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CHAPTER 1 

Introduction 

1.1. Motivation 

 The research described in this dissertation was aimed at developing catalytic 

materials that could be used to reduce the impact of humans on the environment. Over the 

last few decades, significant interest has developed in trying to understand and reduce 

human impacts on the environment [1, 2]. These impacts include, but are not limited to, 

climate change (i.e. global warming), resource depletion, fresh water availability, 

eutrophication, stratospheric ozone depletion, acidification of aquatic environments, 

biodiversity depletion, human toxicity, and aquatic toxicity [3]. Although significant 

advancements have been made in quantifying these impacts using methods such as life 

cycle assessment [3, 4], it is still difficult to fully characterize these impacts on a global 

scale. Moreover, these impacts are driven by multiple factors that act together to produce 

a compounding effect. Ehrlich and Holdren suggested using the following equation [5, 6]: 

     TAPI       (1.1) 

where I is the environmental impact, P is the human population, A is the affluence of the 

population, and T is technology. 

 This equation indicates three ways to reduce human impact on the environment. 

As an example, gasoline consumption (the environmental impact) in the United States 

due to personal transportation needs will be discussed. The first option for reducing the 

impact is to reduce the human population. Figure 1.1a shows the United States population
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over the last 60 years [7]. Over this time period, the population has been increasing at a 

rate of approximately 1.2% per year. Due to this increasing trend and the humanitarian 

issues associated with instating policies to reduce the human population, this option 

seems like an unrealistic way to reduce our impacts. Second, the affluence, or level of 

consumption, of the population could be reduced. Although this option is reasonable, it is 

difficult to convince individuals to reduce their standard of living in order to reduce the 

overall human environmental impact. The affluence in our gasoline consumption 

example is expressed as the annual vehicle miles traveled per person in the United States. 

As shown in Figure 1.1b, this parameter has been steadily increasing over the last 25 

years [8]. Finally, the technology, or the processes used to obtain resources and transform 

them into useful goods, could be improved. In regards to our example, these 

technological improvements could include increasing the fuel economy of current 

vehicles or modifying the vehicle drivetrain to operate on other fuels. As shown in Table 

1.1, the average fuel economy of vehicles in the United States improved from 13.0 miles 

per gallon in 1970 to 20.2 miles per gallon in 2002 [8]. This improvement helped reduce 

Figure 1.1:  (a) Population of the United States from 1950-2010 [7] and (b) the annual 

vehicle miles traveled per capita in the United States from 1985-2003 [8]. 

(a) (b) 
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the overall impact; however, the consumption of gasoline still increased by more than 

60% from 1970 to 2002. It is clear that significant technological advancements are 

required to offset the effect of increasing population and affluence. Although the human 

impact depends on a number of factors, technological improvements appear to be the 

most feasible option for reducing the global human environmental impact. 

Table 1.1: U.S. population, vehicle miles traveled per year per person, fuel economy, 

and gallons of gasoline consumed in the U.S. for 1970 and 2002, as well 

as the percent change in each of these values over that time period. Data 

taken from [8]. 

 

 Population Affluence Technology Impact 

Year 

U.S. 

Population 

(million) 

Vehicle Miles 

Traveled per 

Year per Person 

(mi/yr-per) 

Fuel 

Economy 

(gal/mi) 

Gallons of 

Gasoline 

Consumed  

(billion gallons/yr) 

1970 205 5073 

0.077 

(13.0 miles 

per gallon) 

80.1 

2002 288 9107 

0.050 

(20.2 miles 

per gallon) 

129.8 

Percent Change (%) +41 +80 −36 +62 

 

 One area where technology advancements could cause a significant reduction in 

environmental impact is transportation fuel production. In 2009, the United States 

consumed approximately 95 quadrillion Btu of energy (see Figure 1.2) [7]. More than a 

third of this energy was derived from petroleum, a non-renewable fossil fuel. This 

corresponds to the consumption of more than 18 million barrels of petroleum per day in 

the United States [7]. That is enough petroleum consumed in one day to cover the entire 

University of Michigan-Ann Arbor campus to a depth of more than 9 inches. The primary 

use (>70%) of the petroleum is for the production of liquid transportation fuels such as 

gasoline and diesel [7]. 
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 Utilizing petroleum as a feedstock for liquid fuel production has a number of 

major drawbacks. First, along with the sheer volume of consumption, the rate of 

consumption continues to increase as shown in Figure 1.3a [7]. This trend presents a 

significant problem as petroleum is a non-renewable resource and there is only a finite 

quantity accessible in the world. Second, the U.S. production of petroleum has steadily 

decreased over the last 30 years while our net imports have increased (see Figure 1.3a) 

[7], meaning that we are more reliant on foreign nations for our energy needs. Third, 

there has been high variability in the price of petroleum over the last 5 to 6 years (see 

Figure 1.3b) [9]. In 2003, transportation was the second largest expenditure for the 

Figure 1.2:  United States primary energy flow by source and sector for 2009. Taken 

from [7]. 
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average U.S. household [8]. As such, this variability in petroleum price makes it difficult 

for some households to make ends meet financially. Additionally, transportation is a key 

step in the delivery of most consumer products, therefore increases in petroleum prices 

also cause increases in most goods and services. Fourth, burning fuels derived from 

petroleum releases carbon dioxide, a major contributor to global warming, and other 

harmful pollutants such as sulfur dioxide into the atmosphere. For the United States to 

reach long-term energy sustainability, petroleum needs to be replaced by a diverse 

portfolio of renewable feedstocks for the production of liquid transportation fuels. 

 To address this issue, the United States government created the Renewable Fuel 

Standard (RFS) as part of the Energy Policy Act in 2005 [10]. As of 2007, the RFS 

requires more than 36 billion gallons of renewable fuels to be blended into transportation 

fuel by 2022. To meet this need, industrial biorefineries have been identified as the most 

promising route to the creation of a new domestic bio-based industry [11]. Similar to a 

petroleum refinery, a biorefinery is a facility that produces fuels, power, and chemicals 

from biomass [11]. There are a number of viable routes for the production of liquid 

(a) (b) 

Figure 1.3:  (a) United States petroleum consumption, production, and net imports 

from 1950-2009. Taken from [7]. (b) Crude oil price from January 2000 – 

January 2011 [9]. 
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transportation fuels from biomass (see [12] and [13] and the references cited therein). 

Typically, these routes fall into two broad categories based on the method of conversion: 

biochemical or thermochemical. The three routes that currently show the most potential 

are alcohol (typically ethanol) production via fermentation, biodiesel production via 

transesterification of oils, and thermochemical catalytic conversion of biomass into fuels.  

 Ethanol production via fermentation involves the conversion of the carbohydrate 

portion of the biomass feedstock (hemicellulose and cellulose) into sugars, which are 

then fermented into ethanol [14-16]. This process has four main steps. First, the biomass 

is pretreated (heat combined with acid or base) to break down the tough, fibrous cell 

walls. Next, enzymes break apart the pretreated material to release the sugars through 

hydrolysis. Third, the sugars are fermented into ethanol through the use of 

microorganisms. Finally, the ethanol is recovered from the mixture via distillation. The 

key areas that need to be improved in order for this process to become commercialized on 

a large scale are more efficient enzymes for hydrolysis and microorganisms for 

fermentation [14-16]. In particular, the objectives are to develop enzymes with higher 

efficiencies for extracting the sugars from cellulose and hemicellulose and to design 

microorganisms that can ferment five- and six-carbon sugars at the same time [14-16].  

 Biodiesel production involves the conversion of triglycerides present in vegetable 

oils, animal fats, or even algae into fatty acid methyl esters [15-17]. First, the oils are 

pretreated to remove water and other contaminants. Then, an alcohol (e.g. methanol) and 

a catalyst (e.g. sodium hydroxide or potassium hydroxide) are reacted with the oils. This 

step, called transesterification, converts the oils (triglycerides) into methyl esters and 

glycerin. Lastly, these products are separated and the crude biodiesel (methyl esters) is 
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purified.  Research is ongoing to achieve cost reductions via modifying the 

transesterification step, while still achieving high yields (>99%) and meeting desired 

quality standards [16]. 

 Thermocatalytic conversion of biomass into fuels involves the initial conversion 

of biomass into synthesis gas (mixture of H2 and CO) via gasification with high 

temperatures and either oxygen or steam [18, 19]. Following gasification, the synthesis 

gas is cleaned to reduce the concentration of impurities, such as sulfur and nitrogen 

containing compounds, to an acceptable level. Additionally, the H2/CO ratio is often 

adjusted to a more optimal value (~2) using the water gas shift reaction. Then, the 

synthesis gas can be converted into either alcohols via alcohol synthesis or long-chain 

hydrocarbons (gasoline, diesel, etc) via Fischer-Tropsch Synthesis. Key research areas 

for improving this process include advanced gasification techniques to minimize char 

production and reduce energy input, and developing catalysts for water gas shift, Fischer-

Tropsch Synthesis, and alcohol synthesis with improved sulfur tolerance, selectivities, 

and lifetimes [18, 19]. 

 Based on the current technology and ongoing research and development regarding 

these routes for liquid fuel production from biomass, there is no clear commercial or 

technical advantage between the biochemical and thermochemical pathways [16]. 

However, the thermochemical production of fuels via Fischer-Tropsch Synthesis faces 

the least number of technical hurdles with regards to commercialization as a majority of 

the technology is already proven. Fischer-Tropsch Synthesis plants operating with either 

coal or natural gas as a feedstock have been in operation for more than 50 years in South 

Africa [20-23]. Additionally, Fischer-Tropsch Synthesis allows for the production of 
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fungible fuels (gasoline and diesel), whereas alcohols (i.e. methanol and ethanol) 

produced either thermochemically or biochemically may require vehicle modifications. 

These fuels produced via Fischer-Tropsch Synthesis are also of a high quality due to very 

low aromaticity and zero sulfur content. Finally, due to the long chain hydrocarbons 

produced via Fischer-Tropsch Synthesis, fuels for marine or aviation applications can be 

produced. Given these advantages, thermochemical biomass conversion to hydrocarbon 

fuels via gasification, water gas shift, and Fischer-Tropsch Synthesis will likely play a 

critical role in the production of renewable liquid transportation fuels in the future.  The 

next sections will describe in detail the water gas shift and Fischer-Tropsch Synthesis 

reactions as well as discuss the properties of early transition metal carbide and nitride 

materials. 

1.2. Water Gas Shift Reaction 

 The water gas shift reaction (WGS) involves the production of H2 and CO2 from 

CO and H2O (Equation 1.2) [20]: 

    222 HCOOHCO      (1.2) 

WGS plays a critical role in the production of hydrogen via hydrocarbon reforming as 

well as the production of liquid transportation fuels via Fischer-Tropsch Synthesis. For 

coal-derived or biomass-derived synthesis gas, the H2/CO ratio (0.7-1) is typically below 

the optimal range for Fischer-Tropsch Synthesis (~2). Therefore, WGS is employed to 

shift this ratio into a more usable regime. 

 Due to thermodynamic limitations ( 0

WGSH  = −41 kJ/mol), WGS is typically 

carried out over two different temperature ranges: high temperature shift (300-450°C) 

and low temperature shift (200-270°C) [20]. A diagram illustrating the operating regimes 
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for high and low temperature shift is shown in Figure 1.4. Industrially, high temperature 

shift is carried out over a Fe-Cr catalyst and low temperature shift is carried out over a 

Cu/Zn/Al catalyst [20]. Although these catalysts are used industrially, they still have a 

number of limitations, specifically with regards to the sulfur intolerance of the Cu/Zn/Al 

catalyst. The Cu/Zn/Al catalyst has been reported to lose a significant portion of its WGS 

activity in the presence of <1 ppm of H2S or COS [24]. 

 Due to the sulfur impurities present in feedstocks such as coal and biomass, a 

WGS catalyst that meets or exceeds the activity of the commercial Cu/Zn/Al catalyst as 

well as exhibits tolerance to sulfur compounds is needed. Previous research in our group 

has shown that early transition metal carbide and nitride based materials, specifically 

Mo2C and Pt/Mo2C, are highly active for WGS (discussed in detail in Section 1.5) [25-

Figure 1.4: Water gas shift equilibrium CO conversion as a function of reaction 

temperature.  Sample adiabatic operating ranges are shown indicating high 

temperature shift (HTS) and low temperature shift (LTS). 
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28]. Additionally, these materials have been reported to be sulfur tolerant for certain 

reactions (discussed in detail in Section 1.4). For these reasons, early transition metal 

carbide and nitride based catalysts were investigated in the research described in this 

dissertation. 

1.3. Fischer-Tropsch Synthesis 

 Fischer-Tropsch Synthesis (FTS) is the conversion of synthesis gas into a mixture 

of hydrocarbons and oxygenated products and water [29]. The primary products are 

linear paraffins and olefins as shown in Equations 1.3 and 1.4: 

    OHHCCOH12 2222 nnn nn       (1.3) 

  OHHCCOH2 222 nnn nn       (1.4) 

where n is a positive integer. Side reactions include the water gas shift reaction and 

alcohol synthesis (Equation 1.5): 

    OH1OHCCOH2 2222   nnn nn     (1.5) 

Under typical FTS reaction conditions, these reactions occur concurrently to produce a 

complex multi-component mixture. 

 The FTS process was first developed in the early 1900’s and was used by 

Germany during the 1930’s and 1940’s to produce liquid fuels from coal-derived 

synthesis gas [12, 30]. Since that time, interest in FTS has waxed and waned depending 

upon environmental concerns, technological developments, and fossil fuel price and 

availability; however, the process has been demonstrated commercially by Sasol in South 

Africa [20-23] and Shell in Malaysia [31]. The first Sasol FTS plant came on line in 1955 

producing fuels from coal. Currently, Sasol operates three FTS plants in South Africa 

producing more than 160,000 barrels of fuel per day as well as other chemicals using 
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both coal and natural gas as feedstocks [32, 33]. The Shell Middle Distillate Synthesis 

process in Malaysia produces heavy paraffins using natural gas as the feedstock [31]. 

These heavy paraffins can be sold as wax specialties or upgraded through hydrocracking 

to diesel fuel [29, 31]. 

 Industrially, FTS is typically carried out at pressures ranging from 10-60 bar and 

two temperature regimes: high temperature FTS (300-350°C) and low temperature FTS 

(200-250°C) [34]. High temperature FTS typically yields hydrocarbons in the C1-C15 

range and is used primarily to produce liquid fuels as well as valuable chemicals 

(produced from olefins). Low temperature FTS is used primarily for the synthesis of 

linear long-chain hydrocarbon waxes and paraffins, which can be converted into diesel 

fuel through hydrocracking [34]. The H2/CO ratio for the feed is typically much less than 

2 for high temperature FTS and between 1.7 and 2.2 for low temperature FTS. Due to the 

strong exothermic nature of FTS and the complex multiphase, multi-component product 

stream, three different types of reactor designs have been used commercially: tubular 

fixed bed, fluidized bed (circulating and fixed), and a slurry reactor [35]. Fluidized bed 

reactors are typically used for high temperature FTS while low temperature FTS is 

typically carried out in a tubular fixed bed or slurry reactor. The choice of reactor design 

is based on many factors including catalyst/liquid product separation, heat transfer, 

pressure drop, catalyst attrition, diffusion limitations, C5+ selectivity, and capital and 

operating cost [35]. 

 Due to the number of parallel reactions, selectivity to the desired products is 

essential for the economical operation of large-scale FTS plants. The operating conditions 

for FTS offer some opportunities to control the selectivity of the reaction [29]. Table 1.2 
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shows the response of various product selectivities to changing specific process 

parameters. For example, to minimize the production of methane (a relatively undesired 

product), the best process conditions would be low temperature, high pressure, low 

H2/CO ratio, low conversion, and high space velocity. Understanding the effects of 

process conditions is important as the desired products from a given FTS process vary 

from gasoline and diesel to waxes to chemicals (olefins and alcohols). 

Table 1.2: Selectivity control in Fischer-Tropsch Synthesis by process conditions. ↑ 

indicates increase with increasing parameter. ↓ indicates decrease with 

increasing parameter. * indicates a complex relation. Adapted from [29].  

Parameter 
Chain 

Length 

Chain 

Branching 

Olefin 

Selectivity 

Alcohol 

Selectivity 

Carbon 

Deposition 

Methane 

Selectivity 

Temperature ↓ ↑ * ↓ ↑ ↑ 
Pressure ↑ ↓ * ↑ * ↓ 
H2/CO ↓ ↑ ↓ ↓ ↓ ↑ 

Conversion * * ↓ ↓ ↑ ↑ 
Space 

Velocity 
↑ * ↑ ↑ ↑ ↓ 

 

 Beyond process conditions, the product selectivity is constrained by the 

polymerization nature of FTS [36]. In general, the distribution of hydrocarbon chain 

length has been shown to follow the Anderson-Schulz-Flory (ASF) chain polymerization 

model [29, 37], which can be described by equation 1.6: 

      11  n

nm       
(1.6) 

where mn is the mole fraction of a hydrocarbon with chain length n and α is the chain 

growth probability parameter. The chain growth parameter, α, is defined by: 

    
TP

P

RR

R


       (1.7) 

where RP and RT are the rates of propagation and termination of the hydrocarbon chain, 

respectively [29]. Figure 1.5 illustrates this chain polymerization model with the 
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propagation steps shown in green and the termination steps shown in red. For this 

example, the monomer is a methylene group (−CH2). It should be noted that the ASF 

model does not account for reversibility of the chain propagation steps (i.e. 

hydrocracking or hydrogenolysis). Other models have been developed to account for 

reversibility and product re-adsorption [29 and the references cited therein]. The total 

carbon-number distribution of the FTS products is determined by α, as shown in Figure 

1.6. For example, to produce the maximum weight fraction of C11-C20 hydrocarbons, α 

should be around 0.85-0.9. The range of α is directly affected by not only the reaction 

conditions as discussed earlier, but also the catalyst type. 

Figure 1.5:  Anderson-Schulz-Flory chain polymerization diagram showing the 

initiation of the chain through the formation of a methylene monomer, 

followed by chain propagation steps (green) and chain termination steps 

(red). 
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 Due to the long history of FTS, the performance of a number of transition metals 

(Ru, Fe, Co, Rh, Ni, Ir, Pt, Mo) has been investigated [38-41]. However, the two primary 

catalysts used industrially are Co and Fe [19, 29]. These metals are typically supported on 

oxides such as silica (SiO2) and alumina (Al2O3), and promoters are often added (Cu and 

K for Fe catalysts and Pt for Co catalysts). A comparison of Co and Fe catalysts is given 

in Table 1.3. In general, Co catalysts are highly active and demonstrate good resistance to 

deactivation, but are expensive and are very sensitive to changes in temperature, pressure, 

and H2/CO ratio [34]. Iron catalysts are less expensive and more robust in terms of 

operating conditions, but are less active and less resistant to deactivation. Both catalysts 

are susceptible to sulfur poisoning at concentrations above 0.1 ppm [34]. 

  For the thermochemical conversion of biomass into fuels via FTS, the catalyst 

needs to achieve high overall CO conversion and a high C5+ selectivity [18, 19]. 

Additionally, the H2/CO ratio of synthesis gas produced from biomass is typically 

between 1 and 2, and can vary during operation due to changes in the biomass feed or 

Figure 1.6: Idealized product distribution for FTS based on the Anderson-Schulz-

Flory model. Taken from [12]. 
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other plant upsets. Ideally, the catalyst would also have a long lifetime and be tolerant to 

impurities such as sulfur and nitrogen containing molecules. Therefore, based on these 

requirements and the properties of Fe and Co catalysts given in Table 1.3, there is a need 

to develop a relatively inexpensive catalyst with activity and selectivity similar to Co and 

robustness similar to Fe towards varying operation conditions. Early transition metal 

carbides and nitrides have been reported to be active for CO hydrogenation (discussed in 

detail in Section 1.4) and have potential for meeting these requirements. 

Table 1.3: Comparison of Co- and Fe-based FTS Catalysts. Adapted from [34]. 

Parameter Cobalt Catalysts Iron Catalysts 

Cost More expensive Less expensive 

Lifetime Resistant to deactivation 

Less resistant to 

deactivation (coking, 

carbon deposit, iron 

carbide) 

Activity at low conversion Comparable 

Productivity at high 

conversion 

Higher; less significant 

effect of water on rate of 

carbon monoxide 

conversion 

Lower; strong negative 

effect of water on the rate 

of carbon monoxide 

conversion 

Maximum chain growth 

probability  
0.94 0.95 

Water gas shift reaction 

Not very significant; more 

noticeable at high 

conversion 

Significant 

Maximum sulfur content <0.1 ppm <0.2 ppm 

Flexibility (temperature 

and pressure) 

Less flexible; significant 

influence of temperature 

and pressure on 

hydrocarbon selectivity 

Flexible; methane 

selectivity is relatively low 

even at 340°C 

H2/CO ratio ~2 0.5-2.5 

Attrition Resistance Good Not very resistant 

 

1.4. Early Transition Metal Carbides and Nitrides 

 Transition metals in Groups 4-6 of the periodic table (Ti, V, Nb, Ta, Mo, W) are 

capable of forming stable compounds with carbon or nitrogen [42]. In these compounds, 
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the carbon or nitrogen occupies the interstitial spaces between the parent metal atoms. 

The incorporation of the carbon or nitrogen into the metal structure causes an expansion 

of the metal crystal lattice, which results in an increase in the metal-metal bond distance 

[42]. The crystal structure adopted is based on geometric and electronic factors. The 

geometric factor is based on the Hägg rule, which states that simple structures are formed 

when the ratio of the radii of nonmetal to metal is less than 0.59 [43]. The electronic 

factor is based on the Engel-Brewer theory of metals, which states that the structure 

adopted by a metal or a substitutional alloy depends on the s-p electron count [42]. As 

such, the mixing of the s-p orbitals of the nonmetal with the s-p-d band of the metal will 

affect the crystal structure of the carbide or nitride material. Typical crystal structures for 

early transition metal carbides and nitrides are shown in Figure 1.7. 

 Along with changes in the crystal structure, the addition of carbon and nitrogen 

into the parent metal lattice causes the carbide or nitride material to possess physical and 

chemical properties that are different from the parent metal [42]. Group 4-6 transition 

metal carbide and nitride compounds exhibit high melting points, extreme hardness and 

(b) (c) (d) 

Face Centered 

Cubic 

Hexagonal Hexagonal Close 

Packed 

Face Centered 

Cubic 

(a) 

Figure 1.7: Crystal structures for Groups 4-6 transition metal carbides and nitrides. (a) 

Mo2N, W2N, MoC1-x, and WC1-x, (b) TiN, ZrN, HfN, VN, CrN, TiC, ZrC, 

HfC, VC, NbC, and TaC, (c) TaN, MoN, MoC, WC, and (d) Mo2C and 

W2C. Adapted from [44]. 



17 
 

strength, as well as high electrical and thermal conductivities [42]. Of particular interest 

to the field of heterogeneous catalysis, carbides and nitrides also exhibit chemical 

reactivities that are quite different from the parent metal. This result was first observed by 

Levy and Boudart in 1973 [45]. They showed that tungsten carbide catalyzed the 

isomerization of 2,2-dimethylpropane to 2-methylbutane; this catalytic behavior is not 

exhibited by tungsten metal. Additionally, the only other metals that have been found to 

perform this reaction are Pt, Au, and Ir, suggesting that carbides and nitrides may possess 

catalytic properties similar to noble metals [45]. Since this discovery by Levy and 

Boudart, the catalytic behavior of early transition metal carbides and nitrides has been 

investigated for a variety of reactions ranging from ammonia synthesis to hydrocarbon 

reforming [42 and the references cited therein].  

 Based on their properties, early transition metal carbides and nitrides are 

promising materials for meeting the catalyst requirements for WGS and FTS. First, these 

materials have been shown to be active for CO hydrogenation [46-53]. Kojima et al. were 

among the first to investigate the CO hydrogenation activity of early transition metal 

carbides [46-48]. At atmospheric pressure, they found that carbides such as TiC, TaC, 

Mo2C, WC, and W2C primarily produced CH4, light hydrocarbons (C2-C4), CO2, and 

H2O; however a small amount of higher hydrocarbons were also observed (C5+). 

Additionally, they noted that the carbides continued to produce C2+ hydrocarbons under 

conditions of high temperatures and high H2/CO ratios. These conditions strongly favor 

the production of CH4. For common CO hydrogenation catalysts such as Ru and Ni, the 

primary product under high temperatures and high H2/CO ratios is CH4. Ranhotra et al. 

compared the CO hydrogenation performance of Mo2C and Mo2N at atmospheric 
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pressure and reported that the activity for the face centered cubic (FCC) phases of Mo2C 

and Mo2N were similar [49]. Kim et al. found that supported and unsupported Mo2C 

catalysts exhibited turnover rates for CO hydrogenation at atmospheric pressure similar 

to those for Ru metal [50]. More recent studies have also investigated the effect of higher 

pressure [51] and the addition of promoters such as potassium [52, 53]. Although the 

performance of these materials for CO hydrogenation has been explored to some extent, 

there are still a number of areas that need further investigation. These areas include 

evaluating performance under industrially relevant reaction conditions, elucidating the 

governing mechanisms, and improving selectivity towards C5+ hydrocarbons.  

 Second, these materials have been reported to be sulfur tolerant for certain 

reactions [54-57] as well as moderately resistant to coking [58, 59]. Dhandapani et al. 

observed that Mo2C exhibited minimal deactivation during simultaneous 

hydrodesulfurization, hydrodeoxygenation, and hydrodenitrogenation in the presence of 

up to 30 ppm of sulfur in the form of dibenzothiphene [54]. The authors proposed that the 

Mo2C surface was converted to a carbosulfide in the presence of sulfur. Under similar 

conditions, a noble metal catalyst (Pt/Al2O3) deactivated immediately. Minimal 

deactivation was also reported by Cheekatamarla et al. for the steam reforming of tri-

methyl pentane over Mo2C at sulfur concentrations up to 100 ppm [55]. For the 

hydrogenation of tetralin in the presence of H2S, Da Costa et al. reported that post-

reaction characterization did not show any evidence of sulfide formation on the supported 

Mo2C and W2C catalysts [56]. However, most of these studies were performed at 

moderately high temperatures and pressures. The sulfur tolerance of early transition metal 

carbides and nitrides has not been investigated under conditions similar to those for the 



19 
 

low temperature water gas shift reaction (1 atm, 200-270°C).  In regards to coking, 

Claridge et al. reported that carbon deposition was not observed using high resolution 

transmission electron microscopy over Mo2C and W2C catalysts for the reforming of 

methane [58]. Based on thermodynamics, Sehested et al. concluded that Mo2C has a 

greater resistance to surface carbon formation than Ni-based catalysts, which often 

exhibit severe deactivation due to coking [59].  

 Third, using a temperature programmed reaction method, these materials can be 

synthesized with high surface areas, presenting the possibility of using these materials as 

supports for other metals [42]. In general, a metal oxide precursor is placed into a flowing 

stream of either a reductive carburizing gas (such as a CH4/H2 mixture) to produce the 

carbide or ammonia gas to produce the nitride [42, 60]. The temperature is increased in a 

uniform manner until some maximum temperature is reached. This method directly 

converts the oxide precursor into the carbide/nitride while bypassing formation of the 

metallic state [42]. The metallic state is the most prone to sinter and leads to the 

formation of carbides/nitrides with low specific surface areas (<1 m
2
/g) [42]. Formation 

of the carbide/nitride material is often topotactic, and differences in densities between the 

oxide precursor and the carbide/nitride material result in the final material having a 

significant pore structure [42].  Carbides and nitrides with surface areas as high as 225 

m
2
/g have been synthesized using this method [42]. 

1.5. Early Transition Metal Carbide and Nitride Supported Metal Catalysts 

 Due to the ability to synthesize early transition metal carbide and nitride materials 

with high surface areas as well as their unique catalytic properties, interest has developed 

in using these materials as supports. Ledoux et al. investigated the effect of adding of Pt, 
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Ru, or Ir onto Mo2C or WC for the isomerization of n-hexane [61]. They reported that Pt 

supported on Mo2C exhibited a specific activity that was 6 times higher than that of a 

conventional Pt/Al2O3 catalyst. For methane reforming with CO2 in a solar receiver 

reactor, Volter et al. observed a significant increase in activity when Rh was supported on 

WC [62]. For FTS, Griboval-Constant et al. explored the performance of Co or Ru 

supported on Mo2C [63] and WC [64]. The Co/Mo2C and Ru/WC catalysts exhibited 

increased formation of higher hydrocarbons compared to the carbide support alone. 

However, the surface areas of the carbides employed in these FTS studies were low (<10 

m
2
/g), and the metal loadings of Co and Ru were approximately 1 wt%. Assuming a site 

density of 1x10
19

 sites/m
2 

and a surface area
 
of the carbide support of 5 m

2
/g, the surface 

loading of Co and Ru was approximately 200% and 120% of a monolayer, respectively. 

Due to these high surface loadings, it is probable that the improved performance 

exhibited by the carbide supported Co and Ru catalysts is just due to the innate activity 

and selectivity of the supported metal, and not due to a combination of the support and 

the metal. More recently, Lewandowski et al. tested the activity of a Pt-doped Mo2C 

catalyst for hydrodesulfurization and hydrodenitrogenation of 4,6-

dimethyldibenzothiophene and carbazole [65]. For both reactions, the Pt-doped Mo2C 

catalyst was more active than Mo2C alone. The authors attributed the improved 

hydrotreating activity to the improved hydrogenation activity of the modified catalyst. 

For all of these aforementioned studies, the supported metal was deposited onto the 

passivated carbide surface (carbides are typically passivated prior to exposure to air due 

to their pyrophoricity). Therefore, the metal precursors interacted with an oxidized 

surface rather than the native carbide surface. 
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 Recently, our group developed a technique to deposit metals directly onto the 

native carbide or nitride surfaces using an aqueous wet impregnation method [25, 26, 66, 

67]. The performance of early transition metal carbide and nitride supported metal 

catalysts synthesized via this method has been explored for methanol steam reforming 

[66, 67] and the water gas shift reaction [26].  For both reactions, the addition of the 

metal to the carbide or nitride surface affected the activity and selectivity of the catalyst. 

For WGS, the addition of Pt or Ni onto the Mo2C surface resulted in a marked 

improvement in activity (see Figure 1.8). Although the rate for the Mo2C support was less 

than 50% of the rate of the Cu/Zn/Al commercial catalyst, a 4% Pt/Mo2C catalyst 

exhibited a rate that was 2-3 times higher than that of Cu/Zn/Al. In comparison, a 4% 

Pt/Al2O3 catalyst exhibited negligible activity under these conditions. Additionally, it has 

been shown that these materials exhibit a support effect for WGS (see Figure 1.9). A 

support effect can be defined as an interaction of the support with the active catalytic 

phase, which causes a measureable change in the turnover frequency [68]. The areal rates 

Mo2C 

Ni/Mo2C 

Pt/Mo2C 

Cu/Zn/Al 

Figure 1.8: Arrhenius plots of the WGS reaction rate for Mo2C, Ni/Mo2C, Pt/Mo2C, 

and a commercial Cu/Zn/Al catalyst. 
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shown in Figure 1.9 illustrate that the catalytic performance for a given metal changes 

depending upon the carbide or nitride support. 

 Schweitzer et al. investigated the support effect further for Pt/Mo2C WGS 

catalysts and drew two key conclusions [28]. First, a strong interaction between the Pt 

precursor and the native Mo2C surface occurs during wet impregnation resulting in the 

formation of “raft-like” Pt particles. As shown in Figure 1.10, these Pt particles have 

relatively low contact angles with the Mo2C support and exhibit flatter intensity profiles 

than cubo-octahedral Pt particles supported on carbon. These “raft-like” particles result in 

high dispersion of the metal and a high density of Pt-Mo2C interface sites, which were 

shown to be active for WGS. Second, the addition of the Pt onto the Mo2C surface results 

in a catalyst that is bi-functional in nature. More specifically, the Pt sites appear to adsorb 

CO while the Mo2C sites activate H2O. The result of this combination (Pt/Mo2C) is a 

catalyst that is more active than most other Pt-based WGS catalysts (See Figure 1.11) 

[28]. The conclusions from this work encouraged further investigations of interactions 

Figure 1.9: Areal CO consumption rates for WGS at 240 °C for Cu, Ni, Pd, and Pt 

supported on various carbide and nitride supports. Taken from [26]. 
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between metal precursors and the native carbide surface in an attempt to exploit the bi-

functional nature of these carbide and nitride supported metal catalysts for FTS. 

 

Figure 1.10:  High resolution HAADF-STEM electron micrographs of (a) a Pt particle 

supported on Mo2C and (b) a Pt particle (cubo-octahedral shape) 

supported on carbon. (c) Intensity line scans for the Pt particle supported 

on Mo2C in Figure 1.9a and the Pt particle supported on carbon in Figure 

1.9b. The line scans indicate that the Pt particle on the Mo2C support has a 

flatter profile than the cubo-octahedral Pt particles supported on carbon. 

Taken from [28]. 
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1.6. Research Goals and Organization of the Text 

 There are three primary goals for research described in this dissertation: (1) 

investigate the effects of sulfur on the properties of Mo2C and Pt/Mo2C catalysts under 

water gas shift conditions, (2) evaluate the performance of a series of early transition 

metal carbide- and nitride-based catalysts for Fischer-Tropsch Synthesis and (3) develop 

structure-function relationships that can be used to guide future catalyst development. 

The specific objectives regarding these goals were to: 

1. Evaluate the WGS performance of Mo2C and Pt/Mo2C catalysts in the presence of 

H2S and characterize the materials pre- and post-reaction to determine the effect 

of sulfur on their surface and bulk structures. 

2. Synthesize and characterize carbides and nitrides of molybdenum, tungsten, 

vanadium, and niobium, and evaluate their FTS performance in terms of activity, 

selectivity, and durability. 

Figure 1.11: Arrhenius plots of the WGS reaction rate for Pt supported on Al2O3, CeO2, 

TiO2, and Mo2C. Taken from [28]. 
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3. Develop relationships between FTS performance and (1) the interstitial atom (C 

vs. N) and (2) the interactions of specific probe molecules such as CO with the 

carbide/nitride surface. 

4. Determine the effect on FTS performance of depositing metals onto the 

carbide/nitride surface. To accomplish this objective, the interactions between the 

metal precursors and the native carbide/nitride surface were explored during the 

metal loading process. 

This thesis is divided into seven chapters. A brief description of the remaining chapters is 

given below: 

 

Chapter 2:  Effects of Sulfur on Mo2C and Pt/Mo2C Water Gas Shift Catalysts 

 This chapter discusses the effect of sulfur on the structure and water gas shift 

activities of Mo2C and Pt/Mo2C catalysts. The effect of sulfur is explored using time on 

stream deactivation studies and regeneration studies, thermogravimetric analysis, and 

bulk and surface characterization using techniques such as X-ray diffraction, X-ray 

photoelectron spectroscopy, and scanning electron microscopy. The catalyst deactivation 

due to sulfur is linked to changes to the catalyst surface.  

