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CHAPTER I

Introduction

1.1 Motivation and Objectives

The performance of machines and equipment degrades as a result of aging and

wear, which decreases performance reliability and increases the potential for fail-

ures [Djurdjanovic et al., 2002]. To ensure proper functionality of complex systems,

advanced technologies for performance diagnosis and control are incorporated into

engineering designs, especially in the case of sophisticated, expensive and safety

critical systems, such as manufacturing equipment [Rao, 1996], computer networks

[Dasgupta and Gonzalez, 2002; Harmer et al., 2002], automotive [Crossman et al.,

2003; Murphey et al., 2003] and aircraft engines [Kobayashi and Simon, 2005], etc.

These performance diagnosis and control functionalities necessitate the use of an

ever-increasing number of sophisticated sensors and measurement devices to deliver

data about the key indicators of the system status and performance.

However, just as any dynamic system, a sensor fails if a failure occurs in any of its

components including the sensing device, transducer, signal processor, or data acqui-

sition equipment. An abrupt failure in the sensor can be caused by a power failure or

corroded contacts, while an incipient failure such as drift and precision degradation

can be caused by deterioration in the sensing element. As defined in [Isermann, 1984],

1
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both an abrupt and an incipient failure can cause non-permitted deviation from the

characteristic property in a sensor, which leads to inaccurate measurements from the

monitored1 system. Consequently, a faulty sensor can cause process performance

degradation, process shut down, or even fatal accident in a safety critical system. In

fact, the problem of instrument fault detection, identification and accommodation

has already received extensive attention in both industrial and academic fields [Betta

and Pietrosanto, 2000; Crowe, 1996; Qin and Li, 2001]. Nevertheless, the detection

of sensor incipient failures that is important for critical information to diagnosis and

control systems has received limited attention in literature [Alag et al., 2001].

The detection and isolation of a faulty sensor is not an easy problem. The mea-

surements of a sensor depict characteristics of both the monitored system and the

sensor itself. Thus, any abnormal deviation in the measurements of a sensor could

be caused by a change either in the monitored system or in the sensor. In addition,

as an engineering system becomes more complex, the number of its interconnected

subsystems and the associated sensors also increases, in which various failures may

occur either independently or simultaneously. Moreover, the imperfect nature of a

sensor as well as the process disturbances add noise to its measurements [Alag et al.,

2001]. All these aforementioned issues raise the challenge of detecting and isolating

a faulty sensor from a failure occurred in the monitored system. Furthermore, a

method developed for the detection, isolation, and accommodation of a faulty sensor

should be able to run in a real-time environment so that its measurements could be

validated within a desirable time duration for the purpose of diagnosis and control.

This imposes additional constraints on the development of a feasible solution due

to the limited computational power and storage capacity available in a real-time

1This could be a monitored or a controlled system. For the sake of simplicity, this system is referred as the
monitored system in the reminder of the thesis.
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diagnosis and control system.

In order to address the above issues, a method for the detection, isolation and ac-

commodation of a faulty sensor should satisfy the following desirable characteristics:

• able to distinguish where a failure occurred in the sensor or in the monitored

system,

• able to validate the measurements of a sensor without the use of redundant sen-

sors and the requirement of a detailed physical model of the monitored system,

• able to detect, isolate, and accommodate a faulty sensor promptly for the pur-

pose of diagnosis and control in a real-time environment,

• applicable to a wide range of sensors, and

• capable of detecting and isolating a faulty sensor even in the case when multiple

sensors fail at the same time.

A conventional engineering method for sensor validation is to check and recalibrate

the sensor periodically by following a set of predetermined procedures [Pike and

Pennycook, 1992]. Although it is effective in dealing with abrupt sensor failures,

this method is not able to accomplish continuous assessment of sensor performance

and may be insufficient to achieve desirable performance, especially in the case of

complex and safety critical dynamic systems. Moreover, with the increasing number

of interconnected subsystems and associated sensors, it has become less and less

feasible and cost effective to check all sensors periodically. On the other hand, the

hardware redundancy approach that has been widely used in many safety-critical

systems measures one critical system variable using two or more sensors. The faulty

sensor can be detected by checking the consistency among the redundant sensor

measurements and then isolated using majority voting schemes [Broen, 1974], with
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three or more sensors usually being necessary to identify the faulty sensor. It has

been shown that these methods are relatively easy to implement and can grant a

high certainty in the detection and isolation of faulty sensors. However, the use of

redundant sensors may not always be feasible due to the cost and space constraints.

Moreover, it is highly possible that the redundant sensors could also fail and show

similar symptoms because they are operated in the same working environment and

thus tend to have similar life expectations [Patton et al., 1989].

To avoid the use of redundant sensors, the analytical redundancy approach em-

ploys mathematical models to capture the dynamics of the monitored system as well

as the sensors themselves. Based on a nominal model established for the fault-free

conditions, residuals can then be generated as the difference between the actual

sensor readings and the values estimated from the nominal model. The generated

residuals can be employed to detect and isolate a faulty sensor by incorporating an

appropriate residual evaluation scheme in the well-developed literature on model-

based fault detection and isolation methodologies. Nevertheless, such methods need

an accurate analytical model of the monitored system as well as the sensor, and thus

require a priori deep understanding of their underlying physics.

As illustrated in Figure 1.1, this proposed methodology aims to identify and isolate

incipient sensor failures in a dynamic system, quantitatively assess these failures,

and compensate for their effects on the measurements. Inspired by the fact that the

measurements of a sensor depict the dynamic characteristics of the monitored system

as well as those of the sensor itself, a methodology has been developed in this thesis

to detect and isolate incipient sensor failures by decoupling their dynamics directly

based on the measurements. This enables the monitoring of a sensor separately from

its associated monitored system without the use of redundant sensors. To reduce
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the amount of a priori knowledge required, system identification techniques have

been employed in the proposed method to identify the analytical relations among

the measured variables in the dynamic system.

