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Abstract 
 

The 3’ untranslated regions (3’UTRs) of mRNAs have recently been shown to 

play major roles in gene regulation by interaction with small (21-26nt length) RNAs, such 

as microRNAs and small interfering RNAs (siRNAs). Recent studies highlight dynamic 

expression of small RNAs and provide limited evidence of utilization of alternative 3’UTR 

lengths (3’UTR isoforms) across development and specific cell types. However, a 

comprehensive catalogue of the 3’UTRome of an organism has been unavailable. By 

computational analysis of traditional and novel high-throughput sequence data, chapter 

two of this dissertation provides annotated 3’UTRs for more than 75% of the genes in 

the model organism Caenorhabditis elegans across the major stages of development. At 

the whole-transcriptome level, 3’UTRs express remarkable diversity in utilization of 

alternative poly-adenylation sites, which define the alternative 3’UTR isoforms, in ~40% 

of genes in the genome. We identified many isoforms that are developmental stage-

specific, and many genes show evidence of length switching between longer and shorter 

isoforms over development, the goal of which may be to include or escape regulation 

from small RNAs or other RNA binding proteins. Thus, our study reveals the diversity 

and temporally regulated expression of 3’UTR isoforms as a complex mechanism in 

gene regulation at an unprecedented scope. The analysis provides large-scale evidence 

for multiple alternative 6nt sequence elements (PAS sites) near 3’ ends of 3’UTRs that 

are enriched in shorter, alternative isoforms. Chapter three of my dissertation compares 

and combines the results of a parallel study of 3’UTRs in C. elegans further expanding 

transcriptome coverage of 3’UTRs.  As an example of biological relevance for 3’UTR 
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isoform usage, in chapter four we identified a potential connection between the 

synaptogenesis pathway and specific 3’UTR isoform usage in C. elegans. 

In related work described in chapter five, I analyzed small RNA sequences from 

isolated sperm and oocytes and identified and characterized a new class of germline-

specific siRNAs, 26G-RNAs, which target coding regions and 3’UTRs of genes to 

regulate their target gene expression. These have been classified into two subclasses: 

26G-RNAs generated in the male germline targeting genes involved in spermatogenesis, 

and maternally inherited 26G-RNAs targeting genes that function in zygotic 

development. 
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Chapter 1: Introduction 
 

1.1: Introduction  
 

Successful transcription results in transfer of information from the DNA to the 

RNA domain namely to messenger RNAs. In eukaryotes precursor messenger RNAs 

(pre-mRNA) are transcribed in the nucleus by RNA polymerase II (pol II) enzyme and 

the nascent mRNA is transported to the cytoplasm from the nucleus to be translated into 

protein. However before the transport the mRNA must undergo multiple 

posttranscriptional modifications including 5’ capping, 3’ cleavage and polyadenylation 

and alternative splicing. 5’ capping is an addition process where 7-methylguanosine 

(m7G) is added to the 5’end of the mRNA [1]. This protects the exported mRNA from the 

destructive nature of degrading exonuclease enzymes present in the cytoplasm [2, 3] 

and helps in recruiting the ribosomes to the mRNA aiding in translational initiation[4]. 

3’end cleavage and polyadenylation is the process by which polyadenylation signals 

(PAS) are recognized in the 3’end of the mRNA resulting in cleavage of the 3’end 

followed by addition of long adenine (polyA) tails at the cleaved end [5] and release of 

the transcribing RNA polymerase. This polyA tail is thought to add stability to the mRNA 

and aid in transport and translation [6-8]. When a mRNA has more than one signal site 

marking the 3’ends, there can be more than one polyadenylation site, resulting in 

alternative polyadenylation [9]. RNA splicing is another post-transcriptional modification 

process where intermediate regions of the mRNA called introns are excised out from the 
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mRNA leaving functional regions behind called exons [4, 10]. This process is important 

in deciding which regions of the mRNA are to be included in the final protein template. 

Alternate splicing and polyadenylation can result in different proteins from the same 

gene and/or different cellular localization or protein output. The mature mRNA contains 

the 5’cap, the spliced exons and the 3’polyA tail which is then exported to the cytoplasm. 

The mechanisms which regulate this process are termed post-transcriptional regulation 

and mainly occur through proteins that interact with the RNA namely RNA Binding 

Proteins (RBP). The proteins in the Cap Binding Complex (CBC) bind the 5’ cap and 

help in exporting the RNA to the cytoplasm and protect against degradation by harmful 

exonucleases that exist there [2, 3]. The factors in the spliceosome complex successfully 

remove the intron regions in the mRNA which do not code proteins[11]. The proteins in 

the 3’end processing machinery successfully recognize the polyA signal sites and cleave 

at the 3’end followed by recruitment of polyA polymerases to add the polyA tail. The 

polyA tail provides stability to the mRNA during export and also protects against 

exonucleases. Furthermore, the PolyA binding proteins (PABP) bind to the polyA tail and 

promote translation through their interaction with the translation initiation factor [12, 13]. 

Decapping or deadenylation of the polyA tail results in the degradation of the mRNA in 

the cytoplasm, effectively controlling final protein output even though the RNA output of 

transcription remains unchanged. Recently, small RNAs such as microRNAs have been 

shown to promote deadenylation of the polyA tail and translational inhibition [14-19]. 

Similarly, alternative splicing determines what exons are included or excluded in the 

exported mRNA, and based on the combination, the structure and function of the protein 

is modulated [13]. 

 In this thesis we are focusing on the 3’end processing of mRNA namely cleavage 

and polyadenylation. 3’end processing is crucial for the transport of the mRNA into the 
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cytoplasm, and preventing polyadenylation has been shown to result in decreased 

cytoplasmic mRNA and hence reduction in protein levels. [20, 21]. A variety of diseases 

including thalassemia, thrombophilia, IPEX syndrome, oculopharyngeal muscular 

dystrophy, cancer, and idiopathic hyperosinophilic syndrome occur due to disruption of 

3’end processing [22]. The polyA binding protein (PABP), which binds to the polyA tail, 

has been shown to protect the mRNA against degradation in Xenopus oocytes. [23] 

Further the PABP has been shown to interact with the 5’ cap of the mRNA and plays a 

role in translation [8, 24]. Finally the 3’end processing machinery has been shown to 

dynamically interact with the transcription machinery including the C-Terminal Domain of 

RNA polymerase II. [13, 25] 

1.2: Mechanisms of 3’end processing 

1.2.1: Sequence elements defining 3’end processing 

3’ end processing in eukaryotes occurs as a concerted reaction between the 

various RNA binding proteins (RBP) and specific sequence elements in the mRNA. 

Disruption of these sequence sites affects the 3’end processing. In eukaryotes there are 

three major sequence elements that define the 3’end of the mRNA.  

PAS: The primary sequence element is the Polyadenylation Signal (PAS). It is a six 

nucleotide sequence element canonically represented by AAUAAA. An early study of 

human Expressed Sequence Tags (EST) found that 75% of the mRNAs contain the PAS 

signal. [26]. The second most abundant PAS signal in humans is AUUAAA[5]. Mutations 

in the PAS signal have been shown to have biological consequences resulting in 

thalassemia [27] and reduced processing of pre-mRNA  in Xenopus [28]. In addition to 

the sequence of PAS its position in the mRNA is also important and occurs within 10-30 

nt upstream of the processed 3’end cleavage site. Modifying this distance results in a 

new cleavage site maintaining the initial distance [29].  
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Cleavage site: The cleavage site marks the position where the mRNA is cleaved for 

addition of a polyA tail. The cleavage site is between the PAS and the DSE and 

predominantly a CA dinucleotide. The cleavage occurs between the cytosine and 

adenine [30]. 

Downstream Sequence Element (DSE): This refers to a U or GU rich region downstream 

of the 3’end of the mRNA. It is usually within 30 nt downstream of the cleavage site. 

While the sequence of the DSE is not as conserved as the PAS and can tolerate more 

point mutations [31], modifying the distance of the DSE to the cleavage site greatly 

affects 3’end processing efficiency [32]  

Auxiliary elements: In addition to the major sequence elements discussed above there 

are auxiliary sequence elements either upstream or downstream of the cleavage site 

that aid in 3’end processing by recruiting proteins . Upstream auxiliary elements are 

generally U-rich and UGUA is a common upstream auxiliary element. It has been shown 

to aid in non-canonical 3’end processing [33]. A G-rich downstream auxiliary element 

has been identified, however neither its position nor sequence is conserved [34-36]. 

1.2.2: Proteins involved in 3’end processing 

3’end processing in eukaryotes is a two-step process involving cleavage of the 

mRNA at the cleavage site and addition of the polyA tail at the cleaved end. The factors 

involved in effecting these processes have been studied in many organisms including 

yeast and mammals [37] using traditional biochemical assays of nuclear extracts and by 

modern approaches using mass spectrometry. These studies indicate a multi-subunit 

protein complex involved in the 3’end processing.  

Mammalian 3’end processing:  The major players in mammalian 3’end processing are 

cleavage and polyadenylation specificity factor (CPSF), cleavage stimulation factor 
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(CSTF), cleavage factor I (CFIm), cleavage factor II (CFIIm), polyA polymerase (PAP), 

polyA binding protein (PABP), symplekin and pol II. [22, 38, 39]  CPSF consists of at 

least five subunits, Cpsf160, Cpsf100, Cpsf73, Cpsf30 (numbers representing protein 

weight in KDa) and hFip1. CSTF consists of three subunits, Cstf77, Cstf64 and Cstf50. 

CFIm consists of at least three subunits CFIm72, CFIm68, CFIm59 and two CFIm25 

subunits. CFIIm consists of two subunits, Pcf11 and Clp1. Additional proteins such as 

Pfs2p and PPI also play a role in 3’end processing. These subunits interact with various 

sequence elements in the mRNA to process the 3’ends. CPSF binds directly to the 

AAUAAA PAS upstream of the cleavage site in the mRNA [40] while the CSTF 

recognizes the U/GU rich DSE downstream of the cleavage site [41-43]. 3’ end 

processing in the absence of the canonical PAS has been shown to depend on the 

upstream auxiliary element UGUA and its interaction with the CFIm [33].  

 Cpsf160 binds directly to the AAUAAA PAS element in the mRNA [40]. Mutating 

the PAS sequence abolishes this interaction [44]. The binding efficiency of Cpsf160 to 

the PAS also depends on interaction with Cstf64 mediated by Cstf77 [45]. It also 

interacts with transcription factor TFIID and the C-Terminal Domain of pol II and plays 

roles in transcriptional initiation and elongation [46, 47]. The cleavage at the CA 

cleavage site is catalyzed by binding of Cpsf73 to the cleavage site in a PAS dependent 

manner suggesting a positioning role for PAS [48] and could be mediated through 

Cpsf160 and Cstf64. hFip1 mediates interaction with PAP and may be involved in 

bringing the PAP close to the cleavage site. It also interacts with Cpsf30 and in turn is 

required for interaction between Cpsf160 and Cstf77 [49].  

Cstf64 contains a RNA binding domain and binds to the G/U rich DSE [41-43]. 

Cstf64 also interacts with Cstf77 and symplekin. In humans there is a second isoform 

called tau-Cstf64 which is expressed in male germ cells and may play a role in germ cell 
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specific polyadenylation [50-53]. Cstf77 is required for 3’end processing specificity. 

Mutation of Cstf77 in Drosophila results in usage of alternative polyA sites [54]. Cstf50 is 

required for cleavage in vitro and interacts with Cstf77 and binds to the CTD of Pol II[47]. 

CFIm is required for cleavage in vitro and the primary function of CFIm may be to 

aid in recognition of the pre-mRNA substrate. In the absence of a polyadenylation signal, 

3’ends are recognized by the presence of a UGUA signal, which is recognized by 

Cleavage Factors I (CFIm) [33, 55]. The CFIm is known to be a tetrameric complex 

consisting of two CFIm25 and one CFIm59 and one CFIm68 [56]. Recent work including 

the crystal structure of the complex suggests an important role in selecting polyA sites 

during alternative polyadenylation [57-59]. The model proposes a looping of the RNA 

between two UGUA sites and based on the combination of the UGUA sites chosen, 

different 3’ends can be selected. 

CFIIm has two subunits, hPcF11 and hClp1. Pcf11 contains a Pol II CTD 

interacting domain and mutation in this domain has been shown to cause termination 

defects. It is speculated that it is necessary for release of 3’end processing factors from 

Pol II [60]. Clp1 is highly conserved and its mutation abolishes cleavage but not 

polyadenylation [61]. 

PAP catalyzes the addition of the polyA tail at the cleavage site and interacts with 

the polyA binding protein (PABP). PABP stimulates PAP to add the polyA tail at the 

cleavage site and also controls the polyA tail length [62]. PABP binds to stretches of 11-

14 adenines [63] and the binding continues until proper polyA tail length of ~200-300 As 

is achieved [64]. Symplekin interacts with Cstf64 and CPSF [62]. It may also function in 

3’end processing of histone mRNAs [65]. RNA Polymerase II (Pol II) also plays an 

important role in 3’end processing. Truncation in the CTD of Pol II results in defects in 
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polyadenylation [47]. The CTD of Pol II also interacts with CPSF and CSTF and binds 

Cpsf160 and Cstf50. Additional proteins such as Pfs2p also play roles in 3’end 

processing.  

Yeast 3’end processing: The yeast 3’end processing machinery contains the cleavage 

and polyadenylation factor (CPF), cleavage factor IA (CFIA) and cleavage factor IB 

(CFIB) [38]. CPF is homologous to mammalian CPSF but it is further subdivided into 

CFII and PFI. The factors involved in 3’end processing in mammals and yeast are 

generally conserved, however, there are differences in the organization of the subunits 

and sequence elements recognized.  There are three sequence elements in yeast 

mRNA, AU-rich efficiency element (EE), A-rich positioning element (PE) and U-rich 

upstream element (UUE) or downstream element (DUE). The cleavage site is defined by 

a pyrimidine followed by multiple adenosines ( Y(A)n ).  Cpsf160 (Yhh1) does not bind to 

the A-rich PE element but to the A-rich cleavage site [66]. Similarly, Cstf64 (Rna15) that 

binds G/U rich DSE in mammals binds to the A-rich PE upstream of the cleavage site 

[67]. Yeast Cstf (CFI) is involved in both cleavage and polyadenylation, which is different 

from mammals where it is only involved in cleavage. Symplekin (Pta1) is part of CFII and 

acts as a scaffold. Cstf50 is missing in yeast and CFIA bears homology to mammalian 

CFIIm and Cstf. Pol II CTD is not necessary for 3’end processing in yeast [68]. Cleavage 

is mediated by CFIA, CFIB and CFII while CPF, CFIA, CFIB and Pap1 mediate 

polyadenylation. There are also additional factors such as Pfs2p, Ssu72, Mpe1, Glc7, 

Ref2 and Hrp1, which are not present in mammals. Yeast specific Hrp1 of CFIB 

functions similar to mammalian CFIm. Pfs2p interacts with Fip1 and mutating Pfs2p 

results in cell death [69] and affects cleavage and polyadenylation. 
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1.2.3: Histone gene 3’end processing 

 The histone  genes seem to vary from other genes in eukaryotes in terms of their 

3’end processing [3, 70-73].  Instead of a PAS based recruitment of factors, a conserved 

stem loop upstream of the cleavage site that is recognized by a Stem Loop Binding 

Protein (SLBP) and a purine rich Histone Downstream Element (HDE) within 100nt of 

the stop codon, signals the end of histone mRNAs. HDE is recognized by the 5’ end of 

U7 snRNA, which recruits the snRNP (ribonucleoprotein complex). Lsm11, Lsm10, 

FLASH and ZPF100 are also recruited in the complex [74, 75].   The cleavage site is a 

CA dinucleotide similar to other mRNAs. Recent studies have shown that the cleavage is 

still mediated by recruitment of CPSF73 and CPSF 100 and CPSF 73 is the cleavage 

factor [76]. The 3’ end processing of histone mRNAs is different from the other mRNAs 

since it is a one-step process and only depends on signal elements and is incompatible 

with splicing. Furthermore, histone mRNAs are generally non-polyadenylated and the 

binding of the SLBP to the stem loop provides stability and translational efficiency the 

same way as the polyA tail [71].  

1.2.4: Polyadenylation in Operons 

 Polycistronic transcription is when multiple genes in a loci are transcribed into a 

single transcript and later the individual genes are spliced out by trans-splicing[77-79], 

similar to how introns are spliced out of pre-mRNA. It is commonly seen in C. elegans, 

flatworms, hydra and trypanosomes. .Such polycistronic transcription units are called 

operons and in C. elegans there are about 1000 operons and each operon contains 2-8 

genes [79]. The trans-spliced mRNAs were seen to begin with a 22nt sequence, which 

was not seen in the gene sequence. Later this sequence was found to be derived from a 

SLRNA, which acts as a splice donor. Full length cDNA sequencing of these genes 

shows that the first gene in the operon is spliced by SL1 RNA while the remaining 
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downstream genes are spliced by SL2-12 RNAs and the proteins of the snRNP[80]. 

After splicing, each individual mRNA is polyadenylated. This is especially interesting 

since regulation occurs post-transcription and the 3’ end processing machinery regulates 

conversion from polycistronic to monocistronic transcripts. Most of these genes occur 

very close to each other with ~100nt between the polyA site of one gene and the 5’ end 

of the next gene. This places steric constraints on the polyadenylation machinery and it 

is interesting to note the level of diversity in the sequence determinants and the high 

alternative polyadenylation events in such a confined space [81]. Work in trypanosomes 

has now shown a two-step mechanism where transcription and trans-splicing are 

uncoupled and delaying trans-splicing results in gene regulation [82]. A recent global 

study of trans-splicing in C. elegans showed that 70% of the genes in C. elegans are 

trans-spliced with either SL1 or SL2 and use different underlying mechanisms [83]. They 

also show that the usage of the SL1 or SL2 depends on the promoter utilized for 

generating either a polycistronic or monocistronic transcript. If the promoter of the 

previous gene is used then it results in a polycistronic transcript and if the intermediate 

promoter is used then it is a monocistronic transcript coupling promoter selection with 

trans-splicing. Another interesting study highlighted the advantages of polycistronic 

transcription in efficient utilization of transcriptional resources for increased upregulation 

especially during recovery [84].  

1.3: Alternative polyadenylation- regulation of 3’U TR length 

Alternative polyadenylation refers to the variability in the length of the 3’UTRs 

defined by 3’end processing machinery, such that for the same transcript there can be 

different 3’UTR lengths. The first evidence was seen in alternative processing of IgM 

mRNA during B cell differentiation [85-87]. It was seen that switching from the 

membrane bound form to the secreted form in plasma cells occurs due to alternative 
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polyadenylation of the 3’UTRs and the mechanism was regulated by concentration of 

CSTF 64. Genome wide studies now show that this mechanism occurs in many 

organisms including C. elegans [81], Arabidopsis [88], rice [89], Chlamydomonas [90], 

trypanosomes [82], mouse [51, 91], humans [91-93] and yeast [94]. In these studies it 

has been shown that alternative polyadenylation is pervasive and affects 40-70% of the 

total number of genes in an organism. This shows that the alternative polyadenylation 

mechanism is more global, complex and widespread than previously appreciated and 

could be an important mechanism of gene regulation yet to be explored. Immediate 

effects of this varying 3’UTR length could be differential localization, protein function, 

stability, protein quantity and post-transcriptional regulation [9, 95, 96].  In many cases 

the alternative polyadenylation sites have valid PAS and they are evolutionarily 

conserved [81, 97]. 

Polyadenylation sequencing of individual tissues in humans including heart, 

brain, colon, liver, breast, lymph node, skeletal muscle, retina, testis, and uterus has 

shown that alternative polyadenylation produces tissue-specific 3’UTRs [93, 98]. 

Developmental and environmental cues also seem to employ alternative polyadenylation 

as seen in embryogenesis [99], differentiation of stem cells [100], development of 

neurons [101, 102], immune response [103] and spermatogenesis [50-53, 58]. These 

examples show that alternative polyadenylation is a highly regulated process that is 

controlled both spatially across different tissues and spatially across development. 

Furthermore, cancer studies show that activation of oncogenes can occur due to 

shortening of 3’UTRs [104] and high-throughput studies on cancer cells show wide 

spread evidence of alternative polyadenylation [105]. 

Even though we now see  the prominence of this mechanism, we still do not 

know much about the mechanisms underlying this regulation. An example from Opitz 



 

 11 

syndrome shows that the tissue specific expression of the causal MID1 occurs due to 

interaction between the promoter region and polyadenylation signal linking alternative 

polyadenylation with transcription [106]. Few studies identify CFIm subunit of the 3’end 

processing machinery to be the agent for alternative polyadenylation [56-58]. Cstf64 

subunit of CSTF has also been implied to play a role in alternative polyadenylation [107] 

and a recent study in induced pluripotency reports major polyA machinery genes 

regulated differently between differentiated and undifferentiated cells, especially in the 

CSTF [100]. 

The fact that both the miRNAs and siRNAs have target regions in the 3’UTR 

makes it an important region in the mRNA in terms of posttranscriptional regulation. 

Recent studies also highlight the role of 3’UTRs in localization of an mRNA by presence 

of sequence signals [108]. The interactions between the 3’UTR region of the mRNA and 

small RNAs such as microRNAs highlight the importance of this mechanism in post-

transcriptional control of gene expression.  The biological impact of the 3’UTRs comes 

from the fact that varying the length of the 3’UTR, i.e defining its 3’end, may in turn effect 

gene regulation by inclusion/exclusion of target sites of the small RNAs. The next 

section discusses the various small RNAs that interact with the 3’UTRs. 

1.4: RNA interference and small RNAs 

The past decade has seen a rapid change in the study of gene regulation mainly 

due to the discovery of RNA interference (RNAi). RNA interference is a mechanism in 

which small RNA molecules interact with the mRNA resulting in post-transcriptional gene 

regulation through degradation of the target molecule in the cytoplasm. Incidentally this 

mechanism had been reported during silencing of introduced transgenes where not only 

the introduced transgenes, but also the endogenous genes were silenced [109-115]. 

Initially named co-suppression, it was assumed to be a defense mechanism in the cell 
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against viral infections as seen in plants [116, 117] or against repetitive DNA as seen in 

transgene studies.  Studies have shown the effect to be triggered by RNA, introducing a 

new role for RNA in gene regulation besides transcription and translation. The 

application of this mechanism was shown by work on C.elegans by Fire and Mello in 

1998. They showed that introduction of double stranded RNA (dsRNA) targeting a gene 

seems to mediate silencing of the gene. Injecting dsRNA is more potent than injecting 

single stranded RNA and the silencing was seen to be passed to future generations and 

only a few molecules of the dsRNA was sufficient to trigger target gene silencing. They 

called this phenomenon RNA interference. RNAi seems to operate in the cytoplasm 

suggesting that the target is processed mRNA, and the silencing occurs irrespective of 

the proximity of the silenced genes, suggesting a trans-acting mechanism. Fire and 

Mello also showed that the silencing can cross cell boundaries in C.elegans since the 

injection of the dsRNA in to the intestine can integrate into the germline and be passed 

onto future generations. The effect was also seen in insects [118, 119], 

trypanosomes[120], zebrafish [121] and mouse[122, 123] making it an effective tool to 

control gene expression across organisms. This triggered the whole new field of RNA 

mediating gene silencing, promising tremendous potential in genetics, medicine and 

disease control.  

There are many questions that arise at the prospect of such a mechanism. Why 

does dsRNA, but not single stranded RNA, have an effect?  If only a small amount of 

dsRNA is enough to silence an mRNA many times more abundant, is this trigger just a 

catalyst or is there an amplification mechanism? What are the key players regulating this 

effect and is this mechanism conserved? What are the RNA molecules that mediate this 

suppression?  
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The first answers came from plants where an uniform class of 25nt small RNAs 

sense and antisense to the targeted gene was seen only during gene silencing [124]. It 

had been known previously in C. elegans that lin-4 encodes a small RNA 22nt that is 

antisense to lin-14 and regulates its expression [16]. These along with in vitro studies in 

Drosophila [125, 126] suggest that small RNAs are the major players in the silencing 

mechanism. Based on their origin and function, these small RNAs are classified into 

three major classes – micro RNAs (miRNAs), small interfering RNAs (siRNAs) and piwi 

interacting RNAs (piRNAs). Depending on the class of small RNAs, the key players 

responsible for the biogenesis, transport and functionality vary. For this thesis we will 

discuss miRNAs and siRNAs since they have been shown to interact with 3’UTRs of 

genes. 

1.4.1: MicroRNAs 

MicroRNAs define the first class of small RNAs to be identified. In 1993 Ambros 

and colleagues showed that the gene lin-4 in C.elegans, known to control developmental 

timing, did not code for a protein but generated two small RNAs 61nt and 22nt in length 

[16]. They showed that the longer RNA folds into a hairpin and serves as the precursor 

of the shorter RNA. The 22nt sequence was shown to contain sequence antisense to the 

3’UTR of lin-14 and regulated its expression, post-transcriptionally affecting the protein 

level without affecting the mRNA level [16, 17]. The Ruvkun lab later showed that 

another miRNA, 21nt let-7, functioned in controlling developmental timing through 

complementary regions in the 3’UTR of its target genes and was evolutionarily 

conserved all the way from worms, fruit flies, molluscs, sea urchins, zebra fish, frogs, 

chicken, and mouse to humans, suggesting regulation by miRNAs is an evolutionarily 

conserved mechanism [127, 128]. This spurred a rapid interest in identifying more 

species of small RNAs, now making it a major class.[15, 129-144]. Many of these 
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miRNAs have also shown to be evolutionarily conserved in related species. MiRNAs are 

now known to control a variety of biological processes including cell proliferation [145], 

fat metabolism [146], cell death [145], neuronal patterning [147], developmental 

regulation [148], flowering and plant development [148], and brain morphogenesis [149].  

The biogenesis of miRNAs in eukaryotes is a multi-step process. Hairpin 

structures in long Pol II transcripts (~1-2kb in length) called primary miRNA [150] are 

recognized by the RNAse III enzyme called Drosha in the nucleus which cleaves them 

into short hairpins called precursor miRNA[151]. These are ~60-100 nt in length and this 

association is assisted by DGCR8 [152]. This cleavage results in a 5’phosphate and a 3’ 

2nt overhang at the base of the hairpin [151, 153]. Some precursor miRNAs are also 

processed directly from introns without processing by Drosha [154]. The precursor 

miRNA is then exported to the cytoplasm by exportin-5 [155-157]. Once in the 

cytoplasm, a RNAse called Dicer processes the hairpin resulting in a short double strand 

duplex ~21-23 nt in length [158-161]. Dicer cleavage also results in 5’ phosphate and 2nt 

3’ overhangs [162]. From this short duplex, one strand is called the mature miRNA and it 

is loaded into the miRNA RNA induced silencing complex (miRISC) through the Ago 

protein [14, 15, 126, 163, 164]. The other complementary strand is called miRNA* 

(star)[129, 130, 135, 138] . Once the mature miRNA is loaded into miRISC it guides the 

RISC to the corresponding targets. Target identification ocurrs through the 

complementarity to the 2-7 bp seed regions of the miRNA in the target 3’UTR [16, 17, 

19, 165]. Once the target is identified, the miRNA can regulate the gene expression in 

one of two ways: mRNA cleavage [14, 166] or translational repression [16, 17, 19].  This 

can result in regulation of the protein output [167]. Studies have shown that this 

interaction between the miRNAs and the target 3’UTRs is not exclusive. A single miRNA 

can regulate multiple mRNAs and multiple miRNAs can have target sites in the same 
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3’UTR. A miRNA can regulate the target either alone or in a combinatorial fashion [19, 

168, 169]. This makes prediction of these interactions extremely complex. However, few 

computational attempts have been made to generate this interaction map [170-178]. 

1.4.2: Small interfering RNAs 

 The first mammalian endo-siRNAs were reported to target LINE-1 

retrotransposons in human cells [179]. Further studies in Drosophila somatic and germ 

cells identified an abundant class of small RNAs [180-183] and have been shown to be 

indispensable for germline maintenance, defense against transposons, and 

heterochromatic silencing [184]. Soon they were also seen in other organisms including 

S. Pombeii [185] and mouse [186, 187], opening up a new class of abundant small 

RNAs. Small interfering RNAs or siRNAs in C.elegans are of length ~22nt [188] and 

have perfect complementarity to the target mRNA (3’UTR and coding sequence). They 

require Dicer, ERI-1 endonuclease and RRF-3 RNA dependent RNA polymerase activity 

for their biogenesis [189, 190]. Recently they have also been discovered in other 

organisms with roles in gene regulation [144, 182, 186, 187, 191], suppression of 

transposons [180, 192], spermatogenesis [193, 194], genome surveillance [195] and 

chromosome segregation [196]. The siRNAs share many similarities with the miRNAs in 

terms of their biogenesis and targeting mechanism (reviewed in [197, 198]). Both of 

them require processing of dsRNA by Dicer and are loaded into RISC. However there 

are a few differences. First, while miRNAs are transcribed from distinct loci or from 

introns, the siRNAs are derived from existing loci such as the mRNA itself, transposons, 

or from external sources such as viruses. Second, miRNAs are processed from hairpin 

folding of a single RNA while siRNAs are generated from long RNA duplexes which may 

occur by bidirectional transcription, through RNA directed RNA polymerases, or from 

external sources such as viruses. Third, one hairpin generates one miRNA whereas one 
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dsRNA duplex can generate multiple siRNA. Fourth, miRNAs target 3’UTR regions with 

imperfect complementarity while siRNAs have perfect complementarity with their target 

genes. Finally, different proteins are responsible for loading miRNAs and siRNAs into 

the RISC. For example miRNAs are loaded by the AGO2 protein while the siRNAs are 

loaded by a variety of other Argonautes.  

 My thesis work aimed to study the germline specific small RNA population in C. 

elegans namely to differentiate small RNA populations which are specific to sperm or 

oocyte and how they are inherited in the embryo. I analyzed high throughput sequencing 

from isolated germ cells and embryo and characterized a 26nt long class of siRNAs 

starting with a Guanine, hence named 26GRNAs that have unique populations specific 

to sperm and oocytes. These small RNAs regulate the expression of thousands of genes 

in C. elegans. We also saw that in addition to targeting coding regions of mRNAs, these 

26GRNAs also target 3’UTRs of mRNAs, which adds another class of small RNA other 

than miRNAs that play a regulatory role in 3’UTRs.  

1.5: Whole genome transcriptome annotation 
 

Recent studies indicate that a vast part of the genome is transcribed, however 

current gene annotations only cover a small portion of this. Traditional reverse 

transcription and cDNA sequencing technologies have identified ribosomal, transfer and 

messenger RNA transcripts and in combination with current high throughput sequencing 

methods have added new classes of small RNAs, including micro RNAs [16], small 

interfering RNAs [124], piwi interacting RNAs [199], tiRNAs [200], and TASRs[201]. 

These new findings now reveal the fact that transcription is more pervasive than 

previously thought and covers more regions on the genome including both strands. 
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Our current understanding of genes arises from messenger RNAs. These 

mRNAs have been shown to generate multiple transcripts arising from the same 

genomic loci and the diversity is enforced by the choice of different transcriptional start 

sites or post transcriptional mechanisms including alternative splicing and 

polyadenylation. Based on the transcript generated, the functionality of the end protein 

can vary. Hence now the concept of the gene is moved from DNA to the RNA domain or 

the domain of the transcriptome. DNA elements in the promoter are still important in 

regulating transcription and deciding the start site to be used.  Similarly, regions of the 

gene are also sites for generation of a number of non-coding RNAs. Studies have shown 

small RNAs, such as miRNAs, being generated from the spliced introns of mRNAs[154] . 

