3

êz3


(A.4)

Note that the small angle assumptions cos v,x∼= 1, cosw,x∼= 1, sin v,x∼= v,x,

and sinw,x∼= w,x have been made. Performing the matrix multiplication

yields:


êx4

êy4

êz4


=


1 v,x w,x

−vx cosφ− w,x sinφ cosφ sinφ− v,xw,x cosφ

v,x sinφ− w,x cosφ − sinφ cosφ+ v,xw,x sinφ




êx3

êy3

êz3


(A.5)

“3” system to “5” system


êx5

êy5

êz5


=


1 v,x w,x

−v,x 1 −w,x v,x

−w,x 0 1




êx3

êy3

êz3


(A.6)
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“4” system to “5” system


êx5

êy5

êz5


=


1 0 0

0 cosφ − sinφ

0 sinφ cosφ




êx4

êy4

êz4


(A.7)

Ordering Scheme

An ordering scheme is applied to eliminate the higher order nonlinear terms in

the structural equations of motion, in a consistent manner. This is accomplished by

assigning orders of magnitude to various commonly encountered nondimensional

physical terms and then neglecting terms with an order higher than a predeter-

mined threshold value.

It is assumed the slopes of the deformed rotor blades are of the order ε (0.10 ≤

ε ≤ 0.20), based on the moderate deflection assumption. The ordering scheme

assumes the terms of order ε2 or higher can be neglected with respect to terms of

order 1, i. e.

O(1) +O(ε2) ∼= 1 (A.8)

A careful and systematic application of this ordering scheme yields expressions

of manageable size and with sufficient accuracy for rotor stability and response

calculations.

To assign orders of magnitude to individual terms, they must first be expressed

in nondimensional form. This is performed using the following reference quanti-
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ties:

[length] = R, rotor radius,

[mass] = Mb, mass of one blade,

[time] =
1

Ω
, inverse of the rotor speed.

Orders of magnitude have been assigned to common nondimensional quanti-

ties as follows:

O(1) :
x

R
,
Lb
R
,

mb

(Mb/R)
,

ρb
(Mb/R3)

, µ, ψ, cosψ, sinψ,

ao, R
∂

∂x
,

1

Ω

∂

∂t
,
∂

∂ψ

O(ε1/2) :
Lcs
R
, θG, δ

O(ε) :
cb
R
,
e

R
,
ccs
R
,

mc

(Mb/R)
,
Xh

R
, θpt, λ, αR, βp,

v

R
,
w

R
, v,x , w,x , φ

O(ε3/2) :
Mc

Mb

,
XA

R
,
XIb

R
,
XIc

R
,
XIIb

R
,
XIIc

R
,Cd0

O(ε2) :
u

R
,

EIζζ
MbR3Ω2

,
EIηη

MbR3Ω2
,
fCdf
R2

,

O(ε5/2) :
IMB2

MbR
,
IMB3

MbR

O(ε3) :
g

Ω2R
,

GJb
MbR3Ω2

O(ε7/2) :
IMC2

MbR
,
IMC3

MbR

The orders of magnitude presented here are consistent with those used in Refs. 87,

92, 112.
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Equations of Motion for the Elastic Blade

The hingeless blades are modeled as slender rods of linearly elastic, homoge-

neous material, cantilevered at an offset e from the rotor hub, using a blade model

taken from Ref. 87. This blade model describes the fully coupled flap-lag-torsional

dynamics of an isotropic blade. The blade model described in Ref. 87 was derived

to reflect the deformation sequence flap-lag-torsion.

The equations of motion for the elastic blade consist of a set of nonlinear partial

differential equations of motion, with the distributed loads left in general symbolic

form. The distributed loads on the blade, not including control surface loads, can

be expressed in the “3” system as:

pb = pbx3êx3 + pby3êy3 + pbz3êz3, (A.9)

qMb = qbx3êx3 + qby3êy3 + qbz3êz3, (A.10)

where pb and qMb represent the total distributed spanwise force and moment,

respectively. The equations of motion for the elastic blade, derived in Ref. 91, Eqs.

(4.23)-(4.25), are then given by:



225

Flap Equation

−[(EIζζ − EIηη) sin θG cos θG(v,xx +2φw,xx )

+(EIζζ − EIηη)φv,xx cos 2θG + (EIζζ sin2 θG + EIηη cos2 θG)w,xx

−TXIIb(sin θG + φ cos θG)],xx +(GJbφ,x v,xx ),x +(w,x T ),x

−(v,x qbx3),x +qby3,x +pbz3 = 0.

(A.11)

Lag Equation

−[(EIζζ cos2 θG + EIηη sin2 θG)v,xx +(EIζζ − EIηη)φw,xx cos 2θG

+(EIζζ − EIηη) sin θG cos θG(w,xx−2φv,xx )

−TXIIb(cos θG − φ sin θG)],xx−(GJbφ,xw,xx ),x +(v,x T ),x

+(w,x qbx3),x−qbz3,x +pby3 = 0.

(A.12)

Torsional Equation

[GJb(φ,x−v,xw,xx )],x

+(EIζζ − EIηη)[(v,xx2 − w,xx2) sin θG cos θG − v,xxw,xx cos 2θG]

+TXIIb(w,xx cos θG − v,xx sin θG) + qbx3 + v,x qby3 + w,x qbz3 = 0,

(A.13)
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where T is the axial tension.

Incorporation of the Control Surfaces in the Blade Equations of

Motion

The following assumptions have been used for incorporating the effects of the

microflap and the active plain flap in the dynamic equations of equilibrium:

1. The micrflap and the plain flap are constrained to slide or rotate only in the

plane of the blade cross section;

2. The control surfaces are assumed to be inextensible;

3. The inertial and aerodynamic effects of the control surfaces are included in

the model. The effect of the microflap/flap on the structural properties of

the blade is assumed to be negligible. Thus, the control surfaces influence

the behavior of the blade only through their contribution to the spanwise

distributed loads on the blade.

The distributed force and moment on the blade due to the control surfaces can

be represented in the “3” system by [Ref. 91, Eqs. (4.26)-(4.27)]:

pc = pcx3êx3 + pcy3êy3 + pcz3êz3, (A.14)

qc = qcx3êx3 + qcy3êy3 + qcz3êz3. (A.15)
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For a single microflap/flap configuration, with the microflap/flap inboard edge

located at a distance x1
cs from the blade root, the distributed loads are given by:

pc,qc =


0 for x < x1

cs − Lcs
2

p1
c ,q

1
c for x1

cs − Lcs
2
≤ x ≤ x1

cs + Lcs
2

0 for x > x1
cs + Lcs

2

where p1
c1 and q1

c represent the distributed loads due to the single microflap/flap,

and are described in the next section. For a dual microflap/flap configuration,

with the inboard edge of the second microflap/flap located at a distance x2
cs from

the blade root, the distributed loads are given by:

pc,qc =



0 for x < x1
cs − Lcs

2

p1
c ,q

1
c for x1

cs − Lcs
2
≤ x ≤ x1

cs + Lcs
2

0 for x1
cs + Lcs

2
< x < x2

cs − Lcs
2

p2
c ,q

2
c for x2

cs − Lcs
2
≤ x ≤ x2

cs + Lcs
2

0 for x > x2
cs + Lcs

2

where p1
c , q1

c and p2
c , q2

c represent distributed loads due to the first and second

control surfaces, respectively.