Subsystem 1

Subsystem 2

Subsystem N

…

Monitored System

In
te

rc
o
n
n
e
c
te

d
 

S
u
b
s
y
s
te

m
s

Sensor Set 1

Sensor Set 2

Sensor Set N

…

Sensor Network

Detect and identify incipient sensor failures

Quantitatively assess these failures

Compensate their effects on measurements

Detection, Isolation, and Compensation of 

Incipient Sensor Failures 

Diagnosis and 

Control System

Figure 1.1: Objectives of this research on the detection, isolation, and accommodation of a degraded
sensor

1.2 Thesis Outline

The remainder of the thesis is organized as follows.

In Chapter II, the state-of-the-art techniques for fault detection and isolation

and their applications in the field of instrumentation and measurement systems are

reviewed. In contrast to the hardware redundancy approaches, analytical redundancy

approaches incorporate a priori system knowledge and extract key information from

the measurement system for the detection and isolation of a faulty sensor instead of

deploying multiple sensors for the same measured variable. Due to their benefits in

system cost and complexity, analytical redundancy approaches have attracted a lot

of attention in both academic research and industry applications. In this chapter, the

various analytical redundancy approaches are reviewed in the categories of model-
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based methods, knowledge-based expert systems, and data-driven methods. The

research and application challenges in the reviewed topic are also identified, and

associated future research topics are proposed.

In Chapter III, a method is proposed to detect, isolate, and accommodate an

incipient sensor failure in a single-input-single-output system under the assumption

that the dynamics of the monitored system as well as the associated sensor is lin-

ear. In the proposed method, a subspace system identification algorithm is used to

track the changes of the time constants and gains of the sensor and the monitored

system, simultaneously. Without the use of redundant sensors, this method utilizes

the fact that the sensor readings depict dynamic characteristics of the sensors as well

as the monitored system. To evaluate its performance, this method has been imple-

mented to detect incipient failures in a throttle position sensor using simulations of

an automotive electronic throttle system.

In Chapter IV, an input selection method is proposed to identify the underlying

relations embedded in a nonlinear dynamic system, which helps to deal with the

increased complexity of detecting and isolating sensor faults in a multiple-input-

multiple-output system. The proposed method converts the problem of selecting

the most correlated input variables for the target output variable of a nonlinear

dynamic system into one of a set of properly linearized models. In order to enable

the approximation of the nonlinear system behavior with a set of linear models,

a growing self-organizing map is employed to appropriately partition the system

operating region into sub-regions via unsupervised clustering. Evaluated based on the

minimum description length principle, genetic algorithm is employed in this work to

identify the more related input variables and the associated dynamic model structure

for efficient computation. The performance of the algorithm was evaluated with two
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commonly cited numerically examples in the literature of system identification.

In Chapter V, an approach is then developed to detect and isolate sensor faults

and air leaks in a diesel engine air path system, a highly dynamic complex multiple-

input-multiple-output system. The proposed approach captures the analytical redun-

dancies among the air mass flow rate through intake air system and the pressures in

the boost and intake manifolds. Without the need for a complete model of the tar-

get system, fault detectors are constructed in this work using the growing structure

multiple model system identification algorithm. Given the addition information on

operation regime from the identified model, the proposed approach evaluates both

the global and local properties of the generated residuals to detect and isolate the

potent sensor and system faults.

In Chapter VI, the contributions of the research accomplished in this thesis are

summarized and its possible future work is proposed.



CHAPTER II

State-of-the-Art Methodologies for Sensor Fault Detection,
Isolation, and Accommodation of Sensor Failures

2.1 Introduction

In this chapter, the state-of-the-art techniques for fault detection and isolation

and their applications in the field of instrument fault detection, isolation and accom-

modation are reviewed. The importance of sensor validation was first recognized in

the safety-critical processes such as nuclear power plants. However, driven by the

stricter regulations on safety and environment, topics in the domain of instrument

fault detection, isolation and accommodation have received extensive attention in

various engineering applications. It has become even more crucial as more sensors

are integrated into a system for advanced functionalities.

A conventional engineering method for sensor validation is to check and recali-

brate a sensor periodically according to a set of predetermined procedures [Pike and

Pennycook, 1992]. Although this method has been widely implemented in industry

for detecting abrupt sensor failures, it is not able to accomplish continuous assess-

ment of a sensor, and thus is not effective in detecting its incipient failure. Moreover,

due to their ever-increasing number, it has become cost-ineffective and even infea-

sible to check all sensors periodically. Therefore, significant efforts have been made

for the development of more systematic methods, which can be generally categorized

8
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into hardware and analytical redundancy approaches [Ibarguengoytia et al., 2001].

The general idea of the hardware redundancy approaches is to measure one critical

variable using two or more sensors, and then detect as well as isolate the faulty

sensor by consistency checking and majority voting. These approaches have been

widely used in safety-critical systems for their simplicity and robustness. Without

the use of additional sensors, the analytical redundancy approaches identify the

functional relations between the measured variables via a mathematical model that

can be either developed based on the underlying physics or derived directly from

the measurements. Residuals between the sensor measurements and the modeled

outputs can then be generated for the detection and isolation of the faulty sensor. As

illustrated in Figure 2.1, analytical redundancy approaches can be further categorized

according to the type of their required a priori knowledge as model-based methods,

knowledge-based expert systems, and data-driven methods. A similar classification

was used to present the state-of-the-art methods for process fault detection and

diagnosis in [Venkatasubramanian et al., 2003a,b,c].