 

Chapter 3:  Synthesis, Characterization, and Fischer-Tropsch Synthesis 

Performance Evaluation of Early Transition Metal Carbide and 

Nitride Materials 

 

 Synthesis conditions and catalyst characterization via X-ray diffraction and CO 

uptake measurements are discussed. The activities and selectivities for FTS of the carbide 

and nitride materials are presented. Key performance differences between carbides and 
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nitrides are identified and are investigated in Chapter 4.  The durability of these materials 

is assessed using time on stream deactivation studies as well as structural and surface 

characterization using techniques such as X-ray diffraction, X-ray photoelectron 

spectroscopy, and scanning electron microscopy. 

  

Chapter 4:  Fischer-Tropsch Synthesis Kinetics and Mechanisms 

 The effect of various process conditions (temperature, pressure, and H2/CO ratio) 

on the rate and selectivity of Mo2C for FTS is discussed. A simple power rate law for 

Mo2C is developed. Elementary reaction steps and FTS mechanisms governing 

performance are discussed with specific focus on exploring differences between Mo2C 

and Mo2N and identifying routes for C-C coupling to produce higher hydrocarbons over 

the Mo2C surface. Temperature programmed reaction and temperature programmed 

desorption experiments are employed. This investigation provides insight into strategies 

for modifying the catalysts to improve performance. 

 

Chapter 5:  Mechanistic Investigation of the Metal Adsorption Process over Mo2C 

 Chapter 5 discusses the interactions between the metal precursors and the native 

Mo2C surface during metal adsorption via wet impregnation. These interactions are 

explored using point of zero charge measurements for Mo2C, metal concentration 

measurements as a function of loading time, X-ray diffraction, X-ray photoelectron 

spectroscopy, as well as X-ray absorption spectroscopy. The dominant mechanisms 

controlling the metal adsorption process are discussed and insight is provided to guide 

future catalyst preparation. 



27 
 

 

Chapter 6:  Fischer-Tropsch Synthesis Performance of Mo2C-Supported Metal 

Catalysts 

 

 The activities and selectivities of a series of Mo2C-supported metal (Pt, Co, Cu, 

Fe, Ni, Ru, Rh) catalysts are presented. The catalysts are characterized using X-ray 

diffraction, CO chemisorptions, and H2 temperature programmed reduction. Based on the 

results, catalyst leads for future investigation are identified. 

 

Chapter 7:  Summary, Conclusions, and Future Work 

 Chapter 7 provides an overview of the key results and conclusions from this 

research. Based on these conclusions, methods for improving the Fischer-Tropsch 

Synthesis performance of these catalysts are provided. Additionally, future research 

directions are suggested. 
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CHAPTER 2 

Effects of Sulfur on Mo2C and Pt/Mo2C Water Gas Shift Catalysts 

2.1. Introduction 

Sulfur is a contaminant in fossil fuels including crude oil and coal, and often 

remains in products derived from fossil fuels [1]. Sulfur can also be present in biomass-

derived products. For example, Robinson et al. reported that depending on the type of 

biomass, the sulfur content varied from ~14 to 2200 ppm [2]. Sulfur severely and 

irreversibly deactivates most catalytic materials, and typically has to be removed 

upstream of the reactor. For some reactions, early transition metal carbides and nitrides 

have been reported to be sulfur tolerant, in particular at high temperatures and/or 

pressures [3, 4, 5]. For example, DaCosta et al. [4] reported that tetralin hydrogenation 

activities for Mo2C/Al2O3 and WC/Al2O3 catalysts were not significantly impacted by the 

presence of 200 ppm H2S at 300 °C and 4 MPa.  

Previous research in our group has demonstrated that carbide-based catalysts, 

specifically Mo2C and Pt/Mo2C, are active for the water gas shift reaction (WGS) [6-8]. 

For example, a 4% Pt/Mo2C catalyst has been reported to be more active than a 

commercial Cu/Zn/Al2O3 WGS catalyst as well as other Pt-based catalysts [7, 8]. 

Research described in this chapter investigated the tolerance of Mo2C and Pt/Mo2C 

catalysts to sulfur exposure during the WGS reaction (Equation 2.1).  

  CO + H2O ↔ CO2 + H2  ΔH° = -41.1 kJ/mol  (2.1) 
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This reaction is a critical step in the conversion of hydrocarbon and alcohol feedstocks 

into reformate or syngas [9] as well as the production of synthetic fuels via Fischer-

Tropsch Synthesis. Due to the sensitivity of most WGS catalysts, sulfur concentrations in 

the feed typically have to be reduced to ppb levels [1]. The effects of H2S exposure on the 

WGS activities of Mo2C and Pt/Mo2C catalysts were evaluated, and the materials were 

characterized to define any associated changes in catalyst structure and composition. 

Hydrogen sulfide was used as the sulfur species because it is often present in process 

streams [10].  Results presented in this chapter were determined at more moderate 

temperatures and pressures than those used in most prior investigations [3, 4, 5] and 

provide new insights into the effects of sulfur on the catalytic properties of Mo2C-based 

catalysts. 

2.2. Experimental Setup 

2.2.1. Catalyst Preparation 

The Mo2C catalyst was synthesized using a temperature programmed reaction 

procedure [11]. Approximately 1.3 g of ammonia paramolybdate (AM, 

(NH4)6Mo7O24•4H2O, 81-83% MoO3, Alpha-Aesar) was loaded into a quartz tube reactor 

on top of a quartz wool plug, and placed in a vertical furnace. A diagram of the reactor 

system is shown in Figure 2.1. In order to maintain consistent catalyst properties, the AM 

was sieved to 125-250 μm prior to carburization. The AM was reduced in H2 at 375 

mL/min
 
as the temperature was increased from room temperature (RT) to 350 °C (heating 

rate of 278 °C/h), and then held at this temperature for 12 h. The reactant gas was then 

switched from H2 to a 15% CH4/H2 mixture and the temperature was increased from 350 

°C to 590 °C at a rate of 160 °C/h. The final temperature was maintained for 2 h prior to 
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quenching the material to RT. Depending upon the gas hourly space velocity used during 

synthesis, this procedure has been shown to produce β-Mo2C [12]. The resulting material 

was passivated using a 1% O2/He mixture at 20 mL/min for at least 5 h.  

Figure 2.1: Schematic of the reactor system used in the synthesis of Mo2C via the 

temperature-programmed reaction method. Taken from [6]. 
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 The Mo2C-supported Pt catalyst was prepared via wet impregnation of the 

unpassivated Mo2C with a deaerated aqueous solution containing 1.3 mg/mL of 

dihydrogen hexachloriplatinate hexahydrate (H2PtCl6•6H2O, 99.95% metal basis, Alfa 

Aesar).  After decanting the excess solution, the material was loaded into a quartz reactor 

and dried in H2 at 375 mL/min
 
for 3 h at RT. Subsequently, the temperature was 

increased to 110 °C in ~1 h and held there for 2 h. The temperature was then increased to 

450 °C at a rate of 340 °C/h and held for 4 h. Finally, the material was quenched to room 

temperature and passivated in a 1% O2/He mixture at 20 mL/min for at least 5 h. 

 In addition to the Mo2C and Pt/Mo2C catalysts, a commercial Cu/Zn/Al2O3 

catalyst was also obtained from industry and used as a benchmark catalyst for 

comparison. 

2.2.2. Catalyst Characterization 

X-ray diffraction analysis was performed using a Rigaku Miniflex diffractometer 

with Cu Kα radiation and a Ni filter (λ = 1.540 Å). The range (10° < 2θ < 90°) was 

scanned at a rate of 5°/min with a 0.02° step size.  The BET surface areas were 

determined via N2 physisorption using a Micromeritics ASAP 2010 analyzer. Prior to 

these measurements, the catalysts were degassed at 300 °C for 4 h.  Pulse chemisorption 

experiments were performed using a Micromeritics AutoChem 2910 Chemisorption 

Analyzer equipped with a thermal conductivity detector and mass spectrometer. A 

schematic of the chemisorption analyzer is shown in Figure 2.2. Prior to analysis, the 

Mo2C and Pt/Mo2C catalysts were pretreated in 15% CH4/H2 for 4 h at 590 °C. The 

catalysts were then degassed in flowing He for 1 h. After cooling to RT, the catalysts 

were repeatedly dosed with 5 mL of 5% CO/He until saturation was achieved. The 
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Cu/Zn/Al2O3 catalyst was reduced in flowing 4% H2/N2 at 200 °C based on the 

instructions from the supplier. The sample was then degassed in flowing He for 1 h and 

cooled to 60 °C. The gas flow was then switched to N2O for 1.5h. The N2O flow was then 

replaced with He and the sample was cooled to RT. N2O titration was used to probe the 

number of exposed Cu atoms as N2O decomposes on the Cu surface at 60°C resulting in 

the formation of Cu2O (Cu:O stoichiometry of 2:1). The N2O uptake was determined by 

performing a H2 temperature programmed reduction and measuring the H2 consumption 

(removal of O in the form of H2O). This method was based on the one proposed by Bond 

and Namijo [13]. 

The catalyst compositions were determined by inductively coupled plasma optical 

emission spectroscopy (ICP-OES) using a Varian 720-ES analyzer. The materials were 

Figure 2.2: Schematic of the Micromeritics 2910 AutoChem Chemisorption analyzer. 

Taken from [6]. 
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dissolved in aqua regia (3 parts HCl to 1 part HNO3) and the emission spectra of 

dissolved species were compared to those for a series of standard solutions of known 

concentrations.  The surface morphologies of the fresh and spent catalysts were 

characterized using scanning electron microscopy (SEM) with a Phillips XL30 FEG SEM 

operating at an accelerating voltage of 15-25 kV and a nominal resolution of 2-5 nm. 

Prior to analysis, the materials were sputter coated with Pd-Au to mitigate charging 

effects. Sulfur adsorption/incorporation experiments were performed using the 

microbalance on a TA Instruments Q50 Thermogravimetric Analyzer.  These 

experiments characterized interactions of the catalyst with H2S at different 

concentrations. The flow rate to catalyst ratio and temperatures were similar to those used 

during the reaction rate measurements.  

 The fresh and spent catalysts were characterized using x-ray photoelectron 

spectroscopy (XPS) to determine the compositions and oxidation states of species on the 

surfaces. The XPS experiments were performed using a Kratos Axis Ultra x-ray 

photoelectron spectrometer with an Al anode (Kα radiation at 1486.6 eV) operating at 10 

mA and 14 kV. The spectrometer was equipped with an in situ XPS reaction chamber. 

However, due to the difficulty of removal, sulfur was not used in the XPS reaction 

chamber. The spectra were deconvoluted using a nonlinear least squares method 

employing a combination of Gaussian (80%) and Lorentzian (20%) distributions and 

CasaXPS, a commercially available XPS analysis program. The goodness-of-fit of the 

peak envelope to the spectral data was evaluated by the residual standard deviation 

(STD). The peak parameters were set to minimize the residual STD. Parameter 

constraints were imposed during deconvolution of the Mo, Pt, and S spectra. The Mo 3d 
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spectra were fit using doublets with a splitting of 3.2 eV between the 3d5/2 and 3d3/2 peaks 

and an intensity ratio of 3:2. The Pt 4f spectra were fit using doublets with a splitting of 

3.3 eV between the 4f7/2 and 4f5/2 peaks and an intensity ratio of 4:3. The S 2p spectra 

were fit using doublets with a splitting of 1.2 eV between the 2p3/2 and 2p1/2 peaks and an 

intensity ratio of 2:1. For all spectra, the peak widths (FWHM) for the doublets were 

constrained to be similar. Shirley backgrounds were used for the Mo 3d, Pt 4f, and S 2p 

spectra, while a linear background was used for the C 1s and O 1s spectra. The peak areas 

were normalized using the appropriate atomic sensitivity factors.  This allowed 

comparison of the relative atomic fractions of each species on the catalyst surfaces. 

2.2.3. Water Gas Shift Rate Measurements 

The WGS rates were measured using a 4 mm I.D. quartz U-tube in which 20-30 

mg of catalyst was supported on a quartz wool plug. A diagram of the WGS reactor 

system is shown in Figure 2.3. As necessary, the catalysts were diluted with inert, low 

surface area (<1 m
2
/g) silica (particle size 125-250µm) to prevent channeling, avoid 

problems with axial dispersion, and minimize temperature gradients in the bed. Prior to 

the reaction rate measurements, the catalysts were pretreated at 590 °C for 4 h in a 

mixture of 15% CH4/H2 [6]. The effluent gas was passed through an ice-bathed condenser 

to remove most of the H2O, and the composition was analyzed using a SRI 8610C gas 

chromatograph (GC) equipped with a Supelco Carboxen-1000 column and thermal 

conductivity detector. The GC sampled the effluent gas every 30 min. To ensure that 

there was no residual sulfur, the reactor system (reactor and lines) was heated to 500 °C 

in flowing H2 for 12 h in between runs.  This treatment was sufficient to reproduce the 

sulfur-free WGS rate for a commercial Cu/Zn/Al2O3 benchmark catalyst. 
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 The rates were measured under differential conditions (conversion ≤ 10%) at 

atmospheric pressure over a temperature range of 200-240°C. Operating under 

differential conditions ensures that the reaction is in the reaction-limited regime (not 

limited by mass transfer), thus measurements of the intrinsic rates of the material can be 

performed. The equilibrium WGS conversion under conditions used in the experiments 

would be greater than 90%. The dry reactant simulated the effluent stream from a partial 

oxidation reformer and consisted of 13% CO, 56% H2, 8% CO2, and balance N2. The dry 

reactant was passed through a H2O saturator maintained at 69.4 ± 0.4 °C resulting in a 

wet reactant containing 30% H2O. The flow rate of the reactant was 262 mL/min 

corresponding to a gas hourly space velocity of 125,000 h
-1

. Hydrogen production (CO 

consumption) rates and conversions were determined by monitoring the concentration of 

Figure 2.3: Schematic of the water gas shift reactor system. Taken from [11]. 
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CO in the product stream.  Features attributable to H2 were present in the chromatograms 

but could not be quantified because He was used as the carrier gas.  No products other 

than CO2 and H2 were observed in the effluent. 

 For measurements including sulfur, the catalysts were initially allowed to achieve 

pseudo steady-state rates at 240 °C in the sulfur-free reactant stream. Subsequently, H2S 

was added to the reactant stream to produce concentrations ranging up to 50 ppmv. In 

order to maintain the same gas hourly space velocity, the N2 balance gas flow rate was 

adjusted to account for the addition of H2S.  The regenerability of the catalysts was 

investigated by treating the spent materials in 15% CH4/H2 for 4 h at 590 °C. After this 

treatment, the catalysts were again exposed to the sulfur-free feed at 240 °C to determine 

the recovered rate. 

2.3. Results 

2.3.1. Pre-Reaction Characterization 

Diffraction patterns for the Mo2C and Pt/Mo2C catalysts (Figure 2.4) contained 

peaks for β-Mo2C [14] and α-MoC1-x [15]. The relative peak areas suggested similar 

amounts of each. These phases have Mo:C ratios near two, therefore, we will refer to this 

material as Mo2C. No peaks were observed for MoO2 [16] or MoO3 [17], indicating that 

synthesis achieved complete bulk carburization. There were no clearly discernable Pt 

peaks for the Pt/Mo2C catalyst [18], indicating that crystallites, if present, were below the 

detection limit of the x-ray diffractometer (particle diameter of <5nm). Results from 

catalyst characterization are given in Table 2.1. The reduced surface area for the Pt/Mo2C 

catalyst compared to the Mo2C catalyst may be due to pore blocking by Pt nanoparticles. 

Interestingly, the addition of Pt decreased the CO uptake as compared to Mo2C. 
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Table 2.1: BET surface areas, N2O uptakes, CO uptakes, site densities, Pt loadings, 

and TOFs for Mo2C, Pt/Mo2C, Cu/Zn/Al2O3, and Pt/oxide catalysts. 

Catalyst 

BET 

Surface 

Area 

(m
2
/g) 

N2O 

Uptake 

(µmol/g) 

CO 

Uptake 

(μmol/g) 

Site Density
1
 

(sites/m
2
 x 10

18
) 

Pt 

Loading 

(wt%) 

TOF 

(s
-1

) 

Mo2C 98 -- 268 1.65 -- 0.08
3
 

Pt/Mo2C 70 -- 151 1.30 3.7
2
 0.80

3
 

Cu/Zn/Al2O3 60 192 -- 1.93 -- 0.32
3
 

Pt/Al2O3 [19] 180 -- 91 0.31 3 0.03
4
 

Pt/ZrO2 [19] 75 -- 56 0.45 3 0.20
4
 

Pt/TiO2 [19] 74 -- 9 0.07 3 0.82
4
 

1 
Determined from uptake and BET surface area.

 

2 
Determined using ICP-OES. Corresponds to a surface coverage of 12% assuming 10 Pt 

atoms/nm
2
. 

3 
Based on rates measured at 240 °C. Extrapolated TOFs for the Mo2C, Pt/Mo2C, and 

Cu/Zn/Al2O3 catalysts at 250 °C are 0.11 s
-1

, 1.02 s
-1

, and 0.44 s
-1

, respectively. 
4 

Based on rates measured at 250 °C. 

The in situ XPS results tracked effects of the various treatments on the surface 

chemistries without exposure to air. Following treatment, the samples were purged with 

Figure 2.4:  X-ray diffraction patterns for the (a) Pt/Mo2C and (b) Mo2C catalysts, and 

peak positions for polycrystalline (c) β-Mo2C [14], (d) α-MoC1-x [15], and 

(e) Pt [18] reference materials. 
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N2 then cooled to room temperature in the in situ XPS reaction chamber. The pressure 

was reduced to < 10
-8

 torr and the material was transferred into the analysis chamber.  

Results from deconvolution of spectra for the as-synthesized and pretreated (15% CH4/H2 

at 590 °C for 4 h) catalysts are summarized in Table 2.2. Peaks that accounted for less 

than 10% of the total spectral area typically did not contribute significantly to the 

goodness-of-fit.  Surfaces of the catalysts contained varying concentrations of species 

attributable to Mo2C, Mo and Pt oxides, and carbon oxides; no chlorine residue (from the 

Pt precursor) was observed for the Pt/Mo2C catalyst.  The C 1s spectra for the Mo2C and 

Pt/Mo2C catalysts are shown in Figure 2.5. Peaks centered at 284.8 eV corresponded to 

adventitious carbon and were used to reference the other binding energies. In addition to 

adventious carbon, surfaces of the Mo2C and Pt/Mo2C catalysts contained carbidic carbon 

and adsorbed carbon oxides. Peaks at 283.5 ± 0.1 eV were assigned to carbidic carbon in 

Mo2C [19]. The peaks at 286.6 ± 0.6 eV and 288.4 ± 0.4 eV were assigned to species 

containing C-O and C=O bonds, respectively [21, 22].  These could be associated with 

carbonates and/or formates on the catalyst surface. 

The Mo 3d spectra for the Mo2C and Pt/Mo2C catalysts contained four doublets 

(see Figure 2.5). Doublets with Mo 3d5/2 peaks at 232.3 ± 0.2 eV are characteristic of 

Mo
6+

 and suggested the presence of MoO3 [3, 21, 23, 24]. The peaks at 229.7 ± 0.2 eV 

were likely due to Mo
4+

 in MoO2 [21, 24, 25].  The peaks at 228.5 ± 0.1 eV were 

assigned to Mo in the Mo2C based on comparisons with spectra reported in the literature 

(values in literature range from 228.1 eV to 228.8 eV) [3, 20, 26, 27].  For most of the 

materials, the ratio of the normalized area for the C 1s peak at 283.5 ± 0.1 eV to the area 

for the Mo 3d5/2 peak at 228.5 ± 0.1 eV was consistent with the presence of Mo2C (see 
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5

 

 

 

 

 

Table 2.2: Binding energies for species on surfaces of the as-synthesized and pretreated Mo2C and Pt/Mo2C catalysts.  

Catalyst Treatment C 1s (eV)
1,2

 Mo 3d5/2 (eV)
1
 

Pt 4f7/2 

(eV)
1
 

O 1s (eV)
1
 

  Mo2C C-O C=O Mo
2+

 Mo
δ+

 Mo
4+

 Mo
6+

 Pt
0
 Pt

2+
 MoOx PtO 

O
-
,OH

-

H2O,O=C 

Mo2C  
283.5 

(22) 

286.1 

(26) 

288.8 

(13) 

228.5 

(15) 

229.0 

(16) 

229.6 

(19) 

232.4 

(50) 
-- -- 

530.8 

(64) 
-- 

532.2 

(36) 

Mo2C CH4/H2
3
 

283.6 

(48) 

287.3 

(2) 
-- 

228.5 

(55) 

228.8 

(23) 

229.6 

(19) 
-- -- -- 

530.6 

(81) 
-- 

532.2 

(19) 

Pt/Mo2C  
283.5 

(6) 

286.6 

(16) 

288.2 

(18) 

228.5 

(23) 

228.8 

(27) 

229.8 

(25) 

232.3 

(25) 

71.6 

(78) 

72.7 

(22) 

530.6 

(37) 

531.5 

(21) 

532.6 

(42) 

Pt/Mo2C CH4/H2
3
 

283.6 

(23) 

286.1 

(22) 
-- 

228.5 

(51) 

228.8 

(31) 

229.9 

(14) 
-- 

71.8 

(85) 

73.3 

(15) 

530.7 

(37) 

531.8 

(8) 

532.4 

(55) 
1 

The number in parentheses represents the atomic percentage. 
2 

Balance of atomic percentages for C 1s is adventitious carbon. 
3
 Pretreated in 15% CH4/H2 at 590 °C for 4 h, purged with N2 then cooled to room temperature.
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Table 2.3). The Mo 3d5/2 peak at 228.9 ± 0.1 eV was designated as Mo
δ+

 (2<δ<4), 

perhaps in an oxycarbide [24, 28].  

The O 1s spectra for the Mo2C and Pt/Mo2C catalysts are also shown in Figure 

2.5. Two different species were present on the Mo2C surfaces. Peaks at 530.7 ± 0.2 eV 

are typically assigned to oxygen in Mo oxides [20, 21, 23, 24]. Peaks at 532.4 ± 0.2 eV 

Figure 2.5:  Carbon 1s, Molybdenum 3d, and Oxygen 1s XPS spectra for the (a) as-

synthesized Mo2C catalyst, (b) as-synthesized Pt/Mo2C catalyst, (c) 

pretreated Mo2C catalyst, and (d) pretreated Pt/Mo2C catalyst.  The 

catalysts were pretreated at 590 °C for 4 h in a mixture of 15% CH4/H2. 
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are indicative of strongly bound O
-
, OH

-
, H2O and/or O=C [22, 24]. Spectra for the 

Pt/Mo2C catalyst contained additional peaks at 531.7 ± 0.2 eV corresponding to Pt oxide 

[29, 30].  

Two doublets were observed in the Pt 4f XPS spectra (Figure 2.6). The dominant 

doublet with Pt 4f7/2 peaks at 71.7 ± 0.1 eV was assigned to Pt
0
 [30, 31]. The minor 

component with Pt 4f7/2 peaks at 73.0 ± 0.3 eV was assigned to Pt
2+

, most likely in the 

form of PtO [31].   

 Pretreatment of the as-synthesized catalysts in 15% CH4/H2 at 590 °C for 4 h 

caused a significant change in the surface chemistry. The percentage of Mo in the form of 

Mo2C increased from 15-20% in the as-synthesized catalysts to more than 50% in the 

pretreated catalysts. Pretreatment completely reduced the Mo
6+

 concentration and caused 

the formation of a small amount of a species with Mo 3d5/2 peaks at 231.0 ± 0.1 eV (see 

Figure 2.6:  Platinum 4f XPS spectra for the (a) as-synthesized and (b) pretreated 

Pt/Mo2C catalyst.  The catalyst was pretreated at 590 °C for 4 h in a 

mixture of 15% CH4/H2. 
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Figure 2.5).  Peaks with similar binding energies have been assigned to Mo
5+

 [23, 24, 25]. 

Pretreatment also increased the relative amount of carbidic carbon at the surface and 

decreased the amount of oxygen and carbon oxides (Figure 2.5). Approximately 70% of 

Mo on the as-synthesized Mo2C surface was in the form of MoO3 and MoO2, which is in 

good agreement with an O/Mo ratio of 2.6 (Table 2.3). The O/Mo ratio for the as-

synthesized Pt/Mo2C catalyst was 1.9. Pretreatment at 590 °C in 15% CH4/H2 resulted in 

a substantial reduction in the O/Mo ratio to 1.5 for Mo2C and 1.2 for Pt/Mo2C.  While 

pretreatment reduces the overall O/Mo ratio for both catalysts, the presence of Pt on 

Pt/Mo2C seems to facilitate the reduction of Mo oxides to a greater extent than Mo2C 

alone. There was only a slight reduction in the percentage of Pt
2+

 after pretreatment with 

15% CH4/H2 at 590 °C. 

Table 2.3: Selected atomic ratios for species on surfaces of the as-synthesized and 

pretreated Mo2C and Pt/Mo2C catalysts. 

Catalyst Treatment C
1
/Mo

2
 Ratio O/Mo Ratio O

3
/Pt

4
 Ratio 

Mo2C  1.9 2.6 -- 

Mo2C CH4/H2
5
 0.7 1.5 -- 

Pt/Mo2C  0.5 1.9 0.8 

Pt/Mo2C CH4/H2
5
 0.5 1.2 0.4 

1 
Carbidic carbon. 

2 
Mo in the form of Mo

2+
. 

3 
O 1s peak corresponding to PtO (531.7 ± 0.2 eV). 

4 
Pt doublet corresponding to PtO (73.0 ± 0.3 eV). 

5
 Pretreated in 15% CH4/H2 at 590 °C for 4 h, purged with N2 then cooled to room 

temperature. 

 

2.3.2. Reaction Rates 

The WGS rates for the Pt/Mo2C catalyst were almost an order of magnitude 

higher than those for the Mo2C catalyst and 2-3 times higher than those for the 

Cu/Zn/Al2O3 catalyst in the absence of H2S (Figure 2.7). The apparent activation energies 

for the Mo2C, Pt/Mo2C, and Cu/Zn/Al2O3 catalysts were 59, 42 and 47 kJ/mol, 
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respectively. These results are consistent with those reported previously [6, 11]. For 

example, King reported an activation energy of 45 kJ/mol for the 4% Pt/Mo2C catalyst 

[6]. Turnover frequencies for the Pt/Mo2C catalyst were higher than those for the 

Cu/Zn/Al2O3 catalyst and similar to those reported for the most active Pt-based catalysts 

(see Table 2.1).  

The Mo2C and Pt/Mo2C catalysts deactivated during the first 10-15 h of exposure 

to sulfur-free reformate. Figure 2.8 shows the rates for Mo2C and Pt/Mo2C at 240°C as a 

function of time on stream (TOS). To probe the nature of this deactivation, rate decay for 

the Mo2C and Pt/Mo2C catalysts was fit to models of the form [32]: 

m

d tak
dt

da
)(     (2.2) 

Figure 2.7:  Hydrogen production rates during WGS for the Mo2C and Pt/Mo2C 

catalysts at 200-240 °C. The H2 production rates for a commercial 

Cu/Zn/Al2O3 catalyst are also illustrated.  The reformate feed consisted of 

9% CO, 30% H2O, 6% CO2, 39% H2 and 16% N2. 
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where a(t) is the ratio of the rate at time t to the initial rate, kd is the specific decay 

constant and t is time on stream. Based on the F value and the 
2

adjR  value, the best-fit for 

the Mo2C and Pt/Mo2C catalysts was obtained using the reciprocal power form (Tables 

2.4 and 2.5). This form is consistent with deactivation by carbon deposition [33, 34]. 

 

Figure 2.8:  Hydrogen production rates for the Mo2C and Pt/Mo2C catalysts with (A) 

sulfur-free reformate, (B) reformate with 5 ppm H2S, (C) sulfur-free 

reformate and (D) sulfur-free reformate after treatment of the catalyst at 

590 °C for 4 h in a mixture of 15% CH4/H2.  The reformate contained 9% 

CO, 30% H2O, 6% CO2, 39% H2 and 16% N2. 
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Table 2.4: Results from nonlinear regression of sulfur-free activity data for the Mo2C 

catalyst to four empirical decay rate laws.  

Type Linear Exponential Hyperbolic Reciprocal Power 

Differential 

Form dk
dt

da
  ak

dt

da
d  

2ak
dt

da
d  m

d aAk
dt

da 5/1

0  

Integral Form tka d1  tkdea


  
tk

a
d


1

1
 dk

tAa


 0  

kd (h
-1

) 0.06 ± 0.01 0.18 ± 0.05 0.41 ± 0.08 0.20 ± 0.02 

A0 -- -- -- 0.46 ± 0.03 

Radj
2
 0.371 0.732 0.893 0.996 

F
1
 18.3 84.7 260 4140 

1
 Calculated by dividing the mean square model by the mean square error. P values for all 

model parameters were <0.0002. 

 

Table 2.5: Results from nonlinear regression of sulfur-free activity data for the 

Pt/Mo2C catalyst to four empirical decay rate laws.  

Type Linear Exponential Hyperbolic Reciprocal Power 

Differential 

Form dk
dt

da
  ak

dt

da
d  

2ak
dt

da
d  m

d aAk
dt

da 5/1

0  

Integral Form tka d1  tkdea


  
tk

a
d


1

1
 dk

tAa


 0  

kd (h
-1

) 0.045 ± 0.006 0.066 ± 0.009 0.10 ± 0.05 0.136 ± 0.007 

A0 -- -- -- 0.75 ± 0.02 

Radj
2
 0.952 0.970 0.982 0.999 

F
1
 573 926 1570 60300 

1
 Calculated by dividing the mean square model by the mean square error. P values for all 

model parameters were <0.0001. 

 

 Rates for the Mo2C and Pt/Mo2C catalysts also decreased on exposure to sulfur. 

Figure 2.8 shows the rates for Mo2C and Pt/Mo2C at 240 °C as a function of TOS. After 

the introduction of 5 ppm H2S, the hydrogen production rate for the Mo2C catalyst 

decreased by ~90% within 10 min. After ~32 h on stream, the catalyst regained some of 

its activity, reaching a H2 production rate that was ~25% of its sulfur-free reactant steady-

state rate. These temporal trends were reproducible.  When H2S was removed from the 

reactant, the rate for the Mo2C catalyst quickly decreased to zero. Upon treating the spent 

Mo2C catalyst with 15% CH4/H2 at 590 °C for 4 h, 25-30% of its initial rate was 

recovered. 
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General temporal trends for the Pt/Mo2C catalyst were similar to those for the 

Mo2C catalyst although the deactivation rate for the Pt/Mo2C catalyst was much slower 

and occurred over a period of several hours. The Pt/Mo2C catalyst did not regain any of 

its lost activity after removal of H2S from the reactant and treatment in 15% CH4/H2 at 

590 °C for 4 h resulted in a very slight reactivation of the catalyst to a rate similar to that 

for the Mo2C catalyst. 

To better understand the nature of interactions between sulfur and the Pt/Mo2C 

catalyst, the H2S concentration in the reactant was varied.  The deactivation rates were 

strong functions of the sulfur concentration. The ratio of the rate following exposure to 

H2S to the rate just before exposure to H2S, as(t), is plotted in Figure 2.9 as a function of 

TOS with 5, 25, and 50 ppm H2S in the reactant.  The activity decay was again fit to 

models of the form [32]:  

       

m

s

n

SHsd
s taCk

dt

da
)(0,, 2


   (2.3) 

 

where kd,s is the specific decay constant due to sulfur exposure, t is TOS after sulfur 

introduction, and 0,2SHC  is the concentration of H2S in the reactant (assumed to be 

constant). The best-fit was achieved for m = 1 (exponential form) and n = 0.51 ± 0.05, 

although the hyperbolic form was also a good fit for the data. The fit parameters for each 

of the models are included in Table 2.6. The exponential form is typical of deactivation 

caused by poisoning [35] while the hyperbolic form often indicates deactivation by 

sintering [32]. The half order dependence on concentration also suggests that H2S 

dissociated on the Pt/Mo2C catalyst surface [35]. 
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 Hydrogen sulfide readily dissociates on Mo2C at room temperature [36] and the 

conversion of Mo2C and H2S to MoS2 is thermodynamically favorable with a ΔGf of -264 

kJ/mol at 240°C [37]. Furthermore, it has been reported that H2S dissociates on Pt at 

temperatures as low as 100°C [38]. The formation of PtS from Pt and H2S is also 

thermodynamically favorable with a ΔGf of -32 kJ/mol at 240°C. 

 

 

 

 

Figure 2.9:  Activity, as(t), for the Pt/Mo2C catalyst as a function of time on stream 

after the introduction of 5, 25, and 50 ppm H2S to the reformate. 
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Table 2.6: Results from nonlinear regression of activity data for the Pt/Mo2C catalyst to four empirical decay rate laws.  The WGS 

 rates were measured using reformate containing 5, 25 and 50 ppm H2S. 
Type Linear Exponential Hyperbolic Reciprocal Power 

Differential Form n

SHsd
s Ck

dt

da
0,, 2

  s

n

SHsd

s aCk
dt

da
0,, 2

  
2

0,, 2 s

n

SHsd
s aCk

dt

da
  

m

s

n

SHsd
s aACk

dt

da 5/1

00,, 2
  

Integral Form tCka n

SHsds 0,, 2
1  

tCk

s

n
SHsdea 0,2,

  tCk
a

n

SHsd

s

0,, 2
1

1


  

n
SHsd Ck

s tAa 0,2,

0


  

n 0.38 ± 0.06 0.51 ± 0.05 0.6 ± 0.1 0.1 ± 0.3 

kd,s (ppm
-n

 h
-1

) 0.12 ± 0.02 0.25 ± 0.03 0.5 ± 0.1 0.6 ± 0.5 

A0 -- -- -- 0.31 ± 0.04 

Radj
2
 0.781 0.986 0.965 0.737 

F
1
 39.7 777 304 18.4 

1
 Calculated by dividing the mean square model by the mean square error. P value for all model parameters were <0.0001.
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2.3.3. In Situ Characterization 

Prior to collection of the in situ XPS spectra, the materials were pretreated in 15% 

CH4/H2 at 590 °C for 4 h, exposed to a reformate containing 9% CO, 30% H2O, 6% CO2, 

39% H2 in N2 at 240 °C for 4 h, purged with N2 then cooled to room temperature in the 

XPS reaction chamber. After reducing the pressure to < 10
-8

 torr, the material was 

transferred into the analysis chamber. Compared to the pretreated sample, the C 1s 

spectrum (Figure 2.10) for Mo2C presented peaks associated with C-O and C=O, in 

addition to a prominent carbidic carbon peak. The resulting Mo spectra for the Mo2C 

catalyst (Figure 2.10) were similar to that for the pretreated catalyst. However, the 

oxygen spectra were different (Figure 2.10). In addition to peaks at 530.7 ± 0.2 and 532.4 

± 0.2 eV (also observed for the pretreated materials), a peak at 533.7 ± 0.2 eV was 

observed (Table 2.7).  This peak is believed to correspond to oxygen in adsorbed carbon 

oxides [22]. Under reaction conditions, the O/Mo ratio for the Mo2C catalyst was 5.7 

compared to a O/Mo ratio of 1.5 for the pretreated material. This increase in O/Mo ratio 

was due to an increase in the density of adsorbed O
-
, OH

-
 and/or H2O, and not to an 

increase in Mo oxides.   