The effect of the control surfaces is included in the blade equations of motion

by adding the distributed loads due to the control surfaces, given in Eqs. (A.14)-

(A.15), to the distributed loads for the blade alone. The equations of motion for the

blade, Eqs. (A.11)-(A.12), can be rewritten to reflect this change as:
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Flap Equation

−[(EIζζ − EIηη) sin θG cos θG(v,xx +2φw,xx )

+(EIζζ − EIηη)φv,xx cos 2θG + (EIζζ sin2 θG + EIηη cos2 θG)w,xx

−TXIIb(sin θG + φ cos θG)],xx +(GJbφ,x v,xx ),x +(w,x T ),x

−(v,x (qbx3 + qcx3)),x +(qby3 + qcy3),x +(pbz3 + pcz3) = 0.

(A.16)

Lag Equation

−[(EIζζ cos2 θG + EIηη sin2 θG)v,xx +(EIζζ − EIηη)φw,xx cos 2θG

+(EIζζ − EIηη) sin θG cos θG(w,xx−2φv,xx )

−TXIIb(cos θG − φ sin θG)],xx

−(GJbφ,xw,xx ),x +(v,x T ),x +(w,x (qbx3 + qcx3)),x

−(qbz3 + qcz3),x +(pby3 + pcy3) = 0.

(A.17)
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Torsion Equation

[GJb(φ,x−v,xw,xx )],x +(EIζζ − EIηη)[(v,xx2 − w,xx2) sin θG cos θG

−v,xxw,xx cos 2θG] + TXIIb(w,xx cos θG − v,xx sin θG)

+(qbx3 + qcx3) + v,x (qby3 + qcy3) + w,x (qbz3 + qcz3) = 0,

(A.18)

Distributed Loads

A complete description of the aeroelastic equations governing the motion of

the rotor blade requires a derivation of the distributed inertial, aerodynamic, grav-

itational, and the structural damping loads. Distributed inertial, gravitational, and

damping loads on a flapped rotor blade were derived as explicit expressions of

blade displacement in Ref. 87. Expressions for distributed aerodynamic loads were

derived in Ref. 91. These expressions have been used in the present analysis. The

purpose of this section is to show how the complete equations of motion are for-

mulated. This will be accomplished by establishing the blade kinematics first and

subsequently the distributed loads.

Blade Kinematics

To formulate explicit expressions of the distributed loads acting on the blade,

the position of an arbitrary point on the blade or control surface must be defined
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in terms of the blade degrees of freedom. The approach described in this chapter

is taken from Ref. 91. The kinematic description of the blade used in the deriva-

tion of the distributed loads is based on the assumptions of Euler-Bernoulli beam

theory: plane sections normal to the elastic axis of the beam before deformation

remain plane after deformation, and strains within cross-sections are neglected.

Accordingly, an arbitrary point on the beam before deformation, represented by

the vector

Rp = eêx2 + xêx3 + yoêy3 + zoêz3, (A.19)

is described after deformation by the vector

rp = eêx2 + (x+ u)êx3 + vêy3 + wêz3 + yoêy4 + zoêz4. (A.20)

where u, v, and w represent the displacement of a point on the elastic axis of the

blade as illustrated in Fig. A.2. If the coordinate pair (ȳo, z̄o) can be interpreted as

the pair (yo, zo) expressed in the “5” coordinate system, i.e.

yoêy4 + zoêz4 = ȳoêy5 + z̄oêz5, (A.21)

then

rp = eêx2 + (x+ u)êx3 + vêy3 + wêz3 + ȳoêy5 + z̄oêz5. (A.22)
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The velocity and acceleration of a point in a reference frame that is translating and

rotating relative to an inertial frame can be found using the classical relations:

vp = Ṙo + ṙ + ω × r, (A.23)

ap = R̈o + r̈ + 2ω × ṙ + ω̇ × r + ω × (ω × r), (A.24)

where Ro is the position of the origin of the moving reference frame in the inertial

frame, and ω the vector of angular velocity. The time derivatives of Ro are taken

in the inertial frame, while those for r are taken in the rotating frame. For the rotor

case, the inertial frame is that of the hub, described by the “1” system. The rotating

frame rotates with the blades and corresponds to the “2” system. The origin of

the rotating frame is assumed to coincide with the that of the non-rotating frame.

Thus:

R̈o = Ṙo = Ro = 0. (A.25)

Also, ω = Ωêz2, and since Ω is constant, ω̇ = 0. Hence, the velocity and acceleration

of any point in the rotating reference frame (“2” system) are given by:

vp = ṙp + Ωêz2 × rp, (A.26)

ap = r̈p + 2Ωêz2 × ṙp + Ωêz2 × (Ωêz2 × rp). (A.27)

Equations (A.26) and (A.27), taken from Ref. 91, are the fundamental kinematic

relations used in the derivation of the distributed loads.
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Inertial Loads

The inertial loads are obtained using D’Alembert’s principle. Expressions for

the inertial loads will first be formulated in the “2” system, and then transformed

to the “3” system to be compatible with the blade elastic equations of motion.

Given an arbitrary point in the rotating frame (“2” system), represented by the

vector:

rp = rpx2êx2 + rpy2êy2 + rpz2êz2, (A.28)

the acceleration of this point can be found using Eq. (A.27). Expressed in the “2”

system, this is given by:

ap = apx2êx2 + apy2êy2 + apz2êz2, (A.29)

where:

apx2 = r̈px2 − 2Ωṙpy2 − Ω2rpx2, (A.30)

apy2 = r̈py2 + 2Ωṙpx2 − Ω2rpy2, (A.31)

apz2 = r̈pz2, (A.32)

with time derivatives of rp taken in the “2” system.

From Eq. (A.22), a point on the deformed blade can be expressed as:

rb = eêx2 + (x+ u)êx3 + vêy3 + wêz3 + ȳobêy5 + z̄obêz5. (A.33)
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The inertial forces and moments taken about the elastic axis of the blade at a given

spanwise location are given by:

pIb = −
∫
Ab

ρbabdA, (A.34)

qIb = −
∫
Ab

rob × ρbabdA, (A.35)

where:

rob = ȳobêy5 + z̄obêz5. (A.36)

The resulting spanwise distributed inertia force is expressed in the “2” system as

[Ref. [91], Eqs. (5.36)-(5.39)]:

pIb = pIbx2êx2 + pIby2êy2 + pIbz2êz2, (A.37)
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where the components of pIb are given by:

pIbx2 = mbΩ
2(x+ e) + 2mbΩv̇ +mbβp(ẅ − wΩ2)

+mb(uΩ2 − ü)− 2mbXIbΩ sin(θG + φ)(θ̇G + φ̇), (A.38)

pIby2 = 2mbΩẇβp +mb(vΩ2 − v̈)− 2mbΩu̇

+mbXIb cos(θG + φ)((θ̇G + φ̇)2 + Ω(Ω + 2v̇,x ) + 2Ω(θ̇G + φ̇)(w,x +βp))