Instrument Fault Detection 

and Identification

Hardware Redundancy 

Approaches

Analytical Redundancy 

Approaches

Model-based 

methods

Knowledge-based 

expert systems

Data-driven 

methods

parity relations

parameter estimation

multivariate statistical methods

Bayesian belief networks

artificial neural networks

Luenberger observers and 

Kalman filters

Figure 2.1: Categorization of the state-of-the-art methods for Instrumentation Fault Detection and
Identification

Among the various analytical redundancy approaches, a model-based method re-

quires an accurate mathematical model of the target dynamic system that can be
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described using parity relations, Luenberger observers and Kalman filters, and pa-

rameter estimators. A knowledge-based expert system incorporates the expert do-

main knowledge that is generally captured with a set of rules according to some

knowledge representation formalism. Instead of requiring a deep understanding of

the physical system, a process history based method demands the availability of a

sufficient amount of data that are representative of the system performance. Due to

demands for improved system control and diagnosis, an increased number of sensors

have been employed in a complex system such as the automotive engine. As a result,

abundant data can be collected for the purpose of system control and diagnosis. This

has not only encouraged the development of various data-driven methods including

the multivariate statistical methods, Bayesian belief networks, and artificial neural

networks, but also enabled their wide industrial applications.

2.2 State-of-the-Art Methodologies for the Detection, Isolation and Ac-
commodation of a Sensor Failure

2.2.1 Hardware redundancy approaches

The hardware redundancy approaches find their first and main applications in

nuclear power plant monitoring and other safety-critical processes. It has been shown

that these methods can grant a high certainty in the detection and isolation of

faulty sensors with relatively easy implementation. However, the use of redundant

sensors may not always be feasible due to cost and space constraints. Moreover, it is

highly possible that the redundant sensors could fail together with similar symptoms

because they are operated in the same working environment and thus tend to have

similar usage life expectations [Patton et al., 1989].

The general idea of the hardware redundancy approaches is to measure one critical

variable using two or more sensors. The faulty sensor can be detected by checking
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the consistency among the redundant sensor measurements, and isolated using a ma-

jority voting scheme if more than two redundant sensors are installed. In [Broen,

1974], a class of voter-estimators, derived from least-square estimation, were devel-

oped to detect and isolate a faulty sensor among a group of redundant measurements.

The proposed method first estimated the measured variable by fusing the group of

redundant measurements, and then identified the faulty sensor if its readings were sig-

nificantly different from the estimated value. Inspired by the same idea, the method

in [Desai and Ray, 1984] concurrently checked the relative consistencies among all

redundant measurements, and used the most consistent and inconsistent subsets for

the estimation of measured variable and the identification of a faulty sensor, re-

spectively. Developed for application to nuclear power plants, the signal validation

system proposed in [Holbert and Upadhyaya, 1990] integrated several established

fault detection methods with a modular architecture and evaluated the validity of

measurements using fuzzy membership functions. In addition, a complex logic al-

gorithm was presented in [Glockler et al., 1989] to check the consistency among

multivariate measurements, in which prediction models were used to estimate each

variable based on its redundant measurements. In [Dorr et al., 1997], mean-value

detectors were employed instead to estimate the variable via a linear combination of

its redundant measurements.

In order to overcome the limitations of a static threshold, the concept of fuzzy

sets was employed in [Park and Lee, 1993] to develop a rule-based diagnostic logic

for a set of redundant sensors so that the dynamic disturbances and noises in the

measurements can be taken into account. The fuzzy sets described the mean-value

and uncertainty differences among sensor measurements with triangular membership

functions. Once a fault occurs, an uncertainty reductive-fusion technique was used to
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find the infusible sensor measurements, which enables the detection and identification

of a faulty sensor.

The hardware redundant approaches, as discussed above, are able to detect a

sensor failure with two redundant sensors, but they generally require three or more

redundant sensors to identify the faulty sensor. A method has been developed in

[Deckert et al., 1977] to address such an issue by constructing an additional virtual

sensor for the target variable based on other non-redundant sensor measurements,

in which the quality sequential probability ratio is used as the identification logic.

2.2.2 Analytical redundancy approaches

Analytical redundancy (also known as functional, inherent, or artificial redun-

dancy) is realized through the functional relationships among the measured variables,

which constitutes a model for the system. Residuals can then be generated as the

differences between the model outputs and the actual measurements, based on which

various techniques have been developed for fault detection and isolation. The use of

such an analytical model enables the detection and identification of a faulty sensor

without the requirement for additional redundant sensors.

As discussed in [Frank, 1990; Venkatasubramanian et al., 2003c], analytical re-

dundancy can generally be classified as direct and temporal. Derived directly from

physical laws, direct redundancies can be expressed using algebraic equations, based

on which one measured variable can be algebraically determined from its related

sensor measurements. Since the computed values should only deviate from the as-

sociated sensor measurements during a sensor failure, such direct redundancies can

be employed for the detection and isolation of a faulty sensor. In addition, temporal

redundancies capture the dynamic relations among the sensor measurements as well

as actuator control signals with differential or difference equations.



13

2.2.2.1 Model-based methods

The model-based method requires an explicit mathematical model of the target

system for the generation of residuals between the modeled outputs and sensor mea-

surements. Since different faults in the system can cause different patterns in the

residuals, various fault detection and isolation methods have been developed based

on residual evaluation. With a deep understanding of the target system, such an ana-

lytical model can be developed directly using the first principles of physics. Although

the development of a first-principle model can be time-consuming and generally re-

quires a great amount of a priori knowledge about the target system, it provides

more information for system diagnosis and control algorithm design because each

model parameter has a one-to-one relationship with its corresponding physical pa-

rameter [Frank, 1990; Venkatasubramanian et al., 2003c]. As a result, a great number

of model-based methods have been developed in the literature and implemented in

various applications. As presented in [Nyberg and Stutte, 2004], a first-principle

model is developed for an automotive diesel engine, based on which different faults

such as a deteriorated sensor and a leakage in the air system can be detected and

isolated using a series of structured hypothesis tests. In order to handle the modeling

errors as well as the measurement noise, the structured hypothesis test developed in

[Nyberg, 1999] employs an adaptive threshold.