In addition, many of the small RNAs are Pol II transcripts and would require promoter 

regions for transcription before being processed into their mature form.  

While traditional cDNA cloning methods (ESTs and full length cDNA) are 

responsible for identifying many of our current annotations and are still the gold standard 

[202], newer approaches are now catching up. One reason for the transition is the cost 

involved in cloning on a gene-by-gene basis. Furthermore, with the amount of transcript 

diversity now being realized there are still a lot more transcripts which may not have 

been identified due to low abundance, biological conditions, or masking by other 

abundant transcripts. One such example is the abundance of the rRNA transcripts in our 

polyA capture library. In the initial pilot study, 50% of our library was dominated by ~70 

ribosomal genes. Subtracting these transcripts dramatically increased the number of 

newly identified low abundance transcripts. Hence to get a complete unbiased 

transcriptome and an increased discovery rate we have to use newer high throughput 

methods. 
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Whole genome transcriptome analysis gives evidence for transcription from both strands 

of the DNA and these antisense transcripts link neighboring genes to form transcriptional 

units. Antisense transcripts can provide the template for biogenesis of small RNAs 

resulting in sense strand cleavage, which forms the basis of RNAi[203, 204]. Disruption 

of the antisense transcription loci in mouse shows alteration in sense strand expression 

[205]. An important observation seen in Arabidopsis [88], yeast [92], mouse and human 

[92] 3’UTRomes was the presence of abundant antisense transcripts. Initial studies 

show 33% of Arabidopsis transcripts[88], 60% in yeast[92] and 30% of human 

transcripts[92] expressed antisense transcripts which could affect sense gene 

expression positively or negatively. A recent study in C. elegans postulates that 

transcription from both strands help in sharing transcriptional machinery factors and 

promote “genome compaction” [206]. 

 

With the recent advancement of high throughput technologies such 

asmicroarrays, tiling arrays and high throughput sequencing, the estimated number of 

transcribed loci is increasing every day. However, the field is still far from saturation and 

every experiment performed is identifying new transcripts. Our study identified ~1000 

new loci not previously annotated and that are polyadenylated [81]. We also annotated 

~26,000 3’ends of mRNAs and a parallel study identified ~9,800 new 3’ends that were 

not seen in our dataset [206]. A massive sequencing study in C. elegans identified 

~28,000 new splice sites [207]. CAGE analysis in humans shows that there are ~67,000 

transcription start sites in humans suggesting a much higher number of unique 

transcripts than currently estimated [208]. A whole genome tiling array study in humans 

demonstrated that a large portion of the genome (~25%) is transcribed into RNAs and 

that a large portion of them is cell type-specific [209]. Another study showed that there 



 

 19 

are as many polyadenylated RNAs as there are non-polyadenylated, and ~40% of these 

RNAs are confined to the nucleus [210]. Studies examining alternate polyadenylation 

have shown in organisms including C. elegans[81], Arabidopsis[88], rice [89], 

Chlamydomonas [90], trypanosomes [82], mouse [51, 91], humans [91-93] and yeast 

[94] that alternative polyadenylation is pervasive and affects 40-70% of the total number 

of genes in an organism.  This gives an astonishing view of the complexity and diversity 

of the transcriptome and identifying the expression patterns, biogenesis and functionality 

of these transcripts will be a field of research for years to come. 

1.6: Remaining questions: 
  

 There are many questions that come to our mind when we look at all the data 

presented to us. My thesis aims to answer some of these. Future research will further 

shed light on some or all of these. 

First, looking at the global scale of alternative polyadenylation, there are many 

questions that face us about this mechanism. Some of the immediate ones are about the 

mechanism,  such as how is alternative polyadenylation different from standard 

polyadenylation in terms of the protein factors used? Do the same proteins of the 3’end 

processing also mediate alternative polyadenylation or are there new proteins involved 

in the mechanism that are yet to be discovered? What is the contribution of factors from 

splicing and transcription machinery to alternative polyadenylation?  

A second set of questions involves the sequence determinants defining 

alternative polyadenylation some of which were answered in chapter two. What are the 

sequence elements that drive alternative polyadenylation? Are PAS signals sufficient or 

are there auxiliary sequence elements that decide what PAS site to use? Is there any 

length bias towards utilization of a PAS? 
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Third, we have to analyze the effects of alternative polyadenylation in terms of 

localization in the cell. How does the localization profile vary between a regularly 

polyadenylated mRNA and an alternatively polyadenylated mRNA? Does alternative 

polyadenylation regulate where a mRNA is localized in a cell?  

Fourth, we question the stability of the mRNA. To what extent and how does 

alternative polyadenylation affect stability of the mRNA? Does the change in length 

alone alter stability?  

A fifth set of questions is regarding the interaction between the 3’UTRs and small 

RNAs, and how alternative polyadenylation can define this interaction or vice-versa. 

What are the small RNAs that interact with each 3’UTR in the organism and how does 

their expression change over different tissues, developmental timing and response to 

external stimulus. Does alternative polyadenylation really occur to escape regulation 

from small RNAs? If so, what are the interaction maps for the mRNA and the small 

RNA?  

Finally, there are questions regarding the functional effect of alternative 

polyadenylation. How does the translational output vary with polyadenylation? Does 

alternative polyadenylation alter protein output and if so, what are the factors that 

mediate this? How do individual genes alter 3’UTR length for developmental and 

environmental cues? Is there any particular bias for long or short 3’UTRs in any specific 

tissue or developmental timing or both? We have shown variation of 3’UTR length to 

developmental timing in chapter two. What is the spatio-temporal map of 3’UTR lengths 

for all genes in an organism? What is the evolutionary need for alternative 

polyadenylation? 
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1.7: Thesis outline 
 

The overall goal of this thesis is to utilize advances in high throughput 

sequencing methods to provide a comprehensive 3’UTRome of C.elegans on a whole 

genome scale.  

Chapter 1  provides an introduction to the thesis discussing various factors and 

mechanisms involved in 3’end processing. It also gives a basic introduction to the 

various classes of small RNAs. 

Chapter 2  presents the results of our collaborative 3’UTRome project, which was 

part of the modENCODE Consortium.  The focus of our collaborative group was to 

provide insights into the mechanisms of 3’UTR biogenesis. The chapter highlights our 

novel work in cataloguing the 3’UTRs for more than 75% of genes in C.elegans, ~4,500 

of which had no previous 3’UTR annotation. Ours results showed variable 3’UTR lengths 

for ~40% of these genes, which for the first time shed light on the scope of alternative 

polyadenylation. Our analysis also identified sequence elements other than the known 

canonical AAUAAA signal, which also seems to play a role in defining the 3’end of 

mRNA. We also showed 3’UTRs that are uniquely expressed in specific developmental 

stages of C. elegans, highlighting a temporal role of the alternative polyadenylation 

mechanism. Further analysis also identified examples of genes utilizing longer or shorter 

3’UTRs in specific developmental stages, while switching to a different length with 

progression of development. This showed a regulatory role of the 3’end processing 

mechanism. In conclusion we defined the prominence of this 3’end defining mechanism 

which might provide a level of regulation in addition to post-transcriptional control by 

small RNAs. 
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Chapter 3  integrates our results with a parallel published study of sequencing 

3’UTRs from different developmental stages of C.elegans. Comparing the results of the 

two studies provides additional validation for our data and analysis results. Identifying 

the differential 3’UTRs between the two independent datasets helped us to define 

stricter filters to effectively remove the inherent false priming artifacts in the sequencing 

protocol. This helped us achieve a higher quality 3’UTRome and benchmark for future 

sequencing using the polyA capture protocol. 

Chapter 4  is extension of the 3’UTRome project where we apply the polyA 

capture protocol, designed to answer a specific biological question. Here we studied 

changes in the 3’UTRome of an organism when we disrupt components in one or both 

pathways in synapse and axon biogenesis. We specifically studied these pathways since 

previous research has shown evidence for relation between the components in the axon 

and synapse development pathways and 3’end processing of mRNAs. The results of this 

analysis generate a pathway specific 3’UTRome. 

Chapter 5  presents related work where we aimed to study the small RNAs that 

potentially target the 3’UTR regions. We specifically chose to sequence the small RNAs 

from isolated sperm, oocytes, embryos, glp-4 mutant defective in germline development 

and eri-1 mutant defective in small RNA biogenesis.  These choices helped us to study 

the gamete and germline specific small RNA distribution including microRNAs, 21U 

RNAs and endogenous small interfering RNAs. By analyzing the sequences, we 

characterized a new class of 26nt long RNAs, which start with a Guanine (hence named 

26GRNAs). These RNAs were predominantly antisense to their mRNAs targeting 

3’UTRs and coding regions of the mRNAs.  Based on their targeting and source library 

they could be further classified into two sub-classes – one subclass from the sperm 
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library targeting the spermatogenic genes and the other deriving from the oocytes to be 

inherited maternally into the embryos that function in zygotic development. 

Chapter 6  summarizes the overall results of the thesis and its contribution to the 

field of research and presents possible future directions. 

1.8: Contributions 
 

The following journal publications represent the work detailed within this thesis. 

• Mangone, M*., Manoharan, A.P* ., Thierry-Mieg, D*., Thierry-Mieg, J*., Han, T*., 

Mackowiak, S., Mis, E., Zegar, C., Gutwein, M.R., Khivansara, V., Salehi-

Ashtiani, K., Harkins, T. Bouffard, P., Suzuki, Y., Sugano, S., Kohara, Y., 

Rajewsky, N., Piano, F., Gunsalus, K.C., and Kim, J.K.   The landscape of C. 

elegans 3’ UTRs.  Science 329: 432-5 (2010). 

*These authors contributed equally to this work. 

 

• modENCODE Consortium.  Unlocking the secrets of the genome.  Nature 459: 

927-30 (2009). 

 

• Han, T., Manoharan, A.P ., Harkins, T.T., Bouffard, P., Fitzpatrick, C., Chu, D.S., 

Thierry-Mieg, D., Thierry-Mieg, J., and Kim, J.K.  26G endo-siRNAs regulate 

spermatogenic and zygotic gene expression in C. elegans. Proc. Natl. Acad. Sci. 

USA 106:18674-9 (2009). 
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Chapter 2: The landscape of C. elegans  3’UTRs 
 

2.1: Contribution 
  

The primary aim for this chapter in the thesis was to generate a high quality 

3’UTRome of an organism and to decipher the biological patterns hidden within. Being a 

highly collaborative project spanning across many labs and countries, it becomes 

imperative to specify the contributions and acknowledge the work performed by various 

researchers. The polyA capture protocol was idealized and conceived by John Kim and 

Ting Han of University of Michigan. Ting Han developed the protocol for capturing the 

3’UTR ends and prepared the libraries to be submitted for sequencing. Pascal Bouffard 

and Tim Harkins of Roche 454 life sciences performed the pyrosequencing of the 

libraries. Fabio Piano and Kris Gunsalus of NYU spearheaded the 3’ RACE (3’ Rapid 

Amplification of cDNA Ends) capture project and Marco Mangone of Piano Lab 

performed sequencing of the libraries. The full-length cDNA library was provided by 

Yutaka Suzuki, Sumiyo Sugano and Yuji Kohara from Japan. While I processed the 

sequences for polyA captured 3’UTRs, Kris Gunsalus analyzed the sequences from 

3’RACE libraries. The centralized consolidation of our sequence libraries and the 

publicly available RNAseq data was performed by Jean and Danielle Thierry-Mieg at 

NIH. They also performed the quality check of the various sequences and removal of the 

false primed sequences. They also provided us with updated gene models including 

newly identified genes and curated the 3’UTR ends to these new gene models. 
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Jean Thierry-Mieg performed independent validation of my work including the clustering 

algorithm and PAS motif analysis. Jean and Danielle Thierry-Mieg also analyzed the 

cDNA data to identify patterns in SL isoforms linking 5’ and 3’ end processing. Sebastian 

Mackowiak did MiRNA target identification and conservation analysis from Rajewsky Lab 

in MDC Berlin. The 3’UTRome website was maintained by Marco Mangone of NYU. 

Mitzi Morris of NYU loaded the datasets to modEncode. Nicole Washington of the DCC 

greatly helped us in making our datasets publicly available. John Kim, Kris Gunsalus, 

Jean and Danielle Thierry-Mieg, Niklaus Rajewsky and Fabio Piano wrote the 

manuscript submitted to Science, which is provided in sections below. 

 My contribution to this project was in the processing and analysis of the polyA 

capture sequence data that we generated.  This includes designing an architecture to 

handle large amount of sequencing data, designing and maintaining databases for the 

storage of the sequence data, writing custom scripts for removal of linkers in the adapter 

regions in the sequence, perform quality control of the sequencing, mapping the 

sequences to the genome, clustering of the 3’UTR ends and annotation of the 

sequences to existing gene models. In addition to this I also processed the 454 

sequencing of the 3’ RACE amplicons from NYU. I also performed the PAS motif 

analysis of the 3’UTRs including identification of the PAS sites, sequence and position 

distribution and length dependent utilization of the PAS sites. I also performed the 

computational analysis including developmental stage analysis of 3’UTRs, identification 

of facultative introns in the 3’UTRs, bidirectional transcription analysis, polyadenylation 

in histone genes and PAS analysis of the genes in operons excluding the SL-specific 

PAS usage. 
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2.2: Abstract 
 

Three-prime untranslated regions (3’UTRs) of metazoan mRNAs contain 

numerous regulatory elements, yet remain largely uncharacterized. Using polyA capture, 

3’RACE, full-length cDNAs, and RNA-seq, we define ~26,000 distinct 3’UTRs in 

Caenorhabditis elegans for ~85% of the 18,328 experimentally supported protein coding 

genes and revise ~40% of gene models. Alternative 3’UTR isoforms are frequent, often 

differentially expressed during development. Average 3’UTR length decreases with 

animal age. Surprisingly, no polyadenylation signal (PAS) is detected for 13% of polyA 

sites, predominantly among shorter alternative isoforms. Trans-spliced (vs. non-trans-

spliced) mRNAs possess longer 3’UTRs and frequently contain no PAS or variant PAS. 

We identify conserved 3’ UTR motifs, isoform-specific predicted microRNA target sites, 

and polyadenylation of most histone genes. Our data reveal a rich complexity of 3’UTRs 

genome-wide and throughout development.  

2.3: Introduction 
 

The 3’UTRs of mRNAs contain cis-acting sequences that interact with RNA 

binding proteins and/or small non-coding RNAs (e.g. miRNAs) to influence mRNA 

stability, localization, and translational efficiency [1-3]. The differential processing of 

mRNA 3’ends has evident roles in development, metabolism, and disease [4, 5]. Despite 

these critical roles, genome-wide characterization of 3’UTRs lags far behind that of 

coding sequences (CDSs). Even in the well-annotated genome of C. elegans, nearly half 

(~47%) of the 20,191 genes annotated in WormBase (release WS190) [6, 7] lack an 

annotated 3’UTR, and only ~1,180 (~5%) are annotated with alternative 3’UTR isoforms 

(Fig. 2.S1A,B).  
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2.4: Results  
 

We have taken a multifaceted, empirical approach to define the 3’UTR landscape in C. 

elegans [Figs. 2.S2-S5, Tables 2.S1-S4, 8]. We prepared developmentally staged cDNA 

libraries comprising mostly full-length clones spanning from 5’capped first base to 

polyadenylated (polyA) tail, and annotated 16,659 polyA addition sites in 11,180 genes 

by manually curating ~300,000 ABI traces in NCBI AceView [9]. We developed a method 

to capture the 3’ends of polyadenylated transcripts genome-wide by deep sampling and 

generated a comprehensive developmental profile comprising over 2.5 million sequence 

reads from Roche/454 (Fig. 2.S2-S5, Tables 2.S1-S4). We cloned 3’RACE products 

directly targeting 3’UTRs for 7,105 CDSs (6,741 genes) in both the Promoterome [10] 

and ORFeome [11] collections, and recovered one or more sequenced isoforms for 85% 

of targets [Figs. 2.S2, 2.S5, Tables 2.S1-S4, 8, 12]. Finally, we remapped and annotated 

polyA addition sites in published RNA-seq data [13, 14].  

 

All datasets were mapped, cross-validated, consolidated and filtered to eliminate 

obvious experimental artifacts, including internal priming on A-rich stretches [Figure 1A, 

8]. These datasets are not yet saturated: while for most genes (11,516 or 73%), at least 

one 3’UTR isoform is supported by two or more experimental approaches, 47% of 

transcripts are observed by only one method [in part due to limitations specific to each 

protocol, 8] (Fig. 2.1; Tables 2.S3, 2.S4). The resulting 130,090 distinct polyA sites, 

identified at single nucleotide resolution and supported by over 3 million independent 

polyA tags, were clustered into 26,967 representative polyA sites. Due to biological 

variation, 86% of tags occur within 4 nucleotides of representative sites, although 

individual polyA tags may spread over ~20 nucleotides (Fig. 2.S6).  



 

 40 

 Linking polyA sites to their parent genes proved to be a challenge, as many 

previous gene models were incomplete or incompatible with our new data. Using all 

available empirical evidence, we reannotated in AceView the C. elegans gene models 

[9]. Of the 15,683 protein-coding genes with both polyA sites and cDNA support, 57% 

confirm the structure of WormBase WS190 gene models. The remainder encode 

different proteins, usually representing different cDNA-supported splice patterns: ~25% 

share the same stop codon, ~12% use a different stop (hundreds of those correspond to 

fusions or splits of prior gene models), and ~6% are not yet annotated in WormBase 

(Datasets 2.S1, 2.S2). 

This integrated collection, herein called the 3’UTRome (Fig. 2.S1, Dataset 2.S2), 

provides evidence supporting 3'UTR structures for ~74% of all C. elegans protein-coding 

genes in WormBase WS190, including previously unannotated isoforms for ~7,397 

genes (Fig. 2.S1A-D). The length distribution of 3’UTRs parallels that in WormBase (Fig. 

2.S1D), with a mean of 211 nt (median = 140 nt). The 3’UTRome matches 61% of 

WormBase 3’UTRs within ±10 nt (6,714 polyA ends for 6,563 genes), and contains 

thousands of longer or shorter isoforms (Fig. 2.S1A). We identified 6,177 polyA ends for 

4,466 genes with no previous 3’UTR annotation and discovered 1,490 polyA ends for 

1,031 genes not yet represented in WormBase (Fig. 2.S1A; Datasets 2.S1-S3).  

We annotate more than one 3’UTR isoform for 43% of 3’UTRome genes (Figs. 

2.S1, 2.S7). Of these, a majority (65%) reflects alternative 3’end formation at distinct 

locations in the same terminal exon for proteins using the same stop; the remainder use 

distinct stops in the same last exon or distinct last exons. Very rarely (79 examples), an 

intron within the 3’UTR is excised or retained (Fig. 2.S8), potentially affecting functional 

sequence content elements (Fig. 2.S8C). Indeed, putative binding sites for miRNAs (this 
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study) or ALG-1 [15] were identified in the variable regions of some of these transcripts. 

About 2% of genes possess five or more 3’UTR isoforms (Figs. 2.1A, 2.S1B, 2.S7).  

To identify putative cis-acting sequences that may play a role in 3’end formation, 

we scanned the 50 nt upstream of the cleavage and polyA addition sites for all possible 

5- to 10-mers and assigned the most likely PAS motif to each 3’UTR using an iterative 

procedure based on enrichment and centering of the k-mers. The canonical PAS motif 

AAUAAA (seen in 39% of 3’ends) and many variants differing by 1-2 nt are detected, 

with distributions all peaking 19 nt upstream of the polyA site [Fig. 2.S9-S10, Table 2.S5, 

8]. The canonical signal predominates in genes with unique 3'UTRs (57%). Strikingly, 

however, many high quality 3’UTRs (3,658) lack a detectable PAS motif altogether (Fig. 

2.1B,C). All PAS variants are embedded within a T-rich region that spikes 5 nt 

downstream of the PAS motif and extends beyond the cleavage site about 20 nt (Fig. 

2.1D). 3’UTRs with no PAS tend to be T-rich throughout, except for a very A-rich 8 

nucleotide region just after the cleavage site (Fig. 2.1D). Thus, a functional PAS motif 

with strict sequence specificity appears dispensable for 3’end formation in C. elegans.  

Among genes with alternative 3’UTRs, successive polyA sites show a striking 

asymmetry: the longest isoform prefers a PAS, whereas shorter isoforms more often 

show no PAS (Fig. 2.1C, Fig. 2.S11). The distance between alternative polyA sites 

peaks at ~40 nt, with resonances at ~80 nt and ~140 nt (Fig. 2.S11A). This regularity 

suggests that a physical constraint (possibly queuing transcription complexes) could 

contribute to cleavage and polyA addition at some upstream sites, which may therefore 

depend less on instructive cues from signal sequences.  

Because many C. elegans genes undergo trans-splicing of a splice leader (SL) to 

the 5’end of a nascent transcript [16], we asked whether any properties of transcript 5’ 
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and 3’ ends correlate (Fig. 2.2A,B). About 15% of C. elegans genes belong to 

transcriptional units called operons, each containing 2 to 8 genes that can be co-

transcribed, cleaved into separate transcripts, polyadenylated, and trans-spliced with 

specific leaders (Fig. 2.2A,B). The first gene in an operon is trans-spliced only to SL1; 

downstream genes are usually trans-spliced to one of 11 other SLs (SL2 to SL12), 

although we observed that two thirds occasionally become trans-spliced to SL1. The 

processing of adjacent operon transcript ends (cleavage, polyA addition to the upstream 

transcript, and SL addition to the downstream transcript) is coupled mechanistically by 

machinery resembling the cis-splicing apparatus [17]. Comparing 3’UTRs within 

operons, we observe that the ‘first’ (SL1-spliced), ‘middle’ (any gene between first and 

last), and ‘last’ genes progressively decrease in average length (from 266 to 213 nt), 

number of 3’UTR isoforms per gene (from 2.64 to 2.51), and frequency of 3’UTRs with 

no PAS (from 23% to 18% in ~1,400 sites; Fig. 2.2B).  

 

However, only a small fraction (13%) of the 7,026 mainly SL1-spliced genes 

clearly belongs to an operon, and these differ notably from non-operon SL1-spliced 

genes in their usage of the canonical AAUAAA hexamer (22% of 1,409 sites vs. 32% of 

10,879 sites, respectively). Furthermore, we observed the canonical PAS motif much 

more frequently in non-trans-spliced than in SL-containing transcripts (43% of 5,131 

sites vs. 30% of 14,873 sites; Fig. 2.2A). While “standard” non-trans-spliced genes have 

~30% more 3’UTR isoforms per gene than “isolated” ones having no neighbor within 2 

kb (2.4 vs 1.7), these are more similar to each other than to trans-spliced genes – having 

shorter and fewer 3’UTR isoforms, and higher canonical PAS usage. Thus, trans-splicing 

within operons appears to enhance (directly or indirectly) the activity of non-canonical 

PAS sequences upstream, and trans-splicing at the 5’end correlates with distinct 
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properties at the 3’end of the same transcript, independent of 5’end processing 

downstream. 

 Unexpectedly, the 3’UTRome reveals polyadenylated transcripts for nearly all 

histone genes (Fig. 2.S12, Table 2.S6). The major class of replication-dependent 

histones (H2a, H2b, H3 and H4) are thought not to be polyadenylated in metazoans – 

instead, their 3'ends form a stem-loop structure that is recognized and cleaved several 

nucleotides downstream by U7 snRNP and factors such as stem–loop binding protein 

(SLBP) [18, 19]. C. elegans has 61 cDNA-supported histone genes [9] that all harbor 

conserved sequences with 3’stem-loop potential; however, they also contain conserved 

PAS elements downstream of the hairpin sequence [20]. Since C. elegans histone 

transcripts also terminate in the typical stem-loop structure and are depleted in 

successive rounds of polyA selection [20], we were surprised to recover polyadenylated 

transcripts for 57 histone genes in multiple, independent datasets (Fig. 2.S12, Table 

2.S6). This suggests that, at least in C. elegans (and perhaps in higher metazoans), the 

usual route for histone mRNA 3’end processing may include initial cleavage and polyA 

addition at conserved PAS sites, followed by further processing to remove sequences 

downstream of the stem-loop.  

We searched 3’UTRs for conserved sequence motifs and other potential 

functional elements. We updated our atlas of predicted conserved miRNA targets for the 

3’UTRome, using the PicTar algorithm with new 3-way and 5-way multi-species 

alignments (Figs. 2.3, 2.S13; Table 2.S7). Roughly half of newly predicted sites match 

our previous predictions [21], but many sites are gained or lost (Fig. 2.S13A, Table 

2.S7). These differences reflect improvements in both 3’UTR annotations and multi-

species alignments, which increase the accuracy of conserved seed site identification 

and signal-to-noise ratios [8]. Over 3,000 PAS motifs are positionally conserved among 
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Caenorhabditis species, including within alternative 3’UTRs (Fig. 2.S13B). Thus, 

maintenance of multiple specific 3’termini may be functionally important for some genes. 

Thousands of unexplained conserved sequence blocks of varying lengths within 3’UTRs 

(Fig. 2.3B, Table 2.S7) may represent novel functional elements that await further 

characterization. In vivo Argonaute (ALG-1) binding sites [15] overlap significantly with 

predicted miRNA target sites but not with other conserved blocks (Table 2.S7), indicating 

that the latter are, overall, not directly related to microRNA function [8]. For 1,876 

convergently transcribed neighboring genes, overlapping 3’regions could pair as dsRNA 

if co-expressed, potentially triggering endogenous siRNA production [22] that could 

down-regulate cognate mRNAs (Fig. 2.S14, Dataset S4). 

We examined alternative 3’UTR isoforms in different developmental stages (Fig. 

2.4). We found a downward trend in average length and number of 3’UTRs per gene 

from the embryonic through the adult stage (Fig. 2.4A,B). Among genes expressed in 

more than one developmental stage, embryos display the largest proportion of stage-

specific 3'UTR isoforms, and these tend toward longer isoforms (Fig. 2.4B, 2.4C, Table 

2.S8, 2.S9, Dataset 2.S5). Some genes switch 3'UTR length coincident with 

developmental transitions, most notably from embryo to L1, L1 to dauer entry, dauer exit 

to L4, and in adult hermaphrodites vs. males (Fig 2.4D, Table 2.S9; Datasets 2.S5-S6). 

Thus, 3’UTR-mediated gene regulation may be widespread in the C. elegans embryo, 

and differential expression of alternative isoforms may represent a mechanism to 

engage or bypass 3’UTR-mediated regulatory controls in specific developmental 

contexts [23, 24].   

 The 3’UTRome compendium evidences support for multiple mechanisms of 

transcript 3’end formation in C. elegans, including standard PAS-directed 3’end 

formation from a large collection of PAS variants, regularly spaced “shadow” polyA 
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addition sites devoid of recognizable signals, and both operon-dependent and -

independent correlations between features at the 5’ and 3’ ends of the same or of 

consecutive transcripts that are consistent with the possibility that trans-splicing and 

3’end processing within a gene could occur by functionally linked mechanisms. We 

characterize thousands of new and alternative 3’UTR isoforms throughout development; 

we define a comprehensive catalog of PAS elements, and discover a surprising number 

of polyadenylated transcripts with no discernable PAS; and we definitively document 

polyadenylation of histone transcripts. We also identify conserved sequence elements in 

3’UTRs that may interact with trans-acting factors such as miRNAs and RNA-binding 

proteins, some of which occur within variable regions of alternative 3’UTRs. A collection 

of cloned 3'UTRs for several thousand C. elegans genes is available to the research 

community for high-throughput downstream analyses and in vivo studies [Table 2.S10, 

Dataset 2.S6, 8].  

2.5: Supplementary Materials and Methods 
 

PolyA capture 

Strains : Worms were grown on NGM plates seeded with E. coli OP50 to 

adulthood. For collection of staged samples, the wild-type N2 strain was used. Embryos 

were isolated from gravid worms by standard alkaline/hypochloride treatment [1]. A 

sample of embryos was frozen down in TriReagent (Ambion, Austin, TX), and the 

remainder hatched overnight in M9 buffer to yield synchronized L1 stage worms. Starved 

L1 larvae were plated and fed on NGM plates seeded with OP50 E. coli and raised at 

20°C. Synchronized staged samples were collected at  ~8 hr (L1), ~20 hr (L2), ~30 hr 

(L3), ~45 hr (L4), and ~70 hr (adult hermaphrodite). The developmental stage of each 

sample was verified by monitoring the seam cell lineage using Nomarski optics 

(Olympus, Center Valley, PA). For adult male isolation, the CB1489 him-8 (e1489) strain 
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was used, which increases the percentage of XO males to ~37% of the population 

versus ~0.2% males in the N2 wild-type strain [2]. The him-8 (e1489) embryos were 

synchronized by bleaching and incubated overnight at room temperature. Hatched L1s 

were aliquoted onto NGM plates seeded with E. coli OP50 and grown at 20°C for 4 days. 

Male adults were isolated by filtering through 35 µm nylon mesh, resulting in >95% 

males in the final sample. For dauer larvae preparation, CB1370 daf-2 (e1370), CB1372 

daf-7 (e1372), DR47 daf-11 (m47), DR2281 daf-9 (m540) mutants from starved plates 

were collected, resuspended in M9 buffer [1] containing 1% SDS, and incubated for 20 

min at room temperature. The suspension was then washed with M9 buffer and worms 

were placed on a fresh unseeded plate at 20°C for 1 2 h. Live worms that had crawled 

away from the dead worms were collected as dauer larvae. Worms were washed off 

plates with M9, washed 5 times with M9 to remove residual bacteria, and frozen in 

TriReagent. 

RNA preparation:  Total RNA was extracted using TriReagent following the 

vendor's protocol with the following modification: three freeze-thaw cycles (freeze in 

liquid nitrogen / thaw at room temperature / vortex 1 min) were included to increase 

worm lysis efficiency; RNA was precipitated with isopropanol at -80°C for one hour. To 

subtract 72 most abundant ribosome subunit genes, 25µg total RNAs were mixed with 

antisense DNA oligos (IDT, Coralville, IA) targeting the last DpnII site of each of these 

genes and digested with RNaseH (Invitrogen, Carlsbad, CA), which only cleaves RNA in 

RNA: DNA duplex. After subtraction, PolyA+- selected mRNAs were isolated from total 

RNA using oligo (dT) magnetic beads (Invitrogen, Carlsbad, CA) using the 

manufacturer’s protocol. 

cDNA synthesis:  First-strand synthesis was carried out using Superscript III 

reverse transcription kit (Invitrogen, Carlsbad, CA) with ~20 ng of PolyA+- selected 

mRNA and 10 pmol of biotinylated reverse primer at 50°C for 30 min followed by 
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incubation at 42°C for 30 min. The following biotin -labeled primer was synthesized by 

Integrated DNA Technologies (Coralville, IA) and PAGE-purified: 5’Biotin-TAATAC-

GGCGCGCCGCCTTGCCAGCCCGCTCAG-T20-VN-3’. The poly (dT) and two-nucleotide 

anchor (VN) target the proximal end of the mRNA polyA tail. The second strand was 

synthesized using DNA polymerase I in the presence of RNase H for 2.5 hr. The double-

stranded cDNA product was extracted twice with 200 µL phenol/chloroform/ isoamyl 

alcohol (25:24:1), ethanol precipitated, and dissolved in 20 µL H2O. 