+mbXIb sin(θG + φ)((θ̈G + φ̈) + 2Ωẇ,x−2Ω(θ̇G + φ̇)v,x ), (A.39)

pIbz2 = −mbüβp −mbẅ

+mbXIb cos(θG + φ)(−(θ̈G + φ̈) + v̈,x (w,x +βp) + 2ẇ,x v̇,x +ẅ,x v,x )

+mbXIb sin(θG + φ)((θ̇G + φ̇)2 − (θ̈G + φ̈)(w,x +βp)v,x ). (A.40)

Similarly, distributed spanwise moment is expressed in the “2” system as [Ref. [91],

Eqs. (5.40)-(5.43)]:

qIb = qIbx2êx2 + qIby2êy2 + qIbz2êz2, (A.41)
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where:

qIbx2 = mbXIb cos(θG + φ)((vΩ2 − v̈)(w,x +βp)v,x−ẅ − üβp)

mbXIb sin(θG + φ)((v̈ − vΩ2) + 2Ωu̇− 2Ωẇβp)

−(IMB2 + IMB3)(θ̈G + φ̈)

+(IMB2 − IMB3) cos(θG + φ) sin(θG + φ)Ω((Ω + 2v̇,x ) + 2(θ̇G + φ̇)(w,x +βp)

+2(IMB2 cos2(θG + φ) + IMB3 sin2(θG + φ))Ω((θ̇G + φ̇)v,x−ẇ,x )

+(IMB2 sin2(θG + φ) + IMB3 cos2(θG + φ))

(2v̇,x ẇ,x +v,x ẅ,x +(w,x +βp)(Ω
2v,x +v̈,x )), (A.42)

qIby2 = −mbXIb cos(θG + φ)(Ω2x(w,x +βp) + ẅ)v,x

+mbXIb sin(θG + φ)(Ω2(x+ e)− (Ω2wβp + ẅw,x ) + 2Ωv̇ + (uΩ2 − ü))

−(IMB2 + IMB3)(θ̈G + φ̈)v,x

+(IMB2 − IMB3) cos(θG + φ) sin(θG + φ)((v,x Ω2 − v̈,x )− 2(θ̇G + φ̇)ẇ, x)

+(IMB2 cos2(θG + φ) + IMB3 sin2(θG + φ))

(w,x−Ω2(w,x +βp)− 2(θ̇G + φ̇)(Ω + v̇,x )), (A.43)

qIbz2 = mbXIb cos(θG + φ)(−Ω2(x+ e)− 2Ωv̇ + (ü− uΩ2)

+(wΩ2 − ẅ)βp + (v̈ − vΩ2)v,x )

+mbXIb sin(θG + φ)(v̈ − vΩ2)(w,x +βp)

−(IMB2 + IMB3)(θ̈G + φ̈)(w,x +βp)

+(IMB2 − IMB3) cos(θG + φ) sin(θG + φ)(ẅ,x−2(θ̇G + φ̇)(Ω + v̇,x ))

−(IMB2 sin2(θG + φ) + IMB3 cos2(θG + φ))(v̈,x +2(θ̇G + φ̇)ẇ,x ). (A.44)
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Using the coordinate transformations described in the previous sections of this

chapter, the distributed spanwise inertial force can be expressed in the “3” system

as:

pIb = pIbx3êx3 + pIby3êy3 + pIbz3êz3, (A.45)

where:

pIbx3 = pIbx2 + βppIbz2, (A.46)

pIbx3 = pIby2, (A.47)

pIbx3 = −βppIbx2 + pIbz2. (A.48)

Similarly, the distributed spanwise moment can be expressed in the “3” system as:

qIb = qIbx3êx3 + qIby3êy3 + qIbz3êz3, (A.49)

where:

qIbx3 = qIbx2 + βpqIbz2, (A.50)

qIbx3 = qIby2, (A.51)

qIbx3 = −βpqIbx2 + qIbz2. (A.52)

The derivation of the inertia loads due to a control surface is identical to that for

the blade and can be found in Ref. 91.
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Gravitational Loads

The distributed gravitational loads can be derived by integrating the gravita-

tional force and moment per unit volume over the blade cross-section. Gravita-

tional acceleration g is directed along the negative z0 axis:

g = −gêz0. (A.53)

Expressed in the “2” system, this becomes:

g = gx2êx2 + gy2êy2 + gz2êz2, (A.54)

where:

gx2 = −g sinαR cosψ, (A.55)

gy2 = g sinαR sinψ, (A.56)

gz2 = −g cosαR. (A.57)

These expressions are then used to derive the distributed force and moment.

The distributed gravitational force is derived by integrating the gravitational

force per unit volume over the blade cross-section:

pGb =

∫
Ab

ρbgdA. (A.58)
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This can be expressed in the “2” system as [Ref. [91], Eqs. (5.103)-(5.106)]:

pGb = pGbx2êx2 + pGby2êy2 + pGbz2êz2, (A.59)

where:

pGbx2 =

∫
Ab

ρbgx2dA = −mbg sinαR cosψ, (A.60)

pGby2 =

∫
Ab

ρbgy2dA = mbg sinαR sinψ, (A.61)

pGbz2 =

∫
Ab

ρbgz2dA = −mbg cosαR. (A.62)

Similarly, the distributed gravitational moment about the elastic axis is derived by

integrating the gravitational moment per unit volume over the blade cross-section:

qGb =

∫
Ab

(ȳ0bêy5 + z̄0bêz5)× ρbgdA, (A.63)

Expressed in the “2” system, this becomes [Ref. [91], Eqs. (5.108)-(5.111)]:

qGb = qGbx2êx2 + qGby2êy2 + qGbz2êz2, (A.64)
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where:

qGbx2 =

∫
Ab

ρb(ȳ0b(gz2 + (w,x +βp)v,x gy2)− z̄0bgy2)dA, (A.65)

qGby2 =

∫
Ab

ρb(ȳ0b(gz2 − (w,x +βp)v,x +z̄0b((w,x +βp)gz2 + gx2))dA, (A.66)

qGbz2 =

∫
Ab

ρb(−ȳ0b(v,x gy2 + gx2)− z̄0b(w,x +βp)gy2)dA. (A.67)

Substituting (A.55)-(A.57) into (A.65)-(A.67) leads to:

qGbx2 = −mbgXIb cos(θG + φ)(cosαR − (w,x +βp)v,x sinαR sinψ)

−mbgXIb sin(θG + φ) sinαR sinφ, (A.68)

qGby2 = −mbgXIb cos(θG + φ)(cosαR − (w,x +βp) sinαR cosψ)v,x

−mbgXIb sin(θG + φ)((w,x +βp) cosαR + sinαR cosφ), (A.69)

qGbz2 = −mbgXIb cos(θG + φ) sinαR(v,x sinφ− cosφ)

−mbgXIb sin(θG + φ) sinαR sinφ). (A.70)

These expressions are then transformed to the “3” system to be compatible with

the blade equations of motion. The derivation of the distributed gravitational loads

due to a control surface is identical to that described for the blade and can be found

in Ref. 91.
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Damping Loads

Distributed structural damping loads are assumed to be of viscous type, and

act only on the blade. Define the distributed damping force as:

pD = −gSL v̇êy3 − gSF ẇêz3. (A.71)

The distributed damping moment is given by:

qD = −gST φ̇êx4, (A.72)

which can be expressed in the “3” system as [Ref. 91, Eq. (5.196)]:

qD = −gST φ̇(êx3 − v,x êy3 − w,x êz3). (A.73)

gSL , gSF , and gST are the distributed structural damping factors in lag, flap and

torsion, respectively.