Figure 2.2 illustrates the general architecture of a model-based fault detection and

isolation method. A target dynamic system generally consists of a monitored system

that can be further decomposed into a number of subsystems, a properly designed

controller, and a set of actuators and sensors. Based on the sensor measurements ys,

the controller outputs a set of control commands ua to the actuators that operate the

monitored system. Such a dynamic system can be subjected to various component



14

failures that may occur in an actuator, any subsystem in the monitored system, an

sensor, or the controller. In Figure 2.2, fa refers to an actuator failure, fp denotes

a failure in the monitored system, fs describes a sensor failure, and fc represents a

controller failure. In addition to the component failures, the monitored system and

the sensors are also subjected to unexpected external disturbances d and measure-

ment noise n, respectively. Derived from the control commands ua and the sensor

measurements ys, an analytical model, termed as modeled system in Figure 2.2, can

then be identified to capture the current system behavior. Along with this modeled

system, models that present the nominal or faulty system behavior may also be iden-

tified and used as reference models for the purpose of system diagnosis. After the

completion of system modeling, various features can be extracted based on the esti-

mated states, identified system parameters, and the residuals generated between the

sensor measurements and the outputs estimated either from the nominal or faulty

system model. With the availability of appropriate diagnostic features, various tech-

niques have been developed to detect and isolate the faults. In the remainder of

this section, various fault detection and isolation approaches including residual eval-

uation, parameter estimation, and the use of parity relations, Luenberger observers

and Kalman filters are briefly reviewed. For a more comprehensive survey of the

model-based methods, one may refer to the papers [Frank, 1990; Isermann, 1984,

1997, 2005; Venkatasubramanian et al., 2003c] as well as the books [Gertler, 1998;

Patton et al., 1989].

parity relations First developed in [Chow and Willsky, 1984; Lou et al., 1986; Pot-

ter and Suman, 1977], the parity relation approaches aim to re-arrange and transform

an input-output or a state-space model of the monitored system into a set of parity
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Figure 2.2: General architecture of a model-based fault detection and isolation method [Isermann,
1984]

relations to achieve the best performance in fault detection and isolation. The gen-

eral idea of these approaches is to check the parity (consistency) between modeled

system with the sensor measurements and control commands. The residuals gen-

erated by the parity equations are ideally zero under nominal steady-state system

operations, but are generally non-zero in a real system due to the presence of ex-

ternal disturbances, measurement noise, and model inaccuracies. In addition to the

proposal of dynamic parity equations in [Willsky, 1976], further development and
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application of the parity relation approaches can be found in [Gertler et al., 1995,

1990, 1999; Gertler and Monajemy, 1995; Gertler and Singer, 1990].

The parity relation approaches have also been applied to detect and isolate the

faulty sensor among redundant sensors. However, as stated in [Betta and Pietrosanto,

2000], the use of the parity relation approaches in such applications is limited because

they require

• an accurate analytical model of the monitored system as well as the associated

actuators,

• sufficient analytical redundancy among the measured variables,

• reliable and accurate sensor measurements, and

• powerful computational capability for real-time applications.

In order to avoid the requirement for an accurate model of the monitored sys-

tem, the parity relation approach developed in [Qin et al., 1998] identified an input-

output model for the target system using a recursive least-square system identifica-

tion method based on the sensor measurements and control commands. An errors-in-

variables subspace identification algorithm was then proposed for developing a proper

analytical system model in [Qin and Li, 2001] to handle noisy sensor measurements.

Applied for the detection of a faulty sensor, a dynamic structured residual approach

was developed in [Qin and Li, 2004] to maximize the sensitivity of the generated

residuals to different failures. As first proposed in [Qin and Li, 2001], the optimality

of the primary residual vector and the structured residual vectors that are generated

using an extended observability matrix and a lower triangular block Toeplitz matrix

of the system was proved in [Li and Shah, 2002]. After the determination of the

maximum number of multiple sensors that are most likely to fail simultaneously, a
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unified scheme for the isolation of single and multiple faulty sensors based on a set

of structured residual vectors is also proposed in [Li and Shah, 2002].

Due to the implicit equivalence between the principal component analysis and the

parity relation approach, methods have been developed to combine their advantages

and applied for instrument fault detection and isolation. In addition, methods have

also been developed to describe the parity relations among the measured variables

with a properly trained artificial neural network. Furthermore, the knowledge-based

expert system was employed in [Betta et al., 1995; Kim et al., 1992] to detect and iso-

late the faulty sensor in the cases of incomplete or noisy sensor measurements. These

methods will be further discussed in the following sections of multivariate statistical

methods, neural networks, and knowledge-based expert system, respectively.

Luenberger observers and Kalman filters The general idea of the observer-based

methods is to model the system outputs from measured variables using a single

or a bank of estimators, among which the Luenberger observers and the Kalman

filters have been most widely applied. Then, residuals between the modeled and

measured system outputs can be generated and evaluated for the fault isolation

and detection using various methods such as the sequential probability test, the

generalized likelihood ratio approach, and the fixed/adaptive threshold logic. A

review and comparison of the methods developed based on the Luenberger observers

and the Kalman filters was presented in [van Schrick, 1994].

The dedicated observer scheme [Clark, 1978a; Clark et al., 1975], as illustrated

in Figure 2.3(a), uses one Luenberger observer for each system output to detect in-

cipient sensor failures. Since each observer is only used to reconstruct one system

output, such a method does not require the full observability for each measured
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variable. Furthermore, with a bank of estimators, this scheme provides a flexible,

selective and robust solution and enables the detection and isolation of multiple and

even simultaneous sensor failures. However, the construction of one observer for

each system output has become impossible as the complexity of the target system

increases. Therefore, a simplified approach based on the dedicated observer scheme

was proposed in [Clark, 1978b], in which a single observer was used to reconstruct

all the system outputs using the set of measured variables that are most sensitive to

potential sensor failures. Such a simplified configuration is able to detect and isolate

multiple sensor failures as long as the faulty sensor measurements are not used as

the inputs to the observer. Inspired by the same concept, another instrument fault

detection method was then proposed in [Frank and Keller, 1980], in which a pair

of sensitivity discriminating Luenberger observers were constructed for each system

output. Within each pair of observers in Figure 2.3(b), one was designed to be insen-

sitive to system parameter variations, while the other was designed to be sensitive to

sensor failures. The use of such a pair of sensitivity discriminating observers improves

the reliability and robustness of the proposed instrument fault detection method by

eliminating the influence of system parameter variations. Considered as an alter-

native form of the dedicated observer scheme, the generalized observer scheme was

presented in [Frank, 1987], in which one observer was constructed for each system

output based on all the measured variables except the one it is associated with.