DpnII digestion : The resulting cDNA was digested with DpnII restriction enzyme 

(New England Biolabs, Ipswich, MA) at 37°C for 1 hr , extracted twice with 200 µL 

phenol/chloroform/isoamyl alcohol (25:24:1), and then ethanol precipitated and dissolved 

in 20 µL H2O.  

Binding biotinylated cDNA to magnetic beads:  100 µL of Streptavidin-

Dynabeads M-280 (Invitrogen, Carlsbad, CA) were prepared in a 1.5 mL Eppendorf tube 

and then washed twice with 1 mL TE (10mM Tris-HCl, PH7.5, 1mM EDTA) and twice 

with 200 µL 1X B&W buffer (5mM Tris-HCl, PH7.5, 0.5mM EDTA, 1M NaCl). The beads 

were resuspended in 100-µL 2X B&W buffer (10mM Tris-HCl, PH7.5, 1mM EDTA, 2M 

NaCl). 10 µL of DpnII-digested cDNA fragments and 90 µL H2O were added to the 

beads. The tube was rotated for 30 min at room temperature and then the beads were 

washed twice with 200 µL 1X B&W buffer and twice with 200 µL TE. 

Ligation of barcoded linkers to the bound cDNA:  Immediately after binding to 

Dynabeads, cDNAs were ligated to 5 µL Linker A (10 µM) using T4 DNA ligase 

(Invitrogen, Carlsbad, CA) (5 U/µL) for 2 hr at 16°C with intermittent gentle mixing. The 

beads were washed twice with 200 µL 1X B&W buffer, washed twice with 200 µL TE, 

and resuspended in 200 µL TE. Linker A was prepared by annealing the following two 

complementary oligonucleotides in TE plus 50 mM NaCl: 5’-GCCT-

CCCTCGCGCCATCAG-XXXX-3’ and 5’-phosphate-GATC-XXXX-CTGATGGCGCGAG 
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GGAGGC-3’, where GATC is the DpnII restriction sequence and XXXX represents a 

four-base barcode tag specific to each developmental stage: CATG (embryo), TAGT 

(L1), GATC (L2), CACT (L3), TACG (L4), or GAGC (adult hermaphrodite).  

3’ cDNA recovery:  100 µL beads were mixed with 100-µL 

phenol/chloroform/isoamyl alcohol (25:24:1), incubated at 65°C for 30min, vortexed at 

full speed for 5min, and centrifuged at 15,000 rpm for 5 min. The supernatant was 

collected using Phase Lock Gel (5PRIME Inc., Gaithersberg, MD). DNA was ethanol 

precipitated and resuspended in 20 µL H2O. 

PCR amplification:  The ligation products from each developmental stage were 

used as template for two sequential rounds of PCR using 1 µL of DNA, the forward 

primer set 5’-GCCT-CCCTCGCGCCATCAG-XXXX-3’, and the reverse primer set 5’-

GCCTTGCCAGCCCGCTCAG-X-TTTT-X-TTTT-X-TTTT-X-TTTT-3’, where the four Xs 

represent the four nucleotides of the stage-specific barcode tag distributed in order along 

a polyA tail. The periodic insertion of the X nucleotides improves reliability of Roche/454 

sequencing by decreasing homopolymerization of Ts. Samples were extracted with 

phenol/chloroform/isoamyl alcohol (25:24:1), ethanol precipitated, and resuspended in 

50 µL H2O. DNA concentration was measured using a Nanodrop 1000 

spectrophotometer (Thermo Scientific, Wilmington, DE).  

454 GS FLX Sequencing:  Deep sequencing was performed on the Genome 

Sequencer FLX system (Roche/454 Life Sciences, Branford, CT) following the 

manufacturer's protocol.  

3'RACE 

RNA extraction : Total RNA from C. elegans N2 mixed developmental stages 

was prepared using an adaptation of the RNeasy Mini kit (Qiagen, Valencia, CA). 

Worms were grown on NGM plates seeded with E. coli OP50, washed with M9 buffer, 

transferred to an RNase-free Eppendorf tube, and dipped into liquid nitrogen. Worms 
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were ground using RNase-free pestles and incubated with RLT buffer (Qiagen) and 

beta-mercaptoethanol. The lysate was homogenized by aspiration through a 20-gauge 

needle fitted to a syringe and centrifuged at 13,000 rpm for 3 min. The supernatant was 

transferred to RNAse-free tubes and treated as per the manufacturer’s 

recommendations.  

Primer Design:  Forward primers were designed to target 7,077 CDS-specific 

regions from WormBase WS150 for CDSs also contained in the Promoterome [3] and 

the ORFeome [4, 5] collections. For each CDS, in-frame sequence just upstream of and 

including the STOP codon (based on spliced transcript models) was selected to achieve 

a Tm of 60°C ± 5°C during PCR amplification. Each CDS-s pecific sequence was 

preceded by the Gateway adaptor 5'-GGGGACAGCTTTCTTGTACAAAGTGGGA-3' to 

allow recombination into the pDONR P2R-P3 vector (Invitrogen, Carlsbad, CA). The 

primer list is available at http://www.utrome.org. A universal reverse primer was used, 

containing a Gateway adaptor (for recombination into pDONR P2R-P3) followed by 

poly(dT) and a two nucleotide anchor (VN) to target the proximal end of the mRNA polyA 

tail: 5'-GGGGACAAACTTTGTATAATAAAGTTG-T20-VN-3'. Primers were obtained from 

Invitrogen. 

RT-PCR: Total RNA was incubated at 55°C for one hour with Superscript III 

reverse transcriptase (Invitrogen, Carlsbad, CA) and the universal reverse primer 

according to the manufacturer’s specifications. PCR amplification of 3’UTRs from the 

single-stranded cDNA reaction was performed in 96-well plate format, using, in each 

well, the universal reverse primer and a different transcript-specific forward primer as 

follows: denaturation at 94°C for 30 sec, annealing  at 60°C for 30 sec, extension at 72°C 

for 3 min. 

Gateway BP recombination reaction and transformatio n: 3'UTRs were 

recombined into the pDONR P2R-P3 entry vector using the BP Clonase II Enzyme Mix 
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kit (Invitrogen, Carlsbad, CA) following the manufacturer's specifications and 

transformed into MultiShot Stripwell TOP 10 plates (Invitrogen, Carlsbad, CA). The 

transformed bacteria were grown overnight at 37°C u nder kanamycin selection.  

Sanger Sequencing:  Aliquots from overnight cultures of 3’UTR minipools were 

used as templates for PCR with the M13 primer set as follows: denaturation at 94°C for 

30 sec, annealing at 60°C for 30 sec, extension at 72°C for 3 min. 7,077 PCR amplicons 

were sequenced at Agencourt Bioscience Corporation (Beckman Coulter Genomics, 

Danvers, MA) using the ABI 3700 automated DNA sequencers.  

Preparation of deconvolved 3'UTR libraries:  6,912 minipools containing 

3’UTR isoforms were manually streaked onto LB kanamycin plates. From each minipool, 

eight single colonies were manually isolated and propagated as individual 3’UTR clonal 

isoforms in 96-well plates (for a total of 55, 296 colonies). Liquid aliquots of isolated 

clones were re-pooled into eight different super-pools using the Aquarius automated 

multi-channel pipetting system (Tecan Trading AG, Switzerland), resulting in eight 

libraries that should each contain zero (if no insert was cloned) or one unique 3'UTR 

isoform per targeted CDS. These deconvolved libraries (labeled A-H) were sequenced 

using Solexa/Illumina and FLX Roche/454 platforms. 

Sample preparation and sequencing with Illumina Gen ome Analyzer II:  

Plasmid DNA was recovered using standard alkaline lysis from overnight cultures of the 

eight deconvolved libraries (A-H). Inserts from each library were amplified by PCR using 

common Forward (5’-GTTTCTCGTTCAACTTTCTTGTACAAAGTGGGA-3’) and 

Reverse (5’-ATAATGCCAACTTTGTATAATAAAGTTGTTTTTTTTTTT-3’) primers. The 

eight amplicon libraries were purified using MinElute columns (Qiagen), treated to create 

blunt ends using T4 DNA polymerase (New England Biolabs, Ipswich, MA) and T4 

polynucleotide kinase (New England Biolabs), incubated overnight with DNA ligase (New 

England Biolabs), and then sonicated using the Bioruptor UCD-200 (Diagenode Inc., 
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Sparta, NJ) for 30 min in cycles of 30 sec ON, 30 sec OFF. The resulting 8 fragmented 

libraries were prepared for Illumina sequencing according to manufacturer’s 

recommendations, and six of the libraries were sequenced using the Illumina Genome 

Analyzer II system (Illumina, Inc., San Diego, CA) in the Sachidanandam laboratory at 

the Mount Sinai School of Medicine (New York, NY).  

Sample preparation and sequencing with 454 GS FLX : Plasmid DNA was 

recovered from overnight cultures of the eight deconvolved libraries (A-H) using the 

Wizard Plus miniprep kit (Promega, Madison, WI) and used as template for PCR 

amplification with eight barcode-matched primer pairs: AdaptorA::Barcode::Forward (5’-

GCCTCCCTCGCGCCATCAG-XXXX-Forward-3’) and AdaptorB::Barcode::Reverse (5’-

GCCTTGCCAGCCCGCTCAG-XXXX-Reverse-3’), where Forward and Reverse are the 

same sequences used for Illumina above and barcode tags, XXXX, for libraries A-H are 

A: CATG, B: TAGT, C: GATC, D: CACT, E: TACG, F: GAGC, G: CTGC, H: ATCG. 

Barcoded PCR amplicons from all eight libraries were combined and purified using the 

MinElute PCR purification kit (Qiagen). Because the FLX platform output for samples of 

variable length is biased toward shorter reads, the combined sample was split into two 

equal batches: (i) untreated, and (ii) treated with the Agencourt AMPure SPRI PCR 

purification kit (Beckman Coulter Genomics) to enrich for longer fragments by removing 

fragments shorter than 100 bp. AMPure library DNA was evaluated for quality and 

quantified using a BioAnalyzer DNA 1000 lab chip (Agilent, Santa Clara, CA). DNA 

concentration in ng/µl was converted to molecules/µl and adjusted to 2x105 molecules/µl 

in TE buffer. The resulting fragments were prepared for 454 sequencing according to the 

manufacturer’s recommendations and sequenced using the Genome Sequencer FLX 

system. 

cDNA libraries 



 

 52 

 Two sets of polyA+-selected cDNA libraries from the Kohara laboratory and 

prepared from various stages of C. elegans development were used (totaling 152,000 

cDNA clones).  

First, lambda-zap embryonic and him-8 mixed stage libraries were prepared 

without any amplification or rationalization steps. These libraries are of very high quality, 

with ~10-4 mismatches per base relative to the genome (after removal of ~200 errors 

detected in the genome) and less than 3% structural defects or artifacts.  

The second set consists of full-length L1, L2, L4 and mixed stage libraries 

prepared by S. Sugano Y. Suzuki and Y. Kohara using the oligo cap selection procedure 

[6]. These libraries were designed to include the entire transcript, from 5’ capped first 

base to poly A, and are validated by the fact that >99% of the clones with a trans-spliced 

leader in this collection contain the entire leader sequence (21 to 23 bases long). These 

collections allowed identification of 12 varieties of SL as well as 3,953 genes that are not 

trans-spliced.  

Sequencing traces from a polyA+-selected library (n=14,811 cDNA clones), 

generously provided by Exelixis Inc. (San Francisco, CA), along other publicly available 

cDNAs and EST data obtained from the NCBI Trace and dbEST archives (in the form of 

either sequences or traces), were also manually curated at NCBI as part of the 

experimentally supported worm transcriptome project known as AceView [7]. 

The combined cDNA dataset provides experimental evidence for 16,659 distinct 

polyA sites in 11,180 genes. These data are all publicly available from 

http://www.aceview.org and http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly. 

RNA-Seq datasets:  Illumina data for staged samples (L2, L3, and L4 larvae and 

young adults) from the modENCODE transcriptome project, described in [8], were 

obtained from NCBI GEO (SRX001872-SRX001875). Additional published Roche/454 
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datasets for the L1 stage [9] were also analyzed. Together, these data provide support 

for 8,332 polyA sites for 7,461 genes. 

Sequence analysis of primary datasets  

Genome version:  All data were aligned to C. elegans genome sequence version 

CE6 (on which WormBase WS190 gene annotations are also anchored). 

PolyA capture libraries:  454 sequence data from three independent runs were 

pooled. Runs A and B comprised sequences from combined staged samples (Run A: 

embryo, L1-L4, adult hermaphrodite; Run B: embryo, L1-L4, adult hermaphrodite, adult 

male); Run C contained mixed sequences from four dauer mutants: daf-2, daf-7, daf-9, 

and daf-11 (see Table S2 for read counts from each run). Forward reads were identified 

by the pattern 5’-XXXX-GATC-Nm-X´-AAAA-X´-AAAA-X´-AAAA-X´-AAAA-3’, where 

GATC is the DpnII restriction site, Nm is a sequence of length m extending from the DpnII 

site to the end of the 3’UTR, and X´X´X´X´ is the reverse complement of the matching 

3’end barcode. Reads that did not contain a decipherable barcode tag were discarded. 

Barcodes were used to identify the library of origin for the remaining reads, and 

sequences were processed to remove the 5' and 3' adaptor sequences and barcode 

tags. Sequences retaining length ≥15 nt were aligned to the genome using BLAT [10], 

with a maximum intron size of 1000, minimum window size of 5, and maximum gap of 6. 

Best matches were selected, and multiple alignments reported if present in more than 

one genomic location. Alignments in PSL format were converted to SAM format using 

the psl2sam.pl script provided with SAMtools [11]. Alignments for sequences that did not 

reach the polyA were set aside; the remaining alignments were further annotated. 

3’RACE:  RACE clones were sequenced by three different methods. Sequences 

from ABI or SCF files were trimmed of vector sequence and filtered for empty vectors 

and putative primer-dimer products. The remaining sequences were aligned to the 

genome using BLAT [10] and WU-BLAST 2.0 [12]. Aligned regions were scanned for the 
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presence of detectable CDS-specific primer and terminal polyA sequences (defined as 

10 or more consecutive As with zero or one intervening nucleotide).  

For Illumina data, 50 million sequence reads from six independently sequenced 

libraries were aligned to both the genome and to AceView transcripts using the AceView 

aligner (http://www.ncbi.nlm.nih.gov/ IEB/Research/Acembly/Software). PolyA sites were 

identified by trimming reads beginning with at least 5 consecutive T’s or ending in at 

least 5 consecutive A’s, and then mapping either the full remaining tag sequence or a 

version lacking the last two nucleotides upstream of the polyA (since we had previously 

determined that the cloned RACE products contained a high proportion of T to C base 

changes at these positions, which pair with the two anchor nucleotides in the universal 

reverse primer; data not shown). Overlapping mapped reads were assembled into 

contigs, and these were used for further annotation.  

From the two 454 runs, a total of ~170,000 reads corresponding to ~85,000 

unique sequences were produced. Initial processing, BLAT alignment, and conversion to 

SAM format were the same as described above for polyA capture data.  

Alignments from all three platforms were then considered together and, where 

possible, alignments were assigned to the putative plate-well of origin based on the 

identity of the corresponding primer; for deconvoluted libraries, the combination of primer 

and barcode, if detectable, was used to assign a putative location in the isolated clone 

library plates. 

cDNAs and ESTs:  cDNA clones from the yk collection were sequenced using 

the Sanger method. All cDNA and EST data from this collection and from other sources 

(as described above) were aligned to the genome and annotated using AceView tools; 

these were further hand-curated by visual inspection of multiply aligned ABI sequence 

traces, where available. 
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RNA-seq:  Illumina and Roche/454 datasets (described above) were aligned to 

both the genome and AceView transcripts using the AceView software tools 

(http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/Software). PolyA sites were 

identified trimming reads beginning with at least 5 consecutive T’s or ending in at least 5 

consecutive A’s, and mapping the remaining sequence tag as above. Overlapping 

mapped reads were assembled into contigs, and these were used for further annotation. 

cDNA and transcriptome annotation 

Annotation of independent datasets:  Sequences from RACE and polyA 

capture with best-hit alignments or assembled contigs near the last exon of a (targeted, 

for RACE clones) CDS were defined as candidate 3’USTs (UTR Sequence Tags). USTs 

were initially assigned to the overlapping or immediately adjacent upstream CDSs from 

WormBase WS190 gene models (http://www.wormbase.org); these assignments were 

later revised using AceView genes (http://www.aceview.org), which in some cases 

revealed that the combined data were incompatible with existing WS190 (or WS150) 

CDS models. In such cases, USTs from RACE experiments were retained as evidence 

of transcriptional activity but were removed from the final list of cloned 3’UTRs. USTs 

with a contiguous BLAT alignment extending through the STOP codon of a valid 

AceView CDS model and containing polyA sequences were considered to be bona fide 

complete 3'UTR isoforms with full-length coverage. Those with incomplete 3'UTR 

coverage and/or no detectable polyA sequence were annotated as partial 3'USTs and 

used to refine 3'UTR boundaries. Mapped tags from short read data were assembled 

into contigs and used together with cDNA, EST, UST data to define transcribed regions. 

The combined data were used to refine and extend existing AceView genes. Data 

mapping downstream of (but not overlapping) an existing gene were extended in silico, 

where possible, and assigned to the nearest gene upstream or else used to define new 
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transcriptional units. All annotated 3’USTs and 3’UTRs were used for subsequent 

analyses. 

Definition of representative polyA sites and 3’UTR isoforms:  To define 

3'UTR isoforms and assign a single representative polyA site per isoform, we combined 

evidence for polyA addition sites from all four independent data sources in the 3’UTR 

compendium into a single large dataset.  

To define the 3’UTRs, I performed a custom written iterative local clustering 

procedure using the chromosomal coordinates and abundance of the 3’UTR ends. I 

used a 20 nucleotide window to scan across the genome from left to right and for each 

strand of the chromosome separately and looked for neighboring 3’UTR ends within the 

window. All 3’UTR ends within the window were annotated to a cluster and the most 

abundant 3’UTR end was made the representative end of the cluster and its abundance 

was calculated as the sum of the individual abundances. If multiple 3’UTR ends in a 

cluster had the same maximum abundance then one of them was chosen as the 

representative at random. This was performed iteratively and if the representatives of 

two neighboring clusters are within 20 nucleotides of each other they were clustered into 

one. This recursion continued till no further clustering was possible.  

A parallel clustering implementation was performed by Jean-Thierry Mieg to 

validate my results and their clustering software is included in the AceView software, 

available from http://www.ncbi.nlm.nih.gov/IEB/Research/ Acembly/Software. When 

evidence sources were attached to a known gene model, clustering was performed on a 

per-gene basis. The local maximum for each cluster was computed and used as the 

position of the reported (“representative”) polyA addition site for each 3'UTR isoform. 

The spread of the clusters extends from one up to around 20 nucleotides, with 86% of all 

individual data points falling within 4 nt of the representative polyA site (Fig. 2.S6). 



 

 57 

Using this clustering procedure, each 3’UTR isoform was then defined as a 

unique sequence span that extends from a specific CDS end and terminates 

downstream at a distinct “canonical” polyA addition site: 3’UTR sequences that share the 

same CDS end and terminate within the same polyA cluster were defined as examples 

of the same isoform, whereas 3’UTR sequences that terminate within different polyA 

clusters (even if linked to the same CDS) were defined as distinct isoforms. Isoforms of a 

gene that were represented by less than 5% of the total polyA counts for that gene, 

isoforms that were not supported by two or more independent pieces of evidence, and 

those that were shorter than 20 nt (which mostly contained dubious cloning artefacts) 

were removed from the final dataset. For reporting purposes and all downstream 

analyses involving isoforms, we considered only the “representative” polyA coordinate 

for each reported 3’UTR isoform. 

Identification of PAS sites:  The 50 nt regions immediately upstream of all polyA 

sites were scanned in an unbiased way for all possible 5 to 10-mer sequences to identify 

any statistically over-represented motifs. The only motifs returned from this exercise 

were the canonical PAS sequence (AAUAAA) and several closely related 

sequences. The distribution of all over-represented hexamers peaked at a start position 

of -19 nt from the polyA site, which was taken as the most likely position of the PAS site. 

All of the 3'UTR isoforms in the compendium were then scanned for the canonical PAS 

sequence and any hexamer with an edit distance of 1 or 2 nt. Because it is not possible 

to definitively identify the "real" PAS site, we scanned for hexamers in a preferred order 

based on their observed frequency of occurrence in 3'UTRs between 10 and 30 nt 

upstream of the polyA site, and considered those occurring at a frequency of ≥1% as 

putative PAS motifs. We used the first occurrence of a putative motif in the ordered list 

as the most likely functional PAS sequence. UTRs that did not contain one of the 

resulting 26 putative PAS motifs within this interval were termed “no PAS”. 
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Analysis of genomic nucleotide frequencies in the 120 nt region spanning ±60nt 

of polyA sites showed that strongly supported PAS sites, which we consider the best 

candidates for recognition by CPSFs for 3’end-processing [13], also show an enrichment 

of T’s that peaks at +5 nt downstream of the putative PAS site (Fig. 1D). These include 

nine principal motifs: AATAAA (the canonical PAS hexamer), AATgAA, tATAAA, 

cATAAA, gATAAA, AtTAAA, tATgAA, AgTAAA and cATgAA (where upper-case letters 

are identical with the canonical hexamer, and lower-case letters indicate substitutions).  

Comparison of 3’UTRome and WormBase annotations:  Operon, Gene, CDS, 

and 3’UTR annotations for WS190 were obtained from WormBase. For comparative 

purposes, any 3’UTR in our compendium whose 5’end matched a WS190 CDS and 

whose 3’end was within 10 nt of an annotated WS190 3’UTR was considered identical; 

all others were labeled as “longer” or “shorter” than the WS190 3’UTR, as appropriate. 

3’UTRs in our dataset that matched a WS190 CDS end but had no corresponding 

WS190 3’UTR were annotated as “new 3’UTRs”. 3’UTRs that did not match a WS190 

gene model, but matched an alternate transcript model that could be generated from 

experimental data, were annotated as 3’UTRs of “new AceView genes”. These data are 

summarized in Fig. 2.S1. 

Intron analysis:  Gapped sequence alignments were examined for the presence 

of putative splice signal consensus sequences, and introns were annotated as 

appropriate. Numerous gapped alignments of polyA capture data spanned bona fide 

splice junctions but were on the opposite strand and thus contained the reverse 

complement of known splice consensus signals. Such alignments were observed to 

occur most frequently within coding regions; these were determined most likely to 

represent mis-priming in A-rich regions and were discarded. A subset of gapped 

alignments for these data contained terminal segments <10 nt; these appeared to be 

alignment artifacts of degraded sequence data and were also discarded. A total of 363 
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3’UTRs for 192 genes were determined to contain bona fide introns, based on the 

presence of a strongly supported CDS upstream with no evidence for another CDS that 

could extend into the putative 3’UTR. The 3’UTRs with an intron that could also occur 

internally within the CDS of an alternative isoform were not counted in this set. 

Operon and SL analysis: To compare the six categories of genes analyzed in 

Fig. 2, we selected a subset of trans-spliced and non-trans-spliced genes for which 

assignment to a unique category could be unambiguously determined. Among the SL1 

trans-spliced genes, we identified 574 SL1 genes occupying the first position of an 

operon (genes fully supported from SL1 to polyA and separated by at most 300 bases 

from the next gene in cis, which is itself trans-spliced mostly to SL2) and 3,530 SL1-

genes undoubtedly not in an operon (selected as followed either by another SL1-gene 

(n=1,749) or by a confirmed non-transspliced gene (n=1781)); these two subsets were 

found to be indistinguishable and were merged in Fig. 2. 

Directed RT-PCR assay for retained 3’UTR introns:  Total RNA was extracted 

from mixed-stage worms and RT-PCR was performed essentially as described above. 1 

µg of total RNA from mixed-stage worms was used as template for a first strand reaction 

using the universal anchored poly(dT) reverse primer. PCR was performed using internal 

primer pairs flanking putative retained introns in the 3’UTRs of two genes: par-5 

(Forward: 5’-GAG GGA AAC CAG GAA GCT GGA AAC TAA-3’; Reverse: 5’-GAT GCT 

ATT GCG CAG TGT TGT ATG GAG TAT TGG) and sams-1 (Forward: 5’-GCC ACA 

TCT GCT ATC GCT CAC TAA-3’; Reverse: 5’-CAA GAC AGC TCA GCG GGT AGC 

GGA AAC CG-3’). Products were separated on a 1% agarose gel and visualized with 

ethidium bromide.  

 Developmental stage analysis:  The staged polyA capture dataset was used for 

this analysis, since this dataset can provide specific information on the abundance of 

alternative 3’ends expressed in different stages. Since the total polyA tag count differed 



 

 60 

between libraries, the total number of read counts from each stage was normalized to 

match the total counts in embryo, and counts for individual isoforms scaled 

proportionally to reflect the relative expression level in different life stages. The number 

of isoforms detected per gene was evaluated for each developmental stage and across 

all stages. To study the expression of long vs. short isoforms we identified genes 

showing exactly two distinct 3’UTR isoforms (2,295 in total) and restricted our analysis to 

a stringent subset of 1,960 genes showing at least 5 read counts for the most abundant 

isoform (Supplementary Dataset S5). To identify genes showing preferential isoform 

usage, we further selected a subset of genes that showed, in the cumulative dataset, at 

least twice as many total counts for one isoform as the other (915 genes for long>short; 

615 genes for short>long). The per-stage relative expression of a particular isoform of a 

gene was calculated by dividing the counts for that isoform by the total counts for both 

isoforms expressed during that stage. The relative expression of an isoform across all 

stages was calculated as the ratio of the normalized counts of the isoform in a single 

stage to the total normalized counts of both isoforms of the gene across all 

developmental stages.  

 To identify genes that exhibit a differential preference for 3’UTR isoforms during 

development (i.e. 3’UTR isoform “switching”), we filtered the 1,960 genes described 

above using the following criteria: 1) isoform ‘a’ was more abundant than the isoform ‘b’ 

in one developmental stage, and isoform ‘b’ was more abundant than isoform ‘a’ in any 

other developmental stage; 2) the total abundance of all isoforms for the same was ≥ 20 

counts (abundance was based on normalized polyA capture counts). We identified 612 

genes exhibiting such 3’UTR isoform switching (see Supplementary Datasets S5, S6). 

To obtain a “high-confidence” subset of these genes, we imposed two additional criteria: 

1) the ratio of counts for isoform ‘a’ to counts for isoform ’b’ (a/b) was ≥2 fold in one 
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stage, and the ratio of isoform ‘b’ to isoform ’a’ counts (b/a) was ≥2 fold in another stage; 

2) the difference in support between isoform ‘a’ and ‘b’ was ≥5 counts within each 

developmental stage in which switching occurred. Of the 612 genes, 263 genes passed 

these filters (see Supplementary Datasets S5, S6).  

miRNA target prediction and 3’UTR conservation anal ysis  

3'UTR alignments : We used the Galaxy server processing pipeline [14]  and the 

UCSC Table Browser [15] to prepare a multiple alignment file (MAF) for C. elegans 

(WS190/CE6), C. remanei, C. briggsae, C. brenneri, and C. japonica. The MAF file did 

not contain overlapping blocks or gaps in the C. elegans sequence. We then extracted a 

MAF file for each of the initial 33,909 3'UTRs from the 3'UTRome. Overlapping 3’UTRs 

were fused to yield 15,685 unique 3'UTR regions that were used for subsequent 

analyses. 

miRNA sequences : We used for our analyses 174 C. elegans mature miRNA 

sequences downloaded from miRBase version 14 [16] and 9 novel miRNAs determined 

by miRDeep2 [17]. These miRNAs were grouped into 124 miRNA families sharing the 

same seed sequence at nucleotides 2-7 in each miRNA.  

Identification of miRNA seeds in 3’UTRs:  The PicTar algorithm [18, 19] was 

used to identify non-conserved and conserved miRNA seeds in mRNA sequences, 

which were defined as regions in mRNA sequences with perfect base complementarity 

to miRNA 6-mer seeds (nucleotides 1-6 or 2-7 at the miRNA 5' end). Seeds conserved in 

3 species (C. elegans, C. remanei, C. briggsae) and those conserved in 5 species (C. 

elegans, C. remanei, C. briggsae, C. brenneri, C. japonica) were identified. PicTar was 

further used to predict and assign scores for full miRNA binding sites, as described [19]. 

The probabile number of conserved predicted miRNA target seed site being functional in 

3-way or 5-way species comparisons is 2.7 and 3.1, respectively. The comprehensive 
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list of PicTar predictions is available from the UTRome (http://www.utrome.org) and 

modENCODE (http:// www.modencode.org) websites. 

Comparison with Lall et al., 2006:  We compared our updated miRNA target 

predictions within our previous predictions for C. elegans [19]. For this comparison, we 

considered only those miRNAs that were analyzed in Lall et al. and the set of unique 

(non-overlapping) 3’UTRs contained in the UTRome to which the Lall et al. target site 

predictions map; thus, any predicted sites from either study that were not contained in 

UTRs considered in the other study were not included in this comparison. In addition, we 

excluded from the comparison the two miRNAs cel-miR-68 and cel-miR-69 used in the 

Lall et al. analysis (because they are currently annotated as siRNAs in WormBase), and 

the seven miRNAs cel-miR-42, cel-miR-239b, cel-miR-248, cel-miR-250, cel-miR-252, 

cel-miR-253 and cel-miR-358 (because the reported sequences of their seed regions, 

i.e. positions 1-7 or 2-8 in the mature miRNA, were different according to Rfam version 6 

and miRBase version 14).  

We then compared the number of predicted sites from this study with the 

previous set of predictions within the sequence space analyzed in both studies 

(summarized in Table S7). From our new prediction set, 5,943 predicted miRNA target 

sites fall in this intersecting sequence space, of which 580 sites (9.8%) were not 

identified in the Lall et al. study.  We attribute the identification of these new sites to 

improved multi-species alignments and the inclusion of newly sequenced species in the 

alignments. 

Of the 11,131 miRNA target sites predicted in the Lall et al. study, 6,474 sites 

were located in the intersecting sequence space. In the current study, we recovered 

5,363 of those sites, or 82.8%; the remaining 1,111 sites from Lall et al. (17.2%) could 

not be recovered. The loss of these sites is explained by the fact that the Lall et al. study 

used some sequence regions outside the 3’UTRome for the initial predictions; if 
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conserved sites were identified in these regions, then non-conserved sites falling within 

shorter 3’UTRs would also be designated as candidate target sites due to the presence 

of the initial conserved site.  However, if this sequence region is not used for the initial 

identification, and no other conserved sites are identified within the sequence space 

analyzed, then non-conserved sites will not be considered by the algorithm as potential 

target sites, and previously predicted sites would then be lost.  

We note that many previously predicted target sites from Lall et al. that fall 

outside the spans of our 3’UTR annotations (either because they targeted genes for 

which we have no 3’UTR annotation, or because we previously used up to 500nt spans 

downstream of any CDS if no 3’UTR was available) are not currently supported by 

empirically defined 3’UTR regions. 