Total Distributed Loads

The total distributed loads are found by summing the inertial, gravitational,

aerodynamic, and damping contributions. The distributed aerodynamic loads are

derived in Chapter IV. For the total distributed load per unit length on the blade:

pb = pIb + pGb + pA + pD. (A.74)
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where the subscripts I, G, A, and D correspond to the inertial, gravitational, aero-

dynamic, and damping loads respectively. For the distributed moment per unit

length about the elastic axis:

qMb = qIb + qGb + qA + qD. (A.75)

For the distributed force per unit length on the blade due to the control surface:

pc = pIc + pGc. (A.76)

For the distributed moment per unit length about the elastic axis due to the control

surface:

qc = qIc + qGc. (A.77)

Aerodynamic loads due to control surfaces are not included in Eq. (A.76) or (A.77).

Instead, these loads are contained in the expressions for the aerodynamic blade

loads appearing in (A.74) and (A.75).
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Appendix B: Free-Wake Model and Dynamic Stall Model

Free-Wake Model

The wake analysis consists of two elements: (1) a wake geometry calculation

procedure including a free wake analysis developed by Scully [116], which deter-

mines the position of the vortices; (2) an induced velocity calculation procedure as

implemented in CAMRAD/JA, which calculates the nonuniform induced velocity

distribution at the blades.

Wake Geometry

The rotor wake is composed of two main elements: the tip vortex, which is a

strong, concentrated vorticity filament generated at the tip of the blade; and the

near wake, which is an inboard sheet of trailed vorticity. The near wake is much

weaker and more diffused than the tip vortex. The wake vorticity is created in

the flow field as the blade rotates, and then convected with the local velocity of

the fluid. The local velocity of the fluid consists of the free stream velocity, and

the wake self induced velocity. Thus, the wake geometry calculation proceeds as

follows: (1) the position of the blade generating the wake element is calculated,

this is the point at which the wake vorticity is created; (2) the undistorted wake

geometry is computed as wake elements are convected downstream from the rotor

by the free stream velocity; (3) distortion of wake due to the wake self-induced

velocity is computed and added to the undistorted geometry. The position of a
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generic wake element is identified by its current azimuth position ψ and its age

φw. Age is the nondimensional time that has elapsed since the wake element’s

creation. Thus, the position of a generic wake element is written as:

rw(ψ, φw) = rb(ψ − φw) + φwVA + D(ψ, φw) (B.1)

where rb(ψ − φw) is the position of the blade when it generates the wake element,

VA is the free stream velocity, and D(ψ, φw) is the wake distortion.

To evaluate the wake self-induced distortion D(ψ, φw), a free wake procedure

developed by Scully [116] is employed. This procedure is used only to calculate

the distorted geometry of the tip vortices, which are the dominant feature of the

rotor wake. The inboard vorticity is determined by a prescribed wake model [62]

to save the computational cost.

In the free wake geometry calculation, the distortion D is obtained by integrat-

ing in time the induced velocity at each wake element due to all the other wake

elements. As the wake age increases by ∆ψ, the distortion at ψ is obtained by

adding the contribution of the induced velocity to the distortion at previous az-

imuthal step:

D(ψ, φw) = D(ψ, φw −∆ψ) + ∆ψq(ψ) (B.2)

The distortion in the wake at the time of its creation is zero. Hence,

D(ψ, 0) = 0. (B.3)
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Induced Velocity Calculation

The induced velocity calculation procedure, developed by Johnson [62], is based

on a vortex-lattice approximation for the wake. The tip vortex elements are mod-

eled by line segments with a small viscous core radius, while the near wake can be

represented by vortex sheet elements or by line segments with a large core radius

to eliminate large induced velocities. The near wake vorticity is generally retained

for only a number KNW of azimuth steps behind the blade. The wake structure is

illustrated in Fig. B.1.

Ω

bound vortex

tip vortex

near wake

rolling up wake

far wake

γ
t

γ
s

Figure B.1: Vortex-lattice approximation for rotor wake model

Conservation of vorticity on a three-dimensional blade requires the bound cir-

culation to be trailed into the wake from the blade tip and root. The lift and cir-

culation are concentrated at the tip of the blade, since larger dynamic pressures

are present in the tip region. Therefore, a strong, concentrated tip vortex is gen-



245

erated. The vorticity in the tip vortex is distributed over a small but finite region,

called the vortex core. The accuracy of a wake model is sensitive to the value of

the strength of the tip vortex prescribed. Two different approaches are used, de-

pending on the spanwise distribution of the bound circulation. For helicopters in

low speed forward flight, the bound circulation is positive along the entire span of

the blade (Fig. B.2). The distribution of the bound circulation has only one peak

and is refered to as the single peak model. In the single peak model, the maximum

value of the bound circulation over the blade span, Γmax, is selected for the tip vor-

tex strength. For helicopters in high speed forward flight or under some means

of active control, a spanwise circulation distribution with two peaks of opposite

sign can be encountered. A large positive peak is generally located inboard and a

smaller negative peak on the outboard section of blade (Fig. B.3). The dual peak

model represents such a situation. The inboard and outboard peaks ΓI and ΓO,

respectively, are identified, and the tip vortex strength assumes the value of the

outboard peak.

Figure B.2: Single peak circulation distribution model and the resulting far wake
approximation

Given the blade displacements and circulation distribution, the wake geometry

is calculated. Once the wake geometry has been determined, the influence coeffi-
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Figure B.3: CAMRAD/JA dual peak model and the resulting far wake approxima-
tion

cients are calculated and stored in the influence coefficient matrix. The induced

velocity distribution is obtained by conveniently multiplying the influence coeffi-

cient matrix with the circulation distribution:

q =
J∑
j=1

ΓOjCOj +
J∑
j=1

ΓIjCIj +

KNW∑
j=1

M∑
i=1

ΓijCNWij, (B.4)

where ΓIj ,ΓOj are the inboard and outboard peaks, respectively, at the azimuth

j; J,M are the numbers of azimuth and spanwise stations, respectively; KNW is

the number of azimuth stations on which the near wake extends; COj ,CIj and

CNWij
are terms of the influence coefficient matrix. For the single peak model,

ΓOj = Γmax j and ΓIj = 0.