For the Pt/Mo2C catalyst, the C and Mo spectra (Figure 2.10) resembled those 

after pretreatment, except for an additional C 1s peak that was attributed to C=O. As 

observed for the Mo2C catalyst, the oxygen spectra included an additional peak at 533.7 ± 

0.2 eV that we attributed to adsorbed carbon oxides. The O/Mo ratio for the Pt/Mo2C 

catalyst increased to 4.2 under reaction conditions from a value of 1.2 after pretreatment. 

This increase was primarily due to increases in the concentrations of O
-
, OH

-
, and/or 

H2O. 
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Figure 2.10:  Carbon 1s, Molybdenum 3d, and Oxygen 1s XPS spectra for the (a) Mo2C 

and (b) Pt/Mo2C catalysts following pretreatment in 15% CH4/H2 at 590 

°C for 4 h and exposure to reformate containing 9% CO, 30% H2O, 6% 

CO2, 39% H2 and 16% N2 at 240 °C in the in situ XPS reaction chamber. 
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Table 2.7: Binding energies from in situ spectra for species on surfaces of the Mo2C and Pt/Mo2C catalysts following pretreatment 

in 15% CH4/H2 at 590 °C for 4 h, exposure to reformate containing 9% CO, 30% H2O, 6% CO2, 39% H2 in N2 at 240 

°C for 4 h, purge with N2 then cooling to room temperature. 

Catalyst C 1s (eV)
1,2

 Mo 3d5/2 (eV)
1
 Pt 4f7/2 (eV)

1
 O 1s (eV)

1
 

 Mo2C C-O Mo
2+

 Mo
δ+

 Mo
4+

 Pt
0
 Pt

2+
 MoOx 

O
-
, OH

-
, 

H2O, O=C 
O-C 

Mo2C 
283.1 

(18) 

286.5 

(14) 

228.3 

(55) 

228.7 

(23) 

229.7 

(20) 
-- -- 

530.7 

(12) 

532.3 

(68) 

533.7 

(20) 

Pt/Mo2C 
283.2 

(11) 

286.5 

(16) 

228.2 

(69) 

228.7 

(16) 

229.9 

(15) 

71.6 

(83) 

73.3 

(17) 

530.5 

(14) 

532.3 

(40) 

533.9 

(36) 
1 

The number in parentheses represents the atomic percentage. 
2 

Balance of atomic percentages for C 1s is adventitious carbon.
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Temporal changes in the catalyst weight during exposure to H2S provided insight 

regarding the nature of interactions between the catalysts and sulfur.  Prior to these 

measurements, the catalysts were pretreated at 590 °C for 4 h in the CH4/H2 mixture then 

degassed in He at 240 °C for 1 h. Changes in weight were assumed to be due to the 

adsorption onto and/or incorporation of sulfur into the catalysts. During the first 10 

minutes at 240 °C in a 5 ppm H2S/He mixture, there was a rapid weight gain (Figure 

2.11). Subsequently, the rate of weight gain decreased, but remained somewhat steady 

until reaching a weight gain equivalent to ~2 monolayers (ML) of sulfur, based on a site 

density of 10 sites/nm
2
 and 1 sulfur atom/site. After the adsorption or incorporation of ~2 

ML of sulfur, the rate of weight gain slowed then leveled off.  The overall rate of sulfur 

uptake was slightly higher for the Pt/Mo2C catalyst than for the Mo2C catalyst, and 

Figure 2.11:  Weight gain during exposure of the Mo2C and Pt/Mo2C catalysts to 5 ppm 

H2S in He at 240 °C. The dashed lines indicate the weight gains 

corresponding to 1 ML and 2 ML of sulfur coverage assuming a material 

with 98 m
2
/g. 
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shapes of the curves were different suggesting that the presence of Pt caused a change in 

the mechanism for sulfur incorporation.   

2.3.4. Post Reaction Ex Situ Characterization 

Bulk crystalline structures for the Mo2C and Pt/Mo2C catalysts did not change on 

exposure to reformate without or with 5 ppm H2S at 240 °C, as evident from the XRD 

patterns (Figure 2.12). The sharper peaks were due to the SiO2 that was used as a diluent 

during the reaction rate measurements. The absence of a peak at 2 ~14 ° indicated that 

MoS2 crystallites, if present, were below the detection limit of the x-ray diffractometer.  

Micrographs of the fresh and spent catalysts (see for example Figure 2.13) were very 

Figure 2.12:  X-ray diffraction patterns for the (a) Mo2C catalyst after WGS without 

H2S, (b) Pt/Mo2C catalyst after WGS without H2S, (c) Mo2C catalyst after 

WGS with 5 ppm H2S and (d) Pt/Mo2C catalyst after WGS with 5 ppm 

H2S.  Peak positions for polycrystalline (e) SiO2 [39], (f) MoS2 [40], (g) β-

Mo2C [14], and (h) α-MoC1-x [15] reference materials are also illustrated. 

The SiO2 was used as a catalyst diluent during the reaction rate 

measurements. 
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similar indicating that there were no significant changes in the surface morphology. 

Although sulfidation of Mo2C and Pt is thermodynamically favorable, these materials are 

reported to be moderately resistant to bulk sulfidation, possibly because the diffusion of 

sulfur into the sub-surface is slow due to its size [3, 37, 41, 42]. Surface areas for the 

spent catalysts both in sulfur-free and sulfur-containing reactants were ~5-15% lower 

than those for the fresh catalysts.  For example, surface areas for the spent Mo2C catalysts 

Figure 2.13:  Scanning electron micrographs of the (a) as-synthesized and (b) spent 

(WGS with 5 ppm H2S at 240 °C) Mo2C catalysts. Images were collected 

at 15 kV accelerating voltage, 3.0 spot size, and 18,000 magnification. 
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were 86 ± 4 (without sulfur) and 93 ± 4 m
2
/g (with sulfur) compared to a surface area of 

98 ± 5 m
2
/g for the as-synthesized catalyst.  These results confirm that the deactivation 

caused by exposure to H2S was not due to surface area loss or sintering. 

Due to the difficulty of ensuring the complete removal of sulfur, experiments 

involving sulfur could not be carried out in the XPS reaction system.  Instead, catalysts 

exposed to reformate in the catalytic reactor were cooled to room temperature, quickly 

transferred in air to a desiccator, and stored under vacuum until being transferred to the 

spectrometer and collection of the ex situ spectra. A comparison of the in situ (Figure 

2.10) and ex situ (Figure 2.14) Mo spectra for materials exposed to the reformate suggests 

that this brief exposure to air caused partial oxidation of Mo2C at the surface to MoO3.  

As shown in Figure 2.12, however, the catalysts did not undergo bulk oxidation to MoO2 

or MoO3 upon exposure to air. Nevertheless, an examination of major changes in the ex 

situ spectra provided insight regarding the significant effects of sulfur on the Mo2C and 

Pt/Mo2C catalysts.  Results from deconvolution of the ex situ spectra are summarized in 

Table 2.8 for catalysts subjected to the following treatments (also see Figure 2.8): 

(A) sulfur-free reformate at 240 °C for 16 h; 

(B) reformate with 5 ppm H2S at 240 °C for 22 h; 

(C) sulfur-free reformate at 240 °C for 5 h; 

(D) sulfur-free reformate after treatment of the catalyst at 590 °C in CH4/H2 for 4h 
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Figure 2.14  Molybdenum 3d XPS spectra for the Mo2C and Pt/Mo2C catalysts (a) after 

WGS without H2S, (b) after WGS with 5 ppm H2S, and (c) after WGS 

with 5 ppm H2S, treatment in 15% CH4/H2 at 590 °C for 4 h, and WGS 

without H2S. 
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Table 2.8: Binding energies from ex situ spectra for species on the surfaces of the Mo2C and Pt/Mo2C catalysts following 

measurement of the reaction rates (see Figure 2.8). 

Catalyst Treatment1 C 1s (eV)2,3 Mo 3d5/2 (eV)2 Pt 4f7/2 (eV)2 O 1s (eV)2 S 2p (eV)2 
S 2s 

(eV)2 

  Mo2C C-O Mo2+ Moδ+ Mo4+ Mo6+ Pt* Pt0 Pt2+ MoOx 
O-,OH-

H2O,O=C 
O-C MoSxCy S-Mo 

MoS2/
PtS 

S2
2- SO4

2-  

Mo2C A 
283.3 

(10) 

286.6 

(35) 

228.4 

(15) 

228.8 

(8) 

229.6 

(26) 

232.5 

(51) 
-- -- -- 

530.6 

(30) 

532.6 

(39) 

533.8 

(31) 
-- -- -- -- -- -- 

Mo2C ABC -- 
285.8 

(36) 

228.2 

(10) 

228.8 

(16) 

229.9 

(5) 

232.4 

(60) 
-- -- -- 

530.6 

(9) 

532.8 

(80) 

533.7 

(11) 
-- -- -- 

163.1 

(100) 
-- -- 

Mo2C ABCD 
283.6 

(27) 

286.3 

(22) 

228.5 

(21) 

228.8 

(21) 

229.8 

(27) 

232.3 

(21) 
-- -- -- 

530.7 

(62) 

532.4 

(30) 

533.5 

(8) 

160.7 

(18) 

161.7 

(37) 

162.3 

(45) 
-- -- -- 

Pt/Mo2C A 
283.1 
(35) 

286.7 
(7) 

228.2 
(22) 

228.8 
(9) 

229.9 
(35) 

232.3 
(34) 

69.7 
(26) 

71.5 
(71) 

73.3 
(3) 

530.6 
(64) 

532.2 
(29) 

533.8 
(3) 

-- -- -- -- -- --- 

Pt/Mo2C ABC 
283.6 

(22) 

286.4 

(22) 

228.6 

(33) 

229.0 

(19) 

230.4 

(14) 

232.6 

(34) 
-- 

71.9 

(71) 

72.7 

(29) 

530.8 

(55) 

532.1 

(31) 

533.7 

(2) 
-- 

161.9 

(23) 

162.5 

(59) 
-- 

168.8 

(18) 
226.4 

Pt/Mo2C ABCD 
283.6 

(17) 

286.4 

(20) 

228.5 

(19) 

228.7 

(20) 

229.7 

(27) 

232.4 

(34) 

70.5 

(24) 

72.0 

(73) 

73.4 

(3) 

530.8 

(49) 

532.1 

(43) 

533.6 

(2) 

160.3 

(11) 

161.9 

(14) 

162.4 

(58) 
-- 

168.9 

(17) 
226.7 

1
 Treatments correspond to sections of Figure 2.8. 

2
 The number in parentheses represents the atomic percentage. 

3
 Balance of atomic percentages for C 1s is adventitious carbon.
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With the exception of the S 2p spectra, spectra for the Mo2C catalyst prior to and after 

exposure to sulfur were similar.  Exposure to reformate with 5 ppm H2S resulted in a 

doublet with S 2p3/2 peak at 163.1 ± 0.2 eV (Figure 2.15). This binding energy is 

consistent with the presence of S2
2-

 in MoS3 or SH groups [3, 43]. 

 

Treatment of the sulfur deactivated Mo2C catalyst in 15% CH4/H2 at 590 °C for 4 

h caused an increase in the relative amounts of Mo that we attributed to Mo2C and MoS2 

[3, 26] (Figure 2.14) and emergence of a small doublet with Mo 3d5/2 peak at 227.5 ± 0.1 

eV.  This doublet is consistent with the presence of Mo
0
 [44]. Three doublets were 

resolved in the S 2p spectra (Figure 2.15).  The doublet with S 2p3/2 peak at 161.8 ± 0.2 

eV has been assigned to atomic sulfur strongly adsorbed to Mo [45, 46]. The peak at 

162.4 ± 0.2 eV corresponds to S
2-

 species, likely in the form of MoS2 [3, 23, 42].  The 

peak at 160.5 ± 0.2 eV has been tentatively attributed to a Mo sulfidocarbide [41, 47, 48] 

based on the position. 

Figure 2.15:  Sulfur 2p XPS spectra for the Mo2C and Pt/Mo2C catalysts (a) after WGS 

with 5 ppm H2S for 22 h and (b) after WGS with 5 ppm H2S, treatment in 

15% CH4/H2 at 590 °C for 4 h, and WGS without H2S. 
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 Exposure of the Pt/Mo2C catalyst to sulfur significantly affected the associated 

XPS spectra.  Spectra following exposure to sulfur-free reformate contained a doublet 

with Pt 4f7/2 peak at 70.1 ± 0.4 eV (Figure 2.16), in addition to peaks attributable to Pt
0
 

and PtO.  This binding energy does not match those of any previously reported Pt 

species, but the shift relative to Pt
0
 is consistent with the presence of anionic Pt.  

Exposure to sulfur eliminated this highly reduced Pt species.  The relative amount of 

Mo2C increased following exposure to reformate containing 5 ppm H2S.  Three doublets 

were resolved in the S 2p spectra for the Pt/Mo2C catalyst after exposure to reformate 

with 5 ppm H2S at 240 °C (Figure 2.15). The doublet with S 2p3/2 peak at 161.8 ± 0.2 eV 

corresponds to sulfur strongly adsorbed to Mo. The doublet with S 2p3/2 peak at 162.4 ± 

0.2 eV corresponds to S
2-

 species, possibly in the form of MoS2 or PtS [3, 23, 42, 49, 50].  

The doublet with S 2p3/2 peak at 168.8 ± 0.2 eV is consistent with the presence of sulfate 

Figure 2.16:  Platinum 4f XPS spectra for the Pt/Mo2C catalyst (a) after WGS without 

H2S, (b) after WGS with 5 ppm H2S, and (c) after WGS with 5 ppm H2S, 

treatment in 15% CH4/H2 at 590 °C for 4 h, and WGS without H2S. 
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species (S
6+

) [26, 51, 52].  Oxygen in the sulfate might have been introduced from the 

subsurface or exposure to air.  Treatment of the sulfur deactivated Pt/Mo2C catalyst in 

15% CH4/H2 at 590 °C for 4 h caused reemergence of peaks that we attributed to anionic 

Pt and Mo sulfidocarbide, a slight decrease in the amount of Mo2C and a slight increase 

in the amount of MoS2. 

2.4. Discussion 

The focus of this chapter was to assess the effects of sulfur, in the form of H2S, on 

the WGS activities and structures of Mo2C and Pt/Mo2C catalysts. It is important to 

understand these effects as sulfur is a common impurity in fossil-fuel derived feed 

streams. Catalysts with a high tolerance to sulfur are desired. In general, sulfur tolerance 

can be manifested in two ways.  The most attractive form of tolerance is when the 

catalyst maintains its rate during exposure to sulfur.  Another form is when the catalytic 

activity can be restored via modest treatment of the spent material.  Results described in 

this chapter indicate that the Mo2C and Pt/Mo2C catalysts possessed some degree of 

sulfur tolerance.  The Mo2C catalyst was significantly deactivated during exposure to 

sulfur but maintained a modest rate, and some of the initial performance could be 

restored via treatment in CH4/H2 mixtures.  The Pt/Mo2C catalyst behaved in a similar 

manner with the exception that the extent of reactivation was much lower than that for 

the Mo2C catalyst.  This discussion section will explore changes in the surface chemistry 

that correlate with deactivation of the catalysts.  

The Mo2C and Pt/Mo2C catalysts deactivated during the first 10-15 h of exposure 

to sulfur-free reformate (Figure 2.8). Rate decay equations for the Mo2C and Pt/Mo2C 

catalysts during the first 10-15 h of exposure to sulfur-free reformate suggested that the 
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deactivation was caused by carbon deposition. This result is in agreement with the XPS 

results. Comparison of XPS spectra from pretreated and in-situ WGS exposed samples 

revealed an increase in carbon oxide groups (C-O and C=O) as well as surface oxygen. 

Formation of carbonate or formate groups may have caused blockage of active sites, as 

this behavior has been reported for other WGS catalysts [53]. Formation of surface 

oxides could reduce the number of active Mo2C sites.  

Deactivation of the Mo2C catalyst by H2S appeared to occur in three stages.  The 

reaction rate decreased significantly during the first 10 minutes of exposure to sulfur.  In 

a similar time frame, the sulfur adsorption and/or incorporation rate increased 

dramatically. We believe these responses were interrelated and that highly active Mo2C 

sites were quickly poisoned during this stage. Subsequently, the WGS rate decreased and 

the sulfur content increased more gradually. During the final stage, the activity increased 

slightly. This increase in activity appeared to correspond with the adsorption and/or 

incorporation of ~2 ML of sulfur on the Mo2C catalyst surface. When sulfur was 

removed from the reactant, the activity decreased suggesting that it was associated with 

MoS2 nanoparticles.  Molybdenum sulfide is known to be active for the WGS in the 

presence of H2S, and in fact, requires sulfur in the feed to maintain its activity [54].  A 

fraction of the Mo2C sites could be restored via treatment in 15% CH4/H2 at 590 °C for 4 

h, however, based on the XPS results, MoS2 sites persisted.  Therefore, we have 

concluded that the sulfur tolerance exhibited by the Mo2C catalyst was associated with 

MoS2 nanoparticles produced via sulfidation of Mo2C, and the regenerability of highly 

active Mo2C-based sites poisoned during initial exposure to sulfur. 
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In comparison to the Mo2C catalyst, the Pt/Mo2C catalyst exhibited a much 

slower deactivation rate suggesting that most of the activity was associated with the 

presence of Pt.  The results are consistent with two types of sites on the Pt/Mo2C catalyst: 

sites on the Pt nanoparticles or at the Pt nanoparticle-Mo2C support interface, and sites on 

the Mo2C support.  The high activity Pt-based sites were severely and irreversibly 

deactivated, we believe, as a consequence of the conversion of Pt into inactive PtS. Sites 

associated with the Mo2C support could be partially reactivated in a manner similar to 

that observed for the Mo2C catalyst. 

 Finally, we note that surface oxygen may have played a role in the interactions of 

sulfur with the Mo2C and Pt/Mo2C catalysts.  Oxygen has been reported to facilitate the 

sulfidation of early transition metal carbides and nitrides [23]. After exposure to WGS 

conditions, there was a high concentration of oxygen on the surface of the Mo2C and 

Pt/Mo2C catalysts, as indicated by the O/Mo atomic ratios determined from XPS (5.7 and 

4.2, respectively). This oxygen was present in the form of strongly adsorbed O-, OH- 

and/or H2O. Upon exposure to H2S, these surface oxygen species may have facilitated the 

formation of MoS2 domains. Using XPS, MoS2 was confirmed to be present on the 

catalyst surface.      

2.5. Summary 

The effects of H2S on the WGS activities, structures and compositions of Mo2C 

and Pt/Mo2C catalysts have been investigated. These catalysts were severely deactivated 

on exposure to H2S but could be partially regenerated. Characterization of the spent 

catalysts suggested that deactivation of the Mo2C catalyst was primarily due to the 

adsorption of sulfur on Mo2C sites and the formation of surface MoS2. The MoS2 sites 
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were active in the presence of sulfur. Deactivation of the Pt/Mo2C catalyst appeared to be 

primarily due to the irreversible sulfidation of Pt nanoparticles.  Other features for this 

catalyst were similar to those for the Mo2C catalyst.  Under reaction conditions, the Mo2C 

and Pt/Mo2C surfaces also possessed high concentrations of oxygen, which may have 

facilitated formation of the Mo sulfide. Although Pt improved the activity of the Mo2C 

catalyst, it also altered the interaction of sulfur with the catalyst surface resulting in an 

increased susceptibility to sulfur poisoning. These results suggest that the Mo2C and 

Pt/Mo2C catalysts were partially tolerant to sulfur during WGS.  
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CHAPTER 3 

Synthesis, Characterization, and Fischer-Tropsch Synthesis Performance 

Evaluation of Early Transition Metal Carbide and Nitride Materials 

 
3.1. Introduction 

The focus of research described in this chapter was to evaluate the performance of 

carbide and nitride materials of molybdenum, tungsten, vanadium, and niobium for 

Fischer-Tropsch Synthesis (FTS). FTS performance was assessed via three figures-of-

merit: activity, selectivity, and durability. The activity of these materials was probed 

using reaction rate measurements in a fixed bed reactor under realistic FTS conditions. In 

an attempt to evaluate the intrinsic activity of the catalytic sites on the surface, the 

reaction rates were normalized by the material’s CO uptake. For a reaction such as FTS 

where a variety of compounds are produced, selectivity to the desired products is also 

important. In general, the desired products are long chain hydrocarbons and the undesired 

products are CH4 and CO2. Alcohols and olefins are also desired products as these 

compounds are precursors for the production of organic chemicals. Selectivities for the 

carbide and nitride materials included their total product selectivities, hydrocarbon-only 

selectivities, olefin/paraffin molar ratios, and chain growth probability factors, α (based 

on the Anderson-Schulz-Flory model [1, 2]).  

The durability of these materials was assessed based on time on stream 

deactivation and regeneration studies as well as surface and bulk characterization. For 

FTS, catalyst durability is often evaluated based on resistance to coking/carbon 
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deposition, changes in feed gas composition, sintering, and crystal structure/phase 

changes due to oxidation or carburization [3, 4]. For example, metallic Fe and Co 

particles can be converted to the oxide or carbide phases under FTS reaction conditions, 

thus altering their performance characteristics [3, 4]. Although there have been a number 

of studies of early transition metal carbides and nitrides for CO hydrogenation [5-12], 

very few have explored the durability of these materials. Ranhotra et al. reported that the 

bulk crystal structure of Mo2C and Mo2N remained unchanged after exposure to synthesis 

gas for 24 h at 300°C at atmospheric pressure [8]. However, there was clear evidence of 

carbon and oxygen accumulation from elemental analysis [8].  

The results discussed in this chapter were used as a guide for the mechanistic 

investigations described in Chapter 4 and the design of carbide/nitride supported metal 

catalysts described in Chapters 5 and 6.  

3.2. Experimental Setup 

3.2.1. Catalyst Synthesis and Pretreatment 

 High surface area carbide and nitride materials were synthesized using a 

temperature programmed reaction procedure. First, the oxide precursors were sieved to a 

particle size of 125-250µm. The powder was then supported in a tubular quartz reactor 

with quartz wool, and placed in a vertical furnace. A diagram of the reactor system was 

shown in Chapter 2 (Figure 2.1). The synthesis conditions for the Mo, W, V, and Nb 

carbides and nitrides are outlined in Table 3.1. These parent metals were chosen because 

they form stable carbide and nitride structures, can be synthesized at temperatures below 

1000°C, and can achieve moderately high surface areas. The table includes the metal 

oxide precursor, precursor weight, synthesis gas and flow rate, as well as the temperature 
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Table 3.1: Synthesis parameters for carbides and nitrides of Mo, W, V, and Nb. 

Catalyst Precursor 

Precursor 

Amount 

(g) 

Synthesis 

Gas 

Synthesis 

Gas Flow 

Rate 

(mL/min) 

T1
3
 

(°C) 

Ramp 

Time1 

(hr:min) 

Soak 

Time1 

(hr:min) 

T2 

(°C) 

Ramp 

Time2 

(hr:min) 

Soak 

Time2 

(hr:min) 

T3 

(°C) 

Ramp 

Time3 

(hr:min) 

Soak 

Time3 

(hr:min) 

Mo2C AM
1
 1.3 

H2 and 

15% 

CH4/H2
2
 

400 350 1:10 12:00 590 1:30 2:00    

Mo2N AM
1
 1.05 NH3 400 350 0:33 0:00 450 2:30 0:00 700 2:30 1:00 

W2C WO3 1.1 
15% 

CH4/H2 
250 200 0:17 0:00 650 7:30 5:00    

W2N WO3 1.3 NH3 360 270 0:20 0:00 560 9:40 0:15    

VC V2O5 0.4 
15% 

CH4/H2 
800 900 1:28 2:00       

VN V2O5 1.0 NH3 600 800 12:55 3:00       

NbC Nb2O5 0.4 
15% 

CH4/H2 
800 900 1:28 2:00       

NbN Nb2O5 1.0 NH3 600 800 12:55 3:00       
1
 AM represents ammonium paramolybdate, ((NH4)6Mo7O24∙4H2O), containing 81-83% MoO3. 

2
 The 1

st
 step for Mo2C synthesis is in flowing H2. The second step is in flowing 15% CH4/H2. 

3
 The initial temperature for all catalysts was room temperature.
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program for each material. These synthesis conditions were developed based on previous 

research in our group [13-17] and other references [18].  

 Once the samples were placed inside the furnace, the synthesis gas was passed 

over the powder at a specified flow rate. The carburization gas consisted of 15% CH4 

with balance H2 and the nitridation gas was NH3. The flow rate of the gas was controlled 

by Omega mass flow controllers and the temperature was controlled by an Omega 

programmable PID controller. The temperature of the bed was monitored using a K-type 

thermocouple that was placed in contact with the sample. Upon completion of the 

temperature program (listed in Table 3.1), the quartz reactor was removed from the 

furnace and quenched to room temperature, while the synthesis gas remained flowing. 

The final material was then exposed to a 1% O2/He mixture flowing at 20 mL/min for 6 h 

to passivate the surface of the catalyst. This passivation step is required to prevent bulk 

oxidation of the catalyst upon exposure to air due to the pyrophoric nature of these 

materials. 

 Due to this passivation step, the carbide and nitride catalysts were pretreated prior 

to FTS reaction rate measurements and chemisorption experiments. The catalysts were 

pretreated at atmospheric pressure in the gas used during synthesis flowing at 200 

mL/min for 4 h at the maximum temperature used during synthesis (see Table 3.1). For 

example, Mo2C was pretreated at 590°C in 15% CH4/H2. These conditions were chosen 

to remove the oxygen deposited during the passivation step and return the catalyst to its 

as-synthesized state. 
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3.2.2. Catalyst Characterization 

 The bulk crystal structures of the oxide precursors and the fresh and spent carbide 

and nitride catalysts were characterized using X-ray diffraction (XRD). XRD was 

performed using a Rigaku miniflex X-ray diffractometer with a Cu-Kα (λ = 1.54nm) 

radiation source and a Ni filter. A range of 20° < 2θ < 90° was scanned at a rate of 5°/min 

with a 0.02° step size. 

 Surface area measurements and CO pulse chemisorptions were carried out in a 

Micromeritics 2910 AutoChem Chemisorption analyzer. A schematic of the 

chemisorption analyzer was shown in Chapter 2 (Figure 2.2). For surface area 

measurements, the catalysts were first pretreated as described above, degassed in flowing 

He at a temperature slightly higher than the pretreatment temperature to remove any 

adsorbed H2, and then cooled to room temperature. The samples were then exposed to a 

30% N2/He mixture and the temperature was reduced to 77K using a liquid nitrogen bath. 

BET surface areas were calculated from single point N2 desorption peaks recorded with a 

thermal conductivity detector (TCD). For the CO pulse chemisorption experiments, the 

samples were again pretreated. Then, the gas flow was switched to He and the samples 

were degassed and cooled to room temperature. The samples were then repeatedly dosed 

with pulses containing 5% CO/He until complete saturation was achieved. Saturation was 

achieved when the CO peak areas recorded with the TCD were no longer changing (areas 

were within 1%). CO uptakes were determined from peak areas recorded with the TCD.  

 The surface morphologies of the fresh and spent catalysts were characterized 

using scanning electron microscopy (SEM). SEM images were collected using a Phillips 

XL30 Field Emission Gun SEM operating at an accelerating voltage of 15-25 kV and a 
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nominal resolution of 2-5 nm. Prior to analysis, the materials were sputter coated with 

Pd-Au to mitigate charging effects. 

 The fresh and spent catalysts were also characterized using X-ray photoelectron 

spectroscopy (XPS) to determine the compositions and oxidation states of species on the 

surfaces. The XPS experiments were performed using a Kratos Axis Ultra X-ray 

photoelectron spectrometer with an Al anode (Kα radiation at 1486.6 eV) operating at 

10mA and 14 kV. The spectrometer was equipped with an in situ XPS reaction chamber. 

The spectra were deconvoluted using a nonlinear least squares method employing a 

combination of Gaussian (80%) and Lorentzian (20%) distributions and CasaXPS, a 

commercially available XPS analysis program. Parameter constraints were imposed 

during deconvolution of the Mo spectra. The Mo 3d spectra were fit using doublets with a 

splitting of 3.2 eV between the 3d5/2 and 3d3/2 peaks and an intensity ratio of 3:2. For all 

spectra, the peak widths (Full Width at Half Max, FWHM) for the doublets were 

constrained to be similar. Shirley backgrounds were used for the Mo 3d spectra while 

linear backgrounds were used for the C 1s and O 1s spectra. The peak areas were 

normalized using the appropriate atomic sensitivity factors. This allowed comparison of 

the relative atomic fractions of each species on the catalyst surfaces. The adventitious 

carbon peak (284.8 eV) was used to reference the other binding energies. 

 Coking experiments were performed using the microbalance on a TA Instruments 

Q600 Thermogravimetric Analyzer. By monitoring the catalyst weight as a function of 

temperature, carbon deposition/incorporation was studied by exposing the samples to H2-

CO mixtures with varying concentrations. 
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3.2.3. Fischer-Tropsch Synthesis Experiments 

 The FTS rate and selectivity measurements were carried out in a 4.6 mm I.D. 

stainless steel U-tube fixed bed reactor. The catalyst samples (40-200mg) were supported 

on a quartz wool plug inside the reactor. Typical reactions conditions were 25 bar, H2/CO 

= 2, gas hourly space velocity of 9600-42,000 h
−1

, and two temperature ranges: 200-

250°C and 270-320°C. The two temperature ranges were selected to cover the typical 

temperatures used industrially for FTS, allow for adequate control of the temperature, and 

maintain the reaction under differential conditions. Due to the exothermic nature of FTS, 

high conversion requires significant heat removal and makes it difficult to operate the 

reactor isothermally. The amount of sample used was adjusted to maintain CO 

conversions below 10% (differential conditions). The samples were diluted with low 

surface area SiO2 (<1m
2
/g, particle size: 125-250 µm) to maintain a constant bed height 

and volume as well as to prevent channeling, avoid problems with axial dispersion, and 

minimize temperature gradients in the bed. 

 The feed gases, H2, CO, and N2 (internal standard), were introduced into the 

reactor using Teledyne Hastings mass flow controllers (rated to a maximum inlet pressure 

of 500psi). The feed lines to the reactor were heated to 150°C. The pressure of the system 

was set using a back pressure regulator located downstream of the reactor. All effluent 

lines were maintained at 200°C to ensure that the reaction products remained in the gas 

phase. Hydrocarbon products containing up to 10 or 11 carbon atoms should remain in 

the gas phase at this temperature. For example, the boiling point of decane (C10H22) is 

174°C. Any products that remained as liquids were condensed out in a trap. After a 

typical 40 h run, no liquids were observed in the trap. The concentrations of reactants and 
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products in the effluent gas were analyzed using a Varian 3800 gas chromatograph 

equipped with two thermal conductivity detectors and a flame ionization detector. The 

GC sampled the effluent gas every 45 min. 

 Prior to the reaction rate measurements, the catalysts were pretreated at 

atmospheric pressure as described at the end of Section 3.2.1. The temperature was then 

reduced to 150°C and the catalysts were exposed to 100% N2. The pressure of the system 

was then increased to the reaction pressure (typically 25 bar). The H2 flow was then 

introduced. The temperature was then increased to the reaction temperature and the CO 

flow was introduced. The catalysts were allowed to stabilize for 8 hours before steady-

state rate measurements were recorded. To construct the Arrhenius plots shown in the 

results section, the rates were recorded at each temperature for 4 h, allowing for 6 

samples to be taken by the GC at each temperature. The initial temperature was revisited 

to evaluate catalyst deactivation with time on stream. An example of the rate data as a 

function of time on stream for Mo2C over the temperature range of 200-250°C is shown 

in Figure 3.1. 

 The activities and selectivities of the carbide and nitride catalysts for FTS were 

compared in a number of ways. The product formation rate on a C1 basis was calculated 

using Equation 3.1: 

     



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





i

ii

cat

exit ZC
W

F
r      (3.1) 

where Fexit is the flow rate of the effluent gas from the reactor, Wcat is the weight of 

catalyst in the reactor, Ci is the molar concentration of component i in the effluent stream 

determined from GC analysis, and Zi is the carbon number of component i. The 

components are the products of the reaction (hydrocarbons, alcohols, and CO2). The 
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product formation rate was calculated including and excluding the by-product CO2. For 

all experiments, the carbon balance closed within 5%.  

 The total selectivity (including CO2) on a C1 basis was determined using Equation 

3.2: 

     




i

ii

jj

j
ZC

ZC
S      (3.2) 

where Sj is the total selectivity to component(s) j. Component(s) j can be 1 compound 

such as CH4 or can be a series of compounds such as C2-C4 hydrocarbons, C5+ 

hydrocarbons, or alcohols. The hydrocarbon only selectivity was calculated in a similar 

fashion except the concentrations of CO2 and alcohols were removed from the 

denominator. The olefin selectivity was calculated as the molar ratio of olefins to 

paraffins for a given carbon number as shown in Equation 3.3: 

     
np

no

n
C

C
R

,

,
      (3.3) 

Figure 3.1: Product formation rate on C1 basis as a function of time on stream for 

Mo2C under the following reaction conditions: 25 bar, H2/CO = 2, and 

200-250°C. 
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where Rn is the molar ratio of olefin to paraffin for carbon number n, Co,n is the molar 

concentration in the effluent stream of olefin with carbon number n, and Cp,n is the molar 

concentration in the effluent stream of paraffin with carbon number n. 

 Lastly, based on the Anderson-Schulz-Flory model [1, 2] discussed in Chapter 1, 

the distribution for hydrocarbons can be described by Equation 3.4: 

       11  n

nm      (3.4) 

where mn is the mole fraction of a hydrocarbon with chain length n and α is the chain 

growth probability factor. By taking the natural log of Equation 3.4, equation 3.5 is 

formed: 

         ln11lnln  nmn     (3.5) 

By plotting ln mn vs. n for a given catalyst, α was determined from the slope of the line. 

3.3. Results 

3.3.1. Catalyst Characterization 

X-ray diffraction patterns for the oxide precursors and the as-synthesized carbide 

and nitride catalysts are shown in Figures 3.2 - 3.5. Peaks related to the oxide precursors 

were not observed for the carbide and nitride catalysts, suggesting that complete bulk 

carburization or nitridation of the starting materials was achieved. Except for Mo2C and 

W2C, all of the carbide and nitride catalysts had face centered cubic (FCC) crystal 

structures. For NbN, the small peaks at 2θ of ~31°, ~46°, and ~62° correspond to the 

hexagonal phase of NbN that can be formed under similar conditions [19]. The W2C 

catalyst had an orthorhombic (distorted hexagonal close packed) structure while the 

crystalline structure of Mo2C was consistent with a mixture of α-MoC1-x (FCC) and β-

Mo2C (orthorhombic). This multi-phase Mo2C material has been produced previously in 



84 
 

our research group [16] and was found to have a surface area twice that of β-Mo2C [16]. 

Having said that, modifying synthesis conditions to maximize surface areas of the carbide 

and nitride materials was not a focus of this research. 

 

Figure 3.2: X-ray diffraction patterns for ammonium paramolybdate, AM (black), 

Mo2C (red), and Mo2N (blue). 

Figure 3.3: X-ray diffraction patterns for WO3 (black), W2C (red), and W2N (blue). 
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 The carbide and nitride catalysts were further characterized using BET surface 

area measurements and CO pulse chemisorption. The results from this analysis are given 

Figure 3.4: X-ray diffraction patterns for V2O5 (black), VC (red), and VN (blue). 