Conserved blocks not explained by miRNA seeds:  To identify conserved 

sequence blocks that do not correspond to conserved miRNA seed sequences, all 

(reverse complemented) miRNA seeds were masked with Ns in the 3'UTR multiple 

alignment files (MAFs), and all remaining k-mers (k ≥ 6) conserved in 3 species (C. 

elegans, C. remanei, C. briggsae) or in 5 species (C. elegans, C. remanei, C. briggsae, 

C. brenneri, C. japonica) were identified. The alignment of any conserved 6-mer was 

extended as far as possible in both directions. 

Distribution of conserved PAS motifs and sequence b locks:  We excluded 

from this analysis all 3'UTRs shorter than 10 nt and those contained within coding 

sequences of alternative CDSs, resulting in a final set of 24,858 3’UTRs, of which 8,319 

genes have a single isoform, 3,320 genes have exactly two isoforms, and 2,616 have 

more than two isoforms. All conserved miRNA seeds in 3’UTRs, all 29 putative PAS 

motifs, and all conserved sequence blocks as defined above were investigated with 

respect to their positions relative to UTR ends. A PAS site was considered as 

“conserved” in this analysis if it was found in C. elegans and the same or another PAS 
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motif was found within a window of ±5 nucleotides in aligned C. briggsae and C. remanei 

sequences. Only PAS sites in genes with one isoform or exactly two isoforms, where the 

longest isoform was at least 100 nt, were considered. The set of genes with 2 isoforms 

was further filtered to require a length difference of at least 50 nt between the short and 

long isoform; if this requirement was not met, the short isoform was discarded and the 

gene was treated as having a single long isoform for this analysis. 

Analysis of overlaps between experimentally determi ned ALG-1 binding 

sites and conserved sequence motifs:  We compared recently published in vivo 

Argonaute (ALG-1) binding sites [20]  with our conserved sequence motifs (predicted 

miRNA target sites and conserved sequence blocks). For this analysis we considered 

only those 3’UTRs containing or overlapping at least one ALG-1 binding site. The 

probability of predicted miRNA target seed sites from 3-way species alignments (C. 

elegans, C. briggsae, C. remanei) occurring within an ALG-1 binding site was 0.75. As a 

control, we calculated the overlap between ALG-1 sites and 6-mers (the length of 

predicted miRNA seed sites) placed at random positions along the length of annotated 

3’UTRs (p=0.43), which represents a lower bound to the resolution at which we could 

discern meaningful correlations with ALG-1 sites. The overlap was not significant for the 

thousands of other conserved blocks that are not explained by predicted miRNA target 

sites or by conserved PAS sites (0.54 vs. 0.48 for random controls). These results 

indicate that the overlap between ALG-1 sites and predicted miRNA target sites is highly 

significant, and that while other conserved sequence blocks are likely functional, they 

are not, overall, directly related to microRNA function. 

 

Data Availability  

Raw data from Roche/454 and Illumina sequencing were deposited at NCBI Short Read 

Archive (accession numbers: GSM443959-GSM443964, GSM446651-GSM446661, 
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GSM469439, GSM469976) and GEO (accession number: GSE17781). ABI traces and 

UST sequences were deposited in the NCBI Trace (trace IDs: 2216286010-

2216288816) and dbEST (dbEST IDs: 63366486-63366494) archives. Genome 

alignments and annotations for 3’UTRs, polyA sites, and PAS sites were deposited with 

the modENCODE DCC (accession numbers: 515, 896, 992, 2327-2337, 2455-2465, 

2482, 2484, 2501 and 2745), along with metadata describing experimental and 

bioinformatic protocols and links to raw datasets in NCBI public repositories. See also 

Datasets S1-S7. Multiple web portals will provide access to 3’UTRome data, including 

UTRome.org, AceView.org, modENCODE.org, and WormBase.org. 

  



 

 66 

2.6: Reference 
 

1. de Moor CH, Meijer H, Lissenden S: Mechanisms of translational control by 
the 3' UTR in development and differentiation . Semin Cell Dev Biol 2005, 
16(1):49-58. 

2. Wickens M, Bernstein DS, Kimble J, Parker R: A PUF family portrait: 3'UTR 
regulation as a way of life . Trends Genet 2002, 18(3):150-157. 

3. Bartel DP: MicroRNAs: target recognition and regulatory functi ons . Cell 
2009, 136(2):215-233. 

4. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, 
Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ et al: A microRNA 
polycistron as a potential human oncogene . Nature 2005, 435(7043):828-
833. 

5. Chatterjee S, Pal JK: Role of 5'- and 3'-untranslated regions of mRNAs in  
human diseases . Biol Cell 2009, 101(5):251-262. 

6. Stein L, Mangone M, Sternberg P, Durbin R, Thierry-Mieg J, Spieth J: 
WormBase: network access to the genome and biology of Caenorhabditis 
elegans . Nucleic Acids Res 2001, 29(1):82-86. 

7. Harris TW, Antoshechkin I, Bieri T, Blasiar D, Chan J, Chen WJ, De La Cruz N, 
Davis P, Duesbury M, Fang R et al: WormBase: a comprehensive resource 
for nematode research . Nucleic Acids Res 2010, 38(Database issue):D463-
467. 

8. Materials SO. 
9. Thierry-Mieg D, Thierry-Mieg J: AceView: a comprehensive cDNA-supported 

gene and transcripts annotation . Genome Biol 2006, 7 Suppl 1 :S12 11-14. 
10. Dupuy D, Li QR, Deplancke B, Boxem M, Hao T, Lamesch P, Sequerra R, Bosak 

S, Doucette-Stamm L, Hope IA et al: A first version of the Caenorhabditis 
elegans Promoterome . Genome Res 2004, 14(10B):2169-2175. 

11. Reboul J, Vaglio P, Rual JF, Lamesch P, Martinez M, Armstrong CM, Li S, 
Jacotot L, Bertin N, Janky R et al: C. elegans ORFeome version 1.1: 
experimental verification of the genome annotation and resource for 
proteome-scale protein expression . Nat Genet 2003, 34(1):35-41. 

12. Mangone M, Macmenamin P, Zegar C, Piano F, Gunsalus KC: UTRome.org: a 
platform for 3'UTR biology in C. elegans . Nucleic Acids Res 2008, 
36(Database issue):D57-62. 

13. Hillier LW, Reinke V, Green P, Hirst M, Marra MA, Waterston RH: Massively 
parallel sequencing of the polyadenylated transcrip tome of C. elegans . 
Genome Res 2009, 19(4):657-666. 

14. Shin H, Hirst M, Bainbridge MN, Magrini V, Mardis E, Moerman DG, Marra MA, 
Baillie DL, Jones SJ: Transcriptome analysis for Caenorhabditis elegans 
based on novel expressed sequence tags . BMC Biol 2008, 6:30. 

15. Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW: 
Comprehensive discovery of endogenous Argonaute bin ding sites in 
Caenorhabditis elegans . Nat Struct Mol Biol 2010, 17(2):173-179. 

16. Blumenthal T, Evans D, Link CD, Guffanti A, Lawson D, Thierry-Mieg J, Thierry-
Mieg D, Chiu WL, Duke K, Kiraly M et al: A global analysis of Caenorhabditis 
elegans operons . Nature 2002, 417(6891):851-854. 

17. Liu Y, Huang T, MacMorris M, Blumenthal T: Interplay between AAUAAA and 
the trans-splice site in processing of a Caenorhabd itis elegans operon pre-
mRNA . RNA 2001, 7(2):176-181. 



 

 67 

18. Wang ZF, Whitfield ML, Ingledue TC, 3rd, Dominski Z, Marzluff WF: The protein 
that binds the 3' end of histone mRNA: a novel RNA- binding protein 
required for histone pre-mRNA processing . Genes Dev 1996, 10(23):3028-
3040. 

19. Marzluff WF, Wagner EJ, Duronio RJ: Metabolism and regulation of canonical 
histone mRNAs: life without a poly(A) tail . Nat Rev Genet 2008, 9(11):843-
854. 

20. Keall R, Whitelaw S, Pettitt J, Muller B: Histone gene expression and histone 
mRNA 3' end structure in Caenorhabditis elegans . BMC Mol Biol 2007, 8:51. 

21. Lall S, Grun D, Krek A, Chen K, Wang YL, Dewey CN, Sood P, Colombo T, Bray 
N, Macmenamin P et al: A genome-wide map of conserved microRNA targets 
in C. elegans . Curr Biol 2006, 16(5):460-471. 

22. Okamura K, Balla S, Martin R, Liu N, Lai EC: Two distinct mechanisms 
generate endogenous siRNAs from bidirectional trans cription in 
Drosophila melanogaster . Nat Struct Mol Biol 2008, 15(6):581-590. 

23. Lund E, Liu M, Hartley RS, Sheets MD, Dahlberg JE: Deadenylation of 
maternal mRNAs mediated by miR-427 in Xenopus laevi s embryos . RNA 
2009, 15(12):2351-2363. 

24. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright 
AJ, Schier AF: Zebrafish MiR-430 promotes deadenylation and cleara nce of 
maternal mRNAs . Science 2006, 312(5770):75-79. 

 

 Acknowledgements: Supported in part by grants from NIH (U01-HG004276) to F.P., 
K.C.G., J.K.K., N.R.; KAKENHI from the Ministry of Education, Culture, Sports, 
Science and Technology of Japan to Y.K., S.S., Y.S.; M.D.A and the Pew Charitable 
Trusts to J.K.K.; and by the Intramural Research Program of NIH, National Library of 
Medicine to J.T-M., and D.T-M. We thank J.V. Moran, T. Blumenthal, A. Billi, D. 
Mecenas, and B. Bargmann for discussions; T. Shin’I, and Exelixis Inc. for C. 
elegans cDNA traces; for technical assistance, T. Nawy and B. Brown (statistical 
analysis), R. Sachidanandam, R. Lyons and S. Genik (deep sequencing), P. 
MacMenamin and D. Schaub (3’UTRome database), M. Morris (data submission), L. 
Huang (stage analysis). 3’UTRome datasets are available from NCBI Trace Archive, 
dbEST, SRA, GEO, and from modENCODE [8]. See Materials and Methods for 
details.  Annotations are displayed at NCBI AceView (http://www.aceview.org) [9] 
and http://www.UTRome.org [12].  



68 

 

 

2.7: Reference for Supplementary Online Materials 
 

1. Stiernagle T: Maintenance of C. elegans . WormBook 2006:1-11. 
2. Hodgkin J, Horvitz HR, Brenner S: Nondisjunction Mutants of the Nematode 

CAENORHABDITIS ELEGANS . Genetics 1979, 91(1):67-94. 
3. Dupuy D, Li QR, Deplancke B, Boxem M, Hao T, Lamesch P, Sequerra R, Bosak 

S, Doucette-Stamm L, Hope IA et al: A first version of the Caenorhabditis 
elegans Promoterome . Genome Res 2004, 14(10B):2169-2175. 

4. Vaglio P, Lamesch P, Reboul J, Rual JF, Martinez M, Hill D, Vidal M: WorfDB: 
the Caenorhabditis elegans ORFeome Database . Nucleic Acids Res 2003, 
31(1):237-240. 

5. Reboul J, Vaglio P, Rual JF, Lamesch P, Martinez M, Armstrong CM, Li S, 
Jacotot L, Bertin N, Janky R et al: C. elegans ORFeome version 1.1: 
experimental verification of the genome annotation and resource for 
proteome-scale protein expression . Nat Genet 2003, 34(1):35-41. 

6. Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S: 
Construction and characterization of a full length- enriched and a 5'-end-
enriched cDNA library . Gene 1997, 200(1-2):149-156. 

7. Thierry-Mieg D, Thierry-Mieg J: AceView: a comprehensive cDNA-supported 
gene and transcripts annotation . Genome Biol 2006, 7 Suppl 1 :S12 11-14. 

8. Hillier LW, Reinke V, Green P, Hirst M, Marra MA, Waterston RH: Massively 
parallel sequencing of the polyadenylated transcrip tome of C. elegans . 
Genome Res 2009, 19(4):657-666. 

9. Shin H, Hirst M, Bainbridge MN, Magrini V, Mardis E, Moerman DG, Marra MA, 
Baillie DL, Jones SJ: Transcriptome analysis for Caenorhabditis elegans 
based on novel expressed sequence tags . BMC Biol 2008, 6:30. 

10. Kent WJ: BLAT--the BLAST-like alignment tool . Genome Res 2002, 
12(4):656-664. 

11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis 
G, Durbin R: The Sequence Alignment/Map format and SAMtools . 
Bioinformatics 2009, 25(16):2078-2079. 

12. Lopez R, Silventoinen V, Robinson S, Kibria A, Gish W: WU-Blast2 server at 
the European Bioinformatics Institute . Nucleic Acids Res 2003, 31(13):3795-
3798. 

13. Murthy KG, Manley JL: Characterization of the multisubunit cleavage-
polyadenylation specificity factor from calf thymus . J Biol Chem 1992, 
267(21):14804-14811. 

14. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, 
Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for 
experimentalists . Curr Protoc Mol Biol 2010, Chapter 19 :Unit 19 10 11-21. 

15. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent 
WJ: The UCSC Table Browser data retrieval tool . Nucleic Acids Res 2004, 
32(Database issue):D493-496. 

16. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: 
microRNA sequences, targets and gene nomenclature . Nucleic Acids Res 
2006, 34(Database issue):D140-144. 



 

 69 

17. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, 
Rajewsky N: Discovering microRNAs from deep sequencing data usi ng 
miRDeep . Nat Biotechnol 2008, 26(4):407-415. 

18. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da 
Piedade I, Gunsalus KC, Stoffel M et al: Combinatorial microRNA target 
predictions . Nat Genet 2005, 37(5):495-500. 

19. Lall S, Grun D, Krek A, Chen K, Wang YL, Dewey CN, Sood P, Colombo T, Bray 
N, Macmenamin P et al: A genome-wide map of conserved microRNA targets 
in C. elegans . Curr Biol 2006, 16(5):460-471. 

20. Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW: 
Comprehensive discovery of endogenous Argonaute bin ding sites in 
Caenorhabditis elegans . Nat Struct Mol Biol 2010, 17(2):173-179. 

 

 

  



 

70 

 

2.8: Figures 
 

 

Figure 2.1: The 3'UTRome and 3'UTR polyadenylation signals.  
A) The number of genes and isoforms detected in, or specific to, each dataset, and 
cumulative totals in WS190 and 3’UTRome annotations. B) PAS motif frequencies: 
AAUAAA (39%), variant PAS (1-9%), no PAS (13%). C) PAS usage in genes with one or 
two (short and long) 3'UTR isoforms. D) Nucleotide distribution spanning ±60 nt around 
the polyA addition site, in 3’UTRs with: AAUAAA (top), ten most common variant PAS 
(middle), no PAS (bottom). Alignments, centered at -19nt, show T-spike at 5 nt 
downstream of PAS (asterisk), polyA addition site (red arrow), and T-rich region 
downstream of cleavage site. The A-rich peak downstream of “no PAS” is not enriched 
for AAAAAA, suggesting an A-rich motif at that location rather than artifactual A-rich 
ends.  
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Figure 2.2: 3’UTRs in operons and trans-spliced vs.  non-trans-spliced mRNAs.  
A) Trans-spliced (top) and non-trans-spliced (bottom) mRNAs: 3’UTR median (and 
average) lengths, number of 3’UTR isoforms per gene (polyA sites, black flags), and 
PAS preference (pie charts: % 3’UTRs with AAUAAA, variant PAS, and no PAS). B) Top 
panel: Schematic of operon (left, n=574 operons), non-operon (center, n=4,348 genes), 
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and isolated (right, n=2,098) genes. Initial operon genes (red) are SL1-trans-spliced; 
downstream genes (purple) usually acquire one of SL2-SL12. Non-operon genes are 
either SL1-trans-spliced (red, n=3,530) or not trans-spliced (black, n=818). Isolated 
genes (having no neighbors within 2 kb) are not trans-spliced (orange, n=2,098). Lower 
panels: 3’UTR lengths, number of isoforms, and PAS sites for operon and non-operon 
genes.  
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Figure 2.3: Conserved sequence elements in 3’UTRs.  
A) Histogram distributions of conserved sequence blocks (black, counts shown at 1/5th 
scale), conserved miRNA seeds in three (red; C. elegans, C. remanei, C. briggsae) and 
five (blue; C. elegans, C. remanei, C. briggsae, C. brenneri, C. japonica) species, and 
non-conserved miRNA seeds (green, 1/25th scale) along the normalized length of 
3’UTRs, in genes with one isoform (top) or exactly 2 isoforms (bottom). For genes with 
one isoform, length scale is 100%; for two isoforms, 0-50% represents short isoform 
span, 51-100% the span exclusive to long isoform. Counts were binned by fraction of 
total length, and thus varied in absolute length. B) Length distribution (up to 20 nt) of 
conserved sequence blocks in 3’UTRs (excluding miRNA target and PAS sites), in three 
(blue; n=16,204) and five species (red; n=4,758). See also Table S7. 
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Figure 2.4: 3'UTRs during development.  
A) C. elegans developmental transitions: embryogenesis, four larval stages, and adults. 
In unfavorable environments, L1 larvae arrest in ‘dauer’ stage, and can re-enter the 
lifecycle as L4 larvae. B) Blue: The number of 3’UTR isoforms per gene decreases 
significantly during development (p~0.004, permutation test). Red: The average length of 
3’UTRs decreases during development. Adult males have shorter average 3’UTRs than 
hermaphrodites. Green: Embryos show more stage-specific 3’UTR isoforms for genes 
expressed during multiple developmental stages (see Table S8). C) Proportion of genes 
showing stage-specific expression of alternative 3’UTR isoforms (see Table S9). 
Embryos and dauers favor longer 3’UTR isoforms. D) Differential 3’UTR isoform 
expression during development (ubc-18 shown; see Datasets S5, S6 for details). Bar 
chart: relative abundance of short vs. long 3’UTR isoforms for ubc-18 in each stage (sum 
per stage=100%, left y-axis). Line graph:  relative abundance across all stages (sum per 
gene across all stages=100%, right y-axis). Green bars highlight differences in 3’UTR 
isoform usage in embryo-to-L1 and between adult hermaphrodite and male stages. 
Green arrows: dauer entry and exit transitions. 
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Figure 2.S1:  Overview of the 3’UTRome 
 

A,B,D) Comparison with WormBase (WS190) gene models. A) The 3'UTRome contains 
3'UTRs of similar, longer, and shorter length for WS190 genes with annotated 3'UTRs 
(left column); 3'UTRs for WS190 genes with no annotated 3'UTRs (middle column); and 
3'UTRs for transcriptional units not annotated in WS190 (AceView genes) (right column). 
B) WormBase WS190 contains 3'UTR annotations for 10,802 protein coding genes (53% 
of total); of these, only 10% are annotated with two or more 3’UTR isoforms. Our 
3'UTRome covers 14,918 WS190 coding genes (74%), 39% of which possess two or 
more isoforms. C) Observed counts of polyA sites from independent sequence reads 
cluster together, defining one or more 3'UTR isoforms. Variability within polyA clusters 
(colored boxes) spans up to ~20 nt. Asterisks denote newly identified 3’UTR isoforms.  
D) Top panel: The length distribution of 3'UTRs in WS190 and 3’UTRome datasets are 
homothetic. Bottom panel: median (blue bar) and average (red bar) length of 3’UTRs 
detected in each dataset.  
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Figure 2.S2: Overview of 3’UTRome computational pip eline 

The 3’UTRome project is composed of four datasets. PolyA capture and targeted 
3’RACE were generated in this study, while publicly available cDNA and RNA-Seq data 
were reanalyzed and curated as part of this effort. Barcoded polyA capture tags contain 
the 3’ end portions of 3’UTRs from staged samples; 3’RACE products directed at 7,105 
coding genes were cloned from mixed-stage samples. The cDNA dataset represents 
AceView-curated cDNA and EST sequences using, where possible, the original traces 
from cDNA libraries produced by the Kohara laboratory, Exelixis, and others obtained 
from the NCBI trace repository, as well as cDNA sequences from NCBI sequence 
repositories (GenBank, dbEST). The RNA-Seq dataset consists of published data for 
staged mRNA samples from the modENCODE C. elegans transcriptome project (8) and 
previously reported L1-stage data (9). Datasets were sequenced as indicated (gray 
shading). Sequences were processed (to remove vector, linker, barcode, and polyA 
sequences), filtered for read quality, and aligned to the C. elegans WS190/CE6 genome. 
The consolidated datasets were used to define a compendium of 3’UTR isoforms, which 
was used for downstream analyses of 3’UTR structure and function. Raw data and 
annotations for the compendium are available in public repositories, including NCBI 
GEO and Trace Archive, the 3’UTR-centric 3’UTRome database 
(http://www.utrome.org), AceView (http://www.aceview.org), modENCODE 
(http://www.modencode.org), and WormBase (http://ww.wormbase.org). Supplementary 
Materials and Methods provide additional details on data production and analysis. 
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Figure 2.S3:  Workflow for polyA capture assay 

 Barcoded polyA capture libraries were prepared using total RNA from staged animals 
and sequenced by Roche/454. Reads were filtered for quality, processed to remove 
adaptor and barcode sequences, and aligned to the WS190/CE6 genome build. Raw 
and processed sequence files were submitted to GEO. Alignments were consolidated 
with the other 3’UTR datasets and annotated with respect to WS190 and AceView gene 
models. Data and annotations are available in AceView, 3’UTRome, and modENCODE 
databases (see Supplementary Materials and Methods for details). 
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Figure 2.S4: PolyA capture protocol  

Total RNA from staged samples (Figure S3) served as template for a first-strand reverse 
transcriptase (RT) reaction with an anchored, biotinylated poly-dT primer. Second-strand 
synthesis with T4 DNA polymerase produced dsDNA products that were digested with 
DpnII. Three-prime terminal fragments were recovered using streptavidin beads, ligated 
with barcoded 454 sequencing primers, PCR amplified, and subjected to 
pyrosequencing (see Supplementary Materials and Methods for details). 
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Figure 2.S5: Workflow for 3’RACE  
 

A 3’RACE cloning pipeline was designed to target 3’UTRs of 7,105 CDSs for 6,741 
genes previously included in the Promoterome (3) and ORFeome (4-5) collections. 
3’RACE products were generated from total RNA isolated from mixed developmental 
stages, cloned into Gateway™ vectors, and collected as minipools of products for each 
target. Minipools were sequenced using the Sanger method. Eight individual colonies 
per minipool were isolated and re-pooled into eight bar-coded libraries containing one 
individual clone per targeted gene. Barcoded libraries were sequenced using Illumina 
and Roche/454 platforms. Minipool and deconvolved single-clone sequences were 
trimmed for vector and barcode sequences, filtered for quality, and aligned to the 
WS190/CE6 genome sequence. Alignments that extended beyond the CDS-specific 
primer were annotated and consolidated with other 3’UTRome datasets in AceView and 
3’UTRome databases (see Supplementary Materials and Methods for details). 
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Figure 2.S6: Distance between individual 3'ends and  the representative polyA 
addition site for a cluster  

Frequency distribution of distance (in nucleotides) between the representative polyA site 
in a cluster and all other polyA sequence tags in the same cluster. Data are cumulative 
for all polyA clusters in the 3'UTRome. 86% of individual polyA tags fall within 4nt of the 
representative polyA site.  
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Figure 2.S7: Distribution of the number of polyA si tes per gene  

 The frequency distribution of distinct representative polyA sites per gene in the 
3’UTRome. Around 40% of all genes with an annotated 3'UTR contain more than one 
alternative polyA site. Among genes with a large number of alternative 3'UTR isoforms 
are those encoding the small GTPase RAB-11.1 (6 isoforms), the LIN-61 paralog MBTR-
1 (7 isoforms), and the RNA helicase VBH-1 (8 isoforms).  
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Figure 2.S8: Introns in 3’UTR regions  

 363 intron-containing 3’UTRs for 192 unique genes were used in this analysis. A) 
Length distribution (in nucleotides) of introns in 3’UTRs. B) Length distribution of the 
distance from the STOP codon to the intron start position. In both A and B, intron length 
is shown in 50 nt bins for simplification. C) Examples of facultative introns. Shown are 
3’RACE products from par-5 and sams-1 3’UTRs using mixed-stage total RNA and 
gene-specific primer pairs flanking the intron (regions 1 and 3), with (+) or without (-) 
inclusion of reverse transcriptase (RT) in the reaction. Agarose gel electrophoresis lanes 
with RT each produce two products consistent in size with the retention (top band) or 
excision (lower band) of region 2. Small bands below 100 nt represent unamplified 
primers and primer dimers (see Supplementary Online Materials and Methods for 
details). We observe that in some of these 3'UTRs, putative binding sites for miRNAs or 
ALG-1 (20) are contained within an intronic sequence. 
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Figure 2.S9: Distribution of  the canonical AAUAAA and variant PAS elements 
relative to the cleavage and polyA addition site  

Start position for all PAS motifs (green line), AAUAAA (blue line), and variant PAS 
(green shading) peak at 19 nt upstream of the polyA addition site.  See Supplementary 
Materials and Methods for details on the identification of PAS motifs and assignment of 
the most likely PAS motif for each 3'UTR. 
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Figure 2.S10: Distribution of variant PAS elements relative to the cleavage and 
polyA addition site 

 In an unbiased search of all possible hexamers in the regions upstream of polyA sites in 
the 3'UTRome, the most common variant PAS hexamers show an enrichment that peaks 
at 19-20 nucleotides upstream of the polyA site. Using this as a guide, the most likely 
PAS motif for each polyA site was assigned using an ordered list of motifs according the 
the frequency of each motif in this region (see Supplementary Materials and Methods for 
details). The distribution of the most common motif, the canonical AAUAAA, which peaks 
at position -19, is not shown in this figure.  

A) Ten of the most common variant PAS motifs (each assigned to ≥1% of all polyA 
sites). The most common PAS variants contain a U in the third position and an A in the 
sixth position. B) Nine of the least common variant PAS motifs (each assigned to ≤1% of 
all polyA sites). Total counts for each motif are given in Table S5. 
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Figure 2.S11: Relationships between alternative pol yA addition sites for the same 
transcript  

A) The autocorrelation of polyA addition sites, pooled by stage, showing the average 
support count at each position relative to the most highly supported polyA site (aligned at 
0 nt). The data show a main peak (arrow) ~40-45 bases upstream of the dominant polyA 
site. B) The distance between adjacent polyA sites peaks at ±45nt. PolyA addition sites 
with the canonical AAUAAA PAS motif (red) show a propensity to have a neighboring 
polyA site upstream; conversely, sites with no detectable PAS (green) tend to have a 
neighboring site downstream. Sites with a variant PAS (blue) are equally likely to have a 
neighboring site upstream or downstream.   
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Figure 2.S12: Polyadenylated 3'UTRs for histone gen es  

 A) The electrophoretic analysis on 1% agarose E-Gels of selected 3’RACE clones 
corresponding to 3’UTRs of histone genes obtained with the 3'RACE pipeline. PCR 
amplicons (red asterisks) correspond to unique or multiple 3’UTR isoforms. B) Histone 
gene cluster on chromosome V. Several histone genes with corresponding 3’UTRs 
detected in multiple developmental stages are shown. See Table S6 for the 
comprehensive list of histone 3’UTRs and PAS usage. 

Combined with the observation that depletion of the SLBP homolog CDL-1 by RNAi 
severely depletes histone protein but not mRNA levels (21), our data lend support to the 
hypothesis that replication-dependent histone transcripts in C. elegans are first cleaved 
and polyadenylated using a PAS-directed mechanism, and are later post-processed to 
their final stem-loop form and regulated at the translational level by factors including 
CDL-1. 
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Figure 2.S13: PicTar miRNA target predictions and P AS conservation  

 A) Differences in PicTar predicted miRNA target sites within sequences spanned by the 
3’UTRome, from this study in comparison with our previous predictions for C. elegans 
(19), as a percentage of the total number of predictions from both studies. See also 
Table S7. B) Distribution of conserved PAS motifs within 40 nt upstream of 3’UTR ends 
in three-way alignments between C. elegans, C. briggsae, and C. remanei, for (top) 
genes with one isoform (n=2,573 3’UTRs) or (bottom) exactly two isoforms (short, 
n=173; long, n=419). Red lines indicate the peak at -19 nt from the 3’UTR polyA addition 
site. See Supplementary Materials and Methods for additional details. 
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Figure 2.S14: 3’UTRs on opposite strands sometimes overlap  

 The 3’UTRome contains 1,876 convergently transcribed neighboring genes with 
overlapping regions that extend from the distal end of each putative transcript into the 
3’UTR or CDS of the neighboring gene (see also Supplementary Dataset S4). For 1,240 
of these genes, overlapping 3'UTR isoforms are co-expressed during at least one 
developmental stage. If both genes are transcribed simultaneously in the same cell, their 
3'UTRs could potentially pair as dsRNA and trigger the production of endogenous 
siRNAs (endo-siRNAs) (22), which could down-regulate their mRNA levels. 

   A) Example of a 3’UTR overlap between the gene encoding mitotic spindle checkpoint 
protein ZC328.4 (san-1) and the uncharacterized gene ZC328.3. B) Length distribution 
(nt) of overlapping 3’ end annotations for gene pairs on opposite strands, for cumulative 
overlapping pairs (red, n=938 pairs) or pairs detected in the same developmental stage 
(green, n=620 pairs). Overlapping pairs involve ~10% of genes in the 3’UTRome. 
Overlaps range from 1 to 495 nt, with an average overlap length of ~44 nt and median 
overlap length of ~28 nt. The peak in the overlap distribution at ~21 nt suggests that 
longer overlaps generally may be disfavored to limit recruitment of cellular machinery 
that could lead to endo-siRNA production (22).  
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Table 2.S1: Sequence data in the 3’UTRome 

Total number of raw and mapped sequences and the number of distinct polyA clusters 
supported for each data stream. Three of the datasets, polyA capture, cDNA and RNA-
seq, provide developmental stage information allowing us to link distinct 3’UTR isoforms 
to specific developmental stages. See Figures S2-S5 for details on the different 
pipelines. 

 

 

Table 2.S2: Summary of the polyA capture 454 sequen cing runs 

Roche/454 reads produced by the polyA capture in individual developmental stages, 
males, and dauer mutants. The sequences obtained (total sequences) were scanned for 
the detection of a barcode (barcode detected). Reads containing a sequence contiguous 
with a polyA site were classified as ‘usable’. 
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Table 2.S3: Gene and 3’UTR isoform coverage for ind ividual datasets and overlaps  
among datasets in the 3'UTRome using AceView gene m odels 

Diagonal cells show the total number of coding genes and distinct polyA ends (in 
parentheses) for each of the four independent datasets; off-diagonal cells show 
intersections between each pair of datasets. The last row shows the total number of 
coding genes and distinct polyA ends that are specific to each individual dataset. 