Wake Modeling Improvements

As mentioned earlier, the fidelity of the wake model dictates the accuracy of

BVI noise prediction. Therefore, a number of improvements were made to the

CAMRAD/JA wake model by Patt, Liu, and Friedmann [78, 98, 101] in order to

obtain better correlation with the HART experimental data. Two modifications are

discussed below.
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Wake Resolution

For accurate prediction of BVI noise, a 5◦ or finer azimuthal wake resolution is

required, as compared to the much coarser 15◦ resolution that is often adequate for

vibration reduction studies. The original CAMRAD/JA wake code uses a resolu-

tion of 15◦ for the free wake analysis. This restriction was removed in the current

wake code to allow for wake resolution of up to 2◦. However, due to some nu-

merical difficulties [116] the free wake model failed to converge for the resolutions

finer than 3◦ and therefore a resolution of 5◦ was used. This resolution was shown

to be adequate for BVI noise prediction through validations against the HART ex-

perimental data [78, 98]. An azimuthal wake resolution of 5◦ is used for all the

simulations in the current study.

Dual Vortex Rollup

The free wake model taken from CAMRAD/JA was based on the assumption

that the inboard vortices cannot roll up, thus facilitating the use of either a vortex-

sheet or an equivalent vortex-line model to model the inboard vortices. This was

not compatible with the HART test data where significant increases in BVI noise

levels for the “minimum vibration” case have been attributed to a dual vortex

structure [122].

A dual vortex model was therefore incorporated by including a possible second

inboard vortex line. This feature of the wake model becomes active only when the

tip loading becomes negative, as shown in Fig. B.4. The release point of this second
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vortex line is taken to be at the radial location rI , where blade bound circulation

becomes negative, and the strength of this vortex is assumed to be ΓI − ΓO, where

ΓO, the outboard circulation peak, is negative. Furthermore, the free wake dis-

tortion computation routine was also modified to include the deformation of this

second inboard vortex line, including its interaction with the outer tip vortices.

This was realized by evaluating the self-induced velocities by both tip vortices

and secondary vortices. Moreover, a threshold criteria, suggested in Ref. 107, can

be employed to determine whether to have inboard vortex line rolled up. Rollup

of the inboard vortex is allowed when the radial gradient of the bound circulation

∂Γ/∂r at the inboard vortex release point rI is greater than a specified threshold

value. This condition represents the physical requirement that the shear in the

wake be sufficiently strong so as to form a fully rolled-up, concentrated vortex.

Figure B.4: Improved dual peak model, leading to dual concentrated vortex lines

Dynamic Stall Model for the Separated Flow Regime

Dynamic stall effects due to flow separation are modeled using a semi-empirical

dynamic stall model based on a modified version of the ONERA dynamic stall

model [33, 34]. The modified aerodynamic state vector for each blade section con-

sists of the CFD based RFA attached flow states and the ONERA separated flow
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states. Dynamic stall is an important contributor to vibration levels and control

loads for the relatively high advance ratio (µ = 0.3) considered in this study. In

the ONERA model developed by Petot [105], the three second-order differential

equations governing the separated flow states are:

Π̈j + aj
U

b
Π̇j + rj

(
U

b

)2

Πj = −[rj

(
U

b

)2

V∆Cj + Ej
U

b
Ẇ0], (B.5)

where j = l,m, d represent lift, moment, and drag respectively. The coefficients

aj, rj, Ej are obtained empirically. The complete two-dimensional sectional air-

loads are given by:

L = LA + LS, M = MA +MS, D = DA +DS, (B.6)

where LA, MA, and DA are the attached flow lift, moment, and drag, respectively,

calculated using the CFD based RFA model. The lift, moment, and drag due to the

separated flow are given by:

LS =
1

2
ρcbUΠl, (B.7)

MS =
1

2
ρc2

bUΠm, (B.8)

DS =
1

2
ρcbUΠd. (B.9)

The flow separation and reattachment criterion is based on the angle of attack and

a correction similar to Prandtl-Glauert to account for compressibility. The critical
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angle of attack for separation and reattachment is αcr = 15◦(1 −M2). Contribu-

tions to the three sectional airloads from the dynamic stall model are denoted by

∆CL,∆CM , and ∆CD. They can either be zero:

∆CL = ∆CM = ∆CD = 0, (B.10)

or take the following values if the flow has separated [33]:

∆CL = (p0 − 0.1M4)(α− αcr)− 0.7(1−M)[e(−0.5+(1.5−M)M2)(α−αcr) − 1], (B.11)

∆CM = (−0.11− 0.19e−40(M−0.6)2)[e(−0.4−0.21 arctan[22(0.45−M)])(α−αcr) − 1], (B.12)

∆CD = (0.008− 0.3)

[
1−

(
25− α

25− αcr

) 25−αcr
18−2 arctan(4M)

−αcr
]
, (B.13)

where

p0 = 0.1
1−M8

√
1−M2

. (B.14)

The separation criteria based on the angle of attack is given by,

1. Case 1: if α < αcr = 15◦(1−M2), ∆CL = ∆CM = ∆CD = 0.

2. Case 2: assume that at time t = t0, α = αcr, α̇ > 0; then, for t > t0 + ∆t,

∆CL,∆CM , and ∆CD are given by Eqs. B.11-B.13.

3. Case 3: when α < αcr, the flow is reattached and ∆CL,∆CM , and ∆CD are

set to zero again.
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The ONERA model features 18 empirical coefficients, 6 each (rj0, rj2, aj0, aj2, Ej2)

associated with lift (j = l), moment (j = m), and drag (j = d). These quantities

can be found in Ref. 33.
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Appendix C: Solution Procedure

Coupled Trim/Aeroelastic Response Solutions

Solution of the Blade Equations of Motion

The spatial dependence of the equations of motion is removed using Galerkin’s

method of weighted residuals. Three flap, two lead-lag, and two torsional free vi-

bration modes of a rotating beam are used to represent the flexibility of the blade.

Each free vibration mode was calculated using the first nine exact nonrotating

modes of a uniform cantilevered beam. The displacements v and w and twist φ

are thus represented by:

w ∼=
3∑
i=1

qwi(ψ)Wi(x), (C.1)

v ∼=
2∑
i=1

qvi(ψ)Vi(x), (C.2)

φ ∼=
2∑
i=1

qφi(ψ)Φi(x), (C.3)

where Wi, Vi, and Φi are the i-th rotating flap, lead-lag, and torsional uncoupled

mode shapes, respectively, with participation coefficients qwi, qvi, and qφi. These

mode shapes satisfy the boundary conditions of a hingeless blade cantilevered to



253

the hub, which implies:

w(ψ, 0) = v(ψ, 0) = φ(ψ, 0) = 0, (C.4)

w,x (ψ, 0) = v,x (ψ, 0) = 0, (C.5)

w,xx (ψ,R) = v,xx (ψ,R) = 0, (C.6)

w,xxx (ψ,R) = v,xxx (ψ,R) = 0. (C.7)

Galerkin’s method is applied by substituting (C.1)-(C.3) in (A.16)-(A.18). The error

residuals are then multiplied by the appropriate mode shape and integrated over

the span of the blade. After having introduced the appropriate boundary condi-

tions, seven equations of motion are obtained [Ref. 91, Eqs. (6.12)-(6.14)]:

Flap Equations (i = 1, 2, 3):

∫ Lb

0

{−[(EIζζ − EIηη) sin θG cos θG(v,xx +2φw,xx )

+(EIζζ − EIηη)φv,xx cos 2θG

+(EIζζ sin2 θG + EIηη cos2 θG)w,xx−TXIIb(sin θG + φ cos θG)]Wi,xx

+(GJbφ,x v,xx +w,x T − v,x (qbx3 + qcx3) + (qby3 + qcy3))Wi,x

+(pbz3 + pcz3)Wi}dx = 0. (C.8)
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Lag Equations (i = 1, 2):

∫ Lb

0

{−[(EIζζ cos2 θG + EIηη sin2 θG)v,xx +(EIζζ − EIηη)φw,xx cos 2θG

+(EIζζ − EIηη) sin θG cos θG(w,xx−2φv,xx )− TXIIb(cos θG − φ sin θG)]Vi,xx

+(−GJbφ,xw,xx +v,x T + w,x (qbx3 + qcx3)

−(qbz3 + qcz3))Vi,x +(pby3 + pcy3)Vi}dx = 0.