As outlined in [Patton and Chen, 1997], various methods have also been developed

in the literature to further improve the robustness of the observer-based methods for

the detection and isolation of sensor failures. In order to reduce the number of

required observers, an approach for the design of structured residuals for fault de-

tection and isolation was proposed in [Alcorta Garcia and Frank, 1999]. In addition,
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the genetic algorithm was employed in [Chen et al., 1994] to optimize the design

for an observer-based residual generator according to the performance index that is

defined based on the frequency distributions of various failures, measurement noise,

and modeling uncertainties. These observer-based methods were applied for detect-

ing and isolating sensor failures in a turbo jet engine [Johansson and Norlander,

2003], and the navigation system in an aerospace vehicle [Halder et al., 2004].

The Kalman filters have been widely applied to stochastic systems where the

state variables are considered as random variables with known parameters for their

statistical distributions. Based on a nominal system model, a well-designed Kalman

filter is proved to be the optimal state estimator in terms of estimation error if the

system variables are subjected to Gaussian distribution. Due to their simplicity and

optimality, the Kalman filters have been widely used in various applications [Hsiao

and Tomizuka, 2005; Scheding et al., 1998; Spina, 2000; Simani et al., 2000; Turkcan

and Ciftcioglu, 1991]. In [Simani et al., 2000], the standard system identification

techniques were employed to derive the state estimators, dynamic observers and

Kalman filters from the input-output data in the form of an autoregressive model with

exogenous inputs, and an error-in-variables model. In order to apply to a discrete

system, the generalized observer scheme was extended in [Lunze and Schroder, 2004]

to detect and isolate a failure with the Kalman filters in a discrete-event system.

Furthermore, the extended Kalman filters were employed to detect and isolate sensor

failures in nonlinear dynamic systems [Mehra and Peschon, 1971; Watanabe and

Himmelblau, 1982; Watanabe et al., 1994].

The Luenberger observers and the Kalman filters have been applied to detect

and isolate a single or multiple sensor failure(s) in linear and nonlinear systems. In

addition, observer-based approaches have been also developed to address the issue of
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external disturbances, measurement noise and modeling errors. However, similar to

the parity relation approaches, the observer-based methods still require a significant

amount of a priori knowledge about the target system.

parameter estimation Inspired by the fact that a fault in the system can be ob-

served through changes in the associated parameters in the model, parameter es-

timation techniques have been developed to detect and isolate a fault by tracking

the changes in its characteristic parameters. Since the characteristic parameters are

generally not measurable directly, a parametric model in the form of (2.1) is required.

y(t) = f (u(t),Θ) (2.1)

where u ∈ Rq and y ∈ Rp denote the system inputs and outputs, and Θ ∈ Rm is the

vector of model parameters that is a function of the characteristic physical parameters

φ ∈ Rn. As described in [Isermann, 1984], the changes in the physical parameters

φ can thus be captured via the estimated model parameters Θ̂, which enables the

detection and isolation of a fault. For instance, the sensor response characteristics

were captured in [Upadhyaya and Kerlin, 1978] using the noise analysis technique

and employed for detecting and isolating a sensor failure.

2.2.2.2 Knowledge-based expert systems

While a model-based method requires a quantitative mathematical model, an

expert system employs a qualitative model that is derived from the accumulated

experiences and engineering domain knowledge for the target system. With its first

application in the medical domain, the knowledge-based expert systems are generally

established based on both passive and active knowledge. The passive knowledge

is composed of known facts and past data, while the active knowledge consists of

production rules in the if -then format.
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As illustrated in Figure 2.4, a knowledge-based expert system is generally com-

posed of a user interface, a knowledge base, an inference engine and an interpretation

element. The knowledge base stores the historical data as well as the accumulated

rules, facts and expert experiences, based on which the useful analytical or heuristic

information is derived via the inference engine. Through the user interface, an expert

can not only provide the domain knowledge as inputs but also supervise the fault

identification and isolation process.
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Figure 2.4: General architecture of a knowledge-based expert system for fault detection and isola-
tion

In [Chandrasekaran and Punch, 1988], an approach based on hierarchical classi-

fication was developed for the purpose of sensor validation by adding the associated

information into the knowledge group. Another method that can systematically

identify the redundancies in a sensor network according to their causal relations was



23

proposed in [Lee, 1994] for sensor validation. The liquid-oxygen expert system in

[Scarl et al., 1987] predicted the state of the target system using model-based knowl-

edge of both function and structure. Although such an expert system can detect a

faulty sensor or any other faulty component in the same way using the model-based

reasoning approach, it only provides a solution for sensor validation in specific ap-

plication domains. In addition to the accumulated domain knowledge, the method

proposed in [Kim et al., 1992] utilized the analytical information directly extracted

from the sensor measurements to identify a faulty sensor in a heuristic manner. In

[Betta et al., 1995], a knowledge-based analytical redundancy approach was proposed

to integrate both qualitative models and empirical knowledge into an expert system.

In order to apply such an expert system to a measurement station consisting a large

number of sensors with high uncertainty, the algorithm developed in [Betta et al.,

1997] added another layer for the statistical pre-processing of the measurements ac-

cording to the optimized residual thresholds derived from the rules in the expert

system.