 

 

Table 2.S4: Subset of 3’UTRome matching WS190 gene models 
The subset of data from Table S3 that are compatible with WormBase WS190 gene 
models. See Table S3 legend for additional details. 
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Table 2.S5: Identification of putative PAS elements  
An unbiased search for over-represented hexamers in the last 50 nt of 3’UTRs in the 
3’UTRome identified a handful of sequences whose start positions all peaked at around 
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19 nt upstream of the polyA cleavage site. Using these results as a guide, we searched 
all 3’UTRs recursively for the most likely PAS site utilized by each 3’UTR (see 
Supplementary Materials and Methods for details). The most common motif, the 
“canonical” PAS element AAUAAA, is observed in 39% of 3’UTRs; the other elements 
consist of variations of this motif differing by one or two nucleotides.  This apparent 
diversity of PAS motifs suggests that the recognition of PAS sites in worms is more 
flexible than higher eukaryotes, where mutation in any position of the canonical AAUAAA 
element disrupts the 3’ end processing of mRNAs (23), and may perhaps be more akin 
to the 3’ end processing mechanism of yeast, where presence of an AU rich region is 
sufficient to allow docking of the processing machinery (24). 
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Table 2.S6: Cumulative list of polyadenylated 3’UTR s detected in histone genes  
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Summary of 3'UTR isoforms detected in histone genes, showing the putative PAS 
element for each representative 3’UTR. Nucleotides that deviate from the canonical PAS 
motif are highlighted in red. 
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Table 2.S7: Summary statistics for PicTar miRNA tar get predictions and other 
conserved sequence blocks in genomic regions spanne d by the 3'UTRome 
compendium 

A) Total number of 3'UTRs used for miRNA target predictions. B) Number of unique 
3'UTR regions, obtained by merging 3'UTRs with overlapping genomic coordinates. C) 
Average length of all unique 3’UTRs. D) The unique 3'UTRome comprises ~4M 
nucleotides. E) 30% percent of nucleotides in C. elegans 3’UTR are conserved in C. 
remanei and C. briggsae. Nucleotides in CDS, 5’UTR or intergenic regions were not 
considered in this analysis. F) Probability of a conserved miRNA seed being functional 
based on alignments of three or five species, obtained by creating artificial miRNAs 
resembling the original miRNAs (18) and comparing the number of target sites for the 
artificial miRNAs with the “real” target sites. G) Number of unique conserved miRNA 
seeds in the genome of three or five species. H) In total, 183 miRNAs were used. They 
comprise 174 miRBase (database release 14) miRNAs and 9 novel miRNAs determined 
by miRDeep2 (17), grouped in 124 miRNA families. I) The probability of a conserved 
miRNA seed within an ALG-1 binding site (20) in three or five species, calculated as the 
ratio of all miRNA target sites located in an ALG-1 binding site when considering only 
3’UTRs that have an ALG-1 site and at least one miRNA target site. J) Probability of a 
shuffled seed sites (randomly positioned with the same 3’UTR) occurring within an ALG-
1 binding site for three or five species. The probability is 30% less for shuffled sites than 
for the original miRNA seed position, signifying that miRNA seeds located in ALG-1 sites 
are indeed accurate signals. K) Number of conserved blocks, defined as at least 6 nt 
long and present in five species, that cannot be explained by a conserved predicted 
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miRNA target seed site or a conserved PAS. L) Number of 3'UTR regions that contain at 
least one of such conserved blocks. M) Probability of a conserved block occurring within 
an ALG-1 binding site vs. randomly positioned blocks of the same length distribution 
within 3'UTRs is not significantly different. For analyses in K-M, regions overlapping a 
CDS in an alternative transcript were excluded. N,O,P) For the same miRNAs and 
3'UTR regions, 83% of previously predicted miRNA target sites from Lall et al. (19) are 
identical with predictions using the empirically defined 3'UTRs in the 3’UTRome; 1,111 
miRNA target sites are exclusively found in Lall et al., and 580 sites are newly predicted. 
Three species alignments always included C. elegans, C. remanei, and C. briggsae. 
Five species alignments also included C. brenneri and C. japonica. See Supplementary 
Materials and Methods for additional details. 
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Table 2.S8: Number of genes present in multiple dev elopmental stages but with 
stage-specific 3’UTR isoforms 

We have scanned the 3’UTRome for genes expressed in 1) at least two developmental 
stages, 2) with at least two 3’UTR isoforms, and 3) where one of these isoforms was 
stage-specific. The results shown here were used for the analysis described in Figure 
4B. 

 

 

Table 2.S9: Number of genes with two 3'UTR isoforms  detected in the staged 
polyA capture dataset 

A subset of annotated genes from the polyA capture dataset with two 3'UTR isoforms 
used for the analyses in Figure 4. A 3’UTR isoform is defined as abundant if: 1) the total 
number of counts across all stages is larger than 5, and 2) if it is supported by at least 
twice the number of counts than the other 3'UTR isoform (see Supplementary Materials 
and Methods for details).  
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Table 2.S10: 3’UTR clones available in the 3’UTRome  library 

The 3’RACE approach produced sequence-validated 3’UTR clones that are available to 
the community to study 3’UTR biology. The UTR library collection will be updated on an 
ongoing basis and will expand to contain minipools and unique 3’UTR isoforms for all C. 
elegans 3’UTRs for protein-coding transcripts. See Supplementary Dataset S7 and the 
3’UTR data repository http://www.utrome.org for clone availability. 
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Supplementary datasets from the publication :  
 

These datasets can be obtained from the journal site at: 
http://www.sciencemag.org/content/329/5990/432/suppl/DC1 

Supplementary Dataset 2.S1. AceView genes in the 3' UTRome.   

Comprehensive list of AceView genes with annotated 3'UTRs in the 3'UTRome. All gene 
names are linked to the current AceView annotation at NCBI (http://www.aceview.org). 
The file can be downloaded in HTML format.  

  

Supplementary Dataset 2.S2. The complete 3’UTRome d ataset.  

A key is enclosed with Dataset S2 that describes all of the individual components.   

 

Supplementary Dataset 2.S3. 3’UTR coordinates attac hed to AceView genes.  

We used AceView gene annotations (http://www.aceview.org) (7) to map 1,490 unique, 
fully supported 3’UTR isoforms in genomic regions with either no annotated gene 
models or no compatible CDS ends in WormBase WS190. This table contains genome 
coordinates of 3’UTRs for these new genes. The file can be downloaded in Microsoft© 
Excel format.  

 

Supplementary Dataset 2.S4. Convergently transcribe d genes with overlapping 
3’UTRs.   

A list of genes in the 3’UTRome whose transcripts overlap (1 nt to 495 nt), indicating 
gene names, overlap length (nt), genome coordinates, and whether the two overlapping 
3’UTRs are co-expressed in the same developmental stage. These data were used for 
the analysis described in Figure S14. The file can be downloaded in Microsoft© Excel 
format.  

 

Supplementary Dataset 2.S5. List of genes displayin g changes in 3’UTR length 
between developmental stages.   

A comprehensive list of genes with two 3’UTR isoforms showing a change in the 
expression of long vs. short 3’UTR isoforms between developmental stages. All data are 
derived from the polyA capture dataset and are based on the number of Roche/454 read 
counts identified per 3'UTR end. The file contains two worksheets: The worksheet 
labeled "All genes–counts" lists the raw tag counts and counts normalized to the total 
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counts in the embryo dataset. The worksheet labeled "All genes–relative abundance" 
shows the number of reads normalized within and across all developmental stages. 
Genes that exhibit 3'UTR isoform switching across developmental stages (shown 
individually in Supplementary Dataset S6) are indicated in the last two columns, labeled 
"potential isoform switch" and " 'high-confidence' isoform switch" (defined as a difference 
of ≥ 2-fold). See Supplementary Materials and Methods for details. The file can be 
downloaded in Microsoft© Excel format. 

 

Supplementary Dataset 2.S6. Individual graphs of ge nes displaying 3’UTR isoform 
switching during development.  

Individual graphs for 612 genes with two 3’UTR isoforms that exhibit a detectable switch 
in the expression of the long vs. short isoform across developmental stages, and with at 
least 20 total Roche/454 polyA tag counts per gene. All data are derived from the polyA 
capture dataset and are based on the number of Roche/454 read counts identified per 
3'UTR end. For each graph the gene name, chromosome location, strand (in 
parentheses), genomic coordinate of the 3’UTR start, and lengths of the two 3’UTR 
isoforms are indicated.  Green boxes highlight genes for which the relative abundance of 
3’UTR isoform ‘a’ vs. ‘b’ is ≥ 2-fold in at least one particular stage and then ”switches” so 
that the ratio of ‘b’ vs. ‘a’ is ≥ 2-fold in another stage; in addition, the difference in 
expression between isoform ‘a’ and ‘b’ was required to be ≥ 5 counts. The cumulative list 
is given in Supplementary Dataset S5. See Supplementary Materials and Methods for 
details of the analysis. This file can be downloaded in Adobe© PDF format. 

 

Supplementary Dataset 2.S7. The 3’UTRome clone libr ary.  

List of 3’UTR clones released. The clones are available to the community in the form of 
bacterial minipools and isolated 3’UTR isoforms. The library is cloned into the 
GatewayTM entry vector P2R-P3 and is compatible with the Promoterome (3) and 
ORFeome (4,5) libraries. The file can be downloaded in Microsoft© Excel format. 
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Chapter 3: Comparison of results of two parallel st udies of 
developmental stage 3’UTRomes in C. elegans  

 

3.1: Introduction 
  

 The previous chapter describes our efforts in generating a high quality genome-

scale 3’UTRome of C. elegans. Our work was done as part of the modEncode project 

and incorporated data from various methods: PolyA capture, 3’RACE, full cDNA cloning 

and RNAseq transcriptome data from publicly available sources. [1] While this effort was 

in progress, a parallel group also proceeded to sequence the 3’UTRs of C. elegans in 

different developmental stages [2]. Both methods utilized high-throughput sequencing 

technology and identified 1000s of 3’UTRs, vastly increasing the number of known 

3’UTRs in C. elegans. Since both groups worked independently, the common 

conclusions arrived at by both groups had immediate direct validation, and the 

differences could be solved by cross comparison. Since the results of both the methods 

are not complete subsets of each other, integrating the results of both will help the 

research community by providing a high quality validated dataset. Hence in this chapter I 

have attempted the comparison of results between both datasets and have performed a 

cross validation of my analysis with their results. I have also tried to answer criticisms in 

their report and arrived at quality control measures, which will reconcile the disparities 

between the methods. These new filters will be useful in analyzing further polyA capture 

sequence data without going through troublesome reviews. 
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3.2: Protocol differences between polyA-capture and  3P-seq methods 

The first difference between the two methods was the sequencing method used. 

While our effort utilized pyrosequencing methods from Roche 454 life sciences, Jan et.al 

[2] used Illumina Solexa sequencing. The choice of method depends on preference of 

sequence quality, length and throughput. Pyrosequencing provides longer sequences 

(~250 nt) with higher quality, but at lower throughput (~300,000 sequences), while 

Illumina sequencing provides shorter sequences of the order of ~36 nt with lower quality 

at the 3’end. However it provides higher throughput (~4-5 million reads). This is the first 

difference noticeable comparing the raw data of the two methods (Fig 3.1A). Jan et. al 

has almost ten times the throughput as ours. However there is a tradeoff for choosing 

high throughput. Our sequences are long enough to faithfully map back to the genome, 

so we can confidently define the 3’end of the 3’UTR and in most cases the 5’end if it 

reaches the CDS end. With smaller Illumina sequences, the 5’end had to be deduced 

computationally.  

The next major difference comes from the actual protocol of the 3’UTR capture. 

3P-seq (PolyA Position Profiling by sequencing) protocol begins with a splint ligation that 

binds to the ends of the polyA tail and appends a biotinylated primer to the polyA tail. 

Partial digestion with RNAse T1 (which cuts after Gs) leaves the 3’ end portion of the 

3’UTR and the polyA tail attached to the primer. Reverse transcription with dTTP of the 

sequence antisense to the polyA tail is followed by partial digestion with RNAse H which 

cuts double strands. The remaining sequence will have the 3’end of the 3’UTR plus a 

few residues of adenine at the tail. This fragment is then amplified and sequenced.  Our 

polyA capture protocol involves binding of an dinucleotide (NV)-anchored oligo(dT) 

biotinylated primer to the 3’end of the 3’UTR. Reverse strand cDNA synthesis followed 

by DpnII restriction enzyme digestion results in fragments (max length ~250 nt) with a 
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5’Dpn II GATC site and part of the 3’UTR and a 20nt polyA sequence at the 3’ end which 

can be barcoded. This is then amplified and sequenced. The usage of oligo (dT) primer 

in polyA capture has been criticized in Jan et.al since it could facilitate binding to A-rich 

genomic regions and result in sequencing of non-3’UTR regions called “false priming”. 

Another difference in the protocols is that in polyA capture, we selectively filter abundant 

ribosomal genes which occupy ~40-50% in the library. However, this filtering is not done 

in 3P-seq and hence just a few ribosomal genes dominate 18% of their data. 

3.3: Sequence processing  

 There are differences in the way the sequences are processed between 

the two methods (Fig 3.1B). The sequences obtained in both methods are mapped to 

the WS190 genome. Whereas we used both unique and multiple loci matching 

sequences, Jan et. al used only those sequences that mapped to a unique location. Both 

approaches used a similar clustering algorithm to account for heterogeneity at 3’ends 

and abundance filters to remove low abundant tags.  However, there is a difference in 

the evidence filter used. Since our data has more than one data source, we considered 

3’UTRs that are either present in more than one source, or if it is from only one source 

then it should come from more than one stage (Fig 3.1C). To remove artifacts due to 

false priming we enforce evidence in more than one source. 3P-seq only has one 

source, and so they pick 3’UTRs that are present in more than one library and if it is only 

present in one library then it should have evidence in 2 different locations in the same 

cluster. Another difference is in the annotation of a 3’end to a gene. In most cases our 

reads reach the upstream CDS end and if not we annotate it to the nearest upstream 

end. In 3P-seq, an end is annotated to a gene only if it has RNAseq transcriptome 

evidence for a transcript there. Jan et. al also used an abundance constraint that the tag 

abundance should be >=5% of the average mRNA abundance and should be >=1% of 
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the total abundance of all 3’UTRs for that gene. Also if a tag has another tag within 40nt 

then it is ignored. These differential filters could change the way a 3’UTR is called 

between the two methods, suggesting computational processing-based differences, but 

not necessarily differences in biological conclusions. Based on these filters we can see 

that 56% of the raw reads in 3P-seq have been filtered (Fig 3.1D) which could have 

contained valid data. 

3.4: Comparison of 3’UTR overlap between 3P-seq and  3’UTRome 

 To find the overlap between the two datasets, I downloaded the raw and 

processed data provided by Jan et al. First, comparing the processed annotations of Jan 

et al with our annotations, we see overlap in ~13,000 genes (Fig 3.2A). There were 

1,980 genes uniquely seen in our dataset, while ~3,056 genes were seen uniquely in 

3P-seq. However when we look at isoforms, only ~15,825 isoforms out of 27,971 total 

annotated isoforms were seen to overlap between the datasets. ~12,100 3’UTRs were 

seen uniquely in our data while ~9,800 3’UTRs were unique to 3P-seq. These non-

overlapping 3’UTRs had to be accounted for and Jan et al raised criticisms saying 

~3,500 of these 3’UTRs may be enriched in false primed 3’UTRs. To examine whether 

the 3’UTRs unique in our dataset were false primed 3’UTRs or were filtered in the 3P-

seq data by the computational filters (making them likely true positives), I looked for the 

evidence of our 3’UTRs in the 3P-seq raw data before processing with overlap within 

20nt of the two ends. Surprisingly, I found evidence for >7,300 out of 12,146 3’UTR 

isoforms of our unique 3’UTRs within 20nt of their raw 3’UTR ends (Fig 3.2B). A majority 

of these 3’UTRs seem to have been filtered by their >2 downstream A filter. Based on 

this, I had two subsets of our 3’UTRs, a) present in the 3P-seq processed data (termed 

3P-seq 3’UTR from now on) and b) our 3’UTRs present in 3P-seq raw data. Comparing 

these subsets with our data, I derived two non-overlapping datasets: ~12,000 3’UTRs 
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non-overlapping with their annotated 3’UTRs(“set A”) and ~4,800 3’UTRs non-

overlapping with their raw 3’UTR ends (set B) 

3.4.1: Comparison of source distribution of 3’UTRs between 3P-seq and 

3’UTRome 

 One of our major evidence filters was that the 3’UTR should be seen in more 

than one data source (i.e., polyA capture, 3’RACE, full length cDNA and RNAseq). 

Hence for the  ~12,000 3’UTRs non-overlapping with their annotated 3’UTRs(“set A”) 

and ~4,800 3’UTRs non-overlapping with their raw 3’UTR ends (set B) the first thing we 

wanted to see was the source from which they were derived. To that end, we looked at 

the source distribution of both the set A (Fig 3.3A, left panel) and set B (Fig 3.3A right). 

We see that 72% of the 12,000 3’UTRs and 66% of the 4,800 3’UTRs have evidence in 

at least one other source. Even if we assume polyA capture to contain a high incidence 

of false priming, the other sources don’t have this artifact. Based on this, at least ~65-

70% (8,699 out of 12,146 3’UTRs of set A and 3,160 out of 4,815 3’UTRs in set B) of the 

non-overlapping 3’UTRs are likely valid because they were observed in an alternate 

source. 

3.4.2: Comparison of PAS distribution of 3’UTRs bet ween 3P-seq and 
3’UTRome 

 
 Another criticism in Jan et al was that the 3’ UTRs that do not contain a canonical 

or variant PAS motif (i.e. “no PAS” 3’UTRs) in the non-overlapping set could be due to 

false priming. To address this claim, we examined the PAS distribution of the 

overlapping and non-overlapping 3’UTRs in our dataset (Fig 3.3B). Out of the 12,146 

non-overlapping 3’UTRs in set A, 32% seem to be enriched in the no PAS category and 

out of the ~4,819 non-overlapping 3’UTRs in set B, 40% seem to be enriched in the no 

PAS category. This high percentage is indeed enriched compared to the ~6% and ~13% 
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no PAS 3’UTRs in the overlapping 3’UTRs (Fig 3.3B). This indicates that their criticism 

might be valid and stringent filtering criteria should be employed in this class of 3’UTRs. 

Looking at the source distribution we see that out of the 3,886 no PAS 3’UTRs from the 

12,146 non overlapping 3’UTRs in set A, 2,907 3’UTRs are arising from a single source 

namely, 1,119 from cDNA, 1,081 from polyA capture and 679 from 3’RACE. Similarly out 

of the 1,931 no PAS 3’UTRs from the 4,819 non overlapping 3’UTRs in set B, 1,656 

3’UTRs are arising from a single source namely, 583 from cDNA, 555 from polyA 

capture and 507 from 3’RACE. Out of these, the cDNA libraries have no false priming 

artifacts. PolyA capture and 3’RACE are likely to contribute to the false priming and 

these constitute (1,081+ 679 =1,760) 14.5% of 12,146 non overlapping 3’UTRs in set A 

and (555 + 507= 1,062) or 22% of 4,819 non overlapping 3’UTRs in set B.  

3.4.3: Comparison of adenine composition downstream  of 3’UTR ends 
between 3P-seq and 3’UTRome 
 

 To identify the reasons for potential false priming, the first step was to examine 

the downstream composition of the 3’UTR ends. Based on the number of A’s seen 

immediately downstream we see that while the overlapping 3’UTRs show a decreasing 

number of As, the non-overlapping 3’UTRs show an increasing number of As especially 

after 8 As in the case of both the 12,146 and the 4,819 non-overlapping 3’UTRs (Fig 

3.4A left and right). The increased downstream number of As could indeed be a likely 

cause of false priming. While only 250 out of 15,825 3’UTRs overlapping with 3P-seq 

dataset in set A (948 out of 23,156 3’UTR3’UTRs in set B) derived from single source 

(polyA capture or 3’RACE), 1,760 out of 12,146 3’UTRs were derived from single source 

in the non-overlapping 3’UTRs in set A (1,062 out of 4,819 3’UTRs in set B ). Looking at 

the percentage distribution of the 3’UTRs between the overlapping and non-overlapping 

in set A, we see that 75% (11,885 out of 15,825) of the 3’UTRs in the overlapping set 
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have less than or equal to 8 downstream As and 90%(14,423 out of 15,825) of the 

3’UTRs in the overlapping set have less than or equal to 10 downstream As. However 

only 60% (7,425 out of 12,146) of 3’UTRs in the non-overlapping set has less than or 

equal to 8 downstream As. Furthermore, if we look at the 1,760 potential false primed 

3’UTRs in set A arising from the noPAS 3’UTRs derived from a single source (polyA 

capture + 3’ RACE), only 55% (972) of the 3’UTRs have less than or equal to 8 

downstream As.  Similarly only 50% (552 out of 1,062) of the potentially false primed 

noPAS 3’UTRs in set B arose from a single source. A method to estimate the sufficient 

number of A’s downstream to false prime is provided later in this chapter.  

 3.4.4: Comparison of 3’UTR length distribution bet ween 3P-seq and 3’UTRome 

 The criticism in Jan et al postulated that the proximal UTRs in our dataset, i.e. 

the shorter 3’UTRs,  may be enriched with false primed 3’UTRs. Therefore, we 

examined the length distribution of the 3’UTRs in both the overlapping and non-

overlapping datasets. Looking at overlap with both their processed data and their raw 

data shows similar 3’UTR length profile between the overlapping and the non-

overlapping 3’UTRs.(Fig 3.4B).  Therefore, we conclude that the false priming may not 

be biased on the 3’UTR length. 

3.4.5: Derivation of false priming filter criteria 

The results of the previous sections suggest that while there is some evidence of 

false priming in the non-overlapping dataset, the extent of the false priming may not be 

as extensive as Jan et. al suggested. To obtain a better understanding, I used the 

modENCODE consolidation data from Gerstein et al [3] that was used for comparison in 

the Jan et al. study.  The next few analyses were performed using the Gerstein et al  

data with their annotations so that I could directly compare results of my analysis with 

the Jan et al analyses. There are some differences in using this dataset. First, this 
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dataset only incorporates ~8,500 3’UTRs from our dataset and a similar number from 

3P-seq (Fig 3.5A). The source distribution of the 3’UTRs shows similar patterns between 

our data and 3P-seq. ~3,800 3’UTRs are unique to polyA capture and 3P-seq each (Fig 

3.5B).   

I performed overlap analysis on this dataset using the same method as described 

in section 3.4. The data was split into the following categories. Based on overlap 

between the polyA capture and 3p-seq datasets, 3’UTRs were designated as unique or 

not unique. Based on the number of isoforms per gene, genes with one 3’UTR isoform 

were designated as single 3’UTRs.  For genes with multiple 3’UTRs isoforms, the 

longest was designated as the distal 3’UTR and the shortest was designated as the 

proximal 3’UTR. Altogether, 2,398 3’UTRs were derived from single isoform genes, 

2,248 3’UTRs were derived from two isoform genes, 1,323 3’UTRs were derived from 

three isoform genes and 1,996 3’UTRs were derived from genes with more than three 

isoforms.  

I first compared the PAS distribution between single 3’UTRs unique and non-

unique to each study. The overlapping “single not unique” 3’UTRs (959 3’UTRs) show 

similar PAS profile between polyA-capture and 3P-seq (Fig 3.6A). However, the non-

overlapping “single unique” 3’UTRs (1,427 3’UTRs) show  twice the number of no PAS 

incidences in our data (374 out of 821 3’UTRs in polyA capture compared to 142 out of 

606 3’UTRs in 3P-seq) (Fig 3.6B). This suggests an enrichment of noPAS 3’UTRs in 

polyA capture which could arise from false priming artifacts.  Next, I compared the PAS 

distribution of overlapping distal and proximal not unique 3’UTRs and non-overlapping 

distal and proximal unique 3’UTRs. Similar to the single 3’UTRs, the overlapping 3’UTRs 

show similar PAS profiles between our data and 3P-seq (Fig 3.7A,B). However, the non-

overlapping dataset shows increased no PAS occurances in distal (200 out of 459 
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3’UTRs in polyA capture compared to 131 out of 552 3’UTRs in 3P-seq) and proximal 

(1,202  out of 2,567 3’UTRs in polyA capture compared to 855 out of 2,412 3’UTRs in 

3P-seq) unique 3’UTRs in the polyA-capture dataset (Fig 3.7C,D). This data suggests 

differences between our data and 3P-seq occur mainly at the no PAS sites and the 

discrepancy is not dependent on 3’UTR length as postulated by Jan et al. [2] 

Understanding one’s own data and knowing the limitations in it helps to obtain 

maximum information output. Thus far, we conclude that the issue in the data results 

from the non-overlapping noPAS 3’UTRs that are derived from single sources, namely 

polyA capture and 3’RACE. The next step was to derive the filters that would remove 

this anomaly. For this, we need to know where our data deviates from 3P-seq. The first 

step is to look at the downstream A distribution of the 3’UTR end. I first looked at the 

distribution of the number of consecutive A’s in the 20nt downstream region of the 3’ 

end. To look at deviation, I calculated the percentage difference between polyA capture 

and 3P-seq for different numbers of downstream consecutive As. The difference was 

calculated for the single, proximal and distal unique 3’UTRs which seemed to show false 

primed 3’UTRs. The plot shows peaking at 4 consecutive As for single, proximal and 

distal cases. (Fig 3.8A) This suggests that a filter set at 4 consecutive A’s in the 20 nt 

immediately downstream of the 3’UTR end would limit false primed 3’UTRs and bring 

the distribution closer to 3P-seq data. 

Next we looked at the total number of A’s in the 20 nucleotides downstream that 

may trigger false priming. Here I calculated the deviation between the two datasets as 

the distribution of difference in percentage of the number of 3’UTRs between polyA 

capture and 3P-seq for single, proximal and distal unique 3’UTRs as before for the total 

number of A’s seen in a 20nt window immediately downstream of the 3’end of the 

3’UTR. The difference between polyA capture and 3P-seq becomes positive for all cases 
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after 8 total A’s. (Fig 3.8B), suggesting that a filter for total number of A’s in the 20 

nucleotides downstream at 8 would uniformly remove a large portion of false primed 

candidates across all three cases.  

Next we looked at the total number of A’s in a moving 8 nt window. For this we 

calculated the deviation between the two datasets as the difference in percentage 

distribution of the number of 3’UTRs between polyA capture and 3P-seq for single, 

proximal and distal unique 3’UTRs as before for the total number of As  seen in an 8nt 

moving window which slides along the 20nt immediate downstream region of the 3’UTR 

end. The difference between polyA capture and 3P-seq becomes positive for all cases 

after 5As in a 8nt moving window(Fig 3.8C). This suggests that a filter set at limiting the 

total number of A’s to 5 in a 8 nt window would be effective at removing false primed 

artifacts across single and multiple isoform cases. 

Based on the above results, the following filtering rules were derived: 

• No more than 4 consecutive A’s in the 20 nt downstream of the 3’end 

• No more than 8 total A’s in the 20 nucleotides downstream of the 3’end 

• No more than 5 total A’s in an 8nt window in the 20 nt downstream of the 

3’end 

The next step was to identify how the application of these filters will affect the 

output. For this I tried a two way approach. First, I applied the filters for all the 3’UTRs in 

our dataset and the 3P-seq dataset.  This was termed “full filter” in (Fig 3.8D). Based on 

this we have two datasets – our 3’UTRs passing the full filter and 3P-seq 3’UTRs 

passing the full filter. On a second approach I only applied the filters on the no PAS 

3’UTRs which were enriched for the false primed 3’UTRs. This was termed “selective 

filter” (Fig 3.8D). From this, we also have two datasets: our 3’UTRs passing the selective 
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filter and 3P-seq 3’UTRs passing the selective filter. Comparing the results we see that 

applying the filters on the whole dataset results in the loss of 2,753 (32% loss) 3’UTRs 

from polyA capture and 2,232 (26% loss) 3’UTRs from 3P-seq. This not only removes 

903 noPAS 3’UTRs from polyA capture and 445 noPAS 3’UTRs from 3P-seq but also 

removes 315 valid AATAAA 3’UTRs and 1,537 3’UTRs with alternative PAS from polyA 

capture and 347 AATAAA 3’UTRs and 1,440 3’UTRs with alternative PAS from 3P-

seq(Fig 3.8D). Hence, this full filtering removes valid 3’UTRs in addition to false primed 

3’UTRs, suggesting that the rules may be better selectively applied. Selective filtering 

brings our dataset closer to the 3P-seq distribution by removing 903 noPAS 3’UTRs from 

polyA capture and 445 noPAS 3’UTRs from 3P-seq. The similar percentage distribution 

between selectively filtered polyA capture and 3P-seq clearly shows the effectiveness of 

the filters in removing spurious 3’UTRs without loss of useful information . Hence I 

suggest use of the FP filters on the no PAS 3’UTRs on our future datasets.   

3.5: Conclusion  

 In this chapter I consolidated and compared the results of two parallel studies in 

developmental stage specific 3’UTRomes. The comparison showed similarities and 

differences between the two protocols and their computational processing. Looking at 

the data in a non-biased way shows the flaws in each method and how they could be 

improved. Both methods identified thousands of 3’UTRs that were previously not 

annotated before and were greatly helpful in generating a comprehensive 3’UTRome of 

C. elegans. First, the consolidation shows that while there are ~15,825 3’UTRs common 

to polyA capture and 3P-seq there were 12,146 3’UTRs which were unique to polyA 

capture and had no evidence in the annotated 3’UTR list provided with 3P-seq. Further 

analysis shows evidence for 7,331 3’UTRs in the raw 3P-seq data which were filtered 

out by stringent computational filtering. Second, answering criticism that the polyA 
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capture unique 3’UTRs are enriched for false primed 3’UTRs and are mostly proximal 

noPAS 3’UTRs, we do see enrichment for false primed 3’UTRs in the noPAS 3’UTRs 

unique to polyA capture. However the scale of enrichment is not as high as reported by 

Jan et.al and it is not biased on the length of the 3’UTR. We see similar enrichment in 

single, proximal and distal 3’UTRs. Third, analyzing the consolidation provided by 

modEncode we were able to derive rules which will effectively remove the false primed 

3’UTRs from polyA capture datasets. Finally, selectively applying these rules to noPAS 

3’UTRs, we were able to show a similar distribution between polyA capture and 3P-seq.  

With this we were able to answer the criticism about our data and efficiency of the polyA 

capture protocol, and show that with just a few computational filters we could achieve 

similar results as 3P-seq.  
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3.7: Figures 

 

Figure 3.1: Raw data comparison between polyA captu re and 3P-seq 
A: Raw sequence abundance between polyA capture and 3P-seq methods. 

B: The schematic processing pipeline of polyA capture and 3P-seq sequences. 

C: The top panel: Data sources that comprise the polyA capture dataset. The bottom 
panel: Overlap of 3’UTRs between different datasources  

D: Numbers of filtered and non-filtered sequence reads in 3P-seq. 
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Figure 3.2: Overlap of 3’UTRs between polyA capture  and 3P-seq 
A: Overlap of genes between polyA capture and 3P-seq (top panel). Isoform overlap 
between polyA capture and 3P-seq (bottom panel). 

B: A hierarchical representation of the overlap between the polyA capture data and 3P-
seq data. 
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Figure 3.3: Source and PAS distribution of polyA ca pture 3’UTRs with respective 
to processed and raw data of 3P-seq 
A: Source distribution of the 3’UTRs non-overlapping with 3P-seq processed data (left 
panel) and 3P-seq raw data (right panel). 