(C.9)

Torsional Equations (i = 1, 2):

∫ Lb

0

{[GJb(φ,x−v,xw,xx )]Φi,x +(EIζζ − EIηη)[(v,xx2 − w,xx2) sin θG cos θG

−v,xxw,xx cos 2θG]Φi + TXIIb(w,xx cos θG − v,xx sin θG)Φi

+((qbx3 + qcx3) + v,x (qby3 + qcy3) + w,x (qbz3 + qcz3))Φi}dx = 0.

(C.10)

The spatial dependence of these equations is eliminated when all mode shape sub-

stitutions are made and the integration is performed. The spanwise integrations

are carried out numerically in the simulation, using Gaussian quadrature. This

process produces a set of seven nonlinear ordinary differential equations in terms

of qw1, qw2, qw3, qv1, qv2, qφ1, and qφ2. They can be expressed in state variable form,
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where the vector qb of blade degrees of freedom is:

qb =

[
qw1 qw2 qw3 qv1 qv2 qφ1 qφ2

]T
. (C.11)

For integration using Gaussian quadrature, the integrand is evaluated at a set

number of stations along the span of the blade at locations corresponding to pre-

defined Gaussian points. At each station, the sectional airloads are provided by

the CFD based RFA model which requires solving a set of aerodynamic state equa-

tions. These aerodynamic state equations are fully coupled with the blade equa-

tions of motion given in Eqs. (C.8)-(C.10) through the blade degrees of freedom

and the aerodynamic loads. The structural and aerodynamic equations include a

set of trim parameters. The trim parameters are obtained by solving a set of trim

equations which enforce force and moment equilibrium at the hub.

Propulsive Trim Procedure

The primary trim procedure is based on propulsive trim analysis, modeling ac-

tual free-flight conditions. A helicopter in free flight has six degrees of freedom;

thus, six equilibrium equations must be satisfied. The trim procedure, taken from

Ref. 31, enforces these equilibrium equations in straight and level flight condi-

tions. A modified version of this procedure developed in Refs. 78, 98 is used for

descending flight conditions.

In the case of actual helicopter flight, the pilot inputs consist of collective and
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cyclic inputs (θ0, θ1s,θ1c) and the tail rotor pitch (θ0t). For a given flight condi-

tion, the quantities CW and µ are known, and the trim procedure solves for the

equilibrium values of θ0, θ1s, θ1c, φR, αR, and θ0t. These variables comprise the

six-component helicopter trim vector qt.

Only the average values of the rotor hub forces and moments, identified by

overbars, are required. Since non-uniform inflow is used in this study, the trim

procedure does not require an explicit inflow relation. The complete six equilib-

rium equations are enforced in the present trim calculation. A simplified model

for the tail rotor, developed in Ref. 31, is used. The vector qt of trim variables is

defined as

qt = {αR, θ0, θ1c, θ1s, θ0t, φR}T . (C.12)

A schematic of a helicopter in descending flight is depicted in Fig. C.1. The equi-

librium equations are formulated in the nonrotating, hub-fixed system (x1, y1, z1).

The helicopter weightW acts at the center of gravity of the fuselage, which is offset

from the hub center by the distances XFC and ZFC in the −êx1 and −êz1 directions

respectively. The trim procedure has a provision for accommodating the aerody-

namic drag that acts at a location (the aerodynamic center) that is different from

the center of gravity. However, in all the cases considered in this study, the flat

plate drag always acts at the center of gravity of the fuselage, and XFA = XFC ,

YFA = YFC , and ZFA = ZFC . The lateral center of gravity offset YFC is also set to
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Figure C.1: A schematic of the helicopter in descending flight

zero for cases considered in this study. The flat-plate drag is given by:

Df =
1

2
ρAVA

2CdfπR
2. (C.13)

A typical value for the flat-plate drag coefficient is

Cdf = 0.01. (C.14)

In descending flight, a constant angle αD is defined as the angle between the

forward flight velocity VA and the horizontal plane, and is shown in Fig. C.1. The

descent angle is a known quantity along with W and µ. Note that the drag force

Df will continue to act parallel to the direction of the resultant velocity VA. Setting

the descent angle αD = 0, trim equations for a level flight condition similar to those

found in Ref. 31 can be recovered. The trim equations are:
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a. Pitching Moment

Moment equilibrium about the y1 axis requires:

M
pt

+W [−XFC cosφR cosαR + ZFC cosφR sinαR]

−Df [−XFA sin(αR − αD) + ZFA cos(αR − αD)]−Qt = 0. (C.15)

b. Rolling Moment

Moment equilibrium about the x1 axis requires:

M
rl − ZFCW sinφR + TtZt = 0. (C.16)

where Tt is the tail rotor thrust and Zt is the vertical distance between the hub axis

and the center of the tail rotor.

c. Yawing Moment

Moment equilibrium about the z1 axis requires:

M
yw −XFCW sinφR + TtXt = 0. (C.17)

where Tt is the tail rotor thrust and Xt is the horizontal distance between the hub

axis and the center of the tail rotor (Fig. C.1).

d. Vertical Force
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Force equilibrium in the z1 direction requires:

FT −W cosαR cosφR −Df sin(αR − αD) = 0. (C.18)

e. Longitudinal Force

Force equilibrium in the x1 direction requires:

H −W sinαR cosφR +Df cos(αR − αD) = 0. (C.19)

f. Lateral Force

Force equilibrium in the y1 direction requires:

Y −W sinαR cosφR + Tt = 0. (C.20)

The advance ratio µ and inflow ratio λ were defined in Eqs. 4.15 and 4.16 as

µ =
VF cosαR

ΩR
(C.21)

λ =
VF sinαR + ν

ΩR
(C.22)

For descending flight, these equations must be modified by replacing αR with (αR−
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αD). Thus, the modified expressions for advance ratio µ and inflow ratio λ are:

µ =
VF cos(αR − αD)

ΩR

λ =
VF sin(αR − αD) + ν

ΩR
(C.23)

here ν is the induced inflow velocity. For the free wake analysis, it is replaced by a

nonuniform inflow distribution.