Figure 3.5: X-ray diffraction patterns for Nb2O5 (black), NbC (red), and NbN (blue). 
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in Table 3.2. The carbides and nitrides of Mo and W exhibited the highest CO uptakes 

and CO site densities. The VN and NbN catalysts exhibited CO site densities 4-5 times 

lower than those of the Mo and W carbides and nitrides. The CO uptakes for VC and 

NbC were below the detection limit of the instrument, thus CO site densities could not be 

calculated. 

 Table 3.2: Pretreated BET surface areas, CO uptakes, and site densities for the 

carbide and nitride catalysts. 

Catalyst 
Pretreated BET Surface Area 

(m
2
/g) 

CO Uptake
1
 

(µmol/g) 

CO Site Density
2
 

(molecules/m
2
 x 10

18
) 

Mo2C 106 268 1.52 

Mo2N 154 307 1.20 

W2C 36 74 1.24 

W2N 82 109 0.80 

VC 9 <1 -- 

VN 28 8 0.27 

NbC 10 <1 -- 

NbN 47 11 0.14 
1
 CO uptake calculated from CO pulse chemisorptions performed at room temperature. 

2
 CO site density calculated from pretreated BET surface area and CO uptake. 

3.3.2. Fischer-Tropsch Synthesis Performance 

3.3.2.1.Activity 

Arrhenius plots of the gravimetric FTS product formation rates for the carbide and 

nitride catalysts are shown in Figure 3.6. The reaction rates and selectivities were 

measured at 25 bar and H2/CO = 2. Two separate temperature ranges were tested: 200-

250°C and 270-320°C. The two temperature ranges were required to maintain the CO 

conversions below 10% (differential conditions) and allow for accurate temperature 

control. The FTS is strongly exothermic, making it difficult to control the catalyst bed 

temperature at higher CO conversions. For the lower temperature range, only Mo2C and 

W2C exhibited measureable product formation rates. On a gravimetric basis, the most 

active catalyst was Mo2C. This result is not surprising as Mo2C was capable of high CO 
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uptakes, indicating that there is a high density of sites for CO to adsorb and react. Mo2C 

was not tested at temperatures above 300°C as it became very difficult to maintain 

control of the reaction temperature. The VC and NbC catalysts were the least active 

Figure 3.6: Arrhenius plots of the gravimetric product formation rates (a) including 

CO2 and (b) exluding CO2 for the carbide and nitride catalysts. Reaction 

conditions: 25 bar, H2/CO = 2, 200-320°C, and GHSV = 9600-42000h
-1

. 

Error bars correspond to 95% confidence interval. 

(a) 

(b) 
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catalysts tested as they did not exhibit any measureable CO conversion under these 

reaction conditions.  

As a measure of the intrinsic activity of the catalysts, the product formation rates 

were normalized by the CO uptakes (see Figure 3.7). On a normalized basis, Mo2C, W2C, 

VN, and NbN exhibited similar product formation rates. Rates for the Mo2N and W2N 

catalysts were more than an order of magnitude lower. The activity trend for these 

materials is as follows: Mo2C ~ W2C ~ VN ~ NbN > Mo2N, W2N >> VC, NbC. Based on 

these results, there appears to be a significant difference in FTS activity for the carbides 

and nitrides of the same metal. 

 Using the normalized rates shown in Figure 3.7, the activity of the carbides and 

nitrides can be compared to typical Fischer-Tropsch catalysts such as Co. Based on a 

review by Ribeiro et al., the average CO hydrogenation turnover frequency for a series of 

supported Co catalysts was 0.017 ± 0.014 s
-1

 at 200°C, 10 atm, and H2/CO = 2 [20]. At 

Figure 3.7: Arrhenius plots of the normalized product formation rates exluding CO2 

for the carbide and nitride catalysts. Reaction conditions: 25 bar, H2/CO = 

2, 200-320°C, and GHSV = 9600-42000h
-1

. Error bars correspond to 95% 

confidence interval. 
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200°C, the normalized rate for Mo2C was 0.004 ± 0.002 s
-1

. Although the rate for Mo2C 

was below the average for the Co catalysts, it was within the range reported. 

The apparent activation energies (Ea,app) for the carbide and nitride catalysts are 

given in Table 3.3. These values were calculated from the slope of the lines in the 

Arrhenius plots. For the temperature range 270-320°C, Mo2N exhibited the highest Ea,app 

of 134 kJ/mol, while W2C and W2N exhibited the lowest values, 76 kJ/mol and 59 

kJ/mol, respectively. Griboval-Constant et al. reported apparent activation energies in the 

range of 120-170 kJ/mol for Mo2C depending upon the reaction conditions [21]. For CO 

hydrogenation over Mo2C and Mo2N at atmospheric pressure, Ranhotra et al. reported 

Ea,app values ranging from 60-130 kJ/mol depending upon the product [8].  The Ea,app 

values for Mo2C and Mo2N in this study were within these reported ranges. 

Table 3.3: FTS apparent activation energies for the carbide and nitride catalysts. 

 Ea,app
1,2

 (kJ/mol) 

 Temperature Ranges 

Catalyst 200-250°C 270-320°C 

Mo2C 107 ± 22 98 ± 19 

Mo2N -- 134 ± 28 

W2C 66 ± 22 76 ± 4 

W2N -- 59 ± 15 

VN -- 85
3
 

NbN -- 91 ± 7 
1
 Calculated from product formation rates excluding CO2. 

2
 Error corresponds to 95% confidence interval. 

3
 Ea,app for VN was calculated for rates from 270-290°C. Due to only three points, the 

95% confidence interval was large. 

 

As shown in Figure 3.7, the product formation rate over VN does not increase 

linearly with respect to 1/T above a temperature of 290°C. The rate remains fairly 

constant between 300°C and 320°C. This result could be due to a change in the catalyst’s 

functional ability (deactivation, reaction pathway, kinetics) or diffusion limitations. To 

check that the FTS reaction over VN was not diffusion limited at temperatures above 
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290°C, the Weiss-Prater criterion was evaluated [22]. The Weiss-Prater criterion is a 

dimensionless number that compares the rate of pore diffusion to the rate of reaction and 

is given by Equation 3.6 [22]: 

     
effs

p

PW
DC

R
N

2
      (3.6) 

where is the observed reaction rate, Rp is the radius of the catalyst particle, Cs is the 

limiting reactant concentration at the catalyst surface (assumed to be the concentration of 

the limiting reactant in the gas phase), and Deff is the effective diffusivity of the limiting 

reactant. For the reaction to not be diffusion limited, NW-P should be less than 0.3 [22]. 

For VN, the maximum particle radius was 125µm (particles were sieved to a size of 125-

250µm), the average pore radius was 8 nm, the FTS reaction rate at 320°C was 1.7 

µmol/g•s, and the gas phase concentration of CO and H2 was 0.16 mol/L and 0.32 mol/L, 

respectively. Deff consists of two resistances in series: Knudsen diffusion (collisions 

between gas molecules and pore walls are dominant) and bulk diffusion (collisions 

between gas molecules in the free space are dominant) [22, 23]. Deff was calculated using 

Equation 3.7: 

     
effbeffKeff DDD ,,

111
     (3.7) 

where Dk,eff is the effective diffusivity for Knudsen diffusion and Db,eff is the effective 

diffusivity for bulk gas molecule diffusion. The Dk,eff values used in the calculation were 

1.72 x 10
-2

 cm
2
/s and 6.43 x 10

-2
 cm

2
/s for CO and H2, respectively. The Db,eff values 

were 5.03 x 10
-2

 cm
2
/s and 1.65 x 10

-1
 cm

2
/s for CO and H2, respectively. Assuming 

either CO or H2 as the limiting reactant, NW-P for VN at 320°C was always less than 1 x 
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10
-3

, which is much less than 0.3 indicating that the reaction is not diffusion limited under 

these conditions. 

3.3.2.2.Selectivity 

 The selectivities of the carbide and nitride catalysts are compared at 290°C in 

Figure 3.8. The gravimetric product formation rates on a C1 basis at 290°C are also given 

in Table 3.4. At this temperature, the CO conversions for all catalysts were similar, 

allowing for an equitable comparison as the extent of conversion can affect selectivity 

[2]. The primary products for the carbide and nitride catalysts were hydrocarbons and 

CO2. Only a small percentage of alcohols were produced; however, it should be noted 

that higher temperatures do not favor alcohol formation. The only alcohols produced 

were methanol and ethanol, with ethanol being the more favored product at 290°C. VN 

and NbN exhibited the highest selectivities to hydrocarbons while Mo2C and Mo2N 

exhibited the lowest selectivities to hydrocarbons. 

 

Figure 3.8: Total product selectivity for the carbide and nitride catalysts. Reaction 

conditions: 290°C, 25 bar, H2/CO = 2. 
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Table 3.4: Gravimetric product formation rates on a C1 basis for the carbide and 

nitride catalysts. Reaction conditions: 290°C, 25 bar, H2/CO = 2. 

 Product Formation Rate on C1 basis (µmol/g•s) 

Catalyst CO2 CH4 C2-C4 C5+ Alcohols 

Mo2C 34.9 34.0 25.7 1.63 0.66 

Mo2N 1.89 1.36 0.87 0.07 0.03 

W2C 4.69 10.7 8.60 0.94 0.84 

W2N 0.21 0.65 0.31 0.05 0.03 

VN 0.14 0.95 0.47 0.04 0.03 

NbN 0.19 1.60 0.56 0.03 0.05 

 

 Based on the observed CO2 production, all catalysts appeared to be active for the 

water gas shift (WGS) reaction (Equation 3.8): 

    222 HCOOHCO      (3.8) 

The trend in terms of CO2 selectivity was as follows: Mo2C ~ Mo2N > W2C ~W2N > VN 

~ NbN. A similar trend for WGS activity was reported by King [16]. The H2O that 

participates in WGS was likely produced from the FTS reactions. Assuming that all of 

the CO2 produced comes from the WGS, the percentage of the H2O produced via FTS 

that is consumed by WGS can be calculated by Equation 3.9: 

   100
FTS from produced OH of mols

produced CO of mols

2

2     (3.9) 

These percentages are given in Table 3.5. For Mo2C and Mo2N, greater than 50% of the 

H2O produced via FTS was consumed by WGS. For VN and NbN, this value is 

approximately 10%. 

Table 3.5: Percentage of H2O produced via FTS that was consumed by WGS. 

Reaction conditions: 290°C, 25 bar, H2/CO = 2. 

Catalyst H2O consumed during WGS (%) 

Mo2C 56 ± 2 

Mo2N 79 ± 11 

W2C 23 ± 3 

W2N 21 ± 6 

VN 11 ± 6 

NbN 9 ± 2 
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 The hydrocarbon selectivity is shown in Figure 3.9. In general, the carbide and 

nitride catalysts favored the production of CH4 and light hydrocarbons (C2-C4). At 

290°C, the selectivity to higher hydrocarbons (C5+) for these catalysts was between 2% 

and 5%. The olefin selectivity represented as the molar ratio of olefin to paraffin for a 

given carbon number, Rn, is shown in Figure 3.10. In general, Rn followed the same trend 

as a function of carbon number for all of the catalysts. The ratios were typically lowest 

for C2 and highest for C3. W2N exhibited the highest Rn while Mo2C exhibited the lowest 

Rn. It is not surprising that Mo2C favored saturated hydrocarbons as it has been reported 

to be a good hydrogenation catalyst [24-26]. 

 

  

  

Figure 3.9: Hydrocarbon selectivity for the carbide and nitride catalysts. Reaction 

conditions: 290°C, 25 bar, H2/CO = 2. 

CH4 C2-C4 C5+ 
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 Based on the Anderson-Schulz-Flory (ASF) model [1, 2], the chain growth 

probability factor, α, was determined for the carbide and nitride catalysts by plotting the 

natural log of hydrocarbon mole percent vs. carbon number (see Figure 3.11). The results 

suggest that chain growth for the carbides and nitrides followed the ASF model. The α 

values are listed in Table 3.6. At 290°C, the highest α (0.43) was observed for W2N and 

the lowest α (0.31) was observed for NbN and Mo2C. The α values for the other catalysts 

were all within error of each other. A higher α value indicates that there is a higher 

probability of increasing the chain length. 

Figure 3.10: Olefin/Paraffin molar ratio for the carbide and nitride catalysts. Reaction 

conditions: 290°C, 25 bar, H2/CO = 2. 

C2 C3 C4 C5 
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Table 3.6: ASF α values for carbide and nitride catalysts. Reaction conditions: 

290°C, 25 bar, H2/CO = 2. 

Catalyst ASF α
1
 

Mo2C 0.31 ± 0.02 

Mo2N 0.33 ± 0.03 

W2C 0.35 ± 0.02 

W2N 0.43 ± 0.04 

VN 0.35 ± 0.04 

NbN 0.31 ± 0.04 
1
 Error calculated from linear regression of fits shown in Figure 3.11. 

 

3.3.3. Catalyst Durability 

Upon exposure to the synthesis gas mixture, the carbide and nitride catalysts 

deactivated. This deactivation behavior will be discussed for Mo2C, but all catalysts 

showed similar trends. The gravimetric FTS product formation rates including CO2 for 

Mo2C at 240°C are shown in Figure 3.12 as a function of time on stream (TOS). 

Figure 3.11: Anderson-Schulz-Flory plots of the hydrocarbon distribution for the 

carbide and nitride catalysts. Reaction conditions: 290°C, 25 bar, H2/CO = 

2. 
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In the first 10 h, the reaction rate decreased rapidly, reaching a pseudo steady state rate 

that was approximately 35% of the initial rate. For the remaining 50 h of the run, the rate 

decreased more slowly. The catalyst deactivation does not appear to be due to 

consumption of carbon in Mo2C. After 10 h TOS, the total amount of carbon contained in 

the reaction products was ~56,000 µmol. The amount of carbon present in the Mo2C 

catalyst loaded into the reactor was ~1000 µmol. After regeneration in 15% CH4/H2 at 

590°C for 4 h (same as the pretreatment conditions for Mo2C), the Mo2C catalyst 

recovered its lost activity. 

The activity of the Mo2C catalyst, a(t), is plotted as a function of TOS in Figure 

3.13. The activity a(t) is calculated by Equation 3.10. 

    
0

)(
)(

r

tr
ta       (3.10) 

Regenerated 

Figure 3.12: Product formation rates including CO2 for Mo2C as a function of time on 

stream. Reaction conditions: 240°C, 25 bar, H2/CO = 2. Regeneration 

conditions: 15% CH4/H2 at 590°C for 4 h. 
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where r(t) is the FTS product formation rate at time t after exposure to the feed gas and r0 

is the initial FTS product formation rate. The activity decay for Mo2C during the first 20 

h TOS was fit using non-linear regression to models of the form shown in Equation 3.11 

[27]: 

     m

d tak
dt

da
)(     (3.11) 

where kd is the specific decay rate constant and t is the TOS. As shown in Figure 3.13, the 

best fit for the Mo2C catalyst was obtained using the reciprocal power form. This form is 

consistent with deactivation by carbon deposition [28, 29]. 

  

Figure 3.13: Activity a(t) for Mo2C as a function of time on stream. The best-fit 

activity models are also displayed. Reaction conditions: 240°C, 25 bar, 

H2/CO = 2. 
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Table 3.7: Results from nonlinear regression of activity data for Mo2C catalyst to 

four empirical decay rate laws. Reaction conditions: 240°C, 25 bar, H2/CO 

= 2. 

Type Linear Exponential Hyperbolic 
Reciprocal 

Power 

Differential 

Form dk
dt

da
  ak

dt

da
d  2ak

dt

da
d  m

d aAk
dt

da 5/1

0  

Integral Form tka d1  tkdea


  
tk

a
d


1

1
 dk

tAa


 0  

kd (h
-1

) 0.046 ± 0.004 0.10 ± 0.01 0.20 ± 0.02 0.187 ± 0.009 

A0 -- -- -- 0.57 ± 0.01 

Radj
2
 0.654 0.831 0.924 0.998 

 

 As process conditions can have a significant effect on catalyst deactivation, the 

activity decay of Mo2C at 240°C was investigated for various H2/CO ratios (see Figure 

3.14). For all H2/CO ratios tested, the deactivation trends were similar. This observed 

stability under varying H2/CO ratios may be due to the intrinsic water gas shift activity of 

the Mo2C catalyst. It should also be noted that the FTS product formation rates for the 

Figure 3.14: Activity a(t) for Mo2C as a function of time on stream for H2/CO ratios of 

2.0, 1.5, 1.0, and 0.7. Reaction conditions: 240°C and 25 bar. 
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Mo2C catalyst were different for the different H2/CO ratios. The variation in catalyst 

activity with varying process parameters will be discussed in Chapter 4. 

 The product selectivity also changed as a function of TOS. Figures 3.15 and 3.16 

show the total product selectivity and the olefin/paraffin molar ratio for Mo2C as a 

function of TOS. The selectivity towards CH4 increased over time while the selectivity 

towards C2+ hydrocarbons decreased. This result suggests that changes to the catalyst 

surface over time reduced its ability to perform C-C coupling. Additionally, the 

selectivity towards alcohols increased slightly. This result may be due to an increase in 

the oxygen concentration on the Mo2C surface. The CO2 selectivity decreased during the 

first 10 h TOS, but then remained fairly constant. The Rn also changed significantly as a 

function of TOS. In general, Rn increased during the first 10 h TOS, and then decreased 

Figure 3.15: Total product selectivity for Mo2C as a function of time on stream. 

Reaction conditions: 240°C, 25 bar, H2/CO = 2. 
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steadily. A TOS of 10 h was also when the Mo2C activity stabilized (Figure 3.13). The 

other carbide and nitride catalysts showed similar behavior. 

 To further assess durability, the catalysts were characterized using X-ray 

diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron 

microscopy (SEM). Figures 3.17 and 3.18 show the diffraction patterns of the spent 

carbide and nitride catalysts, respectively. The spent catalysts had been exposed to FTS 

reaction conditions (270-320°C, 25 bar, H2/CO = 2), purged with an inert gas at 270°C, 

cooled to room temperature in the inert gas, and then passivated with a 1% O2/He mixture 

for 6 h. For all of the carbides and nitrides, the diffraction patterns for the spent catalysts 

resembled those of the fresh catalysts (Figures 3.2-3.5). The additional peaks in the 

patterns correspond to the SiO2 used as a diluent for the FTS experiments. These results 

suggest that the bulk crystal structures of the carbides and nitrides were stable under FTS 

reaction conditions.  

Figure 3.16: Olefin/Paraffin molar ratio for Mo2C as a function of time on stream. 

Reaction conditions: 240°C, 25 bar, H2/CO = 2. 
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 The FTS reaction conditions are carburizing, and it is possible that nitride 

materials were converted to carbides. Based on the diffraction patterns, there was no 

evidence of conversion of the bulk nitride structures to carbide; however it would be 

Mo2C 

W2C 

VC 

NbC 

SiO2 

Figure 3.17: XRD patterns of the spent carbide catalysts as well as the SiO2 diluent. 

Figure 3.18: XRD patterns of the spent nitride catalysts as well as the SiO2 diluent. 
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difficult to see this conversion via XRD. XPS was used to determine if the nitride 

surfaces were converted to carbide surfaces under reaction conditions. Figure 3.19 shows 

the C 1s XPS spectra for the spent nitride catalysts. The peaks at approximately 284.8 eV 

correspond to adventitious carbon, carbon typically present in the form of hydrocarbons 

[30]. Carbidic carbon (carbon present in the carbide structure) peaks are typically located 

at 283.0 ± 0.5 eV [31]. As shown in Figure 3.19, the spent nitride catalysts did not exhibit 

carbide peaks, suggesting that the nitride surfaces were not carburized under FTS 

reaction conditions.  

 SEM micrographs of the fresh and spent Mo2C surfaces are shown in Figure 3.20. 

The micrographs of the spent catalysts show the formation of layers with wax-like 

appearance on the Mo2C surface. These layers likely covered active sites on the catalyst 

surface, resulting in deactivation. These layers were not formed by product condensation 

Mo2N 

W2N 

VN 

NbN 

x 4 

x 4 

Figure 3.19: C 1s XPS spectra of the spent nitride catalysts. Dashed line indicates peak 

position for adventitious carbon. Solid line indicates peak position for 

carbidic carbon. 
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(c) 

(b) 

(a) 

Figure 3.20: SEM micrographs of (a) the fresh Mo2C catalyst and (b-c) the spent Mo2C 

catalyst after exposure to FTS reaction conditions. 
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during cooling, as the sample was first purged in inert gas at reaction temperature for 1 h 

prior to cooling. XPS spectra of the fresh and spent Mo2C catalyst are shown in Figure 

3.21. The spectrum for the fresh Mo2C catalyst exhibited peaks corresponding to carbidic 

carbon (283.5 eV) [31], adventitious carbon (284.8 eV) [30], and species containing C-O 

bonds (286.2 eV) [32, 33] and C=O bonds (288.8 eV) [32, 33]. The spent Mo2C catalyst 

(a) 

(b) 

x 7 

Figure 3.21: C 1s XPS spectra of (a) the fresh Mo2C catalyst and (b) the spent Mo2C 

catalyst after exposure to FTS reaction conditions. The intensity of the C 

1s spectrum for the fresh Mo2C catalyst was multiplied by 7 to put it on 

the same scale as the spectrum for the spent Mo2C catalyst. 
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spectrum exhibited peaks for adventitious carbon and adsorbed carbon oxides (C-O and 

C=O). The dominant peak in the spent spectrum was for adventitious carbon. The 

intensity for the spent Mo2C C 1s spectrum was approximately seven times higher than 

that for the fresh Mo2C spectrum. The C/Mo atomic ratios for the fresh and spent Mo2C 

catalysts were 1.4 and 84, respectively. Based on these results, carbon, most likely in the 

form of hydrocarbons, accumulated on the Mo2C surface under FTS reaction conditions. 

 To further investigate the basis for deactivation, Mo2C was first pretreated in 15% 

CH4/H2 at 590°C for 4 h, cooled to 200°C, purged with N2, then exposed to a 1:1 mixture 

of H2 and CO in a thermogravimetric analyzer. The temperature was then linearly 

increased at 1°C/min to a final temperature of 500°C while recording the weight of the 

catalyst. The 1:1 mixture of H2 and CO was chosen because lower H2/CO ratios are more 

likely to cause carbon deposition. The weight change as a function of temperature is 

shown in Figure 3.22. The weight initially decreased until reaching a temperature of 

approximately 375°C, at which time the weight percent increased rapidly. SEM 

micrographs of the catalyst following this treatment are shown in Figure 3.23. The SEM 

micrographs revealed the buildup of carbon deposits that covered the Mo2C surface 

(presence of excess carbon was confirmed using energy dispersive x-ray spectroscopy). 

The extent of deposition was much more severe than that observed previously for the 

spent Mo2C catalyst after a FTS experiment (270-320°C, 25 bar, H2/CO = 2, XCO < 10%). 

These results suggest that the onset temperature for coking over Mo2C in a 1:1 H2:CO 

mixture was approximately 375°C and that coking was not occurring during the FTS 

experiments. 
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N2 

H2/CO 

Figure 3.22: Weight change of the Mo2C catalyst as a function of temperature during 

exposure to a 1:1 H2:CO mixture in a thermogravimetric analyzer.  The 

temperature ramp rate was 1°C/min. A blank is also shown in which the 

catalyst was exposed to N2 only, instead of the H2:CO mixture. 
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(a) 

(b) 

(c) 

Figure 3.23: SEM micrographs of Mo2C after exposure to a 1:1 H2:CO mixture in the 

thermogravimetric analyzer at a magnification of (a) 1100 (b) 4500, and 

(c) 9000. 
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3.4. Discussion 

 In this chapter, the FTS activities, selectivities, and durabilities of Groups 5 and 6 

transition metal carbides and nitrides were investigated. Based on the normalized FTS 

product formation rates (Figure 3.7), the following activity trend was developed: Mo2C ~ 

W2C ~ VN ~ NbN > Mo2N, W2N >> VC, NbC. This trend indicates that carbides and 

nitrides of the same metal exhibit significantly different FTS rates. For example, the 

normalized rate for Mo2C at 300°C was 0.36 s
-1

 while the rate for Mo2N was only 0.04 s
-1 

although these materials exhibited similar surface areas, CO uptakes, and CO site 

densities. Additionally, the apparent activation energy was much higher for Mo2N than 

Mo2C (Table 3.3). Performance differences for carbides and nitrides of the same metal 

have also been reported for other reactions [17, 34].  

 These differences could be explained in two ways. First, the electronegativity 

difference between N (3.0) and C (2.5) results in a greater charge transfer from the metal 

to the non-metal atoms for the nitrides compared to the carbides [35]. This charge 

transfer affects the bonding of the reactant, intermediates and products to the surface 

[35]. Second, these observed rate differences could be explained by the difference in the 

d-band center of the carbide and nitride [36-38]. Based on the model developed by Bjork 

Hammer and Jens Norskov, the d-band center of a transition metal has been shown to be 

a good descriptor of the material’s reactivity towards adsorbates [39-43]. Liu and 

Rodriguez reported that the d-band center relative to the Fermi level for Mo in the surface 

of γ-MoC(001) and δ-MoN(001) was −1.61 and −1.86, respectively [36]. However, it 

should be mentioned that development of a modified d-band model to more fully explain 

the reactivity of early transition metal carbides and nitrides has been the focus of recent 
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work [38]. The observed performance difference between Mo2C and Mo2N will be 

investigated in Chapter 4 by exploring the interactions between the catalyst surface and 

adsorbates such as CO and H2. 

 Additionally, it was observed that Mo2C, W2C, VN, and NbN exhibited similar 

normalized FTS rates, suggesting that the sites on the catalyst surfaces were similar. This 

finding is different than that reported for butane dehydrogenation, hydrogenolysis, and 

isomerization, in which Group 6 (Mo, W) transition metal carbides and nitrides were 

intrinsically more active than those from Group 5 (V, Nb) [17]. The similar rates for 

Mo2C, W2C, VN, and NbN can be explained in context of Sabatier’s principle. Sabatier 

stated that the optimal catalyst would not bind adorbates too strongly such that they 

poisoned the surface or too weakly such that there is a large activation barrier. This 

principle is the basis for volcano plots observed in catalysis. A volcano plot for CO 

hydrogenation as a function of dissociative CO adsorption energy is shown in Figure 3.24 

[44]. The dissociative CO adsorption energy for different transition metals is a good 

descriptor of their CO hydrogenation activity. The most active catalysts (Ru, Co) have 

intermediate dissociative CO adsorption energies. 

 As shown in Figure 3.25, the dissociative CO adsorption energy decreases 

moving from right to left on the periodic table. For metals on the right, CO is bound too 

weakly and for metals on the left bind CO is bound too strongly. Mo and W are on the 

left and bind CO too strongly. Since V and Nb are to the left of Mo and W on the 

periodic table, these metals would also bind CO too strongly. Thus, in order for the 

carbides and nitrides of these metals to be catalytically active for CO hydrogenation 

(FTS), they would have to interact less strongly with CO. In order to interact less strongly 
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with an adsorbate such as CO, the d-band center of the carbide or nitride would have to 

be at a lower energy compared to the Fermi level than the parent metal. Liu and 

Figure 3.24: CO hydrogenation activities of different supported transition metals as a 

function of the reaction energy for dissociative CO chemisorption. Taken 

from [44]. 

Figure 3.25: Dissociative CO adsorption energy calculated by density functional theory 

for a series of transition metals plotted as a function of column number in 

the periodic table. Values taken from [44]. 
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Rodriguez reported that the d-band center for MoC and MoN compared to Mo metal was 

shifted by −0.30 eV and −0.55 eV, respectively [36]. The nitride resulted in the largest 

shift to lower energy for the d-band center. If the same trend is assumed for W, V, and 

Nb, it is plausible that the nitrides of V and Nb and the carbides of Mo and W could have 

similar d-band centers and similar dissociative CO adsorption energies. An illustration of 

this concept is shown in Figure 3.26.      

 In addition to hydrocarbons, the carbide and nitride materials, especially Mo2C 

and Mo2N, produced CO2 most likely via the water gas shift reaction (Figure 3.8). In 

general, the water gas shift reaction is undesirable as it results in the loss of carbon as 

CO2 instead of incorporating it into hydrocarbons. However, for situations where the feed 

gas has a low H2/CO ratio (0.7 – 1.5), the water gas shift reaction can be beneficial 

because it shifts the H2/CO ratio into a more desirable range (~2). For Mo2C, its observed 

WGS activity may be a reason that the catalyst deactivation for H2/CO ratios varying 

Figure 3.26: Illustration showing shifts in dissociative CO adsorption energy for 

carbides (red) and nitrides (blue) compared to parent metals for Mo, W, V, 

and Nb. This illustration is just an example of a concept; exact values have 

not been determined. 
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from 0.7 – 2 was similar (Figure 3.14). Due to WGS, the H2/CO ratio at the catalyst 

surface may be higher than that of the bulk gas phase, resulting in a greater resistance to 

carbon deposition. 

 Regarding selectivity, all of the carbides and nitrides favored light hydrocarbons, 

C1-C4 (Figure 3.9). At 290°C, the C1-C4 hydrocarbon selectivity was greater than 90% for 

all materials. To compare these materials to commercial catalysts, Fe/SiO2 and Co/Al2O3 

catalysts were obtained from industry and tested in the fixed bed FTS reactor. The 

pretreatment conditions and reaction conditions were selected based off of the supplier’s 

recommendations. At 230°C, 25 bar, H2/CO = 2, and XCO < 10%, the hydrocarbon 

selectivity on a C1 basis to C5+ hydrocarbons was 37% and 41% for Fe/SiO2 and 

Co/Al2O3, respectively. Under the same conditions, the C5+ hydrocarbon selectivity for 

Mo2C was ~10%. The ASF α values for these materials were 0.65, 0.66, and 0.43 for 

Fe/SiO2, Co/Al2O3, and Mo2C, respectively. These results indicate that C-C coupling 

occurs much more readily over the Fe and Co based catalysts than it does over Mo2C. C-

C coupling is affected by a number of factors: reaction pathway (FTS mechanism), 

carbon mobility on the catalyst surface, and CO, H2 and CHx coverages under reaction 

conditions [45-47]. In Chapter 4, the mechanism for C-C coupling over the Mo2C surface 

will be investigated. 

 Overall, the carbides and nitrides favored the production of C1-C4 hydrocarbons, 

exhibited activity for water gas shift, and produced some alcohols. Compared to typical 

CO hydrogenation catalysts, the selectivities of the carbides and nitrides lie in between 

that of Ni (favors methane) and Fe (favors long-chain hydrocarbons, but also produces 

CO2 and alcohols). 
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 With regards to durability, the bulk crystal structures of the carbides and nitrides 

were stable under FTS conditions. The carburizing conditions during FTS did not cause 

the carburization of the bulk or surface of the nitride catalysts. However, the catalysts did 

exhibit deactivation as a function of time on stream. Based on the deactivation studies 

and the characterization of the spent catalysts, there appeared to be two stages of 

deactivation for Mo2C. 

  The initial stage, during the first 10 h TOS, resulted in a rapid loss of activity. 

FTS rates for the Mo2C catalyst decreased by more than 50% during the first 2 h. 

Additionally, the selectivity towards alcohols (Figure 3.15) and olefins (Figure 3.16) 

increased during this initial stage. The best fit rate model for this initial decay was the 

reciprocal power model, which suggests that this deactivation was due to carbon 

deposition [28, 29]. Using XPS, Schweitzer observed that the carbon concentration on the 

Mo2C surface increased after exposure to water gas shift conditions at 240°C for 4 h (CO, 

H2, CO2, H2O, N2) [48]. Additionally, the oxygen concentration on the catalyst surface 

also increased. During FTS, the Mo2C surface would be exposed to similar conditions 

(H2 and CO are reactants and CO2 and H2O are products), thus it is reasonable to assume 

that the carbon and oxygen concentration on the Mo2C surface also increased during FTS. 

Based on these findings, the deactivation was likely caused by the formation of surface 

oxides or carbonate/formate species. This conclusion is in agreement with the increase in 

selectivity towards alcohols, as an increase in surface oxygen concentration would likely 

result in an increase in oxygen-containing products such as alcohols. Once the 

concentration of oxygen on the catalyst surface stabilizes, the production of alcohols 

would stabilize, as was observed in Figure 3.15. This result is also in agreement with 
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literature. For the conversion of synthesis gas, Muramatsu et al. reported that MoO2 

favored the production of alcohols over hydrocarbons [49]. 

 The second deactivation stage resulted in a slow steady loss of activity over long 

time periods. Based on SEM (Figure 3.20) and XPS (Figure 3.21) results, this second 

stage was primarily due to the buildup of carbon species on the catalyst surface. These 

species are likely long-chain hydrocarbon waxes that block the active catalytic sites. This 

carbon buildup affected C-C coupling, as evidenced by the decrease in C2+ hydrocarbon 

selectivity and increase in CH4 selectivity over time (Figure 3.15). It is proposed that the 

carbon buildup limited the mobility of carbon and CHx species on the catalyst surface, 

thus decreasing C-C coupling. Future work to further probe the effects of this carbon 

deposition could include post-reaction surface area and CO uptake measurements. 

3.5. Summary 

 The activities, selectivities, and durabilities of carbides and nitrides of Mo, W, V, 

and Nb were investigated for Fischer-Tropsch Synthesis. On a CO uptake normalized rate 

basis, the most active catalysts were Mo2C, W2C, VN, and NbN. Carbides and nitrides of 

the same parent metal exhibited significantly different rates, which is likely due to 

differences in their electronic structures (d-band center) which governs the strength of 

interactions with adsorbates. These interactions will be explored further in Chapter 4. 

 All of the carbides and nitrides were active for the water gas shift reaction, 

indicating that they may be potential catalysts for conversion of CO-rich syngas feed 

streams. These materials favored the production of light hydrocarbons (C1-C4) compared 

to commercial Fe and Co catalysts. The mechanism for C-C coupling will be explored in 

Chapter 4. The bulk crystal structures of these materials were stable under reaction 
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conditions; however, changes to the catalyst surface resulted in deactivation and changes 

in product selectivity. These changes to the catalyst surface included an increase in 

oxygen and carbon species initially, as well as the deposition of waxy hydrocarbon 

species.  

3.6. References 

[1] R. B. Anderson, Catalysts for the Fischer-Tropsch Synthesis, Van Nostrand 

 Reinhold, New York, 1956. Vol. 4. 

 

[2] G. P. Van Der Laan, A. A. C. M. Beenackers, Kinetics and Selectivity of the 

 Fischer-Tropsch Synthesis: A Literature Review, Catalysis Reviews: Science and 

 Engineering 41 (1999) 255-318. 

 

[3] D. de Smit, B. M. Weckhuysen, The Renaissance of Iron-Based Fischer-Tropsch 

 Synthesis: On the Multifaceted Catalyst Deactivation Behaviour, Chemical 

 Society Reviews 37 (2008) 2758-2781. 

 

[4] A. Y. Khodakov, W. Chu, P. Fongarland, Advances in the Development of Novel 

 Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and 

 Clean Fuels, Chemical Reviews 107 (2007) 1692-1744. 