Despite its capability in dealing with qualitative knowledge, the performance of

the expert system depends significantly on its design ranging from the different ways

of embedding the existing knowledge to the selection of fault thresholds. Further-

more, an expert system requires great efforts during the initial development phase,

and has limited capability in handling dynamic systems.

2.2.2.3 Data-driven methods

Different from model and knowledge based methods that both require a deep un-

derstanding of the target system, data-driven methods, also known as process history

based methods, only require the availability of sufficient data. Various methods have

been developed to establish the knowledge database for the underlying system by
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extracting characteristic features directly from its past performance data. In the

remainder of this section, multivariate statistical methods, Bayesian belief networks,

and neural networks, especially their application in the field of sensor validation, will

be introduced.

multivariate statistical methods Without an explicit input-output model, multi-

variate statistical methods, such as Principal Component Analysis (PCA) and Partial

Least Squares (PLS), have been widely applied in the process industry. Due to the

capability of dimension reduction, multivariate statistical methods have been used

for performance monitoring in a system with a high-dimension but correlated or even

low signal-to-noise ratio measurements. In [Kresta et al., 1991], a multivariate mon-

itoring procedure analogous to the univariate Shewart Chart was proposed, in which

methods are employed to compress available measurements into a low-dimension

space while retaining most of the information.

First introduced in [Hotelling, 1933] and later generalized in [Pearson, 1901], the

PCA method is able to compress a large amount of correlated data into a much

lower-dimension data set. However, due to its limitation as a linear transformation,

the use of the PCA method for a nonlinear process leads to the loss of important

information [Xu et al., 1992]. In order to overcome such a drawback, a Generalized

PCA (GPCA) was proposed in [Gnanadesikan, 1997] by introducing an augmented

data set to include necessary nonlinear terms. The kernel PCA method developed

in [Scholkopf et al., 1998] extracted the principal components from an augmented

input space that were expanded by a nonlinear mapping. In addition, a nonlin-

ear factor analysis method in [Etezadi-Amoli and McDonald, 1983] was developed to

approximate an n-dimension data set with k < n latent factors with a nonlinear com-
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mon factor model with k -dimension polynomial regression function using the linear

least square method. Moreover, a Nonlinear PCA (NPCA) method was presented in

[Kramer, 1991] using a five-layer neural network. With a similar network structure,

the NPCA method proposed in [Dong and McAvoy, 1996] employed the principal

curves algorithm [Hastie and Stuetzle, 1989] to extract nonlinear principal compo-

nents from the available data and trains the network using the compressed data set.

Furthermore, the Multi-way PCA (MPCA) method in [Chen and McAvoy, 1998] in-

troduced a real-time monitoring approach and further extends the conventional PCA

method to dynamic systems.

Due to its capability in dimension reduction, the multivariate statistical methods

have been widely used for process modeling and fault detection in various applica-

tions. In general, a principal component or latent variable plane is first established

under normal operations, and then an index is calculated to evaluate the process per-

formance. One of the commonly used index is Squared Prediction Error (SPE) that

calculates the perpendicular distance between a new observation and the established

principal component plane. Based on the calculated SPE, a proper threshold can be

established for fault detection. In order to add the capability of fault isolation, the

contribution chart [MacGregor et al., 1994; Tong and Crowe, 1995] and the multi-

block method [Chen and McAvoy, 1998; MacGregor et al., 1994] were proposed. The

contribution chart determines the contribution from each process variable to the pre-

diction errors, while the multi-block method groups the process variables into several

blocks with each corresponding to a specific section of the monitored process. Both

methods were demonstrated their capabilities to identify the variables that causes

the deviation of the process performance from its normal conditions. As stated in

[Gertler and McAvoy, 1997], a strong duality exists between PCA and parity rela-
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tions. By virtue of this duality, a partial PCA method was proposed to integrate the

fault isolation capability of the structured parity relations into the PCA method. In

[Gertler et al., 1999], a direct algebraic method was developed to derive the struc-

tured PCA residuals as well as to decouple disturbances. In addition, the existence

conditions of such residuals were also stated. Furthermore, the partial PCA method

was extended in [Huang et al., 2000] to nonlinear problems using the GPCA and the

NPCA methods. However, these methods all require an explicit analytical model of

the monitored process for the integration with parity relations.

The use of multivariate statistical methods has also received significant attention

for sensor fault detection and identification. In [Dunia et al., 1996], the use of PCA

for sensor fault identification by reconstructing each variable with a PCA model in an

iterative substitution and optimization manner was presented. In addition, a sensor

validity index and its on-line implementation were also proposed for differentiating

various types of sensor faults. The method proposed in [Dunia et al., 1996] was also

applied for air emission monitoring in [Qin et al., 1997]. The self-validating inferential

sensor approach presented in [Qin et al., 1997] further explored the effects of the

number of principal components and employs different criteria for its selection in the

sensor validation and prediction procedures. The use of PCA for sensor validation

was also recently applied in [Kerschen et al., 2005] for the monitoring of structure

health.

The method proposed in [Qin and Li, 2001], as an extension to the work in [Gertler

and McAvoy, 1997], enabled the detection and isolation of two faulty sensors by

generating a set of structured residuals, each decoupled from one subset of faults but

most sensitive to others. Moreover, the multi-block method was employed in [Wang

and Xiao, 2004] for sensor validation in an air-handling unit, in which a contribution
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chart along with a few simple expert rules was used for fault isolation. In [Kaistha

and Upadhyaya, 2001], the direction of each fault scenarios is first obtained using the

Singular Value Decomposition (SVD) on the state and control function prediction

errors, and fault isolation was then accomplished from projection on the derived fault

directions. In [Benitez-Perez et al., 2005], a Self-Organizing Map (SOM) was first

trained for the normal and various faulty process behaviors based on the principal

components of the available measurements. Fault isolation was then accomplished

by calculating the similarity between the observations with the trained SOM.