Wind-Tunnel Trim Procedure

For wind-tunnel trim, the previous trim procedure can be simplified because

the force equilibrium equations are automatically satisfied and the tail rotor is ab-

sent. The prescribed quantities are αR, θ0, µ and the cyclic pitch components are

used to trim out the pitching and rolling moments on the rotor. For the coupled

wind-tunnel trim analysis implemented in the code, the following moment equa-

tions are enforced:

a. Pitching Moment

M
pt

+W [−XFC cosφR cosαR + ZFC cosφR sinαR]

−Df [−XFA sin(αR − αD) + ZFA cos(αR − αD)] = 0. (C.24)

b. Rolling Moment

M
rl − ZFCW sinφR = 0. (C.25)
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The solution procedure is similar to that for the full vehicle trim equations dis-

cussed above, except the cyclic controls (θ1S and θ1C) are adjusted iteratively to

satisfy Eqs. (C.24) and (C.25). Thus, for wind-tunnel trim, the trim vector short-

ens to just two elements, matching in number the two equilibrium equations. To

simulate descent flight using the wind-tunnel trim procedure, the shaft angle αR is

set to chosen value approximating the angle of the rotor in descending flight. This

follows the procedure used in the experiment described in Ref. [122].

Time Integration of the Coupled Trim/Aeroelastic Equations

The complete aeroelastic model for the blade and control surface consists of

three sets of equations. These are sets of nonlinear differential equations that de-

scribe the structural, aerodynamic, and the trim components of the model. The

blade equations of motion (C.8)-(C.10) required for the coupled trim/aeroelastic

response, can be written in the vector form:

fb(qb, q̇b, q̈b,xa,qt;ψ) = 0. (C.26)

where qb represents the vector of blade degrees of freedom, described in Eq. (C.11),

xa represents the vector of aerodynamic states, and qt represents the trim vector.

To convert Eq. (C.26) to first order form, define a mass matrix given by:

Mb =
∂fb
∂q̈b

(C.27)
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This allows Eq. (C.26) to be decomposed into the form:

fb = gb(qb, q̇b,xa,qt;ψ) + Mb(qb,qt;ψ)q̈b = 0. (C.28)

Solving for q̈b yields

q̈b = −M−1
b gb. (C.29)

Explicit expressions for Mb and gb can be found in Ref. 87. The second order

system (C.29) can be written in the following state variable form

ẋb =

 0 I

0 0

xb +

 0

−M−1
b gb

 , (C.30)

where xb is the state vector of blade degrees of freedom:

xb =

 qb

q̇b

 . (C.31)

Similarly, the complete set of aerodynamic state equations is represented by the

vector expression

fa(qb, q̇b, q̈b,xa, ẋa,qt;ψ) = 0, (C.32)

which can be written in the first order form

ẋa = ga(qb, q̇b, q̈b,xa,qt;ψ). (C.33)
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The dependence on q̈b is eliminated by substituting Eq. (C.29) into Eq. (C.33),

producing the reduced set of equations

ẋa = gaR(xb,xa,qt;ψ). (C.34)

Define a state vector y as

y =


xb

xa

 , (C.35)

then, combining Eqs. (C.30) and (C.34) yields a system of coupled first-order state

variable equations of the form:

ẏ = F(y; t). (C.36)

This system is solved numerically using the ODE solver DE/STEP, which is a

general-purpose predictor-corrector Adams-Bashforth differential system solver

[117].

Solution of the Trim Equations

The dependence of the trim equations (C.15)-(C.20) on blade degrees of free-

dom qb and the aerodynamic states xa in the trim equations occurs through terms

representing the rotor hub loads. However, only the average values of the hub

loads are used in the trim equations. When only the steady state response of the

system is considered, the average values of the hub loads will depend only on the
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trim variables qt defined in Eq. C.12. The trim equations are solved using an it-

erative procedure referred to as the autopilot trim procedure. The trim solution

presented here is identical to that of Ref. 33. The trim equations can be written in

the form:

ft(qt) = 0. (C.37)

Let Rti be the vector of trim residuals at the trim condition qti at iteration i:

ft(qti) = Rti . (C.38)

An iterative optimal control strategy is then used to reduce the value of Rti ; based

on the minimization of the performance index:

J = RT
ti
Rti . (C.39)

This algorithm resembles a feedback controller used for vibration reduction. The

trim parameters at the ith iteration are then given by:

qti = −T−1i Rti−1
+ qti−1

, (C.40)

where Ti is a transfer matrix describing the sensitivities of trim residuals to changes

in the trim variables:

Ti =
∂Rti

∂qt

. (C.41)
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where Ti is computed using a finite difference scheme. Under certain complex

flight conditions, convergence of this procedure can be improved using a relax-

ation approach:

qti = −αT−1i Rti−1
+ qti−1

, (C.42)

where α is a relaxation parameter less than unity. The use of this relaxation param-

eter was pioneered by Depailler [33].

Vibratory Hub Shears and Moments

The resultant force and moment at the root of the k-th blade is found by in-

tegrating the distributed inertial, gravitational, aerodynamic, and damping loads

pb,pc,qb,qc given in Eqs. (A.74)-(A.77), over the blade span. Following the pro-

cedure used in [Ref. 33, Eqs. (8.48)-(8.50)], the resultant shears and moments of the

k-th blade, at azimuth ψk, may be expressed in the rotating “2” frame as:

FRk(ψk) =

∫ Lb

0

(pb + pc) dr, (C.43)

MRk(ψk) =

∫ Lb

0

(qb + qc) dr, (C.44)

where:

ψk = ψ +
2π(k − 1)

Nb

. (C.45)
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Then, rotor hub shears and moments in the nonrotating “1” frame FH(ψ), MH(ψ)

are computed by summing the contribution of each blade FRk(ψk), MRk(ψk) and

by converting them from the “2” frame to the “1” frame using a coordinate trans-

formation described in Eq. (A.2).

In an Nb-bladed helicopter, Nb/rev is the dominant harmonic of vibratory loads

transferred to the hub. Other harmonics of vibratory loads are also present, but

these are of lesser importance and are not considered in the active reduction prob-

lems addressed in this study. The quantities FH4c, FH4s, FH4c, and FH4s represent

the sin and cos components of the 4/rev hub shears and moments, and are found

using

FH4c =
1

2

∫ 2π

0

FH(ψ) cos 4ψ dψ, (C.46)

FH4s =
1

2

∫ 2π

0

FH(ψ) sin 4ψ dψ, (C.47)

MH4c =
1

2

∫ 2π

0

MH(ψ) cos 4ψ dψ, (C.48)

MH4s =
1

2

∫ 2π

0

MH(ψ) sin 4ψ dψ. (C.49)
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[120] S. J. Shin, C. E. S. Cesnik, and S. R. Hall. “Closed-Loop Control Tests of
the NASA/ARMY/MIT Active Twist Rotor for Vibration Reduction”. In
Proceedings of the American Helicopter Society 59th Annual Forum, Phoenix, AZ,
June 2003.

[121] M. K. Singh, K. DhanaLakshmi, and S. K. Chakrabartty. “Navier-Stokes
Analysis of Airfoils with Gurney Flap”. Journal of Aircraft, 44(5):1487–1493,
Sept-Oct 2007.