 

[5] I. Kojima, E. Miyazaki, I. Yasumori, Synthesis of Hydrocarbons from CO and H2 

 over Metal Carbide Catalysts, Journal of Chemical Society-Chemical 

 Communications (1980) 573-574. 

 

[6] I. Kojima, E. Miyazaki, Catalysis by Transition Metal Carbides. V. Kinetic 

 Measurements of Hydrogenation of CO over TaC, TiC, and Mo2C Catalysts, 

 Journal of Catalysis 89 (1984) 168-171. 

 

[7] I. Kojima, E. Miyazaki, Y. Inoue, I. Yasumori, Catalysis by Transition Metal 

 Carbides. VI. Hydrogenation of Carbon Monoxide over WC, W2C, and W 

 Powder Catalysts, Bulletin of the Chemical Society of Japan, 58 (1985) 611-617. 

 

[8] G. S. Ranhotra, A. T. Bell, J. A. Reimer, Catalysis over Molybdenum Carbides 

 and Nitrides. II. Studies of CO Hydrogenation and C2H6 Hydrogenolysis, 

 Journal of Catalysis 108 (1987) 40-49. 

 

[9] H.-G. Kim, K. H. Lee, J. S. Lee, Carbon Monoxide Hydrogenation over 

 Molybdenum Carbide Catalysts, Research on Chemical Intermediates 26 (2000) 

 427-443. 

 



116 
 

[10] P. M. Patterson, T. K. Das, B. H. Davis, Carbon Monoxide Hydrogenation over 

 Molybdenum and Tungsten Carbides, Applied Catalysis A: General 251 (2003) 

 449-455. 

 

[11] H. C. Woo, K. Y. Park, Y. G. Kim, I.-S. Nam, J. S. Chung, J. S. Lee, Mixed 

 Alcohol Synthesis from Carbon Monoxide and Dihydrogen over Potassium-

 Promoted Molybdenum Carbide Catalysts, Applied Catalysis 75 (1991) 267-280. 

 

[12] M. Xiang, D. Li, W. Li, B. Zhong, Y. Sun, Performances of Mixed Alcohols 

 Synthesis over Potassium Promoted Molybdenum Carbides, Fuel 85 (2006) 2662-

 2665. 

 

[13] J.G. Choi, R.L. Curl, and L.T. Thompson, Journal of Catalysis 146 (1994) 218. 

 

[14] J. J. Patt, Carbide and Nitride Catalysts for the Water Gas Shift Reaction, Ph. D. 

 Thesis, University of Michigan, 2003. 

 

[15] W. Setthapun, Carbide and Nitride Supported Methanol Steam Reforming 

 Catalysts, Ph. D. Thesis, University of Michigan, 2007. 

 

[16] T. E. King, Carbide and Nitride Supported Water-Gas Shift Catalysts, Ph. D. 

 Thesis, University of Michigan, 2007. 

 

[17] M.K. Neylon, S. Choi, H. Kwon, K.E. Curry, and L.T. Thompson, Applied 

 Catalysis A-General 183 (1999) 253-263. 

 

[18] J. B. Claridge, A. P. E. York, A. J. Brungs, M. L. H. Green, Study of the 

 Temperature-Programmed Reaction Synthesis of Early Transition Metal Carbide 

 and Nitride Catalyst Materials from Oxide Precursors, Chemistry of Materials 12 

 (2000) 132-142. 

 

[19] H. S. Kim, C. H. Shin, G. Bugli, M. Bureau-Tardy, G. Djega-Mariadassou, 

 Catalytic Activity of Niobium Oxynitride and Carbide I. Preparation, 

 Characterization and Thermal Stability of Finely Divided Niobium Oxynitrides, 

 Applied Catalysis A: General 119 (1994) 223-240. 

 

[20] F. H. Ribeiro, A. E. Schach Von Wittenau, C. H. Bartholomew, G. A. Somorjai, 

Reproducibility of Turnover Rates in Heterogeneous Metal Catalysis: 

Compilation of Data and Guidelines for Data Analysis, Catalysis Reviews 39 

(1997) 49-76. 

 

[21] A. Griboval-Constant, J.-M. Giraudon, G. Leclercq, L. Leclercq, Catalytic 

 Behaviour of Cobalt and Ruthenium Supported Molybdenum Carbide Catalysts 

 for FT Reaction, Applied Catalysis A: General 260 (2004) 35-45. 

 

[22] M. A. Vannice, Kinetics of Catalytic Reactions, Springer, New York, 2005. 



117 
 

 

[23] C. N. Satterfield, Herogeneous Catalysis in Industrial Practice, 2
nd

 ed., McGraw-

 Hill, Inc., 1991, pg 434. 

 

[24] J. S. Lee, M. H. Yeom, K. Y. Park, I.-S. Nam, J. S. Chung, Y. G. Kim, S. H. 

 Moon, Preparation and Benzene Hydrogenation Activity of Supported 

 Molybdenum Carbide Catalysts, Journal of Catalysis 128 (1991) 126-136. 

 

[25] S. T. Oyama, Preparation and Catalytic Properties of Transition Metal Carbides 

 and Nitrides, Catalysis Today 15 (1992) 179-200. 

 

[26] T. P. St. Clair, B. Dhandapani, S. T. Oyama, Cumene Hydrogenation Turnover 

 Rates on Mo2C: CO and O2 as Probes of the Active Site, Catalysis Letters 58 

 (1999) 169-171. 

 

[27] H.S. Fogler, Elements of Chemical Reaction Engineering, 3
rd

 ed., Prentice Hall, 

 New Jersey, 1999.  

 

[28] A. Voorhies Jr., Ind. Eng. Chem. 37 (1945) 318. 

 

[29] C.G. Rudershausen, C.C. Watson, Chem. Eng. Sci. 3 (1954) 110. 

 

[30] D. J. Miller, M. C. Biesinger, N. S. McIntyre, Interactions of CO2 and CO at 

 Fractional Atmosphere Pressures with Iron and Iron Oxide Surfaces: One Possible 

 Mechanism for Surface Contamination, Surface and Interface Analysis 33 (2002) 

 299-305. 

 

[31] T.P. St. Clair, S.T. Oyama, D.F. Cox, S. Otani, Y. Ishizawa, R.-L. Lo, K.-I. Fukui, 

 Y. Iwasawa, Surface Science 426 (1999) 187. 

 

[32] P. Delporte, F. Meunier, C. Pham-Huu, P. Vennegues, M.J. Ledoux, J. Guille, 

 Catalysis Today 23 (1995) 251. 

 

[33]  M. Buo, J.M. Martin, T. Le Mogne, L. Vovelle, Applied Surface Science 47 

 (1991) 149. 

 

[34] S. K. Bej, L. T. Thompson, Acetone Condensation over Molybdenum Nitride and 

 Carbide Catalysts, Applied Catalysis A: General 264 (2004) 141-150. 

 

[35] A. Zaoui, S. Kacimi, B. Bouhafs, A. Roula, First-Principles Study of Bonding 

 Mechanisms in the Series of Ti, V, Cr, Mo, and their Carbides and Nitrides, 

 Physica B 358 (2005) 63-71. 

 

[36] P. Liu, J. A. Rodriguez, Catalytic Properties of Molybdenum Carbide, Nitride, 

 and Phosphide: A Theoretical Study, Catalysis Letters 91 (2003) 247-252. 

 



118 
 

[37] J. R. Kitchin, J. K. Norskov, M. A. Barteau, J. G. Chen, Trends in the Chemical 

 Properties of Early Transition Metal Carbide Surfaces: A Density Functional 

 Study, Catalysis Today 105 (2005) 66-73. 

 

[38] A. Vojvodic, A. Hellman, C. Ruberto, B. I. Lundqvist, From Electronic Structure 

 to Catalytic Activity: A Single Descriptor for Adsorption and Reactivity on 

 Transition-Metal Carbides, Physical Review Letters 103 (2009) 146103. 

 

[39] J. K. Nørskov, Effective Medium Potentials for Molecule-Surface Interactions: H2 

 on Cu and Ni Surfaces. Journal of Chemical Physics 90 (1989) 7461-7471. 

 

[40] B. Hammer, J.K. Nørskov, Why Gold is the noblest of all the metals, Nature 376 

 (1995) 238-240. 

 

[41] B.  Hammer, J.K. Nørskov, Electronic Factors Determining the Reactivity of 

 Metal Surfaces, Surface Science 343 (1995) 211-220. 

 

[42] B.  Hammer, Y. Morikawa, J.K. Nørskov. CO Chemisorption at Metal 

 Surfaces and Overlayers, Physical Review Letters 76 (1996) 2141-2144. 

 

[43] B.  Hammer, Special Sites at Noble and Late Transition Metal Catalysts. 

 Topics in Catalysis 37 (2006) 3-16. 

 

[44] T. Bligaard, J. K. Norskov, S. Dahl, J. Matthiesen, C. H. Christensen, J. Sehested, 

 The Bronsted-Evans-Polanyi Relation and the Volcano Curve in Heterogeneous 

 Catalysis Journal of Catalysis 224 (2004) 206-217. 

 

[45] Y. Borodko, G. A. Somorjai, Catalytic Hydrogenation of Carbon Oxides-A 10-

 year Perspective Applied Catalysis A: General 186 (1999) 355-362. 

 

[46] J. Chen, Z.-P. Liu, Origin of Selectivity Switch in Fischer-Tropsch Synthesis over 

 Ru and Rh from First-Principles Statitistical Mechanics Studies Journal of 

 American Chemical Society 130 (2008) 7929-7937. 

 

[47] J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C. M. Lok, Chain Growth 

 Mechanism in Fischer-Tropsch Synthesis: A DFT Study of C-C Coupling over 

 Ru, Fe, Rh, and Fe Surfaces Journal of Physical Chemistry C 112 (2008) 6082-

 6086. 

 

[48] N. M Schweitzer, Evaluating the Effect of a Strong Metal-Support Interaction on 

 the Activity of Molybdenum Carbide Supported Platinum Water-Gas Shift 

 Catalysts, Ph. D. Thesis, University of Michigan, 2010. 

 

[49] A. Muramatsu, T. Tatsumi, H. Tominaga, Active Species of Molybdenum for 

Alcohol Synthesis from CO-H2, Journal of Physical Chemistry 96 (1992) 1334-

1340. 



119 
 

CHAPTER 4 

Fischer-Tropsch Synthesis Kinetics and Mechanisms 

4.1. Introduction 

 For a given reaction, catalyst performance is based on a number of factors 

including the operating conditions (temperature, pressure, feed gas concentrations) and 

the intrinsic properties of the catalyst. These intrinsic properties of the catalyst (electronic 

structure and surface structure) govern the interactions between adsorbates and the 

catalyst surface as well as the reaction pathway or mechanism. The focuses of this 

chapter are (1) investigate the effect of operating conditions on the Fischer-Tropsch 

Synthesis (FTS) rates and selectivities of carbide and nitride catalysts, and (2) examine 

the interactions between the carbide and nitride surfaces and key probe molecules such as 

CO and H2, with the goal of explaining the observed FTS rates and selectivities. 

 Van der Laan and Beenackers have summarized the effects of temperature, 

pressure, H2/CO ratio, conversion, and space velocity on FTS selectivities (see Table 1.2) 

[1]. These relationships were primarily developed for Fe and Co based catalysts, and 

have not been explicitly explored for other materials such as early transition metal 

carbides and nitrides. It was shown in Chapter 3 that these materials were active for FTS. 

To explore these relationships, FTS experiments were carried out over a Mo2C catalyst at 

varying pressures, temperatures, and H2/CO ratios. By varying the H2/CO ratio, the 

reaction orders with respect to CO and H2 were determined for Mo2C. Additionally, the 

effect of different pretreatment conditions was investigated. 
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  Recall that carbides and nitrides of the same metal exhibited significantly 

different normalized FTS rates (Figure 3.9). For Mo2C and Mo2N, the normalized rates 

varied by almost an order of magnitude even though the materials possessed similar 

surface areas and CO site densities. For FTS, the total reaction involves four principal 

steps: adsorption of reactants, chain initiation, chain propagation, and chain termination 

and desorption of products [1-3]. The elementary reactions involved in these four steps 

are given in Equations 4.1 – 4.12. 

    Adsorption of Reactants 

      H22H2     (4.1) 

      COCO     (4.2) 

      OCCO     (4.3) 

    Chain Initiation 

      CHHC     (4.4) 

      2CHHCH     (4.5) 

    Chain Propagation 

      1n2n RCHR    (4.6) 

    Chain Termination and Desorption of Products 

      2PHR nn     (4.7) 

      HOR nn     (4.8) 

      32 CHHCH    (4.9) 

      2CHHCH 43    (4.10) 

      OHHO     (4.11) 
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      2OHHOH 2    (4.12) 

where * is a reaction site on the catalyst surface, X* is species X adsorbed to the catalyst 

surface, Rn is an alkyl group with carbon number n, Pn is a paraffin with carbon number 

n, and On is an olefin with carbon number n. In this example, the monomer for chain 

growth is assumed to be a methlylene (-CH2) group. Mechanisms regarding other 

monomers for chain growth will be discussed shortly. 

 It is often reported that adsorption (Equation 4.2) and dissociation (Equation 4.3) 

of CO as well as hydrogenation of carbon species, Equations 4.4 and 4.5, are the rate-

limiting elementary reactions [1-3]. To elucidate the observed difference in FTS rates for 

Mo2C and Mo2N, the influence of each of these elementary reactions (CO adsorption, CO 

dissociation, and carbon hydrogenation) was investigated using temperature programmed 

desorption and reaction methods. 

 The specific FTS mechanism for Mo2C was also investigated. There are three 

primary FTS mechanisms reported in literature: the carbide mechanism, the oxygenate 

(enol) mechanism, and the CO insertion mechanism (Figure 4.1) [1, 4-5]. For the carbide 

mechanism, CO dissociates on the catalyst surface and is then hydrogenated to form a 

methlyene group (-CH2). This group serves as the monomer for chain propagation. For 

the oxygenate mechanism, CO adsorbs molecularly to the catalyst surface and is 

hydrogenated to form an oxygenate species. These oxygenate species combine via 

condensation reactions. Chain growth occurs via alternating hydrogenation and 

condensation steps. The CO insertion mechanism involves the insertion of molecularly 

adsorbed CO into either a metal-H bond or a metal-alkyl bond. The chain propagates by 

alternating hydrogenation and CO insertion steps. 
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 As shown in Figure 4.1, the carbide mechanism involves CO dissociation while 

the oxygenate and CO insertion mechanisms involve molecularly adsorbed CO. To 

investigate the FTS mechanism over Mo2C, the effect of dissociatively adsorbed CO vs. 

molecularly adsorbed CO on the production of higher hydrocarbons was studied.  

4.2. Experimental Setup 

4.2.1. Fischer-Tropsch Synthesis Experiments 

 The FTS experiments were performed as described in Chapter 3. The catalyst for 

these experiments was Mo2C and unless otherwise stated it was pretreated at 590°C in 

15% CH4/H2 for 4 h prior to exposure to reaction conditions. The operating conditions 

varied in this study were temperature (200-250°C), pressure (1-25 bar), and H2/CO ratio 

Figure 4.1: Schematic showing the 3 primary Fischer-Tropsch Synthesis mechanisms: 

the carbide mechanism, the oxygenate mechanism, and the CO insertion 

mechanism. 
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(0.7-2). The H2 and CO partial pressures were varied independently to determine the 

reaction orders for a power rate law. The form of the power rate law is shown in Equation 

4.13: 

     
b

H

a

COCO PkPr
2

      (4.13) 

where COr  is the rate of CO consumption, k is the rate constant, PCO and 
2HP  are the 

partial pressures of CO and H2, respectively, and a and b are the reaction orders with 

respect to CO and H2. The partial pressure of H2 was varied from 5.7 – 16.3 bar. The 

partial pressure of CO was varied from 4.9 – 13.9 bar. 

 In addition to operating conditions, the effect of pretreatment conditions on FTS 

performance was also explored. Three different pretreatment conditions were used: N2 at 

200°C for 4 h, H2 at 400°C for 4 h, and 15% CH4/H2 at 590°C for 4 h. The N2 

pretreatment should simply degas the Mo2C surface. The H2 reduction conditions were 

selected based on pretreatment procedures for Mo2C reported in literature [6]. The 15% 

CH4/H2 conditions were chosen based on previous research in our group [7, 8]. 

4.2.2. Temperature Programmed Desorption and Reaction Experiments 

Temperature programmed desorption (TPD) and reaction (TPRxn) experiments 

were carried out in a Micromeritics 2910 AutoChem Chemisorption analyzer. A 

schematic of the analyzer was shown in Chapter 2 (Figure 2.2). The analyzer was 

equipped with a thermal conductivity detector and a Balzers Instruments ThermoStar 

GS300 quadrupole mass spectrometer (MS) for online analysis of the effluent stream 

from the reactor. Approximately 100 mg of catalyst sample was loaded into a 15 mm I.D. 

quartz U-tube reactor and supported on a quartz wool plug. The mass of catalyst loaded 

was varied to achieve the same total number of CO adsorption sites (based on the CO 



124 
 

uptake of the materials given in Table 3.2). Prior to analysis, the Mo2C catalyst was 

pretreated in 15% CH4/H2 at 590°C for 4 h and the Mo2N catalyst was pretreated at 

700°C in NH3 for 4 h. These are the same pretreatment conditions used for the FTS 

experiments performed in Chapter 3. After pretreatment, the temperature was increased 

by 10°C and the catalyst sample was degassed in flowing He for 0.5 h. The catalysts were 

then cooled in He and were ready for analysis. It should be noted that all experiments 

carried out in the chemisorption analyzer were performed at atmospheric pressure. The 

experimental details for the various temperature programmed desorption and reaction 

experiments are discussed below.  

For CO-H2 pulse chemisorptions experiments, the catalyst sample was cooled to 

240°C in He after pretreatment. The sample was then dosed 10 times with 5mL of a 10% 

CO/He mixture. The catalysts were allowed to equilibrate for 15 min between doses. 

Next, the catalyst sample was dosed 10 times with 5mL of a 10% H2/He mixture. Again, 

the catalysts were allowed to equilibrate between doses. These two steps were then 

repeated twice. During these doses, the products in the effluent stream were monitored 

using the MS. 

For the H2/CO TPRxn experiments, the catalysts were cooled to room temperature 

in He following pretreatment. Next, the sample was exposed to a flowing mixture of H2 

and CO (H2/CO = 4). The temperature was then linearly increased at a rate of 10°C/min 

to 450°C. The effluent stream was monitored using the MS. 

The CO TPD experiments were performed by dosing the catalyst sample at room 

temperature with 5mL of a 5% CO/He mixture until saturation was achieved. Saturation 

was typically achieved within 4-8 doses. While flowing He, the temperature was then 
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linearly increased at 30°C/min to 800°C. The effluent stream was monitored using the 

MS and the TCD.  

The CO adsorption energies can be determined from the CO TPD spectra 

(recorded at m/z = 28) using the heating rate variation method [9, 10]. The Polanyi-

Wigner equation describes the rate of desorption of molecules on a catalyst surface, rdes 

(Equation 4.14) [9]: 
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where t is time, Θ is the surface coverage, n  is the frequency factor, T is temperature, R 

is the ideal gas constant, PW

desE is the activation energy of desorption, and n is the 

desorption rate order. Due to microscopic reversibility, this rate equation also describes 

adsorption, as a reaction must pass through exactly the same states irrespective of 

whether it proceeds forwards or backwards [9].  

 The heating rate variation method allows for determination of PW

dexE  by 

analyzing TPD spectra obtained with different heating rates, β. β is therefore a constant 

and is equal to dT/dt. By substituting  dTdt /1  into equation 4.14, the following 

equation is derived: 
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For the maximum desorption rate, which occurs at T = Tmax, the following condition must 

be fulfilled 
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Therefore,  
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Inserting Equation 4.15 for dTd / and solving for 2

max/ RTEdes  provides: 
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Assuming first order desorption (n=1), this equation can be rearranged to produce the 

following: 
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By plotting  /ln 2

maxT  vs. 1/Tmax for a series of β values, ΔEdes can be determined from 

the slope of the line. This analysis was performed for Mo2C CO TPD spectra with β 

values ranging from 4 to 40°C/min.  

 For Mo2C, the CO TPD spectra consisted of multiple peaks; therefore the TPD 

spectra had to be deconvoluted. The deconvolution was performed using CasaXPS, a 

commercially available peak deconvolution software package that is typically used for 

analysis of X-ray photoelectron spectroscopy data. The spectra were deconvoluted using 

a non-linear least squares method employing Gaussian distributions. The primary 

constraint imposed during fitting was that the relative intensities of the different peaks 

were held constant for each spectrum. 

 The importance of dissociative CO adsorption and hydrogenation was 

investigated using the experimental sequences shown in Figure 4.2. Following 

pretreatment and degassing, the catalysts were cooled down in Ar to a specified 
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temperature. The temperature shown in Figure 4.2 is 240°C. The catalyst was then held at 

this temperature for 1 h while being exposed to a flowing mixture of 10% CO/Ar. The 

goal was to associatively and dissociatively adsorb CO to the catalyst surface. Blank runs 

were also performed in which the catalyst sample was not exposed to CO.  The sample 

was just held at the specified temperature for 1 h in flowing Ar. After 1 h, the catalyst 

was cooled to room temperature in Ar. A TPD experiment was then performed in Ar with 

a ramp rate of 20°C/min up to 500°C. Based on the findings of St. Clair et al. [11], the 

maximum temperature of 500°C was chosen to ensure desorption of all molecular CO 

and to minimize recombination of carbon and oxygen from dissociated CO. St. Clair 

reported recombination of C and O over Mo2C at temperatures above 500°C [11]. The 

final temperature was held for 10 min prior to cooling the sample back to room 

temperature. The goal of the TPD experiment was to desorb the associately adsorbed CO, 

leaving only adsorbed carbon and oxygen from CO dissociation on the catalyst surface. 

Figure 4.2: Experimental sequence employed to investigate CO dissociation and 

hydrogenation over Mo2C and Mo2N. 
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To explore the impact of molecularly adsorbed CO, experiments were also performed in 

which the Ar TPD step was not performed. In this case, it is assumed that molecular CO 

and adsorbed carbon and oxygen remain on the catalyst surface. The sample was then 

exposed to a mixture of 10% H2/Ar and the temperature was linearly increased at 

20°C/min to a final temperature of 500°C. The goal was to hydrogenate the adsorbed 

carbon present from CO dissociation. The MS was used to monitor products in the 

effluent stream during the TPD and H2 TPRxn steps.  

4.3. Results 

4.3.1. Fischer-Tropsch Synthesis Experiments 

 The effect of operating conditions (temperature, pressure, and H2/CO ratio) on the 

FTS product formation rates, total product selectivities, CH4 selectivities, olefin/paraffin 

molar ratios, and ASF α values were investigated for Mo2C. The effect of temperature on 

selectivity is shown in Figures 4.3 and 4.4. Increasing temperature caused a decrease in 

the olefin, alcohol, and higher hydrocarbon selectivities and an increase in CH4 and CO2 

Figure 4.3: Total product selectivity as a function of reaction temperature for Mo2C. 

 Reaction conditions: 25 bar, H2/CO = 2. 
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selectivities. In general, the desired products are the former. The effect of temperature on 

the rate was described in Chapter 3. 

 The effect of pressure on the FTS rate and selectivity for Mo2C is shown in 

Figures 4.5 – 4.7. The total pressure had the greatest impact on the FTS rates and the 

Figure 4.5: FTS product formation rate on C1 basis (excluding CO2) for Mo2C as a 

function of total pressure. Reaction conditions: 240°C, H2/CO = 2. 

Figure 4.4: C2 olefin/paraffin molar ratio, ASF α value, and CH4 hydrocarbon 

selectivity on C1 basis as a function of reaction temperature for Mo2C. 

Reaction conditions: 25 bar, H2/CO = 2. 
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olefin/paraffin molar ratios. The product formation rates over Mo2C increased by almost 

an order of magnitude when the pressure was increased from 1 to 25 bar. Interestingly, 

the rate increased with total pressure up to 20 bar, but then remained fairly constant.  The 

Figure 4.6: Total product selectivity as a function of total pressure for Mo2C. Reaction 

conditions: 240°C, H2/CO = 2. 

Figure 4.7: C2 olefin/paraffin molar ratio, ASF α value, and CH4 hydrocarbon 

selectivity on C1 basis as a function of total pressure for Mo2C. Reaction 

conditions: 240°C, H2/CO = 2. 
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olefin/paraffin molar ratios displayed the reverse trend; they decreased by an order of 

magnitude when the pressure was increased from 1 to 25 bar.  

 Above 5 bar, the total pressure did not have a significant effect on the total 

selectivity to hydrocarbons, CO2, and alcohols. It should be noted that a negligible 

amount of alcohols was produced at 1 bar. At 5 bar the alcohol selectivity was 

approximately 3%. The ASF α value increased with increasing pressure, indicating that 

higher pressures result in higher molecular weight products. Increasing pressure also 

caused an increase in CH4 selectivity, but only up to a pressure of 10 bar. Above 10 bar, 

the CH4 selectivity decreased. This result suggests a shift in reaction pathway or an 

increasing probability of chain growth. 

 The effect of H2/CO ratio on rate and selectivity is shown in Figures 4.8 – 4.10. 

The product formation rates increased with increasing H2/CO ratios. Based on the 

stoichiometry of the reaction, the ideal H2/CO ratio for the production of saturated 

hydrocarbons is approximately 2. The hydrocarbon total selectivity increased slightly 

Figure 4.8: FTS product formation rate on C1 basis (excluding CO2) for Mo2C as a 

function of H2/CO ratio. Reaction conditions: 240°C, 25 bar. 
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with increasing H2/CO ratio while the CO2 selectivity decreased slightly. This result may 

be due to the higher partial pressure of H2 which would inhibit the water gas shift 

reaction (H2 is a product from WGS) and enhance FTS (H2 is a reactant for FTS). 

Increasing the H2/CO ratio also caused a decrease in α and an increase in CH4 selectivity. 

Figure 4.9: Total product selectivity as a function of H2/CO ratio for Mo2C. Reaction 

conditions: 240°C, 25 bar. 

Figure 4.10: C2 olefin/paraffin molar ratio, ASF α value, and CH4 hydrocarbon 

selectivity on C1 basis as a function of H2/CO ratio for Mo2C. Reaction 

conditions: 240°C, 25 bar. 
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This result could be due to an increase in the surface concentration (coverage) of 

adsorbed hydrogen as the H2/CO ratio was increased. With a higher Hads concentration, 

carbon on the catalyst surface is more likely to react with adsorbed hydrogen atoms than 

with other carbon-containing species. Therefore, the probability of chain propagation 

would decrease. Additionally, with a higher concentration of Hads, the degree of product 

saturation (hydrogenation) would also increase. This was observed as the olefin/paraffin 

molar ratio decreased with increasing H2/CO ratio. 

 By varying the H2 and CO feed concentrations, the reaction orders with respect to 

H2 and CO were for the Mo2C catalyst. As shown in Figure 4.11, the FTS 

product formation rate increased with increasing H2 partial pressure. The reaction order 

with respect to H2 was ~1. Ranhotra et al. also reported a reaction order of 1 with respect 

to H2 for CO hydrogenation over Mo2C at atmospheric pressure [12]. H2 reaction orders 

of ~1 have also been reported for Fe and Co FTS catalysts [13, 14]. With regard to CO, 

the reaction rate for Mo2C decreased as the partial pressure of CO was increased. The 

Figure 4.11: Product formation rate on a C1 basis (excluding CO2) as a function of H2 

(red) or CO (blue) partial pressure. Reaction conditions: 240°C and 25 bar. 
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reaction order with respect to CO was ~ −0.5. Ranhotra et al. reported the CO order for 

Mo2C to be approximately 0.3 [12] whereas the CO order for Fe and Co catalysts has 

been reported in the range of −0.5 to 0.1 [13-15].  

 In addition to process conditions, the effect of pretreatment conditions on the FTS 

performance of Mo2C was explored. The three pretreatment conditions investigated were: 

N2 at 200°C for 4 h (labeled as Mo2C-N2), H2 at 400°C for 4 h (labeled as Mo2C-H2), and 

15% CH4/H2 at 590°C for 4 h (labeled as Mo2C-CH4/H2). The effect of these 

pretreatment conditions on the FTS rate and selectivity for Mo2C are shown in Figures 

4.12 – 4.14. Mo2C-CH4/H2 exhibited the highest FTS product formation rates while 

Mo2C-N2 and Mo2C-H2 exhibited similar lower rates. The total selectivities to 

hydrocarbons, CO2, and alcohols were similar for all of the Mo2C samples. The 

olefin/paraffin molar ratio for Mo2C-N2 (0.075) and Mo2C-H2 (0.076) was approximately 

3 times higher than that for Mo2C-CH4/H2 (0.028). The highest α was observed for 

Figure 4.12: FTS product formation rate on C1 basis (excluding CO2) for Mo2C after 

different pretreatment conditions: N2 at 200°C for 4 h, H2 at 400°C for 4 h, 

and 15% CH4/H2 at 590°C for 4 h. Reaction conditions: 240°C, 25 bar, 

H2/CO = 2. 
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Mo2C-H2 (0.39) and the lowest CH4 selectivities were observed for Mo2C-H2 (43.7%) 

and Mo2C-CH4/H2 (43.5%). 

 

 

N2 H2 CH4/H2 

Figure 4.13: Total product selectivity for Mo2C after different pretreatment conditions: 

N2 at 200°C for 4 h, H2 at 400°C for 4 h, and 15% CH4/H2 at 590°C for 4 

h. Reaction conditions: 240°C, 25 bar, H2/CO = 2. 

Figure 4.14: C2 olefin/paraffin molar ratio (green), ASF α value (blue), and CH4 

hydrocarbon selectivity on C1 basis (red) for Mo2C after different 

pretreatment conditions: N2 at 200°C for 4 h, H2 at 400°C for 4 h, and 

15% CH4/H2 at 590°C for 4 h. Reaction conditions: 240°C, 25 bar, H2/CO 

= 2. 
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4.3.2. Temperature Programmed Desorption and Reaction Experiments 

 As discussed in Chapter 3, carbides and nitrides of the same metal exhibited 

significantly different normalized FTS rates (Figure 3.9). For example, Mo2C was active 

for FTS over the entire temperature range (200-320°C) while Mo2N exhibited negligible 

activity below 270°C. CO-H2 pulse chemisorption experiments were performed over the 

Mo2C and Mo2N catalysts at 240°C in the chemisorption analyzer at atmospheric 

pressure. The MS intensity for m/z = 15 (CH3 fragments) for these pulse chemisorption 

experiments is shown in Figure 4.15. After exposing the surface to CO, H2 pulsing over 

the Mo2C catalyst resulted in the production of CH4 while no products were observed 

over the Mo2N surface. These results agree with the FTS experimental results. For Mo2C, 

CH4 production decreased with each dose of H2 because carbon on the catalyst surface 

was being depleted. Additionally, the amount of CH4 produced decreased from the 1
st
 set 

of H2 doses to the 3
rd

 set of H2 doses. This trend fits with the deactivation observed for 

Mo2C during the first 5-10 h of FTS. 

 The reactivity of the carbide and nitride surface was further explored using a 

H2/CO TPRxn (H2/CO = 4). The MS intensity (m/z = 15, CH3 fragments) during the 

Figure 4.15: MS intensity m/z = 15 for Mo2C and Mo2N during CO-H2 pulse 

chemisorption experiments. Conditions: 240°C, 1 atm. 
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TPRxn is shown in Figure 4.16. The Mo2C catalyst exhibited a light off temperature for 

CO hydrogenation at approximately 200°C. The Mo2N catalyst did not begin to produce 

CH4 until 300-350°C. This result suggests that a higher temperature was required for the 

Mo2N catalyst to overcome the reaction barrier for CO hydrogenation. 

 The apparent activation energy for a reaction is governed by the elementary 

reaction with the slowest forward rate, i.e. the rate-limiting step. The rate-limiting step 

for FTS is often reported to be adsorption (Equation 4.2) and dissociation (Equation 4.3) 

of CO or the hydrogenation of carbon species (Equations 4.4 and 4.5) [1-3]. To 

investigate the first of these proposed rate-limiting steps, CO TPD experiments were 

performed (see Figure 4.17). Both Mo2C and Mo2N exhibited similar CO TPD spectra; 

there was a broad desorption peak centered at ~100°C. The similarity between the Mo2C 

and Mo2N spectra suggested that the materials possessed similar molecular CO 

adsorption energies.  

Figure 4.16: Temperature programmed reaction with a 4:1 H2:CO mixture over Mo2C 

and Mo2N. The heating rate was 10°C/min. 
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 The molecular CO adsorption energies were experimentally determined for the 

Mo2C catalyst using a heating rate variation method [9, 10]. To do so, the broad 

desorption peak was fit to 4 separate CO desorption peaks. The deconvoluted CO TPD 

spectra for Mo2C for the highest (40°C/min) and lowest (4°C/min) heating rates are 

shown in Figure 4.18. During deconvolution, the relative intensities of the 4 desorption 

peaks were held constant between spectra with different heating rates. As these runs were 

(a) 

(b) 

Figure 4.17: CO temperature programmed desorption spectra for (a) Mo2C and (b) 

Mo2N. For blank, catalyst surface was not exposed to CO. Heating rate: 

30°C/min. 
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performed over samples from the same batch of Mo2C, the relative amounts of the 

different CO adsorption sites on the catalyst surface should remain constant. 

From the plots in Figure 4.18, the temperature at which the maximum desorption rate 

occurs, Tmax, was determined for each peak. By plotting  /ln 2

maxT  vs. 1/Tmax (Figure 

4.19), the CO desorption energies related to each peak were determined and are given in 

Table 4.1. The desorption energies ranged from 90 – 150 kJ/mol. These values are similar 

(b) 

(a) 

Figure 4.18: Deconvoluted CO TPD spectra for Mo2C at heating rate of (a) 40°C/min 

and (b) 4°C/min. Deconvolution performed using CasaXPS. Data (black 

dots), envelope (black line), peak 1 (red line), peak 2 (blue line), peak 3 

(green line), and peak 4 (orange line). 
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to those reported by St. Clair (93 – 115 kJ/mol), determined via CO TPD from a Mo2C 

single crystal [11]. 

Table 4.1: CO desorption energies for Mo2C determined from heating rate variation  

  method. 

Peak ΔEdes (kJ/mol) 

1 91 ± 19 

2 103 ± 11 

3 126 ± 14 

4 148 ± 6 

 

 The other proposed rate-limiting steps, CO dissociation and hydrogenation, were 

investigated over Mo2C and Mo2N using the experimental sequence shown in Figure 4.2 

(described in Section 4.2.2). Following exposure to CO, an Ar TPD was performed to 

remove any molecularly adsorbed CO from the catalyst surface. Figure 4.20 shows the 

MS intensity for CO (m/z = 28) during this TPD step over Mo2C as a function of the CO 

exposure temperature. The CO desorption peak observed in Figure 4.17a was again 

observed for the Mo2C catalyst exposed to CO at room temperature. As the temperature 

Figure 4.19: Determination of CO desorption energies for Mo2C using heating rate 

variation method. Heating rates: 4°C/min, 15°C/min, and 40°C/min. 
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of CO exposure increased, the intensity of this peak decreased and the peak shifted to 

higher temperatures. This shift in intensity and temperature may have been due to CO no 

longer 

occupying the adsorption sites with lower binding energies; the temperature for CO 

exposure was above the temperature at which CO desorbs from these sites. At the highest 

temperatures for CO exposure (320°C and 340°C), there are CO desorption peaks present 

at 400-450°C. These peaks may be due to the recombination of adsorbed carbon and 

oxygen from CO dissociation [11]. 