For nonlinear processes, an approach was developed in [Huang et al., 2000] to

detect sensor and actuator faults by integrating the capability of GPCA and NPCA

with the advantages of partial PCA. In [Cho et al., 2004], a sensor fault identification

method was proposed using kernel PCA based on two new statistics that were de-

fined as the contribution of each variable to the monitoring statistics of Hotelting’s

T2 and SPE. The auto-associative neural network, also considered as a nonlinear

extension of PCA, was used to detect, identify, and reconstruct faulty sensors in

distillation columns [Kramer, 1991], nuclear plants [Hines et al., 1998], and engine

systems [Guo and Musgrave, 1995; Mesbahi, 2001; Uluyol et al., 2001]. In these ap-

plications, an auto-associative neural network was first constructed to estimate the

measured variables using the current sensor measurements, and then a sensor whose

measurements deviate significantly from the estimated values was identified as faulty.

However, since measurements from the faulty sensor remained as the inputs to the

neural network, the inaccurate estimated values of the measured variables may lead

to wrong identification of the faulty sensor. Thus, only the measurements that are

most consistent with the PCA model are used in [Wise and Ricker, 1991] as the

inputs to the neural network.
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Noise analysis in the frequency domain has also been used for the detection of

sensor faults. Such methods extract the low-pass filtering characteristics exhibited

by most process plants and closed-loop systems, which allows the noise power at

higher frequency bands to be used for fault detection [Ying and Joseph, 2000]. After

the power spectra of the sensor measurements at different frequency bands are calcu-

lated, they are then compared with the pattern established under normal operations

for the identification of a faulty sensor. Noise analysis is able to isolate the effects of

measurement noise and process disturbances from those caused by the fault within

the sensor itself. In [Luo et al., 1998], an approach for sensor validation that inte-

grated the non-parametric empirical modeling and statistical analysis was proposed.

Represented in wavelets, the sensor signal was decomposed into different frequency

bands, among which specific features were calculated and used for the diagnosis of

faulty operation. This work was then extended in [Luo et al., 1999] to dynamic pro-

cesses by taking into account a window of the sensor data and then applying PCA

decomposition to the matrix formed by them. The approach proposed in [Ying and

Joseph, 2000] used PCA to reduce the space of secondary variables derived from the

power spectrum.

The use of PLS methods for sensor fault detection was originated in [Wise et al.,

1989]. It was shown that the PLS monitoring scheme was more sensitive to sen-

sor failures than the PCA method. To address the issue of multiple sensor faults,

an algorithm based on a hypothesis testing procedure, in which the ratio of the

variances of PLS regression residuals to their means was employed as the index for

sensor validation, was proposed in [Negiz and Cinar, 1992]. However, this method

is only applicable when there is no significant correlation among the residuals of

each variable. An alternative approach, proposed in [Negiz and Cinar, 1997], used a
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state-space modeling paradigm based on canonical variable analysis to incorporate

the dynamic process information so that the generated residuals were independent.

Bayesian networks A Bayesian network, also known as a Bayesian belief network,

is a directed acyclic graph that represents a set of random variables and their prob-

abilistic dependencies. Each node in the network represents a prepositional variable

that has a finite set of mutually exclusive states, while each directed arc between

two nodes denotes their causal relationship. Each child node is associated with a

conditional probability given the state of its parent node, and each root node is

associated with a priori probability. The probability distribution in a Bayesian net-

work updates following probabilistic inference procedures when new observations,

referred as evidence, are available. An example of the Bayesian network is illus-

trated in Figure 2.5. The Bayesian network, G = (V,E), is composed of the nodes

X = (Xv)v∈V , V = (1, 2, 3, 4, 5) representing the set of random variables, and the

directed links E = {(X1, X3), (X1, X4), (X2, X4), (X4, X5)} describing the causal

relationships among the variables. Given the a priori probabilities associated with

the root variables X1, X2, and the conditional probabilities associated with each di-

rected link as defined in E, the probability of any joint distribution can be calculated

using the chain rule as

P (X1 = x1, . . . , Xn = xn) =
n∏

v=1

P (Xv = xv|Xv+1 = xv+1, . . . , Xn = xn) (2.2)

As stated in [Neapolitan, 1990; Pearl, 1998], the Bayesian network is the most

complete and consistent framework for processing uncertain knowledge, thus provid-

ing a better approach than the traditional knowledge-based inferential mechanism.

First applied in steady-state operations, Bayesian networks were employed for the

detection and identification of emerging sensor faults [Rojas-Guzman and Kramer,
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X1

X2

X3 X4

X5

P(X1 = T) P(X1 = F)

0.8 0.2
P(X2 = T) P(X2 = F)

0.02 0.98

P(X3 = T|X1)

0.9 0.1

P(X3 = F|X1)X1

T

F 0.01 0.99

P(X4 = T|X1, X2)

0.9 0.1

X1

T

T 0.2 0.8

P(X4 = F|X1, X2)X2

T

F

F

F

T

F

0.9 0.1

0.01 0.99

P(X5 = T|X4)

0.7 0.3

P(X5 = F|X4)X5

T

F 0.1 0.9

Figure 2.5: Bayesian network example

1993; Ibarguengoytia et al., 2001, 2006; Mehranbod et al., 2003; Mengshoel et al.,

2008; Krishnamoorthy, 2010].

The work in [Nicholson and Brady, 1994] was the first attempt to apply dynamic

Bayesian networks for the detection and identification of sensor faults, in which sen-

sor observations of discrete events were taken as evidences to the network. Due to

the importance of sensor validation during process transitions, methods proposed in

[Nicholson and Brady, 1994; Aradhye, 2002; Mehranbod et al., 2005] used dynamic

Bayesian networks that were capable of capturing the probabilistic distribution in a

changing process. Given the sensor measurements under normal operations, a model

that represents the probabilistic relations among measured variables can be estab-

lished using the Bayesian network learning algorithm. The developed model can
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then be used to estimate the expected values of the measured variables via prob-

abilistic propagation. As a result, a sensor whose measurements depict significant

inconsistency with the estimated values is detected as faulty.