278

[122] W. Splettstoesser, R. Kube, W. Wagner, U. Seelhorst, A. Boutier, F. Micheli,
E. Mercker, and K. Pengel. “Key Results From a Higher Harmonic Control
Aeroacoustic Rotor Test (HART)”. Journal of the American Helicopter Society,
42(1):58–78, January 1997.

[123] W. Splettstoesser, K. J. Schultz, R. Kube, T. F. Brooks, E. R. Booth, George
Niesl, and Olivier Streby. “A Higher Harmonic Control Test in the DNW
to Reduce Impulsive BVI Noise”. Journal of the American Helicopter Society,
39(4):3–13, October 1994.

[124] W. Splettstoesser, B. van der Wall, and F. Schultz. “The Effect of Individ-
ual Blade Pitch Control of Flight Test and Simulation Results”. In Proceed-
ings of the 24th European Rotorcraft Forum, pages AC07.1–AC07.15, Marseilles,
France, September 1998.

[125] W. R. Splettstoesser, G. Niesl, F. Cenedese, F. Nitti, and D. G. Papanikas. “Ex-
perimental Results of the European HELINOISE Aeroacoustics Rotor Test”.
Journal of the American Helicopter Society, 40(3), April 1995.

[126] A. E. Staple. “Evaluation of Active Control of Structural Response as a
Means of Reducing Helicopter Vibration”. In Proceedings of the 46th Forum
of the American Helicopter Society, pages 3–17, Washington, D.C., May 1990.

[127] Bruce L. Storms and Cory S. Jang. “Lift Enhancement of an Airfoil Using a
Gurney Flap and Vortex Generators”. Journal of Aircraft, 31(3):542–547, May-
June 1994.

[128] F. K. Straub, V.R. Anand, T. S. Birchette, and B. H. Lau. “Wind Tunnel Test of
the SMART Active Flap Rotor”. In Proceedings of the 65th American Helicopter
Society Annual Forum, Grapevine,TX, May 2009.

[129] F. K. Straub, D. K. Kennedy, A. D. Stemple, V.R. Anand, and T. S. Birchette.
“Development and whirl tower test of the SMART active flap rotor”. Pro-
ceedings of SPIE: Smart Structures and Materials 2004, 5388:202–212, July 2004.

[130] S. M. Swanson, S. A. Jacklin, . Blaas, G. Niesl, and R. Kube. “Reduction of
Helicopter BVI Noise, Vibration, and Power Consumption through Individ-
ual Blade Control”. In Proceedings of the 51st Annual Forum of the American
Helicopter Society, pages 662–680, Fort Worth, TX, May 1995.

[131] L. Tauszig. Analysis of Helicopter Blade-Vortex Interaction Noise With Applica-
tion to Adaptive-Passive and Active Alleviation Methods. PhD Dissertation, The
Pennsylvania State University, 2002.

[132] M. R. Thiel, G. A. Lesieutre, M. D. Maughmer, and G. H. Koopmann. “Ac-
tuation of an Active Gurney Flap for Rotorcraft Applications”. In 47th
AIAA/ASME/ASCHE/AHS/ASC Structures, Structural Dynamics & Materials
Conference, pages 1–11, Newport, RI, May 1-4 2006. AIAA Paper 2006-2181.



279

[133] C. Tung, R. Kube, T. Brooks, and G. Rahier. “Prediction and Measurement
of Blade-Vortex Interaction”. Journal of Aircraft, 35(2):260–266, March-April
1998.

[134] C. P. van Dam, D. T. Yen, and P. M. H. W. Vijgen. “Gurney Flap Experiments
on Airfoils and Wings”. Journal of Aircraft, 36(2):484–486, 1999.

[135] B. G. van der Wall, C. Junker, C. Burley, T. Brooks, Y. Yu, P. Raffel, and
W. Wagner. “The HART II test in the LLF of the DNW - a Major Step towards
Rotor Wake Understanding”. In Proceedings of the 28th European Rotorcraft Fo-
rum, Bristol, England, September 2002.

[136] C. Venkatesan and P. P. Friedmann. “A New Approach to Finite
State Modeling of Unsteady Aerodynamics”. In Proceedings of the 27th
AIAA/ASME/ASCE/AHS/ACS Structures, Structural Dynamics and Materials
Conference, pages 178–191, San Antonio, TX, May 1986. AIAA Paper No.
1986-865.

[137] R. Vepa, Finite State Modeling of Aeroelastic Systems. NASA Contractor Report
2779, 1977.

[138] S. Vey, O. C. Paschereit, D. Greenblatt, and R. Meyer. “Flap Vortex Man-
agement by Active Gurney Flaps”. In Proceedings of the 46th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, NV, Jan 2008. AIAA Paper No. 2008-286.

[139] S. P. Viswanathan and A. W. Myers. “Reduction of Helicopter Vibration
Through Control of Hub Impedance”. Journal of the American Helicopter Soci-
ety, 25(4):3–12, October 1980.

[140] D. A. Wachspress and T. R. Quackenbush. “BVI Noise Prediction Using a
Comprehensive Rotorcraft Analysis”. In Proceedings of the American Heli-
copter Society 57th Annual Forum, Washington, DC, May 2001.

[141] D. A. Wachspress and T. R. Quackenbush. “BVI Noise Mitigation Via Steady
Flap Deflection – An Analysis-Led Test Program”. In Proceedings of the Amer-
ican Helicopter Society 4th Decennial Specialist’s Conference on Aeromechanics,
San Francisco, CA, Jan 2004.

[142] M. L. Wilbur, P. H. Mirick, Jr. W. T. Yeager, C. W. Langston, S. J.
Shin, and C. E. S. Cesnik. “Vibratory Loads Reduction Testing of the
NASA/Army/MIT Active Twist Rotor”. In Proceedings of the American Heli-
copter Society 57th Annual Forum, Washington, D. C., May 2001.

[143] D. G. Wilson, D. E. Berg, D. W. Li, and J. R. Zayas. “Optimized Active Aero-
dynamic Blade Control for Load Alleviation on Large Wind Turbines”. In
AWEA WINDPOWER 2008 Conference & Exhibition, Houston, TX, June 1-4
2008.



280

[144] Y. H. Yu. “Rotor Blade-Vortex Interaction Noise”. Progress in Aerospace Sci-
ences, 36(2):97–115, February 2000.

[145] Y. H. Yu, B. Gmelin, W. Splettstoesser, J. J. Philippe, J. Prieur, and T. F. Brooks.
“Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor
Control Technology”. Progress in Aerospace Sciences, 33(10):647–687, Septem-
ber 1997.

[146] Y. H. Yu, C. Tung, B. van der Wall, H. J. Pausder, Casey Burley, Thomas
Brooks, P. Beaumier, Y. Delrieux, E. Mercker, and K. Pengel. “The HART-
II Test: Rotor Wakes and Aeroacoustics with Higher-Harmonic Pitch Con-
trol (HHC) Inputs - The Joint German/French/Dutch/US Project -”. In Pro-
ceedings of the 58th Annual Forum of the American Helicopter Society, Montreal,
Canada, June 2002.