 Assuming that the Ar TPD step removed molecular CO from the catalyst surface, 

a subsequent H2 TPRxn step could be used to hydrogenate adsorbed carbon produced 

from CO dissociation. Figure 4.21 shows the MS intensity for m/z = 15 (CH3 fragments) 

for Mo2C and Mo2N as a function of CO exposure temperature. For a CO exposure 

Figure 4.20: CO TPD spectra for Mo2C as a function of CO exposure temperature. A 

blank spectrum is also shown in which the Mo2C catalyst was not exposed 

to CO. 
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temperature of 240°C, a significant amount of CH4 was produced over the Mo2C surface 

compared to the blank (no CO exposure). As the temperature of CO exposure increased, 

the intensity of CH4 desorption peak increased. This result suggests that higher 

exposure temperatures resulted in a higher concentration of adsorbed carbon from CO 

dissociation. Additionally, the primary CH4 desorption peaks were centered at ~450°C. 

For Mo2N, the spectra for the sample exposed to CO at 240°C and the blank were similar, 

(a) 

(b) 

Figure 4.21: H2 temperature programmed reaction spectra for (a) Mo2C and (b) Mo2N 

as a function of CO exposure temperature. A blank is also shown in which 

the catalyst was not exposed to CO. 
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suggesting that CO dissociation did not occur over this surface at 240°C. However, as the 

temperature for CO exposure was increased, three CH4 desorption peaks were observed: 

~140, ~180, and ~220°C. Similar to Mo2C, as the temperature of CO exposure was 

increased, the intensity of the CH4 desorption peaks increased. Additionally, these peaks 

shifted towards lower temperatures with increasing CO exposure temperatures. The ratio 

of intensity of the ~140°C peak to the ~180°C peak also increased with increasing CO 

exposure temperature. This shift with temperature and the changing intensity ratio are 

consistent with the carbon surface coverage increasing with increasing CO exposure 

temperature. Increasing coverage results in weaker binding, thus the desorption peaks 

would shift to lower temperatures, as was observed. Moreover, at higher CO exposure 

temperatures, the less reactive sites would be capable of CO dissociation. Therefore, the 

least reactive sites (lowest desorption temperatures) would be occupied last, thus causing 

an increase in the intensity ratio for the peak at ~140°C compared to the peak at ~180°C. 

 During the H2 TPRxn for Mo2C and Mo2N, H2O formation, due to the 

hydrogenation of adsorbed oxygen present from CO dissociation, was not observed. H2O 

or O2 also did not desorb during the Ar TPD step. Therefore, adsorbed oxygen from CO 

dissociation either remained on the catalyst surface throughout the experimental sequence 

or was removed by reacting with CO to produce CO2 during the CO exposure step. CO is 

known to be a good reductant. To probe the removal of adsorbed oxygen by CO, CO 

pulse experiments were performed while monitoring the production of CO2 using the MS. 

Figure 4.22 shows the CO2 peak areas (MS m/z = 44) for Mo2C dosed with CO at 240°C 

and room temperature as well as Mo2N dosed with CO at 240°C. A significant amount of 

CO2 was produced over the Mo2C surface at 240°C during CO dosing; however, very 
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little CO2 was produced over the Mo2N surface at the same temperature. Based on the 

previous H2 TPRxn results, CO dissociation occurred readily 

over the Mo2C surface at 240°C, but did not occur over the Mo2N surface at 240°C. 

Therefore, the production of CO2 over the carbide surface was likely due to the removal 

of adsorbed oxygen from CO dissociation by reaction with CO. However, it is also 

possible that some of this CO2 was produced by reduction of Mo oxides that were not 

completely reduced during pretreatment. Similar to the Mo2N surface at 240°C, the Mo2C 

surface at room temperature (CO dissociation did not occur) produced very little CO2 

during CO dosing.  

 In addition to CO dissociation and hydrogenation, the experimental sequence 

shown in Figure 4.2 allowed for the investigation of the effect of molecular CO vs. 

dissociated CO on the production of hydrocarbons. Based on the previous results, 

molecularly adsorbed CO was removed from the catalyst surface during the TPD step. By 

not performing the TPD step of the sequence (Figure 4.2), molecularly adsorbed CO 

Figure 4.22: CO2 peak area  (MS m/z = 44) during CO dosing experiments for Mo2C at 

240°C and room temperature and Mo2N at 240°C. 
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remains on the catalyst surface and its impact on hydrocarbon production during the H2 

TPRxn step can be observed. Figure 4.23 shows the MS intensity for m/z = 15 during the 

H2 TPRxn step over Mo2C for which the Ar TPD step was performed and was not 

performed. Two CO exposure temperatures were tested: 240°C and room temperature. 

For CO exposure at 240°C, an increase in hydrocarbon production was observed over 

Mo2C in the temperature range of 100-200°C when the TPD step was not performed. 

This result was amplified for CO exposure at room temperature. These findings indicate 

that molecularly adsorbed CO plays a role in hydrocarbon production. Moreover, the 

Figure 4.23: H2 TPRxn spectra (MS intensity m/z = 15) for Mo2C for which the Ar 

TPD step was performed and was not performed for CO exposure 

temperatures of (a) 240°C and (b) room temperature. 
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effect of molecularly adsorbed CO on C-C coupling (C2+ hydrocarbon production) was 

explored by monitoring m/z = 29 (Figure 4.24). This m/z corresponds to C2H5 fragments, 

which almost all C2+ hydrocarbons produce. As shown in Figure 4.24, 

the presence of molecularly adsorbed CO resulted in a significant increase in the 

production of C2+ hydrocarbons, indicating that COads plays a key role in C-C coupling. 

4.4. Discussion 

4.4.1. Effect of FTS Operating Conditions 

 The effect of temperature, pressure, and H2/CO ratio on FTS performance of 

Mo2C was investigated. The results of this investigation are summarized in Table 4.2 and 

Figure 4.24: H2 TPRxn spectra (MS intensity m/z = 29, C2H5 fragments) for Mo2C for 

which the Ar TPD step was performed and was not performed at CO 

exposure temperatures of (a) 240°C and (b) room temperature. 
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compared to the findings reported by Van Der Laan and Beenackers for Fe and Co 

catalysts [1]. In general, the Mo2C results agreed with those for Fe and Co catalysts. This 

similar behavior was likely due to the fact that these relationships are primarily governed 

by thermodynamics, not by the intrinsic properties of the catalyst. For example, the chain 

length increased with increasing pressure. Based on Le Chatelier’s principle [16], an 

increase in pressure will result in a reaction shifting to minimize the amount of gas 

molecules. Therefore, the reaction between H2 and CO should shift towards consuming a 

greater number of molecules of H2 and CO per molecule of hydrocarbon produced. This 

shift was observed, as a greater concentration of higher hydrocarbons was produced as 

the pressure was increased. 

Table 4.2: Effect of process conditions on FTS performance. ↑  indicates increase 

with increasing parameter. ↓ indicates decrease with increasing parameter. 

* indicates a complex relation. Mo2C (red) and data from Van der Laan 

and Beenackers (black) [1].  

Parameter Rate 
Chain 

Length (α) 

Olefin 

Selectivity 

Alcohol 

Selectivity 

CH4 

Selectivity 

Temperature ↑ ↓↓ ↓* ↓↓ ↑↑ 
Pressure ↑ ↑↑ ↓* *↑ *↓ 
H2/CO ↑ ↓↓ *↓ *↓ ↑↑ 

 

 Although there were no inconsistencies between Mo2C and the Fe and Co 

catalysts (i.e. ↑ for Mo2C vs. ↓ for Fe/Co or vice versa), Mo2C did exhibit complex 

relationships for alcohol and CH4 selectivity with respect to pressure and alcohol and 

olefin selectivity with respect to H2/CO ratio. The total alcohol selectivity increased 

between 1 bar (0%) and 10 bar (5.5%), but then decreased slightly at pressures above 10 

bar. The CH4 selectivity also showed a similar trend with respect to pressure. It increased 

up to 10 bar, but then decreased slowly at higher pressures (Figure 4.7). One explanation 

for these two results is that the effect of pressure on the production of higher 
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hydrocarbons was more significant at pressures above 10 bar. As shown in Figure 4.7, the 

α value remained fairly constant between 1 and 10 bar, but increased more significantly 

at pressures above 10 bar. The increased selectivity towards higher hydrocarbons resulted 

in a decrease in alcohol and CH4 selectivity (i.e. parallel reaction competition). 

 The alcohol selectivity also exhibited a complex relationship with H2/CO ratio. It 

increased between a H2/CO ratio of 0.7 and 1, but then decreased with increasing H2/CO 

ratio. A similar trend was observed for the olefin/paraffin molar ratio. These local 

maximums may be due to the ideal surface coverages of H and CO being reached on the 

Mo2C surface for production of olefins and alcohols. Since higher H2/CO ratios favor the 

production of saturated hydrocarbons (see Equations 1.3 – 1.5), the selectivity towards 

saturated hydrocarbons increased with increasing H2/CO ratio and the selectivity towards 

olefins and alcohols decreased. 

 With regards to activity, the FTS rate for Mo2C increased with increasing 

temperature, pressure, and H2/CO ratio. The reaction order was 1 with respect to H2 and 

−0.5 with respect to CO. These values are in good agreement with those reported for 

commercial Co and Fe catalysts. The negative CO order indicates that CO has an 

inhibitive effect on the reaction rate. This negative effect could be due to CO and H2 

competing for the same sites on the Mo2C surface.  

 Along with operating conditions, the effect of pretreatment conditions on FTS 

performance was explored for Mo2C. The Mo2C sample pretreated with 15% CH4/H2 

exhibited product formation rates 2-3 times higher than Mo2C samples pretreated with N2 

or H2. Additionally, the N2 and H2 pretreated samples exhibited similar rates. Two 

conclusions can be drawn from these results. First, the Mo2C surfaces for the N2 and H2 
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pretreated samples were similar under reaction conditions. For Mo2C-N2, the 

pretreatment was only a degassing step; therefore the post-pretreatment Mo2C surface 

was likely still covered with oxygen. For Mo2C-H2, it has been reported in literature that 

treatment at 400°C in H2 was sufficient to reduce the Mo2C surface [6]. Consequently, 

the reaction conditions must govern the surface structure of Mo2C, resulting in similar 

performance for degassed and reduced samples. 

 Second, carbon on the Mo2C surface played a key role in FTS, as the recarburized 

Mo2C-CH4/H2 sample exhibited the highest rate. The degree of carburization has been 

shown to influence the activity of Mo2C for a number of other reactions [8, 17, 18]. Choi 

and co-workers proposed that the degree of carburization increases the quantity and 

quality of active sites [17]. For FTS, the degree of carburization also affected the degree 

of hydrogenation, as Mo2C-CH4/H2 exhibited the lowest selectivity towards olefins (i.e. 

strongly favored saturated hydrocarbons). It is speculated that the carbon on the Mo2C 

surface may provide sites for H2 adsorption, thus increasing the selectivity towards 

saturated hydrocarbons. Furthermore, FTS over Mo2C was first order with respect to H2, 

thus an increase in H2 adsorption sites would result in an increase in rate. 

4.4.2. Interactions of CO and H2 with Mo2C and Mo2N Surfaces 

 The interactions of CO and H2 with the Mo2C and Mo2N surfaces were 

investigated to explain differences observed in the FTS performance of Mo2C and Mo2N 

as well as shed light on the FTS mechanism over these materials. Through TPD and 

TPRxn experiments probing the proposed rate-limiting elementary steps (Equations 4.2 – 

4.5), it was observed that Mo2C and Mo2N adsorb molecular CO with similar binding 

energies (90-150 kJ/mol). However, CO dissociation occurred readily over the Mo2C 
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surface at 240°C while the Mo2N surface was not capable of dissociating CO at this 

temperature (Figure 4.21). For temperatures at or above 280°C, Mo2N was capable of 

dissociating CO. This result agrees with FTS experiments (Figure 3.8) and H2/CO TPRxn 

experiments (Figures 4.15 and 4.16), as Mo2N did not show any measurable FTS activity 

below 270°C, suggesting that CO dissociation is a key step in FTS over Mo2N. 

Furthermore, since the Mo2C and Mo2N surfaces were exposed to CO in the absence of 

H2 during the experimental sequence, these materials were capable of direct CO 

dissociation without the assistance of H2.  

 For the H2 TPRxn experiments (Figure 4.21), as the temperature of CO exposure 

increased, the intensity of the CH4 desorption peaks increased for both Mo2C and Mo2N. 

However, these peaks were centered at ~450°C for Mo2C and ~150°C for Mo2N. This 

difference in desorption temperature indicated that the carbon was bound much more 

strongly to the Mo2C surface than the Mo2N surface. This result is in agreement with 

density functional theory calculations performed for Mo2C, in which the adsorption 

energy of carbon was reported to be extremely high, between -630 and -725 kJ/mol 

depending upon the adsorption site [19]. 

 It is proposed that the activation barrier for CO dissociation is higher over Mo2N 

than Mo2C, and that this difference explains the observed difference in FTS rates. An 

illustration is shown in Figure 4.25. This higher activation energy for Mo2N agrees with 

the difference in light off temperature observed in Figure 4.16. Moreover, based on the 

Bronsted-Evans-Polanyi relationship, it has been shown that the activation energy for 

dissociative adsorption of molecules depends linearly on the reaction energy [20-24]. 

More specifically, the activation energy for CO dissociation is directly related to the 
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dissociative CO adsorption energy. Therefore, if the activation energy of CO dissociation 

decreases, the adsorption energy of C and O shifts down in energy (more exothermic, 

stronger bond). Our findings are in good agreement with this relationship as Mo2C had a 

lower CO dissociation activation energy than Mo2N, and carbon was bound stronger to 

the Mo2C surface than the Mo2N surface. Regarding FTS activity, Bligaard et al. has 

reported that the dissociative CO adsorption energy is a good descriptor for CO 

hydrogenation activity (Figure 4.26) [24]. Consequently, materials with different CO 

dissociation activation energies (Mo2C vs. Mo2N) exhibited different activities for CO 

hydrogenation. It is speculated that Mo2C (more reactive) lies near the middle of the 

volcano shown in Figure 4.26, while Mo2N (less reactive) lies towards the right. 

 Knowledge regarding the active sites for CO dissociation on the Mo2C surface 

can also be elucidated. From Figure 4.21a, the Mo2C sample produced a significant 

amount of CH4 even when the surface was not exposed to CO (blank). This result 

indicates that surface carbon, present in the carbide structure, was able to be 

Figure 4.25: Schematic showing the higher activation barrier for CO dissociation over 

Mo2N than Mo2C. 
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hydrogenated to CH4 during the H2 TPRxn. An example of a carbon-terminated Mo2C 

(100) surface is shown in Figure 4.27. One of the surface carbon atoms is circled in red. 

Based on density function theory calculations, it has been reported that adsorbed carbon 

Figure 4.26: CO hydrogenation activities of different supported transition metals as a 

function of the reaction energy for dissociative CO chemisorption. Taken 

from [24]. 

Figure 4.27: Carbon-terminated Mo2C (100) surface. Carbon (green) and Molybdenum 

(blue). Image created using CrystalMaker software package. 
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can occupy the same sites on a Mo2C surface that carbon normally occupies for a carbon-

terminated Mo2C surface [19]. More specifically, adsorbed carbon from CO dissociation 

could occupy the site circled in red in Figure 4.27. Additionally, Kitchen et al. reported 

that adsorption of hydrogen on a carbon-terminated Mo2C surface resulted in the 

formation of a stable C-H bond [25]. Based on our results and these reports, it is proposed 

that the site circled in red in Figure 4.27 is the active site for CO dissociation over Mo2C. 

A simplified model of the proposed reaction scheme is shown in Figure 4.28. 

 

 Since Mo2C and Mo2N were active for direct CO dissociation, one might propose 

that the primary FTS mechanism for these materials was the carbide mechanism (Figure 

4.1). However, for Mo2C, the desorption of CH4 due to the hydrogenation of adsorbed 

carbon from CO dissociation primarily occurred at temperatures above 350°C. This 

temperature is above that of the temperatures employed for the FTS experiments, 

Figure 4.28: Simplified schematic illustrating the proposed reaction cycle for CO 

dissociation and hydrogenation over Mo2C. 
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suggesting that adsorbed carbon from CO dissociation may remain bound to the Mo2C 

surface. Therefore, hydrocarbon formation over Mo2C is probably not following the 

carbide mechanism. On the other hand, the CH4 desorption peaks for Mo2N were 

between 100°C and 250°C, within the typical temperature range for FTS. Additionally, 

FTS activity was not observed for Mo2N until CO dissociation was favorable. Therefore, 

it is probable that the carbide mechanism occurs over the Mo2N surface. Ranhotra et al. 

speculated that CO dissociation was the critical first step for CO hydrogenation over 

Mo2N [12].  

 Using TPD and TPRxn experiments, the mechanism over Mo2C was further 

investigated by exploring the effect of molecularly adsorbed CO vs. dissociatively 

adsorbed CO on hydrocarbon production. As shown in Figure 4.1, CO dissociation is 

only required for the carbide mechanism, whereas the oxygenate and CO insertion 

mechanisms only involve molecular CO adsorption. Figures 4.23 and 4.24 showed that 

the presence of molecularly adsorbed CO on the Mo2C surface resulted in an increase in 

hydrocarbon production as well as C-C coupling (production of C2+ hydrocarbons). 

These findings indicate that the dominate mechanism over Mo2C was either the 

oxygenate or CO insertion mechanism.  

 Kojima et al. speculated that the CO hydrogenation mechanism over Mo2C 

involved the formation of a CHxO intermediate [26]. Our results support Kojima’s 

hypothesis as both the oxygenate and CO insertion mechanisms would result in the 

formation of a CHxO species. Moreover, as shown in Chapter 3, Mo2C produced a fair 

amount of alcohols during FTS. The production of alcohols is expected from the 

oxygenate and CO insertion mechanisms. Similarly, Fe-based catalysts produce alcohols 
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and have been reported to follow the oxygenate mechanism [27]. Moreover, these 

findings suggest that Mo2C possesses multiple types of catalytic sites: CO dissociation 

sites and molecular CO adsorption/C-C coupling sites.  This is supported by the CO TPD 

results which showed multiple desorption peaks corresponding to different sites. Based 

on the results shown in this chapter, it may be possible to improve C-C coupling over 

Mo2C by enhancing its ability for associative CO adsorption, i.e. increasing the number 

of sites for molecular CO adsorption. 

 For future work, there are a few areas that could be expanded upon for the 

experiments discussed in this chapter. For the experimental sequence probing CO 

dissociation and hydrogenation, it would be beneficial to perform a carbon and oxygen 

balance in order to monitor deposition/removal. Regarding the mechanisms and 

elementary reactions shown in Figure 4.1, it would be informative to assess the 

reversibility of the different elementary reactions. The thermodynamics of these steps 

may govern product selectivity. Additionally, with regards to the product distributions for 

the carbides and nitrides, it may be necessary to investigate other possible simultaneous 

reactions (besides CO dissociation, chain initiation, and chain propagation). For example, 

Mo2C has been reported to be active for hydrogenolysis [12, 28]. If hydrogenolysis 

occurs under FTS reaction conditions, it may strongly affect the product distribution. 

4.5. Summary 

 The effect of process conditions on the FTS performance of Mo2C was explored. 

In general, the relationships between specific process conditions (temperature, pressure, 

and H2/CO ratio) and FTS rate and selectivity for Mo2C were similar to those reported in 

literature for Fe- and Co-based catalysts. The FTS rate over Mo2C was determined to be 



156 
 

first order in H2 and negative half order in CO. Pretreatment of Mo2C with 15% CH4/H2 

resulted in the most active catalyst compared to pretreatment in H2 or N2. The increased 

degree of carburization of the Mo2C-CH4/H2 sample was proposed to be the cause for the 

increase in activity. 

 Interactions between H2 and CO with the Mo2C and Mo2N surfaces were probed 

using temperature programmed desorption and temperature programmed reaction 

techniques. Both Mo2C and Mo2N were capable of direct CO dissociation without H2 

assistance. However, the activation barrier for CO dissociation was much higher over 

Mo2N than Mo2C, thus explaining the difference in observed FTS rates. Mo2N was 

proposed to follow the carbide mechanism, while Mo2C was proposed to follow the 

oxygenate or CO insertion mechanism. Although CO dissociation occurred over Mo2C, 

the carbide mechanism was not feasible as the carbon was bound too strongly to the 

Mo2C surface to be removed by hydrogenation under typical FTS reaction conditions. 

The Mo2C surface was found to have multiple types of sites: sites active for CO 

dissociation and sites active for molecular CO adsorption/C-C coupling. 
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CHAPTER 5 

Mechanistic Investigation of the Metal Adsorption Process over Mo2C 

5.1. Introduction 

 For heterogeneous catalysts, the support can have a strong influence on 

performance [1-9]. For example, a support can interact with a metal in such a way that it 

induces size and morphology changes, modifies the electronic properties of the metal, 

and/or participates in the reaction [1, 2]. As such, the preparation of these materials can 

also influence performance, i.e. the interactions between a metal precursor and a support 

directly affect the properties of the catalyst including the metal dispersion and particle 

morphology.  

 Recently, there has been interest in using early transition metal carbide materials 

as catalyst supports [10-14]. Carbide-supported metal catalysts have been investigated for 

Fischer-Tropsch Synthesis [10], hydrodenitrogenation and hydrodesulfurization [11], 

methanol steam reforming [12], water gas shift [13, 14], and other reactions. In addition, 

carbides have also been used as supports for electrocatalytic reactions [15-20]. Espositio 

et al. [15] studied the use of Pt supported on tungsten carbide as an electrocatalyst for the 

hydrogen evolution reaction, and observed rates comparable to Pt alone.  

 Although this list is not exhaustive, several different methods have been used to 

deposit the active metal onto the carbide surface. Esposito et al. [15] deposited Pt onto 

tungsten carbide thin films in a vacuum environment using thermal evaporation. 

Griboval-Constant et al. [10] and Lewandowski et al. [11] deposited metal using a wet 
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impregnation method with a passivated molybdenum carbide (Mo2C) support. Setthapun 

et al. [12] and Schweitzer et al. [13] used a modified wet impregnation method to deposit 

metals directly onto the native carbide surface. In the case of Pt/Mo2C, depositing Pt 

directly onto the native Mo2C surface resulted in the formation of “raft-like” Pt particles 

[13]. Although there is considerable interest in utilizing early transition metal carbides as 

supports, there is a lack of knowledge regarding how metals and metal complexes interact 

with the carbide surface.  

 The key objective of this chapter is to determine the governing mechanism(s) by 

which metal deposition onto a native Mo2C surface occurs, via a wet impregnation 

method. There are a number of factors that are expected to affect the interaction of the 

metal complex and support surface: the nature of the support (e.g. the point of zero 

charge), the solution chemistry (e.g. pH), and the character of the metal complex (e.g. 

coordination chemistry and ionic strength) [21]. Brunelle was among the first to report 

that the metal adsorption process may be governed by an electrostatic interaction between 

the support and the metal complex [21]. This electrostatic adsorption is based on the 

double layer theory [22] and has recently been investigated in depth by Regalbuto and 

others [23-26]. Based on this electrostatic theory, the solution pH, the charge of the metal 

complex in solution, and the point of zero charge (PZC, pH at which the surface of the 

material has a net zero charge) of the support are the key parameters affecting metal 

adsorption [21, 23-26].  

 It has been suggested that by controlling these parameters, metal adsorption via 

wet impregnation can be optimized. This mechanism has been termed “Strong 

Electrostatic Adsorption (SEA)” by Regalbuto [23-27]. A schematic illustrating the SEA 
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process is shown in Figure 5.1. When the solution pH is below the PZC of the support 

material, the surface of the support becomes protonated, has a net positive charge, and 

attracts anionic metal complexes (e.g. [PtCl6]
2-

). For solution pH above the PZC, the 

surface becomes deprotonated, has a net negative charge, and attracts cationic metal 

complexes ([(NH3)4Pt]
2+

). By controlling the pH and selecting the appropriate metal 

precursor, metal adsorption can be maximized, as shown in Figure 5.2. The adsorption of 

Pt from the chloroplatinic acid precursor (anionic complex) was maximized at a pH 

(~2.5) below the PZC (pH 9.4) of the unoxidized carbon xerogels due to the strong 

electrostatic attraction between the positively charged xerogel surface and the negatively 

charged Pt complex [25]. The adsorption of Pt is retarded at pH < 2.5 due to the effect of 

high ionic strength, which effectively diminishes the value of the adsorption equilibrium 

constant [27]. 

 However, it has been reported that electrostatic binding does not always fully 

account for metal complex adsorption on oxides [22, 28], so more complex theories have 

Figure 5.1: Schematic illustrating “strong electrostatic adsorption”. Taken from [26]. 



162 
 

been developed. These include the triple layer theory, specific site adsorption, and a 

ligand exchange mechanism [22]. The triple layer theory is a modification of the double 

layer theory and adds that a part of the adsorbed ions are held at a fixed distance to the 

surface by some kind of specific site adsorption [22]. Specific site adsorption involves 

only specific sites on the oxide surface that are capable of interacting with the metal 

complex. The ligand exchange mechanism involves the replacement of the original 

ligands of the transition metal in solution with surface groups, thus binding the metal to 

the surface and forming a covalent bond [22]. Additionally, since transition metal 

carbides behave more like metals than oxides [29-31], it may be important to consider 

additional support-precursor interactions that could affect the metal loading mechanism. 

Figure 5.2: Pt uptake as a function of pH for a series of unoxidized carbon xerogels. 

Taken from [25]. The Pt precursor was chloroplatinic acid, H2PtCl6. It 

forms an anionic complex in aqueous solution. The PZC for the 

unoxidized carbon xerogels was 9.4. 
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For example, a common method for the synthesis of bimetallic metal particles is by a 

direct red-ox reaction between a parent metal and a second metal in oxidized form [28, 

32-33]. 

 For this study, Mo2C-supported metal (Pt, Pd, Cu, Co, Ni, Fe) catalysts were 

prepared via wet impregnation. The metal uptake was monitored as a function of time 

using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The 

materials were characterized using X-ray diffraction (XRD), X-ray absorption 

spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). Based on the 

findings, key details regarding the mechanisms governing the metal adsorption process 

over Mo2C are discussed and insight regarding catalyst preparation is given. 

5.2. Experimental Setup 

5.2.1. Catalyst Preparation 

 The Mo2C support was synthesized via a temperature programmed reaction as 

described in Chapter 3 (Section 3.2.1). Upon completion of the temperature program, the 

material was cooled to room temperature in flowing 15% CH4/H2. Metals were loaded 

onto the support via wet impregnation. The metal precursors were Pd(NH3)4(NO3)2, 

H2PtCl6, Cu(NO3)2, CuCl2, Co(NO3)2, CoCl2, Ni(NO3)2, NiCl2, Fe(NO3)3, and FeCl2. 

These metals and precursors were chosen because they include noble and base metals as 

well as different counter ions. First, 70 mL of deionized water was added to a glass 

container and bubbled with Ar for 15 min to remove any dissolved oxygen. Next, the 

desired amount of metal precursor was dissolved in the water. The amount of metal 

precursor was designed to correspond to ~10% surface coverage of the Mo2C support, 

which has a surface area of 120 ± 10 m
2
/g. The resulting metal loading solution had a 
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concentration of 2.27 mmol metal/L. The unpassivated Mo2C powder (0.75 g) was then 

transferred under Ar to the solution as bubbling was maintained. The support powder was 

left in solution for 3 h and periodically stirred. For the concentration vs. time studies, the 

support powder remained in the precursor solution for up to 45 h with continuous 

bubbling and samples of the solution were abstracted for elemental analysis via ICP-

OES. Finally, the support material was transferred back into the quartz reactor tube under 

Ar flow. 

 Depending on the characterization to be performed, the samples were treated in 

different ways following deposition of the precursor. One set of samples was dried in He 

flowing at 20 mL/min at room temperature for 24 h. These samples, referred to as 

“Dried” samples, were then stored in a N2-filled glove box until analyzed by XAS. 

Another set of samples was initially dried at 110 °C for 2 h in H2 and then reduced in H2 

at 450 °C for 4 h. After reduction, these samples, referred to as “Reduced” samples, were 

also transferred into the glove box until analyzed by XAS. Samples that were not to be 

characterized via XAS analysis were passivated in 1% O2/He flowing at 20 mL/min at 

room temperature for 6 h after the reduction procedure. 

5.2.2. Materials Characterization 

5.2.2.1.Point-of-Zero Charge Measurements 

 The PZC of Mo2C was determined according to the procedure described by Park 

et al. [34]. First, 18mL of deionized water was bubbled with Ar. This volume of water 

was chosen to achieve a surface loading of ~5000 m
2
/L, similar to the value used in Park 

et al. [34]. A Fischer-Scientific Accumet Research AR 15 pH meter was submersed in the 

solution to monitor the pH. Concentrated HCl or NH4OH were used to adjust the pH of 
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the solution to a specified value. This initial pH value was recorded. Then, unpassivated 

Mo2C (0.75 g), synthesized according to the procedure discussed in Section 5.2.1, was 

transferred to the solution in Ar. While the solution was continuously stirred and bubbled 

with Ar, the pH of the solution was recorded as a function of time. Upon stabilization, the 

final pH was recorded. By plotting the initial pH as a function of the final pH, the PZC of 

Mo2C was determined. An example from literature for the unoxidized carbon xerogels 

discussed earlier is shown in Figure 5.3 [25]. The PZC of the xerogels was 9.4, 

corresponding to the flat region of the plot. 

 

5.2.2.2.Elemental Analysis 

 Elemental analysis was performed using ICP-OES to monitor the concentration of 

metal in the loading solution as a function of time as well as to determine the amount of 

metal uptake on the Mo2C supports. For the concentration vs. time experiments, 1mL of 

the precursor solution was diluted with 13mL of deionized water and was analyzed. For 

direct elemental analysis of the Mo2C-supported metal catalysts, 15mg of material was 

Figure 5.3: Final pH vs. Initial pH for a series of unoxidized carbon xerogels. Taken 

from [25]. The flat portion of the plot corresponds to the PZC of the 

materials, which was pH 9.4. 
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dissolved using 3mL of aqua regia solution (75%vol HCl and 25%vol HNO3). The 

solution was allowed to sit for 24 h. Next, 1mL of the aqua regia solution was diluted 

with 13mL of deionized water and was ready for analysis. All the solutions were 

analyzed using a Varian 710-ES ICP Optical Emission Spectrometer. For each analysis, 

quantification was performed by comparing the relative intensities of the catalyst 

solutions to the relative intensities of several standards of known concentrations.  

5.2.2.3.X-ray Diffraction 

 Diffraction patterns for the Mo2C-supported metal catalysts were collected using a 

Rigaku miniflex X-ray diffractometer with a Cu-Kα (λ = 1.54nm) radiation source and a 

Ni filter. A range of 10° < 2θ < 90° was scanned at a rate of 5°/min with a 0.02° step size. 

5.2.2.4.X-ray Absorption Spectroscopy 

 X-ray absorption spectra were collected at the Argonne National Laboratory 

Advanced Photon Source beamline MR-CAT 10-ID-B. XAS is an element specific 

technique that can be used to probe the local atomic coordination and the 

chemical/oxidation state of the specific element in a compound [35]. The technique is 

based on the photo-electric effect, in which an x-ray is absorbed by an atom when the 

energy of the incident x-ray is transferred to a core-level electron (K, L, or M shell) [35]. 

This transfer of energy leaves the atom in an excited state. Extra energy from the incident 

x-ray is transferred to an ejected photo-electron. The energy at which the x-ray is 

absorbed by the atom is element specific and is called the edge energy, E0. The edges 

which were collected for this study were the Pt L3 edge (11564 eV), the Pd K edge 

(24350 eV), the Cu K edge (8979 eV), the Ni K edge (8333 eV) and the Fe K edge (7112 

eV). 
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 The data collected during a XAS experiment corresponds to the x-ray absorption 

coefficient, µ(E), which is a function of the incident x-ray energy. XAS spectra are 

typically divided into 2 regimes: X-ray Absorption Near Edge Spectroscopy (XANES) 

and Extended X-ray Absorption Fine Structure (EXAFS). The XANES region 

corresponds to the energy region 20 eV below E0 to 30 eV above E0, and primarily gives 

information regarding the oxidation state of the probed element [35]. The EXAFS region 

corresponds to the energy region 30 eV above E0 to 800 eV above E0, and provides 

information about the local structure around the absorbing atom (i.e. bond distances, 

coordination numbers, and type of neighbors) [35].  For this study, the XANES region of 

the XAS spectra will be analyzed to investigate the oxidation state of the metal during the 

metal adsorption process. 

 There are primarily two methods for XAS spectra collection: transmission and 

fluorescence. In transmission mode, the intensity of the incident x-ray and the x-ray 

transmitted through the sample are compared to determine µ(E). For fluorescence mode, 

fluorescent x-rays emitted from the sample due to re-population of the core hole are 

compared to the incident x-ray to determine µ(E). Due to the relatively low metal 

loadings and the strong absorbing nature of Mo2C, scans for this study were collected in 

fluorescence mode using Ar ion chambers for detection. Prior to data collection, the 

samples were crushed and pressed into pellets. All sample preparation was performed in 

the glove box to ensure that the samples were not exposed to oxygen. The samples were 

transferred to the beamline for analysis in a sealed quartz tube.  

 Athena, a free online software for XAS analysis, was used to analyze the resulting 

XAS data. A standard procedure was followed for each spectrum [36]. First, an energy 
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shift was applied to the sample spectrum based on a reference (metal foil) spectrum to 

account for any instrumental drift. Second, a linear pre-edge line (200 to 50 eV before the 

edge) was subtracted from the sample spectrum. Next, a third order polynomial 

(normalization line) was fit to the post-edge data (100 to ~400 eV after the edge). The 

edge step was then determined by taking the difference between the pre-edge and the 

normalization line. The entire spectrum was then divided by the edge step to normalize 

the spectrum to 1 x-ray. Finally, the background of the post-edge data was removed using 

a cubic spline function.  

5.2.2.5.X-ray Photoelectron Spectroscopy 

 The Mo2C-supported metal catalysts were characterized using XPS to determine 

the relatieve concentrations of Mo, C, and Cl on the surface. The XPS experiments were 

performed using a Kratos Axis Ultra x-ray photoelectron spectrometer with an Al anode 

(Kα radiation at 1486.6 eV) operating at 10 mA and 14 kV. The spectra were analyzed 

using CasaXPS, a commercially available XPS analysis program. C 1s, Mo 3d, and Cl 2p 

spectra were collected. The adventitious carbon peak (binding energy = 284.8 eV) was 

used to reference the other binding energies. The peak areas were normalized using the 

appropriate atomic sensitivity factors.  This normalization allowed comparison of the 

relative atomic fractions of each species on the catalyst surfaces. 