B: PAS distribution of the 3’UTRs overlapping and non-overlapping with 3P-seq 
processed data (left panel) and 3P-seq raw data (right panel). 
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Figure 3.4: PAS site position and UTR length distri bution of polyA capture 3’UTRs 
with respective to processed and raw data of 3P-seq  
A: PAS position distribution of the 3’UTRs overlapping and non-overlapping with 3P-seq 
processed data (left panel) and 3P-seq raw data (right panel). 

B: Length distribution of the 3’UTRs overlapping and non-overlapping with 3P-seq 
processed data (left panel) and 3P-seq raw data (right panel). 
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Figure 3.5: Source distribution of 3’UTRs obtained from Gerstein et.al[3] 
A: Number of 3’UTRs represented by each source as consolidated by Gerstein et al 

B: This plot provides frequency distribution of the 3’UTRs from each source overlapping 
with the UTRs identified in the other sources 

 

  



 

119 

 

 

 

Figure 3.6: PAS distribution of UTRs from single is oform genes obtained from 
Gerstein et.al[3]  
A: PAS distribution for the single isoforms that are not unique to a dataset. The bottom 
panel gives the % distribution for the plot in the top panel. 

B: PAS distribution for the single isoforms that are unique to a dataset. The bottom panel 
gives the % distribution for the plot in the top panel. 
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Figure 3.7: PAS distribution of UTRs from multiple isoform genes obtained from 
Gerstein et.al[3] 
A: PAS distribution for the distal isoforms that are not unique to a dataset. The bottom 
panel gives the % distribution for the plot in the top panel. 

B: PAS distribution for the proximal isoforms that are not unique to a dataset. The 
bottom panel gives the % distribution for the plot in the top panel. 

C: PAS distribution for the distal isoforms that are unique to a dataset. The bottom panel 
gives the % distribution for the plot in the top panel. 

D: PAS distribution for the proximal isoforms that are unique to a dataset. The bottom 
panel gives the % distribution for the plot in the top panel. 
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Figure 3.8: comparison between polyA capture and 3P -seq to derive false priming 
filter 
A: Percentage deviation between polyA capture and 3P-seq for different numbers of 
consecutive As in the 20nt downstream of the 3’end. 

B: Percentage deviation between polyA capture and 3P-seq for different numbers of total 
As in the 20nt downstream of the 3’end. 

C: Percentage deviation between polyA capture and 3P-seq for different numbers of 
total As in an 8nt window in the 20nt downstream of the 3’end. 

D: The number of 3’UTRs from polyA capture and 3P-seq that pass the false priming 
filters. When the full dataset is filtered it is called “Full filter” and when only the no PAS is 
filtered it is called “selective filter”.  
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Chapter 4: Generation of pathway specific 3’UTRomes  in axonal 
and synapse development 

 

4.1: Introduction 
 

Traditional studies in neuron development have focused on transcriptional 

control. However post-transcriptional regulations, including alternative splicing, 

alternative polyadenylation, and regulation by small RNAs, have emerged as important 

mechanisms to generate additional layers of diversity in neuronal plasticity models. A 

number of studies demonstrate alternative 3’UTR selection to be a critical determinant 

during neuronal development. For example, brain derived neurotrophic factor (BDNF) 

exhibits two different 3’UTRs and during neuron rest the long 3’UTR is repressed and 

the short 3’UTR is translated. When a neuron is activated during seizure, the long 3’UTR 

is translated while the short 3’UTR is repressed [1]. Similarly, in rat hippocampus, GluR2 

mRNAs exhibit two isoforms. While the short isoform is translated during neuron rest, 

stimulus resulting in neuron activation changes the translation to the longer 3’UTR [2]. 

This phenomenon is precise enough to regulate a single neuron in C. elegans where 

die-1 3’UTR is differentially repressed in just the ASER chemosensory receptor neuron 

while being active in the ASEL neuron [3]. These events highlight the precision of 

alternative polyadenylation-mediated regulation and its widespread nature across 

different organisms in development and in functioning of neurons.  
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Synapse development in C. elegans has been shown to be impaired by 

mutagenesis of rpm-1[4], syd-1[5] and syd-2[6] genes. But this does not affect the 

locomotion of the animal. However, when rpm-1 and syd-2 are both mutated, those 

animals have defective synapses and uncoordinated movement [7, 8]. This shows the 

existence of parallel pathways in synapse development. Recent work by our 

collaborators in the Yishi Jin lab at UCSD identified sydn-1, which is vital for synapse 

and axon development, and functions in an alternate pathway from rpm-1 and syd-2 [9]. 

In addition, mutation of pfs-2, which encodes a factor in the 3’end processing machinery, 

suppresses the sydn-1 mutant phenotypes in axon and synapse development. pfs-2 is a 

member of the conserved WD Repeat protein, and in yeast it is a part of the CF II/PF I 

complex, interacting directly with the subunits of the CF II/PF I and CF IA complexes to 

play a bridging role in the assembly of the polyA complex [10]. Loss of pfs-2 in fission 

yeast also resulted in chromosomal segregation defects and lethality in addition to 

defects in mRNA 3’end processing [11]. The genetic interaction of pfs-2 and sydn-1 

places a critical role for 3’end processing machinery during neuronal development.   

In this chapter, I aimed to computationally study the role of rpm-1 and sydn-1 in 

3’ end processing in the context of synapse development. We sequenced the 3’UTRs 

from wild type, rpm-1, sydn-1, and rpm-1;sydn-1 mutants using our polyA capture 

method [12]. Comparing wild type with these genetic mutants will provide insights into 

how differential 3’UTR formation and alternative 3’UTR isoform expression can affect 

axon and synapse development. 

4.2: Materials and Methods 

Strains . The Bristol N2 was used as the reference wild-type strain. Mutant alleles used 

in this study include: rpm-1(CZ1252), sydn-1(CZ4741), rpm-1;sydn-1(CZ4738). All four 

strains were synchronized and raised at 20°C. The s amples were collected at L1 stage 
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(~8hr post hatching). RNA preparation and polyA capture protocol was performed as 

previously described [12]. Deep sequencing was performed on the Genome Sequencer 

FLX system (Roche/454 Life Sciences, Branford, CT).  

Sequence processing .  The raw sequence reads were processed with a custom Perl 

script to remove the 5’ and 3’ sequencing linkers. Reads where the linker could not be 

identified and those with length <15nt after linker removal were discarded. The number 

of sequences passing this filter is given in (Fig 4.1A). Sequences ≥15 nt in length were 

aligned to the WS190 genome using BLAT [13], with a maximum intron size of 1000, 

minimum window size of 5, and maximum gap of 6. Best matches were selected, and 

multiple alignments reported if present in more than one genomic location. Sequence 

reads whose alignment did not map within 5 nt of the 3’end of the sequence were 

removed. The number of sequences passing this filter is given in (Fig 4.1A). The 

abundance of reads that mapped to multiple loci were normalized to the total number of 

genomic loci to which they map.  

Clustering of 3’ ends .  The 3’ ends of the alignments were clustered with a custom 

algorithm for iterative clustering to handle 3’end heterogeneity. The alignment clusters 

the ends within a 20 nt window and the most abundant 3’end is designated as the 

representative of that cluster. The sum of the reads in that cluster is defined as the 

abundance of that cluster. This process is iterated many times until there are no 

representative ends within 20 nt. From 408,377 distinct 3’ends, 24,109 clusters were 

defined. The number of clusters per library is given in Fig 4.1B. 

False priming filter .  To handle artifacts that occur due to false priming, we used the 

optimal filtering criteria derived in the previous chapter. Clusters whose ends had 5 or 

more consecutive A’s in the 20 nt downstream region were filtered. Clusters whose 20 nt 
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downstream region had more than 8 A’s were filtered. Clusters whose 20 nt downstream 

region had more than 5 A’s in an 8 nt sliding window were filtered; clusters that failed 

this filter but had a valid PAS site upstream of the 3’end were still considered. The 

number of clusters passing this filter per library is given in Fig 4.1B. 

Abundance filter .  In order to remove low-abundant isoforms, any cluster with 

abundance of <2 reads in all the libraries were filtered. The number of clusters passing 

this filter is given in Fig 4.1B. This filter shows that a significant number of the clusters 

had fewer than 2 reads. 

PAS motif analysis . The 50 nt regions immediately upstream of all polyA sites 

were scanned in an unbiased way for all possible 5 to 10-mer sequences to 

identify any statistically over-represented motifs. The only motifs returned from 

this exercise were the canonical PAS sequence (AAUAAA) and several closely 

related variants. The distribution of all over-represented hexamers peaked at a 

start position of -19 nt from the polyA site, which was taken as the most likely 

position of the PAS site. All of the 3'UTR isoforms in the compendium were then 

scanned for the canonical PAS sequence and any hexamer with an edit distance 

of 1 or 2 nt. Because it is not possible to definitively identify the "real" PAS site, 

we scanned for hexamers in a preferred order based on their observed frequency 

of occurrence in bona fide 3'UTRs between 10 and 30 nt upstream of the polyA 

site.  Those occurring at a frequency of ≥1% as putative PAS motifs were 

considered. We used the first occurrence of a putative motif in the ordered list as 

the most likely functional PAS sequence. 3’UTRs that did not contain one of the 
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resulting 26 putative PAS motifs within this interval were termed “no PAS”. The 

results of the consolidated PAS analysis are given in Fig 4.1C.  

4.3: Results  

4.3.1: Defects in synapse biogenesis do not affect overall trends of 3’end 

formation. 

 Since it was previously known that sydn-1 was a regulator of pfs-2, a member of 

the 3’end processing machinery, we examined if the loss of sydn-1 results in global 

defects in 3’end processing of transcripts. Loss of sydn-1 did not result in a change in 

utilization of PAS (Fig 4.2A). The relative percentages of canonical AATAAA and 

alternative PAS variants in the sydn-1 mutants were similar to that of N2 and rpm-1. The 

3’UTRs in the sydn-1 mutant also exhibit similar percentages of individual PAS elements 

as in N2 and rpm-1 (Fig 4.2B). Since the relative distribution of canonical and variant 

PAS sites did not show any difference, we asked if there was any abnormality in the 

positional distribution of the PAS sites. However, the positional distribution for all the 

samples peak at 19nt upstream of the cleavage site (Fig 4.2C). We then annotated the 

3’ends to the gene models in WS190 along with our updated 3’UTRome annotations. 

We next asked if there were any differences in the functional regions of the genome 

where the isoforms map. Although the abundance of libraries varied between the 

mutants and N2 (Fig 4.2D, top panel), the relative distribution of the mapping classes 

was very similar (Fig 4.2D, bottom panel). There was a slight increase in the percentage 

of unannotated 3’UTRs that did not have any previous annotations. However, analyzing 

this without better gene annotations is not currently possible.   
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4.3.2: Isoform differences between the 3’UTR librar ies. 

 Would disruption of 3’end processing possibly affect the isoform expression? 

First we examined isoform frequency distribution in each library. We see that the 

majority of the genes had 1, 2 or 3 isoforms (Fig 4.3A). Hence we restricted further 

analysis to these three classes. Since the mutant libraries are defective in synapse and 

axon biogenesis, we asked if there was a major difference in the number of neuronal 

3’UTRs expressed between the N2 and the mutants. Although there was an abundance 

difference between N2 and the mutants, the number of neuronal genes expressed was 

very similar (Fig 4.3B). The rpm-1;sydn-1 double mutant shows a decrease in the 

number of neuronal genes but this could also be due to the low coverage in that library. 

All four libraries expressed isoforms that were unique to that library and that came from 

both already annotated isoforms as well new isoforms unique to the dataset (Fig 4.3C). 

Performing the pairwise comparison between the N2 vs mutants and between the 

different mutants we can see a significant uniqueness in isoform expression between the 

N2 and mutants (Fig 4.3D). The next logical question was to separate them based on 

the number of isofoms per gene and look for differences in each class. 

 4.3.3: Comparison of single isoform genes  

 Since global analysis of the isoforms didn’t show major differences in PAS 

utilization and PAS position or neuronal gene expression between the wild type and 

mutants, we looked at single isoform genes. These are genes that only express one 

isoform across all libraries. Based on the expression in individual libraries, they can be 

further classified into three subclasses: present in N2 and present in the mutant, present 

in N2 and absent in the mutant, absent in N2 and present in the mutant. We see that the 

distribution of the three subclasses is similar for the global and neuronal genes (Fig 

4.4A), indicating that the global and neuronal trends are similar. Interestingly, when we 



 

128 

 

look at the PAS distribution of the individual classes significant differences arise, the 

dominant class belongs to the isoforms common to N2 and mutants (1,927 out of 2,951 

(65%) single isoforms in rpm-1, 1,833 out of 3,138 (58%) single isoforms in sydn-1 and 

1,423 out of 1,881 (76%) single isoforms in rpm-1;sydn-1 are common between N2 and 

the mutants). This class shows enrichment for the AATAAA motif (1,253 out of 2,341 

(54%) isoforms). However, the isoforms that are expressed uniquely in the N2 or 

mutants seem to be enriched in the alternative PAS and noPAS (1,327 out of 2,328 

(57%) isoforms unique to mutants and 451 out of 721 (63%) isoforms unique to N2) (Fig 

4.4B). This enrichment for alternative PAS usage in the single isoforms is  a variation 

from our previous work [12] in N2 where we showed that single isoforms were enriched 

in canonical AATAAA. The common class of 3’UTRs are more dominant (~58-76%) and 

would have masked the effect of the alternative PAS usage in the unique 3’UTRs and 

this explains why we didn’t notice this subtle variation in the global trend. Similar results 

were noticed for the subset of neuronal genes alone (821 single isoform genes) (Fig 

4.4B right panel). Here again the common 3’UTRs expressed were enriched with the 

AATAAA motif (196 out of 353 (56%) isoforms) while the unique 3’UTRs expressed 

enriched alternative and no PAS motifs (216 out of 347(62%) isoforms unique to the 

mutants and 85 out of 121 (70%) isoforms unique to N2). 

4.3.4: Comparison of two isoform genes. 

 We next examined genes expressing two isoforms to determine if the enrichment 

in alternative PAS usage in the mutants for single-isoform genes was also present in 

genes expressing two 3’UTR isoforms (1,221 genes). First we divided the 3’UTR 

isoforms into three subclasses, common to N2 and mutant, unique to mutant and unique 

to N2. Then we examined the PAS distribution across each class for enrichment in 

alternative PAS usage. However this did not show any enrichment for all genes or for the 
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subset of neuronal genes (Fig 4.5A). Next, we separated the 3’UTRs into short and long 

isoforms for each gene and examined the PAS usage.  In the isoforms common to N2 

and the mutants, the longest isoform had increased AATAAA motif usage (269 out of 

564 (47%) isoforms) compared to the unique isoforms (153 out 494 (31%) 3’UTRs 

unique to mutants and 53 out 163 (33%) 3’UTRs unique to N2) (Fig 4.5B left). The 

subset of neuronal expressed genes also exhibited similar trend (Fig 4.5B right). Next, 

we looked for correlation between the length and abundance of the isoforms in N2 and 

the mutants. Out of 1,015 isoforms expressed in N2 for two isoform genes, 497 (49%) 

had abundant short isoforms. Out of 1,005 isoforms expressed in rpm-1 for two isoform 

genes 474 (47%) had abundant short isoforms. Out of 991 isoforms expressed in sydn-1 

for two isoform genes, 511 (52%) had abundant short isoforms. Out of 775 isoforms 

expressed in rpm-1;sydn-1 for two isoform genes, 423 (55%) had abundant short 

isoforms. Similar abundances between long and the short isoforms for the N2 and the 

mutants suggest no bias on the length of 3’UTRs affecting abundance on a global scale. 

One possible explanation could be that the effect of length on abundance is on a per-

gene basis or it could be at the protein level and not at the transcript level where we 

measure. However, we see a slight increase in the percentage for sydn-1 and rpm-1; 

sydn-1 and slight decrease in rpm-1 in the abundance of short isoforms.  

4.3.5: Alternate isoform utilization in two isoform  genes 

In our previous study of developmental stage specific 3’UTRs, we identified 

cases where different 3’UTR lengths were utilized across different developmental stages 

for the same gene. Furthermore, the utilization of the 3’UTRs changed from short to long 

or long to short during developmental transitions. We called these cases “isoform 

switching”. With our current data since all the worms were staged for L1 developmental 

stage we can’t currently look for developmental stage switching. However, we could 
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examine genes with two isoforms to identify cases of alternative 3’UTR utilization 

between N2 and mutants and between different mutants.  We searched for cases where 

the most abundant isoform switched from the long to short or vice versa between the 

mutants and N2 or between mutants. Out of the 1221 genes with two isoforms, our 

search resulted in 317 (26%) genes which exhibit alternative 3’UTR utilization between 

N2 and one of the mutants and 277 (23%) genes which exhibit alternative 3’UTR 

utilization across the mutants (Fig 4.6A). Of these, 62 out of the 317 (20%) genes and 59 

out of the 277 (21%) genes have neuronal expression. 176 genes overlap between 

these two switching lists and out of those 39 are neuronal expressed. The complete list 

of switching genes is provided at the end of this chapter. Two examples have been given 

to highlight this phenomenon (Fig 4.6B). In the first example we see that while the N2, 

rpm-1 and the double mutant use the longest isoform, the sydn-1 mutant preferentially 

expresses the shorter isoform. In the second example, we see that while N2 and rpm-1 

express both isoforms, sydn-1 and the double mutants express only either the longest or 

the shortest isoform. The fact that >20% of the genes expressed with two isoforms 

express alternate isoform utilization between N2 and the mutants suggests that 

disruption of the synaptogenesis pathway has effects on the polyA site selection. Of 

these genes, only 20% were neuronally expressed. This suggests that these non-

neuronal expressed genes could also play a role in both synaptogenesis and polyA site 

selection. Careful annotation of these genes in future work would facilitate further 

understanding. 

4.3.6: Comparison of three isoform genes. 

 We extended our previous analysis to genes with three isoforms, exhibiting 

similar results.  The overall PAS distribution shows no global variation, similar to the two 

isoform genes. Hence we have to look at the length distribution of these isoforms (Fig 
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4.7A). When we look at individual cases, again we see that the longest AATAAA is 

enriched only in the common isoforms while all the differential isoforms express alternate 

PAS with increased “no PAS” isoforms in the mutant alone isoforms, similar to the two 

isoform cases (Fig 4.7A). Next, we separated the 3’UTRs into short, middle and long 

isoforms for each gene and examined the PAS usage.  In the isoforms common to N2 

and the mutants, the longest isoform had increased AATAAA motif usage (59 out of 113 

(52%) isoforms) compared to the unique isoforms (29 out 125 (23%) 3’UTRs unique to 

mutants and 13 out 41 (32%) 3’UTRs unique to N2) (Fig 4.7B top). The subset of 

neuronal expressed genes also exhibited a similar trend (Fig 4.7B bottom). Next, we 

looked for correlation between the length and abundance of the isoforms in N2 and the 

mutants. Out of 522 isoforms expressed in N2 for three isoform genes, 92 (18%) had 

abundant short isoforms, 89 (17%) had abundant middle isoforms and 74 (14%) had 

abundant long isoforms. Out of the 483 isoforms expressed in rpm-1 for three isoform 

genes, 78 (16%) had abundant short isoforms, 93 (19%) had abundant middle isoforms 

and 83 (17%) had abundant long isoforms. Out of 461 isoforms expressed in sydn-1 for 

three isoform genes, 93 (20%) had abundant short isoforms, 85 (28%) had abundant 

middle isoforms, 62 (13%) had abundant long isoforms. Out of 341 isoforms expressed 

in rpm-1;sydn-1 for three isoform genes, 81 (24%) had abundant short isoforms, 78 

(23%) had abundant middle isoforms and 44 (13%) had abundant long isoforms. Similar 

abundances between long, middle and the short isoforms for the N2 and the mutants 

suggest no bias on the length of 3’UTRs affecting abundance on a global scale.   

4.3.7: Alternate isoform utilization in three isofo rm genes 

Similar to our analysis on two isoform genes, we continued our search for 

alternative isoform utilization on three isoform genes. We looked for cases where the 

most abundant isoform switches between the long to short/middle, middle to short/long 
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and short to long/middle or vice versa between the mutants and N2 or between mutants. 

Out of the 279 genes with three isoforms,  167 (60%) genes exhibited alternative 3’UTR 

utilization between N2 and one of the mutants and 140 (50%) genes which exhibit 

alternative 3’UTR utilization across the mutants (Fig 4.9A). Of these, 37 out of the 167 

(22%) genes and 28 out of the 140(22%) genes have neuronal expression. 103 genes 

overlap between these two switching lists and out of those 22 are neuronal expressed. 

The complete list of the switching genes is given at the end of this chapter. Two 

examples have been provided to demonstrate the switching (Fig 4.9B). The examples 

are similar to the ones explained in the two isoform cases. Here we have an additional 

third isoform given in green. In the first example we see differential isoform usage 

between N2 and mutants and also between mutants. sydn-1 is expressing the longest 

isoform while N2 is expressing the shortest isoform and rpm-1 is expressing the middle 

length and the double mutant doesn’t express the gene. Compared to two isoform 

genes, we see an increased percent (>50%) of the genes with three isoforms that 

express alternate isoform utilization. Of these genes, only 20% were neuronal 

expressed, similar to two isoform genes. The fact that both two and three isoform genes 

show evidence of alternate 3’UTR utilization between N2 and the mutants further 

strengthens the claim relating synaptogenesis and 3’end processing. 

4.4: Conclusion   

 In this chapter we show successful application of the polyA capture protocol to 

study effects of genes that affect neuronal development and 3’UTR formation in C. 

elegans. We have identified 8,589 known 3’UTRs and also 634 new 3’UTRs have been 

sequenced. This shows that the 3’UTRome is still far from saturation and new 3’UTRs 

will likely be found based on the tissue, development timing or mutant background of 

input sample. While global trends do not show any stark irregularities between N2 and 
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the mutants in the utilization of the polyA machinery, we do see many subtle variations. 

Especially we see many isoforms that are expressed uniquely in N2 or the mutants. 

These 3’UTRs passed the false priming filters derived in the previous chapter and hence 

chance of them being false priming artifacts are low. We also see an increased 

alternative PAS usage in the isoforms that are uniquely expressed in the mutants or N2. 

Furthermore, we report 484 genes that exhibit alternative isoform utilization between N2 

and the mutants or between the mutants. Of these, 20% of the genes are neuronal 

expressed. These results indicate a link between synaptogenesis and 3’end processing 

machinery. 80% of the alternative 3’UTR utilizing genes are non-neuronal. This could 

indicate the role of other genes in neuronal development.  Hence this work could be a 

starting point for future gene-wise analysis. 
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4.6: Figures  
 

 

Figure 4.1: Preprocessing of the 3’UTR libraries 
A: Sequence statistics for N2, rpm-1, sydn-1 and rpm-1;sydn-1 double mutant libraries. 
The total number of raw reads, the number of linker removed reads, number of reads 
mapping to the genome and number of reads mapping unique locations in the genome 
are indicated. 

B: Number of 3’UTR isoform clusters for the N2, rpm-1, sydn-1 and rpm-1;sydn-1 double 
mutant libraries.  Total number of clusters, number of clusters passing abundance filter, 
and the number of clusters passing the false priming and PAS site filter are indicated. 

C: Global PAS distribution of 3’UTRs across all libraries.  
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Figure 4.2: PAS site and position distribution  
A: PAS distribution per library (top panel). Percentage PAS distribution of each library 
(bottom panel). 

B: Percentage distribution of each individual PAS for each library. 

C: Positional distribution of PAS site for each library. 

D: Total and relative abundance of each library (top panel). Percentage distribution of 
genomic regions mapped by polyA end clusters (bottom panel). 
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Figure 4.3: comparison of 3’UTRs between individual  libraries.  
A: Percentage isoform frequency for each library. 

B: Number of neuronal and non-neuronal genes expressed in each library. 

C: Number of known and new unique isoforms expressed in each library. 

D: The Venn diagrams represent the isoform overlap between the different libraries. 
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Figure 4.4: 3’UTR isoform analysis in single isofor m genes.  
A: Number of single expressed isoforms overlapping or unique between N2 and the 
mutant libraries for all genes (left) and neuronal expressed genes (right)   

B: PAS distribution for single expressed isoforms overlapping or unique between N2 and 
mutant libraries for all genes (left) and neuronal expressed genes (right)  
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Figure 4.5: 3’UTR isoform analysis in two isoform g enes  
A: PAS distribution of 3’UTRs expressed in two isoform genes overlapping or unique 
between N2 and mutants for all genes (left) and neuronal genes (right). Bottom panel 
provides percentage PAS distribution of 3’UTRs expressed in two isoform genes 
overlapping or unique between N2 and mutants for all genes (left) and neuronal genes 
(right). 

B: PAS distribution for longest and shortest 3’UTR expressed in two isoform genes 
overlapping or unique between N2 and mutants for all genes (left) and neuronal 
genes(right). The box highlights the significant variations. 

C: Number of genes with two isoforms where the longest or the shortest isoform is the 
most abundant in the library.  
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Figure 4.6:  Alternate 3’UTR isoform expression in two isoform genes  
A: Number of two 3’UTR isoform genes that exhibit alternate 3’UTR expression between 
N2 and mutants (left) and between mutants (right) 

B: Examples of two 3’UTR isoform genes exhibiting alternate isoform expression. The 
longest isoform is given by red, the shortest by blue. Red outer boxes indicate neuronal 
expressed gene 
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Figure 4.7: 3’UTR isoform analysis in three isoform  genes  
A: PAS distribution of 3’UTRs expressed in three isoform genes overlapping or unique 
between N2 and mutants for all genes (left) and neuronal genes (right). Bottom panel 
provides percentage PAS distribution of 3’UTRs expressed in three isoform genes 
overlapping or unique between N2 and mutants for all genes (left) and neuronal genes 
(right). 

B: PAS distribution for longest, middle and shortest 3’UTR expressed in three isoform 
genes overlapping or unique between N2 and mutants for all genes (left) and neuronal 
genes(right). The arrows highlight the significant variations. 
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Figure 4.8:  length dependent abundance distributio n in 3 isoform genes  
Number of genes with three isoforms where the longest, shortest or middle isoform is the 
most abundant in the library.  
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Figure 4.9: Alternate 3’UTR isoform expression in t hree isoform genes  
A: Number of three 3’UTR isoform genes that exhibit alternate 3’UTR expression 
between N2 and mutants (left) and between mutants (right) 

B: Examples of three 3’UTR isoform genes exhibiting alternate isoform expression. The 
longest isoform is given by red, the shortest by blue and middle by green. Red outer 
boxes indicate neuronal expressed gene 
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Chapter 5: 26G endo-siRNAs regulate spermatogenic a nd 
zygotic gene expression in C. elegans  

 

5.1: Contribution 
 

The primary goals of this project were to identify the small RNAs that play a role 

in the germline of an organism, especially in the gametes (sperm and oocytes), and how 

these small RNAs regulate transcription and translation in these germ cells. This work 

involved contributions from various researchers and necessitates proper 

acknowledgement. Ting Han and John Kim at the University of Michigan conceived the 

project. Colin Fitzpatrick and Diana Chu from SFSU provided germ cell samples. Ting 

Han performed the generation of the samples and small RNA libraries for sequencing. 

The libraries were pyrosequenced by Tim Harkins and Pascal Bouffard of Roche 454 life 

sciences. The Illumina sequencing of the libraries was performed at the British Columbia 

Genome Sequencing Center. Ting Han and John Kim designed the experiments and 

Ting Han performed all the experiments discussed in the paper.  Jean and Danielle 

Thierry-Mieg at NIH performed parallel bioinformatics analysis of the data. Their 

conclusions provided independent validation of my analysis. Their analysis and curation 

from AceView database developed by them was instrumental in determining the nature 

of the 26G RNA targets.  Ting Han and John Kim wrote the manuscript submitted to 

PNAS which is provided in the sections below. 
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My contribution to the project was the computational analysis of the high 

throughput sequencing libraries including preprocessing of the sequences to remove the 

linkers, mapping to the WS190 genome, and functional classification of the mapped 

sequences into known and new class of small RNAs. I also computationally identified 

and characterized the 26GRNAs based on length and first nucleotide distribution, genes 

targeted by these small RNAs and their predominant antisense nature. I also classified 

the two classes of the 26GRNAs targeting spermatogenesis and oogenesis specific 

genes and its depeletion in the glp-4 and eri-1 mutant libraries indicating germline 

expression and endo siRNA pathway dependency. 

5.2: Abstract 
 

Endogenous small interfering RNAs (endo-siRNAs) regulate diverse gene 

expression programs in eukaryotes by either binding and cleaving mRNA targets or 

mediating heterochromatin formation; however, the mechanisms of endo-siRNA 

biogenesis, sorting, and target regulation remain poorly understood.  Here we report the 

identification and function of a specific class of germline-generated endo-siRNAs in C. 

elegans that are 26nt in length and contain a guanine at the first nucleotide position (i.e. 

26G RNAs).  26G RNAs regulate gene expression during spermatogenesis and zygotic 

development, and their biogenesis requires the ERI-1 exonuclease and the RRF-3 RNA-

dependent RNA polymerase.  Remarkably, we identified two non-overlapping 

subclasses of 26G RNAs that sort into specific RNA-induced silencing complexes 

(RISCs) and differentially regulate distinct mRNA targets.  Class I 26G RNAs target 

genes expressed during spermatogenesis, whereas Class II 26G RNAs are maternally 

inherited and silence gene expression during zygotic development.  These findings 
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implicate a novel class of endo-siRNAs in the global regulation of transcriptional 

programs required for fertility and development. 

5.3: Introduction 
 

In eukaryotes, small RNAs (20-30nt) regulate gene expression and genome 

organization via nucleic acid sequence homology [1, 2]. Usually processed from double 

stranded RNA precursors by the RNase III-like enzyme Dicer, small RNAs are 

incorporated into a ribonucleoprotein complex called the RNA-induced silencing complex 

(RISC) that contains a core protein belonging to the Argonaute/Piwi protein family [3-9]. 

Through base pairing, small RNAs guide RISC to recognize cognate targets and elicit 

silencing activities.  

Small RNAs are classified by their means of biogenesis, Argonaute/Piwi 

associations, and biological functions. MicroRNAs are processed from hairpin-bearing 

precursors by Drosha and Dicer, bind Argonaute proteins, and mediate translational 

repression or degradation of mRNAs [10]. Piwi-interacting RNAs (piRNAs), in contrast, 

are generated by a partially identified Dicer-independent self-amplification pathway, 

associate with Piwi proteins, and protect genome integrity by silencing transposons [11]. 

A third emerging class is endogenous small interfering RNA (endo-siRNAs), which fine-

tune host gene expression [12]. 

Endo-siRNAs were first described and characterized in C. elegans. By cDNA 

cloning, Ambros et al. identified over 700 small (~20nt) antisense RNAs, which are 

perfectly complementary to protein-coding genes [13]. The biogenesis of these endo-

siRNAs requires the C. elegans Dicer, dcr-1, the RNA-dependent RNA polymerase rrf-3, 

and the exonuclease eri-1 [14, 15]. Mutants defective in endo-siRNAs exhibit elevated 
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target mRNA levels, suggesting that endo-siRNAs repress host gene expression [14-16]. 

Ruby et al. employed a large-scale sequencing approach and identified thousands of 

endo-siRNAs that preferentially target transcripts associated with spermatogenesis and 

transposons [17]. Based on these studies, a complex picture of C. elegans endo-siRNAs 

is emerging, with different functions and genetic requirements. Recently, several groups 

reported the discovery of endo-siRNAs in D. melanogaster and M. musculus [18-23].  