5.3. Results 

 The PZC of Mo2C was determined from the plot of final pH vs. initial pH shown 

in Figure 5.4. The flat region of the curve corresponds to the PZC, which was 

approximately pH 5. Based on the electrostatic adsorption theory, the surface of Mo2C 
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becomes protonated and has a net positive charge at a pH below 5, and will adsorb 

anionic metal complexes [21, 23-27, 34]. At a pH greater than 5, the surface of Mo2C 

becomes de-protonated and has a net negative charge, and will adsorb cationic metal 

complexes.  

 For each of the metal precursors, the concentration of the metal in the precursor 

solution was monitored as a function of time, and the results are presented in Figure 5.5. 

Time zero corresponded to the time at which the Mo2C support was transferred to the 

solution. The relative metal loadings achieved after 20 h are given in Table 5.1. The 

relative metal loading for each sample was determined by ICP-OES analysis of the 

Mo2C-supported metal catalyst samples and is defined as:   

  
 wt%metal Nominal

 wt%metal Measured
  Loading Metal Relative     (5.1) 

The nominal metal wt% was determined by assuming that 100% of the metal in solution 

adsorbed to the Mo2C surface. The Fe precursors, CoCl2 and NiCl2 did not achieve more 

than 15% relative metal loading even after 20 h, whereas all of the other precursors 

Figure 5.4: Initial pH vs. final pH for aqueous solutions containing Mo2C at a surface 

loading of 5000 m
2
/L. 
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achieved greater than 90% relative metal loading. It is important to note that the pH of 

the precursor solution was not adjusted; it was set based on the metal precursor. The 

initial pH of the precursor solution for each precursor is also given in Table 5.1. Based on 

the curves in Figure 5.5, the rate of adsorption follows the trend: H2PtCl6 ~ 

Pd(NH3)4(NO3)2 ~ CuCl2 ~ Cu(NO3)2  > Co(NO3)2 ~ Ni(NO3)2 >> CoCl2 ~ NiCl2 ~ FeCl2 

~ Fe(NO3)3. 

 The concentration of Mo in the solution during wet impregnation was also 

monitored using ICP-OES. The Mo concentration as a function of time is shown in 

Figure 5.6 for the various metal precursors. Additionally, a blank run was performed in 

which the Mo2C support was added to 70 mL of deionized, dearated water (no metal 

precursor was present). The highest concentration of Mo was observed for the Pd 

precursor, reaching a value of ~0.9 mmol Mo/L after 300 min. In comparison, the 

concentration of Pd in the initial loading solution was 2.27 mmol/L. During the first 30 

Figure 5.5: Normalized metal concentration (C/C0) in the precursor solution as a 

function of time. Metal concentration was measured by ICP-OES. 
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min, the Mo concentration for the Pt precursor showed a similar trend to that for Pd, but 

then decreased sharply. For most of the other metal precursors, the Mo concentration was 

slightly higher than for the blank run, but significantly below that for Pd. Based on the 

blank run, very little Mo from Mo2C dissolved into solution when just deionized water 

was present. 

Table 5.1: Relative metal loadings and precursor solution initial pH for the various 

metal precursors. 

Precursor 
Relative Metal Loading

1,2
 

(%) 

Initial Precursor Solution 

pH 

H2PtCl6 100 2.5 

Pd(NH3)4(NO3)2 100 7.3 

CuCl2 100 5.0 

Cu(NO3)2 100 5.1 

CoCl2 9 6.2 

Co(NO3)2 91 5.7 

NiCl2 11 5.9 

Ni(NO3)2 91 5.7 

FeCl2 3 4.7 

Fe(NO3)3 14 2.9 
1
 Relative metal loading determined using ICP-OES after 20 h of loading. 

2
 Error on relative metal loading was ± 2%. 

 The metal concentration curves shown in Figure 5.5 were fit to zero-order, first-

order, and second-order kinetics based on the following equation [37]: 

     
n

i
i kC

dt

dC
      (5.2) 

where k is the reaction rate constant, t is time, Ci is the concentration of metal in solution, 

and n is the reaction order (n = 0, 1, or 2). The fit parameters are listed in Table 5.2. The 

adsorption of H2PtCl6, Pd(NH3)4(NO3)2, CuCl2, and Cu(NO3)2 were best described by 

first order kinetics whereas the adsorption of Co(NO3)2 and Ni(NO3)2 appeared to follow 

second order kinetics.  Second order kinetics typically indicates that two of the reactant 
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species were involved in the rate limiting step. The difference in the reaction order 

suggests a different mechanism for these two groups. 

 

Figure 5.6: Mo concentration in the metal loading solution as a function of time for 

the (a) Pt, Pd, and Cu precursors and (b) Co, Ni, and Fe precursors. A 

blank run was also performed in which Mo2C was added to dearated, 

deionized water; no metal precursor was present. 

(a) 

(b) 
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Table 5.2: Results from regression of metal concentration data for H2PtCl6, 

Pd(NH3)4(NO3)2, CuCl2, Cu(NO3)2, Co(NO3)2, Ni(NO3)2 to zero order, 

first order, and second order kinetics. 

 Zero Order First Order Second Order 

Metal Precursor k (mol L
-1

 s
-1

) R
2
 k (s

-1
) R

2
 k (L mol

-1
 s

-1
) R

2
 

H2PtCl6 2.3 x 10
-7

 0.76 
6.5 x 10

-4
 0.90 

1.1 0.89 

Pd(NH3)4(NO3)2 1.3 x 10
-7

 0.75 
3.7 x 10

-4
 0.99 

1.9 0.73 

CuCl2 1.4 x 10
-7

 0.69 
4.7 x 10

-4
 0.99 

5.2 0.57 

Cu(NO3)2 1.1 x 10
-7

 0.68 
3.8 x 10

-4
 0.98 

3.5 0.74 

Co(NO3)2 8.2 x 10
-8

 0.88 9.9 x 10
-5

 0.96 
1.1 x 10

-1
 0.97 

Ni(NO3)2 6.8 x 10
-8

 0.80 9.7 x 10
-5

 0.86 
1.1 x 10

-1
 0.99 

 

 Based on the relative metal loadings shown in Table 5.1, counter ions (Cl
−
 or 

NO3
−
) for the Co and Ni precursors may have had an effect on the metal adsorption 

process. The chloride precursors for Co and Ni achieved approximately 10% relative 

metal loading while the nitrate precursors achieved greater than 90%. This result suggests 

that the Cl
−
 ion may have inhibited metal adsorption. To further investigate this 

phenomenon, XPS was performed on the Mo2C-supported metal catalysts synthesized 

from the chloride precursors. After depositing the metals, the samples were dried at room 

temperature in 1% O2/He. The reduction step was not performed to ensure that any Cl 

that may have been deposited on the Mo2C surface after metal loading remained on the 

surface. The Cl 2p spectra for these materials are shown in Figure 5.7. The Pt/Mo2C and 

Cu/Mo2C samples had the most intense Cl 2p peaks. The Cl/Mo atomic ratios for 

Pt/Mo2C and Cu/Mo2C were 0.165 and 0.045, respectively. These materials also had the 

highest relative metal loadings of all the metal chloride precursors. No clearly discernable 

Cl 2p peaks were observed for the Co/Mo2C, Ni/Mo2C, and Fe/Mo2C samples. These 

materials had the lowest relative metal loadings of all the metal chloride precursors. The 
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chlorine concentration in the precursor solutions was 4.54 mmol/L, except for H2PtCl6 

which was 13.62 mmol/L. These results suggest that Cl
−
 did not inhibit deposition. 

 Diffraction patterns for the Mo2C and Mo2C-supported metal catalysts 

synthesized from the nitrate precursors are shown in Figure 5.8. The patterns contained 

peaks for β-Mo2C [38] and α-MoC1-x [39]. No peaks were observed for MoO2 [40] or 

MoO3 [41]. There were also no clearly discernable peaks for the supported metals, 

indicating that crystallites, if present, were below the detection limit of the X-ray 

diffractometer. X-ray diffraction patterns for the Mo2C-supported metal catalysts 

synthesized from the chloride precursors were similar. 

Figure 5.7: Cl 2p XPS spectra for the Pt/Mo2C, Cu/Mo2C, Co/Mo2C, Ni/Mo2C, and 

Fe/Mo2C samples synthesized from the chlorine precursors. After metal 

loading, the samples were only dried in 1% O2/He at room temperature; 

the reduction step was not performed. 
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 X-ray absorption spectroscopy was used to investigate the oxidation states of the 

metals during synthesis. Spectra were collected at three different points during the 

synthesis procedure: 

(i) Metal precursor dissolved in the dearated aqueous solution prior to adding 

Mo2C. These spectra were labeled “Solution”. 

(ii) After 3 h of exposure of the precursor solution and Mo2C, the material was 

removed from the solution without exposure to air and dried in an inert 

atmosphere at room temperature. These samples will be labeled as “Dried”. 

(iii) Instead of being dried in an inert atmosphere as in (ii), the material was 

removed from the precursor solution without exposure to air and reduced in 

H2 at 450 °C. These samples will be labeled as “Reduced”. 

Figure 5.8: X-ray diffraction patterns for Mo2C and Mo2C-supported metal catalysts 

synthesized from the nitrate precursors (except for Pt). 
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Spectra for the dried and reduced samples were collected without exposing the materials 

to air.  

 Figure 5.9 shows the x-ray absorption near edge structure (XANES) spectra for 

the precursor solution, dried, and reduced samples produced using the H2PtCl6, 

Pd(NH3)4(NO3)2, CuCl2, NiCl2, and FeCl2  precursors as well as metal foil references 

(zero valent). For the Pt/Mo2C material (Figure 5.9a), spectra for the dried and reduced 

samples resembled the spectrum for the Pt foil. The spectrum for the H2PtCl6 in solution 

had a strong white line indicating that the Pt was in an oxidized state. These results 

indicate that the Mo2C support was capable of reducing the [PtCl6]
2-

 precursor directly to 

metallic Pt during the metal adsorption process. This type of response is not typically 

observed for oxide supports such as Al2O3, where the Pt remains in an oxidized state upon 

adsorption and is still complexed with Cl [43-46]. For Pd/Mo2C (Figure 5.9b) and 

Cu/Mo2C (Figure 5.9c), a result similar to that for Pt/Mo2C was observed. The spectra for 

the dried and reduced samples resembled that of the metal foil reference. On the other 

hand, for Ni/Mo2C (Figure 5.9d) and Fe/Mo2C (Figure 5.9e), the dried samples closely 

resembled the precursor solution spectra while the reduced samples closely resembled the 

foil spectra. In both cases, the dried samples exhibited large white line peaks while the 

reduced samples did not have distinct peaks. These results indicate that the Mo2C support 

can reduce the Pt, Pd, and Cu precursors to a metallic state during the wet impregnation 

process; however, Mo2C was unable to reduce the Ni or Fe precursors. 
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5.4. Discussion 

 In this chapter, the interactions between metal precursors and a native Mo2C 

surface during wet impregnation have been investigated. During metal deposition, 

multiple steps have to occur including transport of the metal ion/complex to the support 

surface, adsorption of the complex, and possibly a surface reaction with the support. This 

Figure 5.9: X-ray absorption near edge structure (XANES) spectra for the precursor 

solution, dried, and reduced samples as well as a metal foil reference (zero 

valent) for (a) H2PtCl6 at Pt L3 edge, (b) Pd(NH3)4(NO3)2 at Pd K edge, (c) 

CuCl2 at Cu K edge, (d) NiCl2 at Ni K edge, and (e) FeCl2 at Fe K edge. 

Data collected in collaboration with Schweitzer [42]. 
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section will discuss the dominant mechanisms controlling metal adsorption onto a Mo2C 

support in regards to these different steps.  

 One mechanistic step proposed for the adsorption of metals on oxide supports 

involves electrostatic interactions between the support and the metal ion in solution [21-

27]. If electrostatic interactions play a significant role in deposition of the metals onto the 

Mo2C surface, one would expect the relative loading of the metals to be a function of the 

precursor solution pH. For a material like Mo2C with a PZC of pH 5, the surface should 

be deprotonated, have a net negative charge, and electrostatically attract cations to the 

surface in solutions with pH > 5. The surface should be protonated, have a net positive 

charge, and attract anions in solutions with a pH < 5. Based on the findings of Regalbuto 

and others [23-27], the electrostatic interactions have the strongest effect on metal 

adsorption at pH values significantly away from the PZC of the support material. For 

example, see Figure 5.2 regarding Pt uptake as a function of pH for a series of unoxidized 

carbon xerogels [25]. The PZC for these materials was pH 9.4, therefore electrostatic 

attraction should occur between the anionic Pt precursor and the carbon xerogel surface 

at pH below 9.4. However, significant adsorption of the Pt did not occur until the pH was 

between 2-5. Therefore, it can be assumed that the electrostatic interactions will have 

very little effect on metal transport to the surface and adsorption over Mo2C in the 

solution pH window of 4 < pH < 6.  

 Figure 5.10 shows relative metal loadings for the different metal precursors on the 

Mo2C surface as well as the initial pH of the precursor solution (taken from Table 5.1). 

The red dotted lines indicate the proposed “PZC window” for Mo2C [40]. Any precursor 

species that lies outside of the window could be affected by the electrostatic interactions. 
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Accordingly, the only species which might be affected are H2PtCl6, Pd(NH3)4(NO3)2, and 

FeCl3. H2PtCl6 and Pd(NH3)4(NO3)2 would both benefit from the electrostatic 

interactions, thus facilitating the transport to the support surface and the adsorption of 

H2PtCl6 and Pd(NH3)4(NO3)2. The pH of the H2PtCl6 solution lies below the PZC of 

Mo2C and H2PtCl6 produces an anionic metal complex, thus the net positive charge on 

the Mo2C surface would attract the anionic Pt metal complex. For Pd(NH3)4(NO3)2, the 

pH lies above the PZC of Mo2C and the Pd precursor produces a cationic metal species, 

thus the net negative charge on the Mo2C surface would attract the cationic Pd metal 

complex. However, FeCl3 would be inhibited by these electrostatic interactions since its 

pH is below the PZC of Mo2C, but produces a metal cation. These electrostatic 

interactions likely play a role in the transport of the metal complex to the Mo2C surface 

Figure 5.10: Relative metal loading and precursor solution initial pH as a function of 

metal precursor. The “PZC window” for Mo2C (4 < pH < 6) is given by 

the red dotted lines. Graph was created in collaboration with Schweitzer 

[42]. 
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and the coulombic adsorption of the complex; however, electrostatic interactions do not 

account for all of the observed results. The Cu precursors and Ni and Co nitrate 

precursors fall within the PZC window for Mo2C, but exhibit relative loadings greater 

than 90%.  

 Another mechanistic step in the metal adsorption process involves a surface 

reaction between the metal complex and the support. Due to the metallic nature of early 

transition metal carbides, it is important to explore metal adsorption mechanisms outside 

of those typically reported for oxides. A surface red-ox reaction has been proposed to 

explain the synthesis of bimetallic metal particles [28, 32-33]. One example is the 

modification of Cu catalysts by the addition of Pd [28]. The two half reactions with their 

standard reduction potentials are given in Equations 5.3 and 5.4. 

    PdePd   22   E
0
 = 0.99 V  (5.3) 

    CueCu   22   E
0
 = 0.34 V  (5.4) 

 The difference in equilibrium potential determines the change in the free energy 

and the direction of the overall reaction (see Equation 5.5): 

      0

2

0

1

0 EEnFG      (5.5) 

where n is the number of electrons transferred, F is faraday’s constant, and Ei is the 

standard reduction potential of the respective half cell reaction [28]. For E1
0
 > E2

0
, the 

Gibb’s free energy of the overall reaction will be negative and the reaction will be 

favorable. Therefore, the overall reaction between Pd and Cu is: 

     PdCuPdCu   22    (5.6) 

because 
0

/2 PdPd
E   is greater than 

0

/2 CuCu
E  . Since carbides are metal like, it is possible that 

this phenomenon could occur in metal deposition on carbide surfaces as well. 
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 Figure 5.11 displays the relative metal loadings as a function of the standard 

reduction potentials of the metal complex ions. Based on Gibb’s free energy metal 

speciation calculations, the metal complex ions shown in Figures 

5.10 and 5.11 were the most prevalent under the concentrations and conditions used in 

this study [42]. Generally, precursors that have high standard reduction potentials 

exhibited high relative loadings. For example, [PtCl6]
2-

, [Pd(NH3)4]
2+

, and Cu
2+

 all have 

standard reduction potentials greater than 0.3V, and have relative loadings approaching 

100%. Based on this observation, we propose that a critical step in the metal adsorption 

mechanism over Mo2C involves the reduction of the metal precursor complex by a 

surface species [42]. This conclusion is supported by the XAS results (Figure 5.9). For 

the Pt, Pd, and Cu precursors, XANES spectra for the dried samples indicated the 

Figure 5.11: Relative metal loading and standard reduction potentials as a function of 

metal precursor. Standard reduction potentials taken from [47]. Graph was 

created in collaboration with Schweitzer [42]. 
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presence of zero-valent metal, even though metal in the precursor solution was oxidized. 

On the other hand, the dried samples of the Ni and Fe catalysts were oxidized, also 

resembling the precursor solution. Considering the standard reduction potentials for the 

Pt, Pd, and Cu precursors, one can deduce that the standard reduction potential of the 

surface species that is oxidized via the red-ox reaction must be less than 0.3 V (see 

Equation 5.5). However, it is unclear whether the surface species that interacted with the 

precursors were Mo, C, or some other unknown species. Although Mo was observed in 

the solution during metal adsorption (Figure 5.6), a complex relationship existed between 

the Mo concentration and the metal precursor. For adsorption of all of the metals except 

Pd, the concentration of Mo was an order of magnitude lower than the initial 

concentration of metal in the loading solution. Further investigation is needed to 

determine if the dissolved Mo is present due to the surface redox reaction or some other 

phenomenon. 

 Additionally, the driving force for reduction of the metal ions by the Mo2C 

surface might be directly related to the difference in reduction potential between the 

metal ion and the oxidized species. Based on Barbier [28], the extent of metal deposition 

depends on the red-ox reaction equilibrium constant, Keq, given by Equation 5.7 [28]: 

     
 

RT

EE
nFKeq

0

2

0

1ln


     (5.7) 

where R is the ideal gas constant and T is temperature. The Pt, Pd, and Cu precursors had 

the highest reduction potentials and demonstrated the fastest rates of metal adsorption 

(see Figure 5.5 and rate constants in Table 5.2). For Co and Ni, the reduction potentials 

were much lower than those for Pt, Pd, and Cu, and correspondingly the Co and Ni 

nitrate precursors showed much slower rates of metal adsorption (Table 5.2). 
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 The results also support a conclusion that the nature of the counter ion plays a role 

in the deposition mechanism. For Ni and Co, the nitrate precursor yielded higher relative 

loadings than the chloride precursor. This result does not appear to be due to Cl blocking 

adsorption sites on the Mo2C surface. XPS results (Figure 5.7) show that very little 

chlorine was present on the Mo2C surface after depositing metal from CoCl2, NiCl2, or 

FeCl2. Moreover, the Cl surface concentration was the highest for the metals with the 

highest relative metal loadings (H2PtCl6 and CuCl2). Based on these findings, we propose 

two options that may explain these results. First, the NO3
−
 counter ion could enhance the 

metal adsorption process over Mo2C for the Ni and Co precursors, possibly changing the 

mechanism for adsorption. For example, the NO3
−
 might facilitate oxidation of the Mo2C 

surface species involved in the red-ox reaction. This result may be supported by the 

observation that the Co and Ni nitrate precursors followed second order kinetics while the 

Pt, Pd, and Cu precursors followed first order kinetics (Table 5.2). Second, Cl
−
 might 

form a complex with the metal ion in solution and alter its standard red-ox potential. It 

has been reported that red-ox properties can be modified by using different ligands [28]. 

For example, the reduction of Pd
2+

 to Pd metal has a standard reduction potential of 0.99 

V whereas the reduction of Pd
2+

 present in the form of PdCl4
−
 has a standard reduction 

potential of 0.62 V. For Co and Ni, complexation with Cl could cause a decrease in the 

standard reduction potential, possibly lowering it below the standard reduction potential 

of the Mo2C surface species. In this case, reduction of the Co and Ni would not be 

favorable and relative loading would be low. Moreover, this result would suggest that the 

reduction potential of the Mo2C surface species would be around that of Co
2+

 and Ni
2+

. 
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 Finally, it is important to discuss the implications of these findings on further 

development of carbide-supported metal catalysts. First, the observed direct red-ox 

reaction between the Pt, Pd, and Cu precursors and the native Mo2C surface may result in 

high metal dispersions. Schweitzer et al. reported that the strong interaction between 

H2PtCl6 and Mo2C resulted in the formation of raft-like particles [13]. Second, the 

observed red-ox behavior suggests that supporting metals onto the native carbide surface 

may result in significantly different properties than supporting metals onto an oxidized 

(i.e. passivated) carbide surface. 

5.5. Summary 

 The metal adsorption process onto a native Mo2C surface via wet impregnation 

has been investigated for Pt, Pd, Cu, Co, Ni, and Fe precursors. The adsorption process 

was primarily governed by the red-ox chemistry of the metal and the Mo2C support. For 

metal precursors with high standard reduction potentials (Pt, Pd, and Cu), the target metal 

loadings were achieved and the Mo2C support was capable of reducing the metal 

complexes to a zero-valent state during the adsorption process. Further work is needed to 

identify the surface species that were oxidized during this red-ox reaction. For metal 

complexes with low standard reduction potentials, the loadings were ~10% and the 

metals remained in an oxidized state on the Mo2C surface. Additionally, the precursor 

counter ion (Cl
−
 or NO3

−
) appeared to affect the metal adsorption process; nitrate 

precursors exhibited higher loadings than chloride precursors. Finally, electrostatic 

interactions may play a role in the transport process of the metal ion complexes to the 

Mo2C support surface. As such, the electrostatic interactions and the red-ox surface 

reactions might work in tandem.  
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CHAPTER 6 

Mo2C-Supported Metal Catalysts for Fischer-Tropsch Synthesis 

6.1. Introduction 

 In Chapter 3 it was reported that early transition metal carbides and nitrides (e.g. 

Mo2C) primarily favored the production of light hydrocarbons (C1-C4) during Fischer-

Tropsch Synthesis (FTS). Higher hydrocarbons (C5+), specifically hydrocarbons with 

chain lengths in the range of those for gasoline (C7-C11), diesel fuel (C10-C19), and waxes 

(C20+) are typically the desired products. In an attempt to enhance the performance, 

metals including Pt, Co, Fe, Ru, Cu, Rh, and Ni were deposited onto the surfaces of 

Mo2C. This chapter describes the Fischer-Tropsch Synthesis performance of these Mo2C-

supported metal catalysts. 

 Mo2C-supported metal catalysts have been investigated previously by Schweitzer 

[1, 2], King [3], and Patt [4] for the water gas shift reaction and Griboval-Constant et al. 

for Fischer-Tropsch Synthesis [5]. Schweitzer and King reported higher water gas shift 

activities for Pt/Mo2C catalysts compared to Mo2C and attributed the enhancement to the 

bi-functional nature of the Mo2C-supported Pt catalyst. The Mo2C sites were proposed to 

perform H2O activation while the Pt sites were proposed to adsorb CO [2]. The oxidation 

of CO was proposed to occur at the interface of the Mo2C and Pt particles [2].  Free 

energy diagrams for the water gas shift reaction over an O-terminated Mo2C surface and 

an O-terminated Mo2C surface in which Pt serves as the binding site for CO are shown in 

Figure 6.1 [2]. The addition of Pt significantly decreased the energy barrier for CO 
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adsorption, thereby causing the rate-limiting step for Pt/Mo2C to be CO oxidation. The 

bi-functional nature of the catalyst and the presence of “raft-like” Pt particles (which 

have a high density of Pt-Mo2C interface sites on which CO and O can react) resulted in 

high WGS rates [1, 2]. 

 Griboval-Constant et al. reported that Ru/Mo2C and Co/Mo2C exhibited higher 

FTS rates than Mo2C [5]. More specifically, Co/Mo2C exhibited a rate almost 4 times 

higher than that of Mo2C at 240°C, 20 bar, and H2/CO = 2. However, no significant 

change in hydrocarbon selectivity (e.g. C5+ selectivity and ASF α value) was observed 

(a) 

(b) 

Figure 6.1: Free energy diagrams for the water gas shift reaction mechanism 

calculated at 240°C using density functional theory over (a) an O-

terminated Mo2C surface and (b) an O-terminated Mo2C surface in which 

Pt serves as the binding site for CO. Taken from [2]. 
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due to the addition of Ru or Co. For this study, the Mo2C support surface area was low 

(~7 m
2
/g) and the metal loadings of Ru and Co were 1 wt% [5].  Assuming a site density 

of 1x10
19

 sites/m
2
, the surface coverage of Ru and Co was approximately 85% and 150%, 

respectively. Due to these high surface coverages, the observed FTS performance of 

Ru/Mo2C and Co/Mo2C may have been the result of the innate catalytic properties of the 

supported metals, and not a combination of the support and the metal. In addition, these 

materials were synthesized using the passivated Mo2C support [5]. Therefore, the metal 

precursors were interacting with an oxidized Mo2C surface instead of the native Mo2C 

surface. Finally, the catalysts were pretreated in pure H2 to reduce the supported metals, 

without consideration for recarburizing the Mo2C support surface.    

 The objective of research described in this chapter was to evaluate the FTS 

performance of Mo2C-supported metal catalysts. The supported metals included Pt, Co, 

Fe, Ru, Cu, Rh, and Ni. The catalysts were synthesized using the wet impregnation 

technique discussed in Chapter 5. This method allowed the metal precursor to interact 

directly with the native Mo2C surface. The activities and selectivities of the catalysts for 

FTS were tested in a fixed bed reactor at 270-300°C, 25 bar, and H2/CO = 2. The 

catalysts were characterized using X-ray diffraction, elemental analysis, CO 

chemisorption experiments, temperature programmed reduction experiments, and X-ray 

absorption spectroscopy.  

6.2. Experimental Setup 

6.2.1. Catalyst Synthesis 

 The Mo2C support was synthesized via a temperature programmed reaction as 

described in Chapter 3 (Section 3.2.1). Upon completion of the temperature program, the 
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material was cooled to room temperature in flowing 15% CH4/H2. Metals were deposited 

onto the support via wet impregnation. The metals selected for investigation were Pt, Co, 

Fe, Ru, Cu, Rh, and Ni. Except for Pt, these metals are common catalysts for CO 

hydrogenation reactions: Co, Fe, and Ru for FTS [6], Cu and Rh for alcohol synthesis [7], 

and Ni for methanation [8, 9]. Pt was included based on results from Chapter 4, which 

indicated that Mo2C primarily followed an oxygenate or CO-insertion mechanism, and Pt 

might increase the number of sites for molecular CO adsorption on the catalyst surface. 

Based on the results from Chapter 5, the following metal precursors were selected 

H2PtCl6, Co(NO3)2, Fe(NO3)3, RuCl3, Cu(NO3)2, Rh(NO3)3, and Ni(NO3)2.  

 For the wet impregnation procedure, 70 mL of deionized water was added to a 

glass container and bubbled with Ar for 15 min to remove any dissolved oxygen. Next, 

the desired amount of metal precursor was dissolved in the water. The amount of metal 

precursor added corresponded to ~10% surface coverage of the Mo2C support, which has 

a surface area of ~120 m
2
/g. The resulting metal loading solution had a concentration of 

2.27 mmol metal/L. The unpassivated Mo2C powder (0.75 g) was then transferred under 

Ar to the solution as bubbling was maintained. The support powder was left in the 

solution for varying times depending on the extent of adsorption observed in Chapter 5. 

The solution was continuously bubbled with Ar and periodically stirred. 

 Upon completion of metal deposition, the material was transferred back into the 

quartz reactor tube under Ar flow (no exposure to air). The sample was then dried at 

room temperature in flowing H2 for 3 h.  After being dried, the sample was exposed to 

the following reduction procedure in flowing H2: 110°C for 2 h followed by 450°C for 4 
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h. The sample was then cooled to room temperature in flowing H2. Finally, the material 

was passivated in 1% O2/He flowing at 20 mL/min at room temperature for 6 h. 

 The resulting Mo2C-supported metal catalysts had nominal metal surface loadings 

of 1.1 atom/nm
2
. In addition to this set of catalysts, a Pt-Co/Mo2C catalyst was also 

synthesized. This catalyst was investigated because oxide-supported Co catalysts 

promoted with noble metals have been reported to exhibit high turnover frequencies for 

FTS [10]. For this catalyst, the Co was deposited first via the method described above. 

After the reduction treatment (without passivation), the wet impregnation procedure was 

repeated for Pt deposition. The sample was then reduced and passivated as described 

above. For the Pt-Co/Mo2C catalyst, the Co nominal surface loading was 1.1 atom/nm
2
 

while the Pt nominal surface loading was 0.2 atom/nm
2
. Therefore, the atomic ratio of 

Co:Pt was 5:1.  

6.2.2. Catalyst Characterization 

6.2.2.1.X-ray Diffraction 

 X-ray diffraction patterns of the Mo2C-supported metal catalysts were collected 

using a Rigaku miniflex X-ray diffractometer with a Cu-Kα (λ = 1.54nm) radiation 

source and a Ni filter. A range of 10° < 2θ < 90° was scanned at a rate of 5°/min with a 

0.02° step size. 

6.2.2.2.Elemental Analysis 

 Elemental analysis of the Mo2C-supported metal catalysts was performed using 

Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). First, 15mg of 

material was dissolved using 3mL of aqua regia solution (75%vol HCl and 25%vol 

HNO3). The solution was left for 24 h. Next, 1mL of the aqua regia solution was diluted 
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with 13mL of deionized water and was ready for analysis. The solutions were analyzed 

using a Varian 710-ES ICP Optical Emission Spectrometer. For each analysis, 

quantification was performed by comparing the relative intensities of the catalyst 

solutions to the relative intensities of several standards of known concentrations. 

6.2.2.3.CO Uptake Measurements 

 CO pulse chemisorption experiments were performed at room temperature as 

discussed in Chapter 3 (Section 3.2.2). Prior to analysis, the Mo2C-supported metal 

catalysts were pretreated with 15% CH4/H2 at 590°C for 4 h, followed by degassing in He 

at 600°C. During CO pulsing, the effluent stream was analyzed using the thermal 

conductivity detector (TCD) and the mass spectrometer (MS).   

6.2.2.4.Temperature Programmed Reduction Experiments 

 Temperature Programmed Reduction (TPR) experiments for the Mo2C-supported 

metal catalysts were performed in a Micromeritics 2910 AutoChem Chemisorption 

analyzer. A schematic of the chemisorption analyzer was given in Chapter 2 (Figure 2.2). 

Approximately 100 mg of passivated catalyst was loaded into a quartz u-tube reactor and 

supported by a quartz wool plug. The sample was then degassed in flowing Ar at 200°C 

for 2 h. Following cooling to room temperature in Ar, the sample was exposed to a 10% 

H2/Ar mixture flowing at 70 mL/min. The temperature was then linearly increased at 

20°C/min to a final temperature of 800°C. The consumption of H2 was monitored using 

the TCD. 

6.2.2.5.X-ray Absorption Spectroscopy 

 X-ray absorption spectroscopy (XAS) experiments were performed on a subset of 

the Mo2C-supported metal catalysts (Cu/Mo2C, Co/Mo2C, and Fe/Mo2C) to probe the 
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reduction of the supported metal as a function of pretreatment temperature in 100% H2 

and 15% CH4/H2.  The experiments were performed as described in Chapter 5 (Section 

5.2.2.4). The edges collected were the Cu K edge (8979 eV), the Co K edge (7709 eV), 

and the Fe K edge (7112 eV). Spectra were collected in fluorescence mode. 

 Prior to collection of the spectra, the samples were pretreated in a quartz reactor 

tube in either 100% H2 or 15% CH4/H2 flowing at 100 mL/min. The samples were held at 

a specified temperature for 1 h (temperatures studied: room temperature, 150°C, 300°C, 

450°C, and 590°C). The samples were then cooled to room temperature in the 

pretreatment gas. The quartz tube was then purged with He and sealed to protect the 

samples from exposure to air. The samples were then transferred to the beamline and 

spectra were collected. 

 XAS spectra were analyzed using Athena as discussed in Chapter 5. However, for 

this study, the EXAFS region was also explored. R-space data was plotted by first 

converting the post-edge data into k-space with a k
2
 weighting. The photo-electron 

wavenumber, k, is given by Equation 6.1 [11]: 

     
 

2

02



EEm
k


     (6.1) 

where E is the x-ray energy, E0 is the edge energy,  is Planck’s constant, and m is the 

mass of an electron. Then, using a Fourier transform, the k-space data was converted into 

R-space. A Hanning window function was used during this conversion. The range of k-

space data converted into R-space was selected based on the noise in the data; typically 

the k-space range was ~2Å
-1

 to ~12Å
-1

. 
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6.2.3. Fischer-Tropsch Synthesis Experiments 

 Fischer-Tropsch Synthesis (FTS) experiments were performed as described in 

detail in Chapter 3 (Section 3.2.3). The conditions for these experiments were 270-

300°C, 25 bar, H2/CO = 2, and GHSV = 44,000 h
-1

. Prior to FTS, the Mo2C-supported 

metal catalysts were pretreated at atmospheric pressure in 15% CH4/H2 at 590°C for 4 h 

(the same pretreatment used for Mo2C). 

6.3. Results 

6.3.1. Catalyst Characterization 

 X-ray diffraction patterns for the Mo2C-supported metal catalysts are shown in 

Figure 6.2. Compared to Mo2C, the Ru/Mo2C, Cu/Mo2C, and Rh/Mo2C catalysts 

appeared to have an additional peak at ~42°. This peak corresponds to the supported 

metal for these materials (Ru(101) reflection [12], Cu(111) reflection [13], and Rh(111) 

Figure 6.2: X-ray diffraction patterns for Mo2C and the Mo2C-supported metal 

catalysts. 
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reflection [14]). For the remainder of the Mo2C-supported metal catalysts, peaks 

corresponding to the supported metals were not discernable, suggesting high dispersions. 

The particle size detection limit for the x-ray diffractometer was ~5nm. The nominal and 

actual metal weight loadings as well as the CO uptakes for the catalysts are given in 

Table 6.1. With the exception of Fe and Ru, the actual loadings were similar to the 

nominal loadings. Nominal loadings were based on the assumption that 100% of the 

metal in solution was deposited on the Mo2C surface. Recall from Chapter 5 that for Fe, 

only a small percentage of metal was deposited on Mo2C even after 20 h in the loading 

solution. For Ru, it has been reported that it is difficult to dissolve Ru in aqua regia [15], 

therefore, the low measured metal loading may be due to Ru remaining as a solid and 

being removed from the solution during filtering prior to ICP-OES analysis. Based on the 

relatively high reduction potential of Ru (
0

/2 RuRu
E   = 0.455 V [16]) and the findings from 

Chapter 5, it would be expected that Ru could achieve close to 100% relative loading. 

Table 6.1: Elemental analysis and CO uptake results for Mo2C and the Mo2C-

supported metal catalysts. 

Catalyst 
Nominal Loading 

(wt. %) 

Actual Loading
1
 

(wt. %) 

CO Uptake
2
 

(µmol/g) 

Mo2C -- -- 268 

Pt/Mo2C 4 4.1 ± 0.1 181 

Co/Mo2C 1.2 0.9 ± 0.1 291 

Fe/Mo2C 1.2 0.3 ± 0.1 354 

Ru/Mo2C 2.1 0.9 ± 0.2 247 

Cu/Mo2C 1.3 1.3 ± 0.1 221 

Rh/Mo2C 2.1 2.0 ± 0.1 290 

Ni/Mo2C 1.2 1.1 ± 0.1 280 

Pt-Co/Mo2C 
0.8 Pt 

1.2 Co 

0.9 ± 0.1 

1.1 ± 0.1 
283 

1
 Determined by ICP-OES. 

2
 Determined by room temperature CO chemisorption. The error on CO uptake 

measurements was ± 10 µmol/g. 
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 The CO uptakes for the catalysts ranged from 181 µmol/g (Pt/Mo2C) to 354 

µmol/g (Fe/Mo2C). It is interesting that the addition of Pt caused a decrease in the CO 

uptake compared to Mo2C, as Pt is known to adsorb CO. One possible explanation is that 

Pt may be blocking some of the pores of Mo2C, thus decreasing the overall number of 

sites for CO adsorption. 

 Reduction profiles of the passivated Mo2C-supported metal are shown in Figure 

6.3. For Mo2C, a broad reduction peak was observed around 280°C along with a 

shoulder at 400°C. These peaks are primarily due to the removal of the passivation layer 

[4]. The peak at 750°C corresponds to the decomposition of Mo2C to Mo; the carbon in 

the catalyst was removed in the form of CH4 [3, 4]. For the Fe/Mo2C and Ni/Mo2C 

Figure 6.3: H2 consumption during temperature programmed reduction procedure for 

Mo2C and Mo2C-supported metal catalysts. Conditions: 10% H2/Ar, ramp 

rate = 20°C/min. 
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catalysts, the TPR spectra were similar to that for Mo2C; no additional peaks or 

temperature shifts were observed. The addition of metals such as Pt, Ru, Cu, and Rh 

caused a shift toward lower temperature for the removal of the passivation layer of the 

Mo2C support. This shift has been reported previously for Pt/Mo2C catalysts [17] and 

could be due to a H2 spillover effect [18-20]. The addition of Co caused the opposite 

effect; the peak position for Mo2C reduction was shifted towards higher temperatures. 

Additionally, a more-defined peak was observed at 380°C. This peak may be due to the 

reduction of cobalt oxides (Co3O4 and CoO) [21]. It has been reported that Co oxides are 

often difficult to reduce (require high reduction temperatures) when the Co interacts 

strongly with the support [21]. To counteract this effect, Co FTS catalysts are often doped 

with Pt or some other noble metal to facilitate reduction of the Co oxides at lower 

temperatures [8, 21]. As shown in Figure 6.2, the Pt-Co/Mo2C TPR spectrum was similar 

to that of Pt/Mo2C, suggesting that the addition of Pt aided in the reduction of the Co 

oxide. However, it is also possible that the Co oxide particles were completely covered 

by Pt, thus eliminating the Co oxide reduction peak in the TPR profile. 

 From the TPR spectra, it is difficult to assign peaks to the reduction of the 

supported metals. Accordingly, a subset of the catalysts was characterized using XAS. 

The reduction of Cu/Mo2C, Co/Mo2C, and Fe/Mo2C was monitored as a function of 

temperature during exposure to 100% H2 or 15% CH4/H2. These three catalysts represent 

a range of reducibilities with Cu being easier to reduce and Co and Fe more difficult. The 

XANES spectra for the Cu/Mo2C catalyst pretreated in H2 and 15% CH4/H2 at various 

temperatures are shown in Figure 6.4. Without pretreatment, the passivated Cu/Mo2C 

sample exhibited a stronger whiteline than the Cu metal reference, suggesting that the Cu 
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Figure 6.4: Cu K edge XANES spectra for the Cu/Mo2C catalyst pretreated at various 

temperatures in (a) 100% H2 and (b) 15% CH4/H2. A spectrum for a Cu 

foil reference is also shown. 
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Figure 6.5: Cu K edge EXAFS spectra for the Cu/Mo2C catalyst pretreated at various 

temperatures in (a) 100% H2 and (b) 15% CH4/H2. A spectrum for a Cu 

foil reference is also shown. 



204 
 

was partially oxidized. By 300°C, regardless of the pretreatment gas, the Cu was reduced 

to the zero-valent state. The EXAFS spectra (Figure 6.5) for the Cu/Mo2C samples 

pretreated at temperatures of 300°C and higher clearly resembled that of the Cu metal 

standard. The strong peak at ~2.2Å corresponds to the first shell Cu-Cu bond. The 

increase in intensity of this peak with increasing pretreatment temperature suggests that 

the Cu particles were sintering (increasing in size). The peaks in the range of 4-5Å 

correspond to the second and third shells. The peak around 1.5Å for the passivated 

Cu/Mo2C sample corresponded to the Cu-O bond. 

 The XANES and EXAFS spectra for the Co/Mo2C catalyst are shown in Figures 

6.6 and 6.7. As the pretreatment temperature was increased, the intensity of the whiteline 

decreased, indicating that the Co was being reduced. For temperatures of 450°C and 

590°C, the Co XANES spectra were similar, suggesting that no further reduction 

occurred. This result is in agreement with the H2 TPR data as the reduction peak 

associated with Co oxides for the Co/Mo2C catalyst was observed at 380°C. However, 

even at 590°C in H2 or 15% CH4/H2, the Co was not completely reduced to its zero-

valent state (see Co metal standard spectrum). This finding suggests a strong interaction 

between the Co and the Mo2C support. 

 The EXAFS spectra show that the intensity of the peak corresponding to the Co-O 

bond (R = ~1.5Å [22, 23]) decreased with increasing pretreatment temperature. The peak 

at ~2.2Å was observed for the Co/Mo2C catalysts pretreated at 450°C and 590°C, 

although the peak had fairly low intensity. This peak corresponds to the Co-Co bond in 

metallic Co (see EXAFS spectrum for Co metal standard). In regards to pretreatment gas, 

the XANES and EXAFS spectra were similar for Co/Mo2C pretreated at 590°C in H2 and 
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Figure 6.6: Co K edge XANES spectra for the Co/Mo2C catalyst pretreated at various 

temperatures in (a) 100% H2 and (b) 15% CH4/H2. A spectrum for a Co 

foil reference is also shown. 
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Figure 6.7: Co K edge EXAFS spectra for the Co/Mo2C catalyst pretreated at various 

temperatures in (a) 100% H2 and (b) 15% CH4/H2. A spectrum for a Co 

foil reference is also shown. The intensity of the Co foil spectra was 

multiplied by 0.4 to put it on the same scale as the Co/Mo2C catalyst 

spectra. 
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pretreated at 590°C in 15% CH4/H2, indicating that Co was not carburized by the CH4/H2 

treatment. 

 The XANES spectra for the Fe/Mo2C catalysts are shown in Figure 6.8. Due to 

the low weight loadings of Fe on the catalyst, the fluorescence intensity was quite low 

causing a significant amount of noise and requiring extended times for data collection. 

Therefore, spectra were only collected for the passivated Fe/Mo2C catalyst at room 

temperature and the Fe/Mo2C catalyst pretreated at 590°C in 15% CH4/H2. As with Co, 

the whiteline for the Fe/Mo2C catalyst decreased significantly after pretreatment, 

however the Fe was still partially oxidized compared to the metallic Fe standard. Due to 

the noise in the data, the EXAFS region was not explored. 

6.3.2. Fischer-Tropsch Synthesis Performance 

 Arrhenius plots of the gravimetric FTS product formation rates for the Mo2C-

supported metal catalysts are shown in Figure 6.9. On a gravimetric basis, the Ni/Mo2C 

catalyst exhibited the highest FTS rates while the Co/Mo2C catalyst exhibited the lowest 

Figure 6.8: Fe K edge XANES spectra for the Fe/Mo2C catalyst pretreated at various 

temperatures in 15% CH4/H2. A spectrum for a Fe foil reference is also 

shown. 
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Figure 6.9: Arrhenius plots of the gravimetric product formation rates (a) including 

CO2 and (b) excluding CO2 for Mo2C and the Mo2C-supported metal 

catalysts. Reaction conditions: 25 bar, H2/CO = 2, 270-300°C, and GHSV 

= 44000 h
-1

. Error bars correspond to 95% confidence interval. 

(a) 

(b) 
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rates. Both catalysts had CO uptakes similar to that of Mo2C (Table 6.1). This decreased 

rate for Co/Mo2C compared to Mo2C was surprising as Co is an active metal for FTS [6, 

8] and Co/Mo2C has been reported to have a higher activity for FTS than Mo2C [5]. The 

rate at 300°C for Ni/Mo2C was not recorded as it became exceedingly difficult to 

maintain control of the reaction temperature. Except for Ni/Mo2C and Co/Mo2C, the 

Mo2C-supported metal catalysts exhibited gravimetric rates similar to that of Mo2C. 

 The product formation rates normalized by the CO uptakes are shown in Figure 

6.10.  Again, the Co/Mo2C catalyst exhibited the lowest normalized FTS rates. The 

highest normalized rates were observed for Ni/Mo2C and Pt/Mo2C. The shift in relative 

FTS activity compared to the other catalysts for Pt/Mo2C was due to its lower CO uptake 

(181 µmol/g) compared to the other catalysts. Interestingly, the addition of Pt to the 

Co/Mo2C catalyst resulted in an increase in FTS rates; however, the rates for Pt-Co/Mo2C 

Figure 6.10: Arrhenius plots of the normalized product formation rates excluding CO2 

for Mo2C and the Mo2C-supported metal catalysts. Reaction conditions: 

25 bar, H2/CO = 2, 270-300°C, and GHSV = 44000h
-1

. Error bars 

correspond to 95% confidence interval. 
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were not as high as those for Pt/Mo2C. The activity trend for these materials based on the 

normalized product formation rates is as follows: Pt/Mo2C ~ Ni/Mo2C > Ru/Mo2C ~ 

Cu/Mo2C ~ Rh/Mo2C ~ Pt-Co/Mo2C ~ Mo2C > Fe/Mo2C ~ Co/Mo2C. It should be noted, 

however, that differences between the most active catalyst (Pt/Mo2C) and the least active 

catalyst (Co/Mo2C) were fairly small. At 290°C, the normalized product formation rates 

for Pt/Mo2C and Co/Mo2C were 0.33 s
-1

 and 0.15 s
-1

, respectively. Additionally, the 

apparent activation energies for the Mo2C-supported metal catalysts were similar to that 

for Mo2C, with the exception of Rh/Mo2C which had a slightly lower activation energy 

(Table 6.2). 

Table 6.2: FTS apparent activation energies for Mo2C and the Mo2C-supported metal 

catalysts. 

Catalyst Ea,app
1,2

 (kJ/mol) 

Mo2C 118 ± 8 

Pt/Mo2C 113 ± 9 

Co/Mo2C 117 ± 6 

Fe/Mo2C 120 ± 11 

Ru/Mo2C 131 ± 10 

Cu/Mo2C 113 ± 5 

Rh/Mo2C 96 ± 9 

Ni/Mo2C 112 ± 5 

Pt-Co/Mo2C 103 ± 4 
  1

 Calculated from product formation rates excluding CO2. 

  
2
 Error corresponds to 95% confidence interval. 

 

 Although experiments were performed at a series of temperatures, selectivities of 

the Mo2C-supported metal catalysts are compared at a temperature of 290°C. As the 

gravimetric rates were similar for all catalysts, the CO conversions at this temperature 

were similar allowing for an equitable comparison of selectivities. The total product 

selectivities for these materials are shown in Figure 6.11. Although the changes were 

subtle, Co/Mo2C exhibited an increase in selectivity towards hydrocarbons and alcohols 

and a decrease in selectivity towards CO2 compared to Mo2C. This result is in agreement 
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with the observations by King that Co/Mo2C was less active for the water gas shift 

reaction (production of CO2) than Mo2C [3]. The remainder of the Mo2C-supported metal 

catalyst all demonstrated product selectivities similar to that for Mo2C. 

 The hydrocarbon selectivity is shown in Figure 6.12. In general, the selectivities 

for all of the catalysts were similar; there were no large shifts in selectivity due to the 

addition of metals. However, there were a few subtle changes. The Co/Mo2C catalyst 

exhibited a decrease in selectivity towards CH4 and an increase in selectivity towards C2-

C4 hydrocarbons compared to Mo2C. Ni/Mo2C and Rh/Mo2C exhibited the opposite 

trend, an increase in CH4 selectivity and a decrease in C2-C4 selectivity. Pt/Mo2C and Pt-

Co/Mo2C exhibited similar hydrocarbon selectivities to that of Mo2C. For further 

comparison, the gravimetric product formation rates on a C1 basis for the Mo2C-

supported metal catalysts is given in Table 6.3. 

 

Figure 6.11: Total product selectivity for Mo2C and the Mo2C-supported metal 

catalysts. Reaction conditions: 290°C, 25 bar, H2/CO = 2. 
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Table 6.3: Gravimetric product formation rates on a C1 basis for Mo2C and Mo2C-

supported metal catalysts. Reaction conditions: 290°C, 25 bar, H2/CO = 2. 

 Product Formation Rate on C1 basis (µmol/g•s) 

Catalyst CO2 CH4 C2-C4 C5+ Alcohols 

Mo2C 34.9 34.0 25.7 1.63 0.66 

Pt/Mo2C 31.1 32.2 24.6 1.55 1.08 

Co/Mo2C 18.1 22.3 19.8 1.27 1.30 

Fe/Mo2C 34.2 33.1 24.0 1.65 0.57 

Ru/Mo2C 32.9 31.0 24.8 1.49 0.69 

Cu/Mo2C 31.6 30.1 22.8 1.38 0.75 

Rh/Mo2C 34.7 38.1 23.3 1.48 0.44 

Ni/Mo2C 47.3 51.3 32.7 1.99 0.91 

Pt-Co/Mo2C 38.4 38.9 27.9 1.83 0.66 

  

 Due to the similar hydrocarbon selectivities, the Anderson-Schulz-Flory α values 

for Mo2C-supported metal catalysts were also similar (Table 6.4). The highest value was 

for Co/Mo2C (0.31) and the lowest value was for Ni/Mo2C (0.28). However, the error on 

these measurements was ± 0.01 indicating that all of the α values for the Mo2C-supported 

metal catalysts were within error of the value for Mo2C (0.29).  

 

CH4 C2-C4 C5+ 

Figure 6.12: Hydrocarbon selectivity for Mo2C and the Mo2C-supported metal 

catalysts. Reaction conditions: 290°C, 25 bar, H2/CO = 2. 
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Table 6.4: ASF α values for Mo2C and Mo2C-supported metal catalysts. Reaction 

conditions: 290°C, 25 bar, H2/CO = 2. 

Catalyst ASF α
1
 

Mo2C 0.31 ± 0.02 

Pt/Mo2C 0.31 ± 0.02 

Co/Mo2C 0.32 ± 0.02 

Fe/Mo2C 0.31 ± 0.02 

Ru/Mo2C 0.31 ± 0.02 

Cu/Mo2C 0.31 ± 0.02 

Rh/Mo2C 0.31 ± 0.02 

Ni/Mo2C 0.30 ± 0.02 

Pt-Co/Mo2C 0.31 ± 0.02 
1
 Error calculated from linear regression of ASF plots. 

 

 The supported metals appeared to have more of an effect on the olefin/paraffin 

ratio than on the total product selectivity and hydrocarbon selectivity. The olefin/paraffin 

ratios for Mo2C and the Mo2C-supported metal catalysts are shown in Figure 6.13. The 

Co/Mo2C catalyst exhibited an increase in olefin/paraffin ratio compared to Mo2C while 

Ni/Mo2C and Rh/Mo2C exhibited a decrease in olefin/paraffin ratio. The C3 

olefin/paraffin molar ratios for Mo2C, Co/Mo2C, Ni/Mo2C, and Rh/Mo2C were 0.20, 

C2 C3 C5 C4 

Figure 6.13: Olefin/Paraffin molar ratio for Mo2C and the Mo2C-supported metal 

catalysts. Reaction conditions: 290°C, 25 bar, H2/CO = 2. 
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0.34, 0.11, and 0.12, respectively. These results suggest that the supported metals 

affected the hydrogen coverage on the catalyst surface under reaction conditions. 

6.4. Discussion 

 In this chapter, the activities and selectivities of a series of Mo2C-supported metal 

catalysts were described for the Fischer-Tropsch Synthesis. Based on the normalized FTS 

product formation rates (Figure 6.10), the following activity trend was developed: 

Pt/Mo2C ~ Ni/Mo2C > Ru/Mo2C ~ Cu/Mo2C ~ Rh/Mo2C ~ Pt-Co/Mo2C ~ Mo2C > 

Fe/Mo2C ~ Co/Mo2C. Interestingly, the supported metals only caused modest changes in 

the rates compared to Mo2C. The most active catalyst, Pt/Mo2C, exhibited a rate at 290°C 

that was ~58% higher than that for Mo2C. Moreover, supporting metals such as Fe, Co, 

and Ru that are reported to be highly active for FTS [6, 8, 24] resulted in similar or even 

decreased rates compared to Mo2C alone.  

 In regards to selectivity, the Mo2C-supported metal catalysts behaved similarly to 

Mo2C. The most notable exceptions were Co/Mo2C and Ni/Mo2C. Although the changes 

were subtle, Co/Mo2C exhibited an increase in selectivity towards C2-C4 hydrocarbons, 

alcohols, and olefins and a decrease in selectivity towards CH4 and CO2, whereas 

Ni/Mo2C exhibited an increase in selectivity towards CH4 and a decrease in 

olefin/paraffin ratio and C2-C4 hydrocarbon selectivity. 

 For heterogeneous catalysts, activity and selectivity are sensitive functions of the 

surface chemistry. The activity and selectivity results for the carbide-supported metal 

catalysts can be explained based on the individual functions of the supported metal and 

the Mo2C support as well as the catalyst pretreatment. The Pt/Mo2C catalyst exhibited 

higher normalized FTS rates than Mo2C, but displayed similar product selectivities (CH4, 
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C2-C4, and C5+ selectivity, olefin/paraffin molar ratio, and ASF α). The similar 

selectivities suggested that similar sites were performing FTS on both the Mo2C and 

Pt/Mo2C surfaces. The higher normalized rates could be attributed to improved quality of 

the sites or an increase in the number of available sites under reaction conditions. As 

shown in Figure 6.3, the addition of Pt caused a decrease in the reduction temperature for 

Mo2C, indicating that Pt aids in the reduction of Mo2C. Consequently, it is proposed that 

the Mo2C surface is more reduced under reaction conditions in the presence of Pt, 

resulting in an increase in the number of available sites on the Mo2C surface to perform 

FTS. This conclusion is in agreement with the XPS results discussed in Chapter 2. Under 

water gas shift conditions, the O/Mo atomic ratio for Pt/Mo2C was lower than that for 

Mo2C. For FTS, Pt did not provide sites for the reaction as it is only reported to have 

negligible activity for FTS [24]; Pt solely aided in maintaining a more reduced Mo2C 

surface under reaction conditions. 

 It is proposed that the subtle changes in activities and selectivities observed for 

the Ni/Mo2C and Co/Mo2C catalysts were due to a combination of the intrinsic catalytic 

behavior of the supported metal and the Mo2C support. Ni/Mo2C favored the production 

of CH4 and had a lower α than Mo2C. These results are in agreement with Ni being an 

active catalyst for methanation [8, 9]. The Co/Mo2C catalyst favored the production of 

higher hydrocarbons, and exhibited lower selectivities towards CH4 and CO2. Both of 

these properties are desirable for a FTS catalyst and are often reported for Co-based 

catalysts [6, 8, 25]. It is speculated that the primary reason for the activity and selectivity 

changes being so modest compared to Mo2C was the low surface coverage of the 

supported metal. The nominal metal surface coverage of the Mo2C support for this 
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investigation was ~10%. Therefore, assuming 100% dispersion and that the supported 

metal and Mo2C have similar sites densities and turnover frequencies, the supported 

metal would only be contributing 10% to the overall activity and selectivity. 

 Additionally, the pretreatment conditions employed in this study were developed 

for Mo2C (15% CH4/H2 at 590°C) and were not adjusted based on the supported metal. It 

is reported that a number of the metals investigated, especially Cu, Co, Fe, and Rh, are 

sensitive to pretreatment conditions and support effects [21, 26-28]. Copper is known to 

sinter at temperatures above 300°C [26]. The reduction temperature for Co oxides 

depends on the strength of interaction with the support [21]. For the Co/Mo2C catalyst, 

the Co was not fully reduced after treatment in either 100% H2 at 590°C or 15% CH4/H2 

at 590°C (Figure 6.6). This result suggests that Co interacted strongly with the Mo2C 

support. As metallic Co is reported to be the active phase for FTS [10], Co oxides 

remaining on the Mo2C surface after pretreatment likely affected the activity and 

selectivity in a negative manner. 

 Overall, the Mo2C-supported metal catalysts were not bi-functional in nature for 

FTS. The reaction appeared to occur on the supported metal sites and Mo2C sites 

independently. A synergistic effect, similar to that reported for Pt/Mo2C for water gas 

shift [2-4], was not observed. Low metal surface coverages combined with unoptimized 

pretreatment conditions may have resulted in only modest changes to the activity and 

selectivity compared to Mo2C. It should be noted that this study is far from complete. 

Future work could include investigating the effect of metal weight loading and 

pretreatment conditions on FTS performance, optimizing the pretreatment conditions 

using in-situ X-ray absorption spectroscopy and temperature programmed reduction 
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techniques, as well as supporting metals on other carbides or nitrides. Based on this 

study, the Co/Mo2C catalyst calls for further investigation, as it shifted the selectivity 

towards the desired products. 

6.5. Summary 

 The Fischer-Tropsch Synthesis performance of Mo2C-supported metal (Pt, Co, 

Fe, Ru, Cu, Rh, and Ni) catalysts was investigated. The Pt/Mo2C catalyst exhibited the 

highest normalized rates as the presence of Pt resulted in a more reduced Mo2C surface 

under reaction conditions, thus increasing the number of available sites. The addition of 

Co shifted the selectivity towards the desired products (higher hydrocarbons), and away 

from the undesired products (CH4 and CO2). However, in general, the addition of the 

supported metal resulted in only minor changes to the activity and selectivity compared 

to Mo2C alone. The lack of major changes was primarily due to the metal and the support 

acting independently and low metal surface coverages.  
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CHAPTER 7 

Summary, Conclusions, and Future Work 

7.1. Summary and Conclusions 

 This work investigated the catalytic properties of early transition metal carbide 

and nitride based catalysts for (1) the water gas shift reaction in the presence of sulfur and 

(2) Fischer-Tropsch Synthesis. Regarding water gas shift, the primary goals were to 

determine the effect of sulfur, present in the form on H2S, on the structure and water gas 

shift performance of Mo2C and Pt/Mo2C catalysts, and to identify relationships between 

the deactivation due to sulfur and changes in the catalyst bulk or surface structure. 

Regarding Fischer-Tropsch Synthesis, the main goals were to evaluate the performance 

of a series of early transition metal carbide and nitride-based catalysts for Fischer-

Tropsch Synthesis, and to develop structure-function relationships that can be used to 

guide future catalyst development. The series of catalysts explored included carbides and 

nitrides of Mo, W, V, and Nb as well as Mo2C-supported metal catalysts. In regards to 

the Mo2C-supported metal catalysts, the mechanisms governing metal adsorption onto the 

native Mo2C surface during wet impregnation were elucidated. 

 For water gas shift, the Mo2C and Pt/Mo2C catalysts deactivated significantly in 

the presence of 5ppm H2S, losing more than 90% of their pre-sulfur exposure hydrogen 

production rates. Both catalysts were able to be partially regenerated with treatment in 

15% CH4/H2 at 590°C. Based on rate measurements and XPS and TGA results, the 

deactivation for Mo2C was primarily due to conversion of the surface to MoS2. 
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Interestingly, the Mo2C catalyst actually regained some of its lost activity in the presence 

of sulfur upon conversion of the entire surface to MoS2; MoS2 is catalytically active for 

water gas shift [1]. Moreover, under reaction conditions, Mo2C possessed a high surface 

concentration of oxygen, which may have facilitated the formation of MoS2. As a result, 

deactivation for Mo2C could be reduced by controlling the reaction conditions to 

minimize the concentration of oxygen on the catalyst surface. For Pt/Mo2C, deactivation 

was primarily due to irreversible sulfur poisoning of Pt-based sites. Although the addition 

of Pt improved the activity of the Mo2C catalyst, it also altered the interaction of sulfur 

with the catalyst surface resulting in an increased susceptibility to sulfur poisoning. 

 For Fischer-Tropsch Synthesis, the intrinsic rate trend for these materials was as 

follows: Mo2C ~ W2C ~ VN ~ NbN > Mo2N, W2N >> VC, NbC. The rates for these 

materials were a function of both the metal and interstitial element (C or N). Similar to 

studies that have investigated tuning catalyst performance through alloying, this result 

suggests that the activity of these materials could be tuned by choice of the parent metal 

and the interstitial atom. Regarding selectivity, these materials primarily favored light 

hydrocarbons (C2-C4) and exhibited some water gas shift activity. Their selectivity to C5+ 

hydrocarbons was much lower than that for Fe or Co-based catalysts. The water gas shift 

activity imparted a degree of resistance to deactivation under CO-rich feed streams. 

These results suggest that these materials may be suitable for conversion of biomass-

derived syngas, which is typically CO-rich, into fuels. Moreover, the bulk crystal 

structures of these materials were stable under reaction conditions. However, the catalyst 

surface was changed under reaction conditions. There was an increase in oxygen and 

carbon species initially, as well as the deposition of waxy hydrocarbon species over time. 
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 Investigation of the Fischer-Tropsch Synthesis mechanisms over Mo2N and Mo2C 

resulted in the conclusion that both catalysts were capable of direct CO dissociation, but 

that they followed two different mechanisms. Mo2N followed the carbide mechanism, 

which involves CO dissociation followed by hydrogenation of the adsorbed carbon. The 

activation barrier for CO dissociation over Mo2C was much lower than over Mo2N, 

resulting in carbon being bound much stronger to the Mo2C surface than the Mo2N 

surface. The carbon was bound so strongly to the Mo2C surface that it could not be 

removed via hydrogenation under Fischer-Tropsch Synthesis relevant temperatures (200-

350°C). Therefore, the predominant mechanism over Mo2C could not be the carbide 

mechanism. Using temperature programmed reaction experiments, it was shown that 

molecularly adsorbed CO played a key role in the production of C2+ hydrocarbons. 

Consequently, it was proposed that the dominant mechanism over Mo2C was either the 

oxygenate or CO-insertion mechanism. These findings also suggested that there were 

multiple sites present on the Mo2C surface: sites for CO dissociation and sites for 

molecular CO adsorption/C-C coupling. 

 To explore methods for improving catalyst performance, Mo2C was utilized as a 

support for other metals. Prior to kinetic Fischer-Tropsch Synthesis measurements, the 

metal adsorption process over Mo2C via wet impregnation was investigated to determine 

the key mechanisms governing the process. Using X-ray absorption spectroscopy, it was 

determined that metals such as Pt, Pd, and Cu were reduced to their zero-valent state by 

the native surface of Mo2C.  These metals possess fairly high reduction potentials and 

achieved virtually 100% of the targeted metal loading. They also demonstrated the fastest 

rates of adsorption. Metals such as Ni and Fe were not reduced by the Mo2C surface. 
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These metals have lower reduction potentials and did not achieve the targeted loading. It 

is proposed that the adsorption process is primarily governed by the red-ox chemistry of 

the metal and the Mo2C support. Additionally, the precursor counter ion (Cl
-
 or NO3

-
) 

affected the metal adsorption process, possibly by modifying the reduction potential of 

the metal. For metals with low reduction potentials that do not reduce on the Mo2C 

surface, electrostatic interactions may need to be exploited to improve loading. 

 After investigating the adsorption process, Fischer-Tropsch Synthesis kinetic 

experiments were performed over the Mo2C-supported metal catalysts to determine the 

effect of the metal on the catalyst performance. Although previous research regarding 

Pt/Mo2C catalysts for water gas shift has shown that these materials are bi-functional in 

nature and exhibit high rates due to a synergistic effect [2], our findings for Fischer-

Tropsch Synthesis indicated that the metal and the Mo2C were acting independently. In 

general, only minor changes in performance were observed and the changes followed the 

intrinsic nature of the supported metals. Ni/Mo2C exhibited an increase in methane 

selectivity and Co/Mo2C exhibited an increase in C2+ hydrocarbon selectivity and a 

decrease in water gas shift activity. Both results fit with the reported catalytic properties 

of these metals. Additionally, Pt/Mo2C exhibited higher normalized rates because the Pt 

caused the Mo2C surface to be more reduced under reaction conditions, thus allowing 

more sites to be available for the reaction.  

7.2. Future Work 

7.2.1. Extension of Current Research 

 Based on the results of this work, there are several areas that warrant future 

investigation: (1) Fischer-Tropsch Synthesis experiments under more realistic conditions, 
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(2) further investigation of the Fischer-Tropsch Synthesis mechanism using Infrared 

spectroscopy and Density Functional Theory calculations, (3) selective poisoning 

experiments, and (4) development of new catalyst formulations. Regarding (1), Fischer-

Tropsch Synthesis experiments in this work were carried out at industrially relevant 

temperatures and pressures, but at low conversions (<10%). It has been reported that 

single pass conversion in a Fischer-Tropsch Synthesis reactor for a biomass-to-fuels plant 

will need to be greater than 60% [3]. Experiments need to be performed at conversions 

closer to 50%. By running at these high conversions and lower space velocities, more 

elaborate product analysis will be required. In this work, gas phase products up to C10 

were analyzed. Future work will need to develop methods for analysis of higher 

hydrocarbons in the liquid phase. Additionally, catalyst stability is a key issue for 

industrial Fischer-Tropsch Synthesis catalysts. Future experiments need to be run for 

extended periods of time (> 50 h) to further explore the stabilities of these early transition 

metal carbide and nitride based catalysts. 

 In Chapter 4, it was shown that Mo2C predominantly followed either the 

oxygenate or CO-insertion mechanisms, both of which involve the formation of an 

intermediate via molecular adsorption of CO. Using Diffuse Reflectance Infrared Fourier 

Transform Spectroscopy, it may be possible to identify these intermediates on the Mo2C 

surface under reaction conditions and more conclusively identify the dominant 

mechanism for Fischer-Tropsch Synthesis. Additionally, it was proposed in Chapter 4 

that Mo2N and Mo2C followed different Fischer-Tropsch Synthesis mechanisms. Mo2N 

was proposed to follow the carbide mechanism, which involves direct CO dissociation 

and hydrogenation of the adsorbed carbon. Although Mo2C was also capable of direct CO 
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dissociation, the carbon was bound too strongly to the surface to be removed via 

hydrogenation at relevant reaction temperatures, therefore the dominant mechanism was 

either the oxygenate or CO-insertion mechanism. To further explore the mechanisms over 

these two catalysts, computational methods based on quantum chemistry, such as Density 

Functional Theory, could be employed. More specifically, it would be beneficial to 

investigate the surface termination under relevant reaction conditions, the favorable sites 

for molecular and dissociative CO adsorption, the routes for C-C coupling, and free 

energy diagrams for the different Fischer-Tropsch Synthesis mechanisms. 

 Regarding selective poisoning, it could be explored in two ways: (1) poisoning 

water gas shift sites and (2) poisoning CO dissociation sites. As shown in Chapter 2, 

sulfur severely poisoned water gas shift sites on the Mo2C surface. However, it has been 

reported that sites on the Mo2C surface associated with methanol decomposition and 

methanation were sulfur resistant [4]. Accordingly, it may be possible to selectively 

poison water gas shift sites with sulfur while leaving sites for CO activation and 

hydrogenation unchanged. These experiments could shed light on the different types of 

sites on the Mo2C surface and allow for modification of the Mo2C surface to improve its 

utilization of CO to produce hydrocarbons instead of CO2. Regarding poisoning of CO 

dissociation sites, it was shown in Chapter 4 that molecularly adsorbed CO on the Mo2C 

surface played a key role in C-C coupling and production of C2+ hydrocarbons. However, 

the Mo2C surface also possessed sites capable of direct CO dissociation. To improve the 

selectivity of the Mo2C catalyst towards higher hydrocarbons, the sites capable of direct 

CO dissociation could be selectively poisoned. 
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 Lastly, the conclusions from this work can guide future catalyst development. As 

discussed in Chapter 3, the intrinsic Fischer-Tropsch Synthesis activity of the early 

transition metal carbide and nitride catalysts was a function of the metal and the 

interstitial atom (C or N). This observation suggests that the activity of the catalyst may 

be tuned by choice of metal and interstitial atom. Consequently, bimetallic carbide or 

nitride catalysts (e.g. CoxMoyCz) may have improved activities and selectivities. 

Additionally, although the deposition of other transition metals on Mo2C resulted in only 

subtle changes in Fischer-Tropsch Synthesis performance (Chapter 6), promotion of the 

Mo2C surface with other elements could be beneficial. For example, promotion of Mo2C 

with potassium has been reported to shift the product distribution from hydrocarbons to 

alcohols [5-7]. In these studies, the potassium was loaded onto the passivated Mo2C 

surface via incipient wetness impregnation or physically mixed in a mortar and pestle. It 

would be interesting to explore the effect of depositing the potassium or other promoters 

on the native Mo2C surface, using the method developed in our group.  

7.2.2. New Research Thrusts 

 In addition to the production of fuels from biomass, there is considerable interest 

in the production of chemicals, especially polymers and plastics, from bio-based 

feedstocks. One possible route for the production of polymers from biomass involves the 

gasification of biomass to produce synthesis gas followed by the conversion of synthesis 

gas to olefins, specifically C2-C4 olefins. Current technology first produces methanol, 

then converts methanol into olefins [8 and references cited therein]. Direct conversion of 

synthesis gas to olefins eliminates the extra steps involved in this process. Based on the 

results reported in Chapter 3, the carbide and nitride catalysts favored the production of 
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light hydrocarbons. Even under conditions that strongly favored only methane 

production, the carbides and nitrides still produced a fair amount of C2-C4 hydrocarbons. 

Additionally, some of the catalysts, specifically W2N, exhibited high selectivities towards 

olefins. Based on these observations, these materials may be promising catalysts for 

direct conversion of synthesis gas to olefins. 

 The second research thrust stems from the results of the metal adsorption 

investigation in Chapter 5. It was proposed that a red-ox reaction occurred between the 

metal precursor (i.e. for metals with relatively high reduction potentials) and the native 

Mo2C surface, resulting in the deposition of zero-valent metal. This type of red-ox 

chemistry has been exploited to synthesize core-shell electrocatalysts [9-11]. First, a layer 

of Cu is deposited electrochemically onto the support via underpotential deposition. 

Then, a monolayer of another metal (with a reduction potential higher than that of Cu) is 

deposited by displacing the surface Cu atoms, thus forming a core-shell catalyst. This 

technique requires the use of an electrochemical cell and potentiostat whereas core-shell 

synthesis with Mo2C as a core would only require an aqueous solution containing the 

metal precursor. Based on these findings, Mo2C and possibly other transition metal 

carbides and nitrides may be effective core materials for core-shell catalysts. 
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