These endo-siRNAs are derived from transposable elements, natural antisense 

transcripts, and hairpin RNAs. Their biogenesis requires Dicer and Ago2 and their 

depletion results in target up-regulation, further supporting the notion that endo-siRNAs 

negatively regulate endogenous gene expression. 

Proper maintenance of the germline and generation of healthy gametes are 

crucial for sexual reproduction.  Many mechanisms have evolved to ensure germline 

stability and reproductive success [24-26]. Recent studies show that mutations affecting 

small RNA pathways frequently are associated with defective gametogenesis [7, 27].  

For example, in C. elegans, the dcr-1 null mutant is defective in microRNA and siRNA 

(small interfering RNA) biogenesis, displays impaired fertility, and accumulates 

malformed unfertilized oocytes [4, 6, 7].  Similarly, mutation of prg-1 (piwi related gene) 

abrogates the expression of 21U RNAs (a piwi-interacting class of small RNAs) and 

results in severely impaired germline proliferation and sterility at elevated temperatures 

[28-30].  Small RNAs also can serve as heritable parental silencing factors to regulate 

filial gene expression.  In D. melanogaster, misregulation of maternally inherited piRNAs 

results in activation of transposons and hybrid dysgenesis [31].  These observations 

underscore the essential functions of small RNAs in germline development and cross-

generational epigenetic regulation.  
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To decipher the role of small RNAs in the germline of C. elegans, we employed 

high-throughput deep sequencing to characterize small RNAs expressed in purified male 

sperm, hermaphrodite oocytes, and embryos. We identified two subclasses of germline-

generated endo-siRNAs (sperm 26G RNAs and oocyte/embryo 26G RNAs) that regulate 

gene expression during spermatogenesis and zygotic development. Genetic analyses 

revealed that the ERI-1 exonuclease and the RRF-3 RNA-dependent RNA polymerase 

are required for 26G RNA biogenesis. Interestingly, the two subclasses of 26G RNAs 

require different Argonautes for their expression, suggesting differential RISC loading 

and mRNA targeting. Recent evidence indicates that piRNAs are maternally inherited to 

silence transposons in the subsequent generation [31]. Our findings indicate that the 

26G RNAs not only exert a profound influence over male gametogenesis, but are also 

maternally inherited to act as epigenetic agents to control gene expression during 

zygotic development in the progeny. 

5.4: Results 
 

Deep sequencing revealed germline-enriched, eri-1 -dependent 26G endo-siRNAs 

Small RNAs expressed in purified male sperm, hermaphrodite oocytes, and 

embryos of C. elegans were size selected (18-32nt), ligated to adaptors, and sequenced 

by high-throughput deep sequencing (Roche/454 and Illumina/Solexa). After excluding 

sequences corresponding to microRNAs, 21U RNAs, and putative degradation products 

derived from abundant noncoding RNAs (e.g. rRNAs) (Fig. 5.S1; supplemental 

methods), we identified 2.45 million putative endo-siRNA reads (14.8% of the total 

sequences). These endo-siRNAs display a bimodal length distribution with one peak 

clustered at  ~21nt and the second at 26nt (Fig. 5.1A). Notably, while ~21nt endo-

siRNAs do not have a strong first nucleotide bias, the 26nt endo-siRNAs preferentially 
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start with a guanine nucleotide (Fig. 5.1B). Therefore, we refer to them as 26G RNAs 

(Table S1).   

Although 26G RNAs previously have been identified by high-throughput 

sequencing of small RNAs isolated from mixed-stage worms, little is known about their 

biogenesis or their potential role in gene regulation [17]. Mapping to the genome reveals 

that 26G RNAs are largely derived from protein coding genes (i.e. exons, introns, and 

UTRs) (77%) and exhibit a strong antisense bias (73% of the total mapped to antisense 

vs. 4% of the total mapped sense of known and predicted genes) (Fig. 5.1C; also see 

supplemental computational methods). In addition, the majority of 26G RNAs derived 

from exons or introns of coding transcripts target exons (97.2%) or span exon-exon 

junctions (0.7%), suggesting that mature mRNAs are the main targets of 26G RNAs. 

(Fig. 5.S3).  

We next used deep sequencing to compare the endo-siRNA profiles of N2, glp-

4(bn2), and eri-1(mg366) whole animals. The glp-4(bn2) mutant fails to proliferate its 

germline at non-permissive temperature (25°C) and therefore lacks germline-derived 

small RNAs; consequently, glp-4 mutants exhibit a decline in the expression of ~21nt 

small RNA population (Fig. 5.1D).  The eri-1(mg366) mutant exhibits impaired 

biogenesis of several known endo-siRNAs and produces defective sperm at 25°C [14, 

15, 32].  Consistent with these findings, we identified a small fraction of the ~21nt endo-

siRNAs that appear to be eri-1-dependent.  These small RNAs largely overlap with 26G 

RNAs (starting with the same 5’ G), but their depletion in eri-1 is not as severe as that 

seen for 26G RNAs (Fig. 5.1F).  Overall, the expression of 21nt endo-siRNAs remains 

relatively unchanged in N2 versus eri-1(mg366), suggesting that ~21nt endo-siRNAs 

constitute a genetically diverse population of small RNAs (Fig. 5.1D). In contrast, the 

26G RNAs are profoundly depleted in glp-4(bn2) and eri-1(mg366) animals (Fig. 5.1D-
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F). Thus, we conclude that 26G RNAs represent a novel class of germline-enriched 

endo-siRNAs that depend on eri-1 for their expression.  

Two subclasses of 26G RNAs with different expressio n patterns 

Strikingly, hierarchical clustering reveals that 98.9% of the 26G RNAs fall into two 

distinct classes (Fig. 5.2A; Fig. 5.S1; supplemental methods).  Class I 26G RNAs are 

present in purified sperm (1,102 unique sequences; 5,960 total reads), but are not 

present in oocytes or embryos.  By comparison, class II 26G RNAs are highly enriched 

in oocytes and embryos (2,441 unique sequences; 148,594 total reads), but are absent 

in sperm. Both classes of 26G RNAs are present at lower levels in mixed-stage N2 and 

are severely depleted in glp-4(bn2) and eri-1(mg366) animals. We analyzed the 

expression profiles of 5 relatively abundant sperm 26G RNAs (26G-S1, -S3, -S4, -S5, -

S6) and 4 oocyte/embryo 26G RNAs (26G-16, -O1, -O2, -O3) by northern blotting and/or 

RT-qPCR assays (Taqman, Applied Biosystems).  By northern blotting, the expression 

of 26G RNAs shows eri-1 dependence in purified oocytes and embryos, as well as in 

male animals (Fig. 5.2B).  In addition, clear temporal separation in the expression of 

these two classes of 26G RNAs was observed (Fig. 5.2C-D).  The class I sperm 26G 

RNAs (denoted 26G-S) (Fig. 5.2C-D) are only detectable in late larval (L4) and young 

adult stages in N2 hermaphrodites and males (Fig. 5.2C); furthermore, a finer time 

course revealed class I sperm 26G RNA expression occurs in a relatively narrow 

window, consistent with their expression during C. elegans spermatogenesis (Fig. 5.2D).  

Conversely, expression of class II oocyte/embryo 26G RNAs (denoted 26G-O) (Fig. 

5.2C-D) initiates during oogenesis, peaks in embryos, and progressively declines 

throughout the four larval stages. Interestingly, northern blotting revealed several cases 

of cross-hybridization of the 26G RNA probes to a less abundant ~21nt species (Fig. 

5.2B-C). While the 26G RNA signal is completely abolished in the eri-1 mutant 
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background, the ~21nt signals were either not altered (e.g. 26G-S1, Fig. 5.2B) or 

depleted to a lesser extent (e.g. 26G-O2 in Fig. 5.2B), suggesting that 26G RNAs and 

21nt endo-siRNAs may have distinct genetic requirements for biogenesis, even though 

both classes of endo-siRNAs may target similar sequences. 

Two subclasses of 26G RNAs silence distinct sets of  targets 

26G RNAs are perfectly complementary to their predicted gene targets, 

suggesting that they may act as canonical siRNAs to direct the cleavage of their mRNA 

targets.  Importantly, 26G RNAs target a different set of genes from those targeted by 

shorter length (20-24nt) endo-siRNAs (Fig. 5.S4). Because the expression patterns of 

the two classes of 26G RNAs are mutually exclusive, we next asked if they differentially 

regulate non-overlapping, discrete classes of target genes. Indeed, based on existing 

germline gene expression profiles [33], we found that predicted targets of class I sperm 

26G RNAs are enriched 7-fold for genes expressed during spermatogenesis, whereas 

targets of class II oocyte/embryo 26G RNAs are depleted of all three classes of germline 

genes (spermatogenesis, oogenesis, and germline-intrinsic) (Fig. 5.3B). Because 

mutations in eri-1 abolish the expression of both classes of 26G RNAs, we used RT-

qPCR to analyze the relative expression of putative 26G RNA targets in eri-1(mg366) 

and N2 at the following five developmental time points: embryos, and 8 hrs (L1), 30 hrs 

(L3), 42 hrs (L4), and 70 hrs (adult) post hatching (Fig. 5.3A).  While transcript levels of 

genes not targeted by 26G RNAs were similar in eri-1(mg366) and N2 animals (Fig. 

5.3A, bottom panel), transcripts corresponding to 11 of the 12 genes that are targeted by 

class I sperm 26G RNAs and all 11 genes targeted by class II oocyte/embryo 26G RNAs 

are significantly elevated in eri-1(mg366) animals relative to N2 controls (Fig. 5.3A; see 

supplemental method for target selection criteria).  Consistent with the temporal 

expression pattern of class I sperm 26G RNAs, target silencing occurs in a relatively 
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narrow window that corresponds to spermatogenesis through young adulthood (Fig. 

5.2A; Fig. 5.S5).  By comparison, although class II oocyte/embryo 26G RNA levels 

steadily decline during larval development, their silencing effect persists throughout 

development (Fig. 5.3A).  Thus, both classes of 26G RNAs appear to silence the 

expression of their targets, yet with different kinetics: class I sperm 26G RNAs repress 

targets during spermatogenesis, while class II oocyte/embryo 26G RNAs are maternally 

deposited to silence gene expression during filial zygotic development.  

We next asked if the eri-1-dependent regulation of 26G RNA targets could be 

observed at the whole-transcriptome level.  Using previously reported whole-genome 

microarray data that compared transcript expression profiles of L4 stage eri-1 and N2 

worms [16], we found that predicted targets of 26G RNAs are significantly up-regulated 

in eri-1(mg366) (p<0.0001, t-test) (Fig. 5.3C).  Conversely, genes up regulated in the eri-

1 mutant background were also significantly enriched for 26G RNA targets (4-fold).  

Taken together, the highly correlated expression patterns between 26G RNAs and their 

putative targets at the whole-transcriptome level further support the hypothesis that 26G 

RNAs directly regulate target gene expression in an eri-1-dependent manner.   

To determine if target de-repression in eri-1(mg366) results in misexpression of 

target mRNAs in inappropriate tissues, we performed RNA in situ hybridization for 

select, relatively abundant [33] targets (C04G2.8 and ssp-16) in dissected gonads. The 

expression of these sperm 26G RNA targets was detected in the spermatogenic gonads 

in males of both the him-8 and eri-1; him-8 strains, but not in the oogenic gonads of N2 

or eri-1 hermaphrodite animals (Fig. 5.3D).  Thus, target de-silencing by class I sperm 

26G RNAs in the eri-1 mutant remains restricted to the male gonad, indicating that 26G 

RNAs repress target expression in their cognate cell types.  
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Genetic requirements for 26G RNA biogenesis and fun ction 

Small RNAs that start with a guanine nucleotide are thought to be products of an 

RNA-dependent RNA polymerase (RdRP) [34].  Therefore, we asked if RdRPs could 

play a role in biogenesis of 26G RNAs.  The C. elegans genome encodes four RdRPs 

(rrf-1, 2, 3, and ego-1) [35].  We examined 26G RNA expression in mutants for three 

viable RdRPs, rrf-1(ok589), rrf-2(ok210), and rrf-3(pk1426).  As mutations in ego-1 result 

in lethality [36], we used RNAi to deplete the ego-1 transcript from N2 animals. While rrf-

1 (ok589), rrf-2 (ok210), and ego-1(RNAi) express normal levels of 26G RNAs, we found 

that the expression of both classes of 26G RNAs is abolished in rrf-3(pk1426), resulting 

in significant up-regulation of both classes of targets (Fig. 5.4A; Fig. 5.S6).  However, we 

note that RNAi-inactivation of ego-1 does not completely abolish ego-1 expression and 

therefore we cannot definitively conclude that the 26G RNAs are ego-1-independent.  

If 26G RNAs are bona fide RdRP products, then transcripts they target should 

serve as templates for 26G RNA production.  deps-1 is a gene whose 3’UTR appears to 

be targeted by a class I sperm 26G RNA (26G-S4) (Fig. 5.4B).  Two alleles of deps-1 

(bn121 and bn124) introduce premature stop codons into the gene and destabilize deps-

1 transcripts (Fig. 5.4B) [37].  In both alleles, the expression of 26G-S4 is significantly 

depleted, while expression of other 26G RNAs that do not target deps-1 (26G-S5, -S6) is 

not affected, supporting the requirement of deps-1 transcript as a template for 26G-S4 

production. We attempted to rescue 26G-S4 expressions by crossing deps-1 into the 

smg-1(r861) background, which stabilizes transcripts with premature stop codons. We 

observed a noticeable increase in one (bn121;r861) but not the other (bn124;r861) of the 

alleles, likely because deps-1 mRNA levels are still below WT levels. (Fig. 5.S7).  In C. 

elegans, during exogenous RNAi, a similar RdRP-mediated process programmed by rrf-

1 generates secondary siRNAs to amplify the silencing signal [38-40]. These secondary 
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siRNAs start with guanine and are triphosphorylated at the 5’ end (5’-PPP).  However, 

although 26G RNAs require the RRF-3 RdRP, they are suitable substrates for T4 RNA 

ligase-mediated 5’ linker ligation (Fig. 5.S8), suggesting that some 26G RNAs may 

possess a 5’ monophosphate group [38, 39]. 

The non-overlapping identities of the two classes of 26G RNAs and the disparate 

targets they regulate suggested that they might be sorted into distinct RISCs. Argonaute 

proteins are central components in the effector phase of RNAi and are defined by the 

presence of two conserved domains, PAZ and PIWI.  Argonautes directly bind small 

RNAs (via both domains) and may possess target cleavage (“slicer”) activity via the PIWI 

domain [41]. C. elegans encodes 27 potential Argonautes with diverse functions, several 

of which were found to be enriched during spermatogenesis or oogenesis [33, 42]. We 

found that an Argonaute encoded by ergo-1 [42], whose transcript is enriched during 

oogenesis [33], is required for the expression of class II oocyte/embryo 26G RNAs, but 

not for class I sperm 26G RNAs (Fig. 5.4C).  Consistent with this finding, only targets of 

class II oocyte/embryo 26G RNAs were up-regulated in the ergo-1(tm1860) mutant (Fig 

5.S6).  The expression of two Argonautes, T22B3.2 and its close paralog, ZK757.3 

(93.1% amino acid sequence identity), are enriched during spermatogenesis [33].  

Although the single mutant of either t22b3.2(tm1155) or zk757.3(tm1184) maintains wild-

type expression levels of both classes of 26G RNAs, mutations in both T22B3.2 and 

ZK757.3 abrogate the expression of class I sperm 26G RNAs, but not class II 

oocyte/embryo 26G RNAs (Fig. 5.4C).  Similarly, only targets of class I sperm 26G 

RNAs are de-repressed in the double mutant (Fig. 5.S6).  ERGO-1, T22B3.2, and 

ZK757.3 all possess the Asp-Asp-His catalytic “slicer” motif [8, 42], suggesting that they 

are capable of directly mediating endonucleolytic cleavage of their targets.  Taken 
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together, our data suggest that distinct RISCs guide the class I and class II 26G RNAs to 

their cognate targets for silencing.    

What are the biological functions of 26G RNA-mediated target regulation? eri-1 

and rrf-3 mutants, which lack both class I and class II 26G RNAs, are temperature-

sensitive (ts) sterile due to defective spermatogenesis [32, 43]. While the single 

Argonaute mutants of T22B3.2 and ZK757.3 exhibit near-wild-type levels of fertility, the 

double mutant, which is specifically defective in the expression of class I sperm 26G 

RNAs, is completely sterile at 25°C and can be full y rescued by crossing with WT males 

(Fig. 5.5 A-C).  In contrast, the ergo-1 Argonaute mutant, which is defective in the 

expression of class II oocyte/embryo 26G RNAs, displays near wild-type fertility. These 

findings suggest that class I sperm 26G RNAs play an essential gene regulatory role 

during spermatogenesis.  Loss of class II oocyte/embryo 26G RNAs does not result in 

any overt developmental phenotypes, as we did not observe any somatic defects in eri-

1, rrf-3, and ergo-1 mutant animals.  This is consistent with the finding that endo-siRNAs 

recently identified in fly soma and mouse oocytes appear to be dispensable for viability 

and reproduction [18-22].  Interestingly, mutants of eri-1, rrf-3, and ergo-1 all exhibit an 

enhanced response to exogenous RNAi [32, 42, 43], whereas the t22b3.2; zk757.3 

double mutant does not (Fig. 5.5 E), suggesting that class II 26G RNAs may compete 

with the exogenous RNAi pathway for limiting common factors [14, 15].   

5.5: Discussion  
 

In this study, we identified a class of germline-enriched endo-siRNAs that are 

generated by a template-dependent mechanism and require the RRF-3 RNA-dependent 

RNA polymerase and the ERI-1 exonuclease for their biogenesis. In our model, class I 

and class II 26G RNAs are sorted into distinct, gamete-specific RISCs during germline 
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development and differentially target discrete classes of target genes (Fig. 5.4D).   Class 

I 26G RNAs repress genes associated with spermatogenesis while Class II 26G RNAs 

are maternally loaded and appear to be responsible for the clearance of maternal 

transcripts during zygotic development. 

The presence of a 5’ monophosphate is a signature for DICER processing. DCR-

1 biochemically interacts with ERI-1 and RRF-3, two proteins required for 26G RNA 

biogenesis [14]. Fischer et al. used northern blotting to examine the expression of endo-

siRNAs that target K02E2.6 [44]. They observed two bands in the WT background, with 

the top band within the 26G RNA length range; both bands were abolished in the dcr-

1(ok247) background. The 26G RNAs that target K02E2.6 belong to the class II 26G 

RNAs.  Additionally, Fischer et al. showed that mutants in eri-6 and er-7, which exhibit 

an enhanced RNAi phenotype but are wild-type for spermatogenesis, are defective in 

the expression of endo-siRNAs that target K02E2.6. Taken together, these studies 

suggest DICER may be involved in the biogenesis of 26G RNAs and support our 

findings that defects in class II 26G RNAs result in an enhanced RNAi response. 

Class I 26G RNAs preferentially act on transcripts associated with 

spermatogenesis. Ruby et al. postulated that they might suppress spermatogenesis 

genes to facilitate the switch from spermatogenesis to oogenesis; they also proposed 

that the RdRP EGO-1 might be involved because the ego-1 mutant shows a delayed 

switch from spermatogenesis to oogenesis. We found, however, that the RRF-3 RdRP 

instead of EGO-1 is involved in 26G RNA biogenesis and that 26G RNA deficiency does 

not result in a delay in the initiation of oogenesis based on egg-to-egg time (Fig. 5.5D).  

We speculate that expression of genes required for spermatogenesis must be 

exquisitely and rapidly regulated and that class I 26G RNAs perform this function. 
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Class II 26G RNAs are generated in the maternal germline, loaded into embryos, 

and perdure throughout larval development. We hypothesize that they are critical for 

clearing the maternal transcripts during zygotic development.  In zebrafish, miR-340 

clears hundreds of maternal mRNAs during maternal-zygotic transition [45].  In our 

model, the class II 26G RNAs not only begin to clear the maternal load during oogenesis 

(for a subset of target genes) but are then maternally inherited to ensure that the 

maternal load of mRNAs continues to be cleared during filial development. The fact that 

the loss of class II 26G RNAs leads to enhanced RNAi phenotypes suggests that the 

ongoing transcript clearance competes with exogenous RNAi for limiting factors. 

Several questions remain unanswered. Why are certain genes targeted by 26G 

RNAs? How do ERI-1 and RRF-3 participate in the biogenesis of 26G RNAs? Why do 

the loss of sperm 26G RNAs and consequent up-regulation of targets lead to ts sterility? 

Further genetic and biochemical analysis may reveal additional factors and mechanisms 

that mediate the biogenesis, sorting, differential stability, target silencing, and 

developmental functions of the class I and class II 26G RNAs.  

5.6: Materials and methods 
 

Strains and maintenance 

The Bristol N2 was used as the reference wild type strain.  Mutant alleles used in 

this study include: LG I: glp-4(bn2), fer-1(hc1), rrf-1(pk1417), rrf-2(ok210), deps-

1(bn121), deps-1(bn124), smg-1(r861); LG II: rrf-3(pk1426); LG III: zk757.3(tm1184); LG 

IV: him-8(e1489), eri-1(mg366), t22b3.2(tm1155); LG V: ergo-1(tm1860).  C. elegans 

genetics and culture were performed as described [46].  Unless otherwise specified, 

worms were grown at 20°C. 
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Sperm, oocyte, and embryo purifications 

Sperm and oocytes were purified as described with some modifications [47-49]. 

For sperm isolation, we used the him-8(e1489) strain, which increases the percentage of 

XO males to ~37% of the population versus ~0.2% males in the N2 wild-type strain [50].  

Male worms from the him-8(e1489) strain were further isolated from hermaphrodites by 

filtering through a 35 µm nylon mesh filter as described [47], resulting in >95% males in 

the final sample.  Isolated him-8(e1489) males were then subjected to 20,000 psi for 1 

min, 3 times, to extrude and increase the yield of purified sperm. We used the fer-1(hc1) 

strain, which produces nonfunctional sperm at 25°C [51], to obtain purified unfertilized 

oocytes. The fer-1(hc1) worms grown at 25°C were disrupted briefly in a Waring blender 

to release more oocytes from the body cavity. Sample purity (>95%) was inspected by 

DAPI staining and microscopy.  Isolation of embryos from gravid adult worms was 

performed as described [52]. 

Total RNA isolation 

RNA isolation was carried out using TriReagent (Ambion) following the vendor’s 

protocol with the following modification: 3 times freeze/thaw/vortex was included to 

increase worm lysis efficiency; isopropanol precipitation of RNA was carried out at -80°C 

for one hour. 

Construction of small RNA sequencing library 

5’ monophosphate-bearing small RNA libraries were constructed as described 

[53]. RNA oligos were purchased from Dharmacon and DNA oligos from Integrated DNA 

Technologies. Six Solexa libraries were constructed and sequenced on the 1G Genome 

Analyzer (Solexa/Illumina): N2 (mixed stage), sperm, oocyte, embryo, eri-1(mg366) 

young adult (YA), and glp-4(bn2) (YA).  Five 454 libraries (sperm, oocyte, N2 (YA), eri-
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1(mg366) (YA), and glp-4(bn2) (YA)) were sequenced on the Genome Sequencer FLX 

system (454/Roche). 

Northern blotting of small RNAs 

Due to limitation in sensitivity, relatively abundant 26G RNAs were selected for 

northern blotting (26G--O1, -O2, -S1, and -S5).  An improved northern blot method using 

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated chemical crosslinking 

was performed as described [54]. For each assay, 5-10 µg of total RNA was used. For 

small RNA detection, DNA probes labeled with the Starfire Oligos Kit (IDT) were used. 

RT-qPCR analysis of small RNA and mRNA levels 

Custom small RNA Taqman assays were designed and synthesized by Applied 

Biosystems [55]. For each reaction, 50ng of total RNA was converted into cDNA with 

Multiscribe Reverse Transcriptase (Applied Biosystems) following the vendor’s protocol. 

The resulting cDNAs were analyzed by a Realplex2 thermocycler (Eppendorf) with 

TaqMan Universal PCR Master Mix, No AmpErase UNG (Applied Biosystems).  Relative 

expression levels of small RNAs were calculated based on 2-ct method [56]. For 

oocyte/embryo 26G RNA quantifications, miR-35 was used for normalization. For sperm 

26G RNA quantifications, miR-1 was used for normalization.  Gene targets of each class 

of 26G RNAs were selected based on 26G RNA cluster analysis (described below in 

supplementary computational methods).  For quantification of mRNA levels, 250ng-1µg 

of total RNAs was converted into cDNAs with Multiscribe Reverse Transcriptase 

(Applied Biosystems) following the vendor’s protocol.  cDNAs were analyzed by a 

Realplex2 thermocycler (Eppendorf) using Power Sybr Green PCR master mix (Applied 

Biosystems). Relative mRNA levels were calculated based on 2-ct method using act-1 for 

normalization.  
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Germline RNA in situ hybridization 

RNA in situ hybridization was performed with dissected gonads according to Lee 

and Schedl [57]. Antisense cDNA fragments labeled with DIG DNA labeling Mix (Roche) 

for C4G2.8 (547bp) and ssp-16 (102bp) were used as probes. Probe detection was 

performed with alkaline-phosphate-conjugated anti-DIG (Fab2 fragment) from Roche 

and Sigma Fast BCIP/NBT. 

RNA interference 

Feeding RNAi was performed as described [58]. RNAi clones were picked from the 

Ahringer RNAi library [59]. 
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5.8: Supplementary computational methods 
 

Sequence processing 

All raw sequences (consolidating both 454 and Solexa) were processed with a 

custom Perl script to remove linker sequences and then mapped against the WS190 C. 

elegans genome using BLAST [1]. Sequences matching the genome with 0-2 

mismatches were retained. Reads not matching the genome were mapped against 

Expressed Sequence Tags (EST) using BLAST to identify sequences that span exon-

exon junctions. For reads matching more than one genomic locus, counts were 

normalized according to Ruby et al. [2]. For example, if a sequence had 20 reads and 

matched 2 genomic loci, each locus was assigned 10 reads. For all endo-siRNA 

analyses, reads corresponding to microRNAs [2], 21U RNAs [3, 4], and putative 

degradation products of non-coding RNAs (i.e. rRNAs, tRNAs, snRNAs, snoRNAs) were 

identified and excluded.   

Genomic mapping of 26G RNAs 

As outlined in Fig. 5.S1, we applied sequential filters to retain 26G RNAs with ≥ 2 

reads in the 11 sequenced libraries and mapped them sequentially to Wormbase 

(WS190) and predicted gene models (Twinscan and Genefinder in WS190). Because 

3’UTR regions are not well annotated, reads immediately downstream (within 500bp) of 

stop codons were annotated as overlapping with 3’UTR, which agrees well with the 

distribution of known 3’ UTR lengths of annotated genes in Wormbase (Fig. 5.S2). 

Cluster analysis of 26G RNAs  

26G RNAs (≥ 2 total reads) were clustered using Cluster 3.0 software using 

hierarchical clustering, Euclidean distance and complete linkage options(copyright 



 

162 

 

Stanford University, 1998-99) and visualized using Java TreeView (open source).  

Clusters of the class I sperm 26G RNAs and the class II oocyte/embryo 26G RNAs were 

extracted from Java TreeView. 

Target analysis of 26G RNAs 

Targets of class I sperm 26G RNAs and class II oocyte/embryo 26G RNAs 

(extracted from clustering analysis) were annotated as spermatogenesis-enriched, 

oogenesis-enriched, germline-intrinsic, and “others” according to Reinke et al. [5]. For 

microarray analyses, raw CEL data from Asikainen et al. [6] were downloaded from 

NCBI Gene Expression Omnibus (Series GSE8659) and processed with dChip software 

[7]. Probe intensities corresponding to targets of sperm 26G RNAs were extracted from 

the CEL data. 
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 Oligos for RT-qPCR 

Gene Forward (5’ to 3’)  Reverse  (5’ to 3’)  

act-1 
CCAGGAATTGCTGATCGTATGCAGA
A 

TGGAGAGGGAAGCGAGGATA
GA 

C04G2.8 CGTGCTTCGACTGCAAAGAAGA TTCTGTTGGCTTCTGCTGCG 

C32E8.4 GAGCAACTTCTGCCGAAGGAA CTTCAGGTTCTCCTTGAGCG 

C40A11.10 AATGGCTCCTTGAAAAGATCG TACATTTCCGCCACGTTGAAA 

deps-1 GAAGGCTATGGCCGAAGTTCG 
CAATGCGGTAACGGACAGATT
T 

dlc-6 CCGAAGGTTAAGCCACGTCATT 
CTGCCATTGTGTATCATAATC
CG 

E01G4.7 GCACAAGGTTTCGTTCTTGGTG AGTGACATCCCTTCTGATCG 

F39E9.7 CCCAGTGGCCCAATTAAACG CCCACGGCTTGTTCTTTGACA 

F43E2.6 TGTAGGCGACGAGACTGATCG 
TGCCGATGTTTCTGAGATGTC
TT 

F55B11.1 TTGATCGAGTCTCACTTTCCG 
AAAGTCCACTGGTTCGTGATG
AAT 

F55C9.5 ACCATTGGAGCACGTAAATCAA 
GGTCCTAATAATAAAGTTGCG
TCG 

fbxa-65 ACTTACAAGGATCAAGAAAAGCG 
CCTTGACCGCTATTCCGAGAA
A 

fbxb-37 ATCGAAAGATGGAATACAAACCG 
GACAAACATCCATCACATTCT
TCG 

gska-3 CGAGCAGACGACTCTGTGGAA 
TTATTGAAACGCACAGTCTTC
TCG 

iff-1 CGAAGACCATAGAGAGTATGTCCG 
CGAGCATTGCTTCGGGAAAGT
A 

K02E2.6 CAGTGGTACAAGTGGGAGTAAACG 
AATTGGCAAGTAACTGATTCC
G 

K03H1.12 CAAAATTGCCACTTGTGATTCG 
TCCAGTGAAGAGTGTCAAGAA
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CCA 

msp-49 ATTAACTCCTCGGCTCGCCG AGCTTCCTTTGGGTCGAGGAC 

snf-6 GGATTGTTGGCTACTGGCCG 
TCAAGCCAAAGGAAGCAAAGA
A 

sod-1 GATCTATGGTTGTTCATGCCG 
CTTCTGCCTTGTCTCCGACTC
C 

ssp-16 GTCATCAAACAACAATGAGTACCG GCTCCAGCAGTGCGAGTGAT 

ssp-19 GCACCGAAGGAAGACAAGCTG GAGCCACTGCAACAAAAGCG 

T05E12.8 TTCCATTTGAGGATTTTGCTACG 
ATTATTTGGATGGCAGCCGAT
G 

T08B2.12 GAAACCAATGCTCCAGTTGATAC 
GATGAAAGCGATGGACGAGA
AG 

T25G12.11 ACGTGCTTTCTGATTCACTCCG CATGGGTGGGATGAGAGCAC 

tax-2 
GATTAATCCAAGACAAGTTCCTAAA
TTGAT 

TTCAATTCTTGAACTCCTTTGT
TTTC 

Tc1 AACCGTTAAGCATGGAGGTG CACATGACGACGTTGAAACC 

Tc3 GAGCGTTCACGGAGAAGAAG AATAGTCGCGGGTTGAGTTG 

tdc-1 GAACTTCGTCAGAGATTCCCG 
TCTCAACGGAAGAATGGGCTT
C 

U6 TGGAACAATACAGAGAAGATTAGCA CTTCACGAATTTGCGTGTCAT 

W05H12.2 GCTCAAGACCAGATAATGCTTGGA 
CAATCCCAAAGATTCAATACC
G 

Y37E11B.
2 AATGGAGACTCTTCTTCCACCCG 

AGCGAAGGCATTGATCTTGGT
T 

Y7A5A.11 CCATTACTTTCAACATGCCG 
TCCTTGTTCCAGCACTAGCAG
A 

Y82E9BR.
20 CTCCCGCTTTCTTGATGTATTG 

AGTCCGAACTCATCCAAAGCA
G 

ZC168.6 GTCCAGTTTATGGGTTCGTGGATG AGTCTCTTCGGCTGGCACTTC 

ZC328.1 GGGCGGTCATTTCTATTGTTTG 
GCCAAATTGGTCCGTAATCTT
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GT 

ZK484.5 CCGTCAGACAACTGCTCTCCTC GGTTGGGCTGCTTCAGAGTC 

 

Oligos for small RNA cloning 

5' RNA adaptor: 5' GUUCAGAGUUCUACAGUCCGACGAUC 3' 

3' RNA adaptor: 

5' pUCGUAUGCCGUCUUCUGCUUGidT 3' 

p = phosphate; idT = inverted deoxythymidine 

RT-primer (DNA): 5' CAAGCAGAAGACGGCATACGA 3' 

P7 primer (DNA): 5' CAAGCAGAAGACGGCATACGA 3' 

P5 long primer (DNA): 5' AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA 3' 

 

 

Oligos for northern blotting 

21UR-1 5' GCACGGTTAACGTACGTACCA /3StarFire/ 3' 

26G-O1 5' TTGAAAATAATCTACCGTTTCTGAGC /3StarFire/ 3' 

26G-O2 5' CATTTGCTGCAATTATGAGTCATAAC /3StarFire/ 3' 

26G-S1 5' AATTATGTATTCTCGTCCTCCATAGC /3StarFire/ 3' 

26G-S5 5' TACCATGTCGCTCACTGCTGATCCAC /3StarFire/ 3' 

cel-miR-35 5' ACTGCTAGTTTCCACCCGGTGA /3StarFire/ 3' 

cel-miR-1 5' TACATACTTCTTTACATTCCA /3StarFire/ 3' 
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5.11: Figures 
 

 

 

 

Figure 5.1: 26G RNAs are germline-enriched endogeno us siRNAs. 
A.) Length distribution of endo-siRNAs exhibits a bimodal pattern, peaking at both 21nt 
and 26nt length.  Small RNA libraries were sequenced and combined to analyze the size 
distribution of endo-siRNAs. Small RNA libraries of mixed-stage N2 animals, purified 
male sperm (him-8(e1489)), purified oocytes (fer-1(hc-1)), and N2 embryos were 
sequenced by Solexa (Illumina). Small RNA libraries of N2 (young adult), sperm (him-
8(e1489)), and oocytes (fer-1(hc-1)) were sequenced by 454 (Roche). 

B.) First nucleotide identity of endo-siRNAs.  26nt endo-siRNAs have a strong 
preference for guanine as the first nucleotide (83%). 

C.) The majority of 26G RNAs are anti-sense to known and predicted coding 
transcripts.  Coding gene transcripts were defined by Wormbase gene annotations 
(WS190) and gene predictions (Twinscan and Genefinder predictions in Wormbase, 
WS190 coordinates), and assignment of the 3’UTRs as being up to 500bp downstream 
of CDS ends (see Fig. S2). The remaining intergenic 26G RNA sequences (23.3%) may 
also target genes yet to be identified by current Wormbase gene annotations and 
predictions. 
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D.) Normalized length distribution of endo-siRNAs in N2, eri-1(mg366), and glp-4(bn2) 
young adult libraries sequenced by 454 (Roche).  The abundance was normalized to 
100K effective small RNA reads (total reads minus potential degradation products from 
rRNAs, tRNAs, snRNAs, and snoRNAs).  

E.) Northern blotting validates the lack of 26G RNA expression in eri-1(mg366) and glp-
4(bn2) mutants.   Total RNA from N2, eri-1(mg366), and glp-4(bn2) adult worms was 
probed for a 26G RNA (26G-S5) and a 21U RNA (21UR-1) by northern blotting.  The 
expression of the germline-derived 21U RNA (21UR-1) is not eri-1-dependent (lower 
panel).  Ethidium bromide (EtBr) stained 5s rRNA serves as the loading control. 

F.) Endo-siRNAs were classified as 26G RNA-linked (targeting the same genes) or non-
26G RNA-linked (targeting other genes or intergenic regions). Most 26G RNA-linked 
endo-siRNAs start with the same 5’ G. A small fraction of shorter length (20-24) endo-
siRNAs is 26G RNA-linked. The bottom panel plots the eri-1 dependence as measured 
by the ratio of counts in N2 vs. eri-1.  
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Figure 5.2: Two classes of 26G RNAs exhibit differe nt expression patterns. 
A.) Hierarchical clustering reveals two major classes of 26G RNAs: class I sperm 26G 
RNAs (3.8% of total reads) and class II oocyte/embryo 26G RNAs (95.1% total reads).  
26G RNA reads matching to the C. elegans genome with at least two counts were 
included in the analysis (4,002 unique sequences; 156,204 total reads). The asterisk (*) 
indicates a small fraction (1.1%) of 26G RNA sequences that do not fall into either class 
I or II categories; these sequences are generally not abundant, with 3.6 total reads on 
average per unique 26G RNA sequence.  

B.) Both classes of 26G RNAs are dependent on eri-1 for their expression. Total RNA 
from embryos and oocytes of indicated genotypes was probed for two class II 
oocyte/embryo 26G RNAs (26G-O1, -O2); total RNA from him-8(e1489) and eri-
1(mg366);him-8(e1489) adult males was probed for two class I sperm 26G RNAs (26G-
S1, -S5).  The 5s rRNA serves as a sample loading control. 

C.) Class I and class II 26G RNAs are expressed in distinct periods during development.  
Total RNA from embryos (emb), four larval stages, adult hermaphrodites (Ad), and him-
8(e1489) adult males was analyzed by northern blotting with probes for a class I sperm 
26G RNA (26G-S1) and a class II oocyte/embryo 26G RNA (26G-O1).  Synthetic RNA 
oligos stained with EtBr serve as size markers and 5s rRNA serves as a sample loading 
control. 

D.) Analysis of 26G RNA levels during germline proliferation assayed by RT-qPCR.  The 
expression of class I sperm 26G RNA (26G-S5) and class II oocyte/embryo 26G RNA 
(26G-O1) correlate with the time windows for spermatogenesis and oogenesis, 
respectively. The X-axis represents hours post hatching at 20°C.  
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Figure 5.3: Two classes of 26G RNAs silence non-ove rlapping sets of mRNA 
transcripts. 
A.) Gene targets of 26G RNAs are desilenced in the eri-1(mg366) background. 
Differential gene expression profiles between N2 and eri-1(mg366) for 12 targets of 
class I sperm 26G RNAs, 11 targets of class II oocyte/embryo 26G RNAs, and 13 non-
targets.  The level of fold up-regulation is represented according to the red-green color 
scheme indicated in the top panel. Abbreviations: ooc (oocytes), emb (embryo). 

B.) Gene class analyses of class I sperm and class II oocyte/embryo 26G RNAs.  
Targets of class I sperm 26G RNAs (573 genes) are significantly overrepresented in 
genes expressed during spermatogenesis, while targets of class II oocyte/embryo 26Gs 
(243 genes) are depleted of germline enriched genes (i.e. spermatogenesis, oogenesis, 
and germline-intrinsic). 

C.) Genes targeted by class I sperm 26G RNAs are up-regulated in the eri-1(mg366) 
mutant.  Each point indicates the fold change in probe intensity corresponding to 
predicted targets of 26G RNAs (728 probes corresponding to 589 genes). Randomly 
selected probes do not show up-regulation in the eri-1(mg366) mutant. 

D.) Loss of 26G RNA expression does not induce inappropriate ectopic expression of 
targets. RNA in situ hybridization of dissected gonads was performed with probes for the 
class I sperm 26G RNA targets C02G2.8 and ssp-16.  In both wild-type and eri-1 
backgrounds, expression of these two genes remained restricted to the spermatogenic 
gonad. No ectopic expression of the class I 26G RNA targets was observed in the 
hermaphrodite oogenic gonads. Bar, 50µm. 
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Figure 5.4: Genetic requirements for 26G biogenesis  and function.  
A.) RT-qPCR analysis of 26G RNA expression in rrf-1(ok589), rrf-2(ok210), rrf-
3(pk1426), and ego-1(RNAi).  Mutation of rrf-3 abrogates the expression of both sperm 
and oocyte/embryo 26G RNAs, while the 26G RNAs are expressed at wild-type levels in 
the mutants of rrf-1 and rrf-2, as well as in RNAi-inactivation of ego-1.  

B.) Requirement of target mRNA transcript for 26G RNA biogenesis.  Two deps-1 
mutant alleles (bn121 and bn124) harbor premature stop codons that destabilize the 
deps-1 transcript.  The expression of the class I 26G RNA 26G-S4, which is antisense to 
the deps-1 3’UTR (green), is compromised in the deps-1 mutants, while the expression 
of other sperm 26G RNAs that do not target deps-1 remains unchanged.  Both deps-1 
and 26G RNA levels were measured by RT-qPCR. Error bars indicate standard 
deviation for replicates. 

C.) An oogenesis-enriched Argonaute encoded by ergo-1 is required for class II 
oocyte/embryo 26G RNA expression, but dispensable for class I sperm 26G RNA 
expression. The t22b3.2(tm1155); zk757.3(tm1184) double mutant is defective in sperm 
26G RNAs, but expresses normal levels of oocyte/embryo 26G RNAs. 

D.) Proposed model for 26G RNA biogenesis and function. 
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Figure 5.5: Phenotypes of mutants defective in 26G RNAs.  
(A-B) The t22b3.2(tm1155); zk757.3(tm1184) double mutant is sterile at 25°C and 
exhibits significant loss of fertility at 20°C.  Synchronized worms were singled at L4 
stage and progeny brood size was counted for the subsequent two days.  N is the 
number of parents assayed. Error bars represent standard deviation.  Alleles used in this 
assay: eri-1(mg366), rrf-3(pk1426), ergo-1(tm1860), t22b3.2(tm1155), zk757.3(tm1184). 

(C) The ts sterility of t22b3.2; zk757.3, eri-1, and rrf-3 can be fully rescued by WT males. 
For each cross, 10 males were crossed with 1 hermaphrodite, and two day cross 
progeny brood was scored.  
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(D) N2, t22b3.2(tm1155); zk757.3(tm1184), eri-1, and rrf-3 have similar egg-to-egg time 
at 20°C. 

 (E) The t22b3.2(tm1155); zk757.3(tm1184) double mutant does not display an 
enhanced RNAi phenotype.  Synchronized L1 worms of indicated genotypes were 
subjected to feeding RNAi of dpy-13 or control vector.  L4 and young adult worms were 
examined for the severity of dumpy phenotype.  A moderate dumpy phenotype was 
observed in N2, t22b3.2(tm1155), zk757.3(tm1184), and the t22b3.2(tm1155); 
zk757.3(tm1184) double mutant.  In contrast, RNAi inactivation of dpy-13 in eri-
1(mg366), rrf-3(pk1426), and ergo-1(tm1860) generated a severe dumpy phenotype, 
indicating hypersensitivity to exogenous RNAi of dpy-13.   
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Figure 5.S1:  Computational pipeline for 26G RNA an notations.   
All 26nt genome BLAST hits were extracted from our datasets. Sequences matching 
noncoding RNAs (i.e. tRNAs, rRNAs, snRNAs, snoRNAs) and other classes of small 
RNAs (microRNAs, 21U RNAs) were identified and excluded from the analyses.  Two 
additional filters were applied to retain sequences starting with guanine and having ≥ 2 
sequence reads.  26G RNAs mapping within 500bp downstream of Wormbase gene 
annotations (WS190) and gene predictions (Twinscan, Genefinder predictions from 
Wormbase) were sequentially annotated. In sum, 1,118 Wormbase-annotated genes 
and 132 Wormbase-predicted genes were identified to be targets of 26G RNAs. 26G 
RNAs derived from Wormbase-annotated genes were further clustered into sperm 26G 
RNA (with 573 gene targets) and oocyte/embryo 26G RNA (with 243 gene targets). 
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Figure 5.S2: Distribution of 26G RNA reads originat ing from putative 3’ UTR 
regions.  
A.) The 3’ UTR length distribution of genes in Wormbase.  Arrow at 500nt indicates the 
95% cutoff. 

B.) Number of 26G RNA reads that mapped within every 100bp up to 1Kb downstream 
of the ends of the coding sequences (stop codons) was plotted.  The majority of reads 
are antisense to mRNAs and map within 500 bp (arrow) downstream of stop codons. 
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Figure 5.S3: 26G RNAs mapping to exons and introns.    
26G RNA counts matching exons, introns, exon-intron junctions and exon-exon junctions 
of Wormbase genes were plotted. The majority of reads (97.9%) are derived from exons. 
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Figure 5.S4: 26G RNAs targets are a unique class of  genes.   
Endo-siRNA targets (Wormbase WS190) were clustered (left) based on the abundance 
of endo-siRNAs of different lengths. 26G RNAs targets are predominantly targeted by 
26G RNAs (right). 
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Figure 5.S5: ssp-16 (a target of sperm 26G RNA) is de-repressed starting from 
spermatogenesis until young adulthood in the eri-1 mutant.   
The X-axis represents hours post hatching at 20°C; the Y-axis indicates relative mRNA 
abundance in log2 scale.  Relative mRNA levels were examined by RT-qPCR and 
normalized to act-1. 
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Figure 5.S6: Differential gene expression profiles of 26G RNA targets in N2, rrf-
3(pk1426), ergo-1(tm1860), and the t22b3.2(tm1155);  zk757.3(tm1184) double 
mutant .   
The transcript levels of 4 targets of class I sperm 26G RNAs, 4 targets of class II 
oocyte/embryo 26G RNAs, and 3 non-targets were examined.  The fold up-regulation 
was represented according to the red-green color scheme shown (top panel). 
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Figure 5.S7: deps-1 mRNA and 26G RNA levels in the deps-1; smg-1 double 
mutant.   
Nonsense deps-1 mRNA is stabilized by smg-1, but still below WT levels. A noticeable 
increase of 26G-S4 is seen for one of the alleles (*). Error bars represent standard 
deviation. 
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Figure 5.S8: 26G RNAs are suitable substrates for T 4 RNA ligase-mediated 
ligation.   
Small RNAs (18-32nt) were isolated by PAGE and ligated to the 5’ RNA adaptor used in 
the small RNA cloning procedure.  The ligation product was resolved on 11% Urea-
PAGE and subjected to northern blotting analysis.  The 26G RNA 26G-O1 shows similar 
levels of ligation compared to microRNAs miR-1 and miR-35, which are known to 
possess a 5’ monophosphate. 
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Chapter 6: Conclusion and future studies 
 

6.1: Conclusions 
 

3’UTRome: The main aim of this dissertation was to elucidate the dynamic formation and 

expression of 3’UTRs in C. elegans at a transcriptome-wide scale through the 

acquisition of high quality 3’UTRome datasets by next generation sequencing 

methodologies.  With the development of the novel “polyA capture” protocol by Ting 

Han, a graduate student in the Kim Lab, we were able to generate ~2,000,000 full-length 

or near full-length 3’UTR sequence reads at single nucleotide resolution across the 

major developmental stages of the worm.  These efforts allowed me to annotate both 

abundant and rare 3’UTR isoforms, validate predicted gene models in C. elegans by 

providing evidence for their 3’UTRs, and, by combining the deep sequencing datasets 

with conventional cDNA sequence libraries generated by our collaborators, nearly 

double the number of annotated 3’UTRs in the C. elegans transcriptome. 

Comparison with 3P-seq: Comparison with an independent parallel study [1] helped me 

to further derive conditions that can be used to filter for the inherent false priming 

artifacts which are known to occur in polydT based sequencing mechanisms.  

Importantly, my analyses showed that these potential false priming amplifications also 

exist in other 3’end sequencing methods such as 3P-seq, indicating that, at present, 



 

188 

 

computational filtering is the most effective way to derive a robust dataset of genuine 

3’UTR sequences.   

Alternative polyadenylation: The mapping of 3’UTR ends at single nucleotide resolution 

highlighted interesting trends in polyadenylation of mRNAs.  I found that ~40% of the 

genes in our dataset exhibited more than one 3’UTR. This made us wonder about the 

extent of alternative polyadenylation on a global scale. Recent genome-wide studies in 

other organisms also show extremely high levels of alternative polyadenylation. An 

estimated 70% of the genes in Arabidopsis [2], 52% of the genes in mouse [3], 70% of 

the genes in yeast [4] and 44% of the genes in humans [4] display alternative 

polyadenylation. Even protozoans such as trypanosomes display alternative 

polyadenylation [5]; and since transcriptional regulation is not a major source of gene 

regulation [6, 7], it suggests that trans-splicing and polyadenylation of the polycistronic 

genes represent the dominant forms of gene expression control. Recent studies in 

mammals [3] also highlight a few important characteristics of alternative polyadenylation 

(APA). Differentiation of stem cells results in a substantial change of the APA profile, 

resulting in longer 3’UTRs in the differentiated cells. In addition, the majority of the APA 

events (>13,000) were independent of splicing. APA has also been shown to play a role 

in protein output where shorter 3’UTRs express higher levels of the protein [8, 9]. Tissue 

specific APA, along with alternative splicing events, has been shown to increase protein 

diversity in humans [10]. This could alter protein functions as shown in the case of IgM 

protein in B cells [11]. Furthermore, APA can also regulate gene expression as shown in 

plants where APA of the antisense transcripts plays a role in the regulation of its 

corresponding sense transcripts [12, 13]. All of these studies suggest that 

polyadenylation of mRNAs is a complex and essential mechanism of gene regulation 
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and alternative polyadenylation is a more pervasive mechanism with effects in a variety 

of biological processes than previously thought. 

alternative PAS motifs: My analysis of PAS sites upstream of the polyA ends indicated 

that only 39% of our 3’UTRs expressed the canonical AAUAAA PAS, overturning the 

model of canonical PAS as the predominant signal. I identified 28 new PAS that have 

similar positional distribution as the AAUAAA site, peaking at 19nt upstream from the 

cleavage site. In addition, I also saw a significant number of 3’UTRs which did not have 

any recognizable PAS site. The biogenesis of these 3’UTRs could be from an alternative 

mechanism of 3’end processing. Our data showed that ~40% of our genes exhibited 

alternative polyadenylation and many of these sites showed conservation across 

nematodes. While the single 3’UTRs and the longest 3’UTR of genes favored the 

canonical PAS, the shorter 3’UTRs favored the alternative PAS motif. These results 

indicate an inherent sequence-based flexibility in 3’ end formation that is pervasive in the 

post-transcriptional processing of messages.  

Polyadenylation in operons: Since ~3,000 genes in C. elegans exist in polycistronic 

operons, we wanted to see how polyadenylation is regulated during trans-splicing. 

Surprisingly, I saw an increased level of alternative polyadenylation for genes inside 

operons than those outside, thus linking trans-splicing with alternative polyadenylation. 

Furthermore, the position of the gene inside the operon also affected its polyadenylation. 

The average length of the 3’UTR and the number of isoforms per gene progressively 

decrease as we travel down the operon.  Comparing the genes trans-spliced by SL1 to 

those lying inside an operon, Jean Thierry-Mieg showed a reduced utilization of the 

AAUAAA signal compared to those outside an operon. The AAUAAA signal was more 

prevalent in the genes not trans-spliced. This shows an effect of trans-splicing in the 

usage of PAS sites showing an interaction between 5’ splicing and 3’ polyadenylation.    
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Developmental regulation of polyadenylation: Previous studies had shown few cases 

where 3’UTRs are regulated during development. My comprehensive analysis of the 

3’UTR lengths showed a global trend of decreasing 3’UTR length over development. I 

also identified thousands of 3’UTR isoforms that were specific to individual 

developmental stages with embryos expressing the largest number of stage-specific 

isoforms, likely due to the maternal load of transcripts contributing to the diversity of 

3’UTRs. Transitions between select developmental stages, namely L1 to the dauer 

stage, dauer to L3 dauer-exit stage, and from L4 to the adult stage, revealed a switch in 

particular 3’UTR isoform expression.  

Updated miRNA target predictions: Our updated miRNA target predictions performed 

with the new 3’UTR annotations using the PicTar algorithm [14-16] from Niklaus 

Rajewsky’s laboratory showed that almost half of the previous predictions should be 

modified with new 3’UTR annotations. We had hypothesized that alternative 

polyadenylation was a mechanism to effectively exclude miRNA target sites in a 3’UTR 

when a shorter isoform lacking the miRNA binding site is expressed.  While this is true in 

a case-by-case basis, we could not arrive at a generalizable set of rules that indicated 

that the distal regions of the longer 3’UTR isoforms were enriched for miRNA binding 

sites.  

Polyadenylation of histone mRNAs: An important outcome of our studies pertains to the 

post-transcriptional processing of histone mRNAs. Histone genes, especially the 

replication dependent histones (H2a, H2b,H3 and H4), were considered to be processed 

differently than the other mRNAs through a mechanism employing a stem loop binding 

protein which recognizes a stem loop formed by a palindromic region at their 3’ends [17-

20]. Due to this very specific processing mechanism, the prevailing conclusion was that 

histone transcripts were considered to be not polyadenylated [21].  However, my 
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analysis indicated that most of the histone genes in C. elegans were expressed in a 

polyadenylated form and displayed the same properties of other coding genes, i.e. the 

use of canonical and variant PAS motifs. Similar results were also seen in mammals 

where 4.3% of the H2A histone transcripts appeared to be polyadenylated when 

detected by northern blot analysis [3]. Taken together, these data suggest that both the 

stem loop-mediated and PAS-mediated 3’end processing occur. There could be many 

reasons for two mechanisms and whether they occur in serial or as parallel mechanisms 

remains to be determined. In addition, many of the histones are clustered in tight loci, 

potentially leading to transcriptional read through past the stem-loop sequences and 

engage the downstream PAS signal. In such a scenario, the PAS-mediated 

polyadenylated 3’end formation may act as a by-pass mechanism for the canonical 

stem-loop processing event. 

Alternative polyadenylation in synaptogenesis: My thesis also provides a specific 

example of where differential 3’UTR isoform expression may play an important biological 

role: synaptogenesis and neuronal development. We sequenced 3’UTRs from rpm-1, 

sydn-1 and rpm-1;sydn-1 mutants. rpm-1 and sydn-1 have been shown to participate in 

alternate pathways in the regulation of synapse and axon morphogenesis [22]. Mutating 

individual genes affects the synapse morphology but has minimal effect on locomotion. 

However, mutating both genes has been to shown to result in synapse and locomotion 

defects, suggesting a synthetic genetic interaction. Further sydn-1 has been shown to 

interact with pfs-2, which encodes a member of the polyadenylation machinery. Defects 

on sydn-1 can be suppressed by pfs-2 mutation. These genetic data strongly suggest 

that defects in seemingly core biological processes such as polyadenylation can have 

tissue-specific phenotypic outcomes. While the global profile of the 3’UTRs shows no 

drastic change in polyadenylation in these neuronal mutants, subtle variations were seen 
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in PAS usage when I examined 3’UTRs differentially expressed between N2 and the 

mutants and between mutants. I identified hundreds of 3’UTRs unique to each library 

and also identified many new 3’UTRs. I also saw evidence of differential isoform usage 

between the libraries.  The extent to which these molecular phenotypes contribute to 

synaptogenesis and perhaps even to synaptic plasticity mechanisms remains to be 

determined. 

Small RNAs in the germline: Small RNAs such as microRNAs and endogenous siRNAs 

play an important role in post-transcriptional gene regulation. In particular, miRNAs have 

been shown to target the 3’UTR regions of target transcripts to repress translation and/or 

induce target mRNA degradation.  In contrast, endogenous siRNAs largely silence their 

target mRNAs by the canonical RNA interference mechanism.  To identify novel classes 

of small noncoding RNAs in C. elegans, we sequenced the small RNAs from isolated 

gametes and the embryo and identified and characterized a new class of siRNAs called 

26G RNAs [23], which were first reported in a large scale sequencing study in 2006 [24]. 

These 26G RNAs were germline specific and were absent in the glp-4 mutant with 

defective germline. They were a uniform class of small RNAs that were 26nt in length 

and started with a guanosine nucleotide, hence the name 26G RNA. My bioinformatic 

analyses further differentiated the 26G RNAs into two non-overlapping subclasses 

based on their germ cell of origin and the genes that they targeted. Class I 26G RNAs 

target genes specific to spermatogenesis and were enriched in the sperm and Class II 

26G RNAs are maternally derived from the oocyte and were shown by Ting Han to 

regulate genes throughout filial development. Genetic and biochemical analysis by Ting 

Han in the Kim Lab identified that they required ERI-1 endonuclease and RRF-3 RNA 

dependent RNA polymerase for their biogenesis. Further Ting identified that each class 

associated with a specific effector complex termed RISC (RNA Induced Silencing 
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Complex). Class I 26G RNAs associated with the AGO-3/AGO-4 RISC while class II 

26G RNAs were bound to the ERGO-1 RISC. These endogenous siRNAs targeted both 

3’UTRs and coding regions of their target transcripts and loss of 26G RNAs resulted in 

up regulation of their targets. Similar results were also later reported in other studies [25-

27]. Further work identified mut-16 as another player in the biogenesis [28]. However, 

what triggers the production of these endogenous siRNAs is currently not known.  One 

intriguing model postulates that the 3’ end structure of the target transcripts may provide 

a nucleating site to which the amplification machinery is recruited for antisense 

transcription and subsequent production of the 26G RNAs.  Because the 3’ ends of 

target transcripts do not possess any discernable primary sequence motif, such a model 

relies on the existence of a common secondary structure.  One line of evidence that 

supports this model stems from recent studies that determined that the ERI-1 complex, 

which is essential for 26G RNA biogenesis, also recognizes a secondary structural motif 

in ribosomal RNAs to initiate their post-transcriptional processing [29]. It will be 

interesting to perform a comprehensive secondary structural analysis on the 3’UTRs of 

the 26G RNA target transcripts to determine if such a structural motif exists.  Because of 

our comprehensive 3’UTRome assembly of the C. elegans transcriptome, these types of 

future bioinformatics projects are now possible. 

Future work: Whole genome studies with the aid of high-throughput analysis methods 

are showing that alternative polyadenylation is a fundamental, ubiquitous process 

affecting 40-70% of the genes in an organism. Differential polyadenylation site usage is 

emerging as an important means of regulating gene expression during normal 

development as well as contributing to the organism’s response to external stimuli.  The 

comprehensive identification, at the transcriptome-level, of how 3’UTR isoform 

expression changes in the context of increasingly refined temporal and cell-type specific 
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transitions, as well as identifying how 3’UTR isoform expression changes in disease 

states such as cancer [8] remain a promising areas of future research. The rapid 

developments in next-generation sequencing technologies will greatly facilitate the 

speed and depth of these types of transcriptome-wide studies. Another important 

question is to determine whether small RNAs that bind 3’UTRs have any direct role in 

influencing the selection of alternative polyadenylation sites.  Again, recent high-

throughput methods provide the technology to address these questions at ever-

increasing depth, to the point where such questions can be answered with single-cell 

resolution [23, 30].   

 An important observation seen in Arabidopsis [2], yeast [4], mouse and human 

[4] 3’UTRomes was the presence of abundant antisense transcripts. Initial studies show 

33% of Arabidopsis transcripts [2], 60% in yeast [4] and 30% of human transcripts [4] 

expressed antisense transcripts which could affect sense gene expression positively or 

negatively. However, when we looked for antisense transcripts in C. elegans [31], the 

percent was not as high as in the other species. However, this result could be biased 

due to the fact that we didn’t sequence the whole transcriptome and only captured polyA 

ends or due to the pyrosequencing technology used. Hence more work is needed to 

address antisense transcripts in C. elegans. Furthermore, the sense/antisense overlap 

region had a peak at 20 nucleotides, or, intriguingly, less than the length of a small RNA. 

We proposed that this short overlap could be to prevent spawning of endogenous 

siRNAs from the resulting double strand during transcription. The parallel study [1] in C. 

elegans, proposed the sharing of cis elements between the sense/antisense transcripts 

which could be a mechanism for “genome compaction” to maintain the size of the small 

genome and reduce the need for long intergenic regions. Nevertheless, presence of 
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sense/antisense transcript pairs suggests mechanisms for biogenesis of siRNAs at least 

in other organisms or sharing of cis-elements.  

In my thesis, I showed specific examples of genes which exhibit switching of 

3’UTRs to developmental cues [31]. Similar events have also been seen during immune 

response [9], differentiation [32], and cancer [8]. In these studies, differentiation 

correlates with longer 3’UTR expression while undifferentiated states seem to exhibit 

shorter 3’UTRs.  In these studies, differential 3’UTR expression results in changes in 

gene expression. Shorter 3’UTRs seem to result in higher protein translation [8, 9] and is 

more favored in cases where quick turnover of proteins is needed, as in the case of an 

immune response, and longer 3’UTRs are favored in cases where translational 

machinery is needed to be shut down in case of stress [31], viral attack or turning off 

maternal transcripts in embryos[33]. While the biological significance of this 3’UTR 

switching mechanism remains to be determined, the fact that at least ~560 genes in C. 

elegans display such an expression pattern suggests that 3’UTR switching may 

represent an important facet of gene regulation during development.  

Analyzing the results of our sequencing data, we saw evidence for polyA sites 

ending inside the coding regions even after accounting for artifacts due to false priming. 

Such a transcript would result in an mRNA that lacks a proper termination or stop codon 

and trigger mRNA degradation by nonsense-mediated decay mechanisms.[34-38]. A 

recent study has shown that the marking of mRNAs for degradation is done through 

binding of Upf1 to the 3’UTR regions in a length-dependent manner [39, 40].  Taken 

together, these findings suggest that the depth of sequencing coverage reveals the rare 

examples of inappropriate 3’UTR formation that are likely to be rapidly cleared by 

cellular surveillance mechanisms.  
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From our C. elegans data, we identified many islands in the genome where there 

were no previous gene annotations but had clear evidence of polyadenylation. We 

annotated ~1000 new genes based on this data. This number may not be saturated yet 

and many other new gene models may yet be discovered in other organisms. 

Furthermore, many non-coding RNAs are transcribed by RNA polymerase II [41-43] and 

these are also known to be polyadenylated. Using the polyA capture method will allow 

the comprehensive identification of these polyadenylated non-coding RNAs.  

In summary, the research described in this thesis represents the initial salvo in 

the emerging area of gene regulation mediated by alternative 3’UTR isoform expression 

and by the small noncoding RNAs that interact with them.  By deciphering the basic 

mechanisms of post-transcriptional regulation in the context of 3’UTR formation, we will 

then be able to determine if such processes are dys-regulated in disease states such as 

neuronal degeneration and cancer. 
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