Due to the propagation of a sensor fault in the network, the estimated values of

one sensor may be different from its measurements because they are calculated using

the readings of another faulty sensor, which is defined as an apparent fault in [Ibar-

guengoytia et al., 2001]. In order to distinguish between a real sensor fault and an

apparent one, a constraint management method based on the Markov blanket the-

ory was proposed. As an extension to the work in [Ibarguengoytia et al., 2001], the

methodology proposed in [Ibarguengoytia et al., 2006] used two Bayesian networks,

one identifying a list of sensors with potential faults and the other one isolating the

real and apparent sensor faults. In addition, entropy-based selection scheme was de-

veloped to determine the sequence of sensors for validation so that sensors with more

reliable information are validated first. However, since the network constructed can

not handle temporal elements explicitly, separate networks may need to be estab-

lished for different phases of the process and problems in modeling a time-dependent

system may arise.

As illustrated in Figure 2.6, various single-sensor models, used as the building

blocks for the development of a Bayesian network for the monitored process, have

been proposed in literature. Each associated with discrete states, the four nodes

in Model I [Rojas-Guzman and Kramer, 1993] are linked in the following algebraic

equation.

Ra = Xa +Ba +Na (2.3)

where Xa and Ra denote the real and measured values of the variable a, while Ba

and Na denote the bias and noise associated with the measured value Xa. When a
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bias or noise fault occurs in the sensor, the state probabilities at its nodes Ba and

Na deviate significantly from their nominal values.

Xa Ba

Ra

Na Xa Ra Sa

Xa Ra Ba(a)

(b)

(c)

Figure 2.6: Single-sensor Bayesian network models proposed in literature: (a) Model I [Rojas-
Guzman and Kramer, 1993], (b) Model II [Aradhye, 2002], and (c) Model III [Mehran-
bod et al., 2003]

In Model II, a new node Sa is created to denote the status of a sensor. As stated

in [Aradhye, 2002], node Sa was associated with four discrete states: normal, biased,

noisy, completed failed. Without a mathematical model, functions are selected for

the three faulty states to update the probability distribution at node Sa based on

their effects. Thus, by tracking the probability at node Sa, sensor validation can be

accomplished. However, the one-to-one mapping between causes and effects makes

Model II impractical [Mehranbod et al., 2003, 2005]. In Model III, the three nodes

are related as

Ra = Xa +Ba (2.4)

In the form of Model III, the single-sensor models in [Mehranbod et al., 2003] are

connected at node Xa based on their cause-effect relations for modeling a steady

process monitored with multiple sensors. The detection of a sensor fault is accom-

plished by tracking the state probability at node Ba, while the isolation of a bias,

drift, and noise fault in the sensor is achieved by analyzing the patterns in their

changes over time. In addition, the issue of selecting appropriate design parameters

in the Bayesian network for the application of sensor validation was also addressed

in [Mehranbod et al., 2003]. This work was further extended to transient operations
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in [Mehranbod et al., 2005] by introducing adaptable nodes into Model III.

artificial neural networks Given sufficient historical process data, an Artificial

Neural Network (ANN) is able to learn the relations among the measured variables.

In the past few decades, neural networks have been employed in system modeling

as well as fault detection and isolation in various applications. The application of

back-propagation neural networks for online sensor validation in fault-tolerant flight

control systems was investigated in [Napolitano et al., 1998; Campa et al., 2002].

Known for the learning speed, the probabilistic neural networks were also applied

to the detection and isolation of sensor faults in [Mathioudakis and Romessis, 2004;

Romesis and Mathioudakis, 2003], even in the presence of system failures. In addi-

tion, the cerebellar model articulation controller, one type of neural network based on

a model of the mammalian cerebellum, was employed in [Yang et al., 1996] to detect

and compensate for failures in capacitance and thermal sensors, thus improving its

modeling accuracy of machine tools. Moreover, the neural network proposed in [Yen

and Feng, 2000] was developed for the online estimation of critical variables based

on the divide and conquer strategy and the winner-take-all rule. A growing fuzzy

clustering algorithm was employed to divide a complicated problem into a set of sim-

ple sub-problems and then an expert was assigned to each sub-problem locally. By

integrating information in the frequency domain, the residuals between the measure-

ments and the values that were estimated from the winner-take-all-expert network

were used to generate indicators of sensor faults. This method was further extended

in [Bernieri et al., 1995] to detect and isolate multiple faults in an automatic mea-

surement systems for the induction motor by developing an algorithm to determine

proper thresholds for the output winners. Furthermore, a method was developed
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in [Betta et al., 1995, 1996, 1998] to integrate the advantages of neural networks

and knowledge based expert systems. The architecture of the neural networks were

determined based on the knowledge-based redundancies, while their architecture pa-

rameters were optimized using the genetic algorithm. This method demonstrated

desirable accuracy and selectivity in fault detection and isolation during steady op-

erations, but it is not applicable to systems under transient conditions due to its

insufficient modeling capability. In order to improve its diagnostic performance in

dynamic systems, a hybrid solution that integrated neural networks and redundancy

rules was presented in [Capriglione et al., 2002].

Methods that involve multiple neural networks have also been proposed in the

literature for the detection and isolation of instrument faults. In [Guo and Nurre,

1991], a method using two neural networks was developed, in which one was used to

identify the faulty sensor with inconsistent measurements and the other one was used

to recover their values. Another method in [Brownell, 1992] developed four neural

networks to accomplish (1) signal validation and identification of redundant relations

among measured variables, (2) estimation of measured variables based on the identi-

fied redundancies, (3) detection and isolation of sensor faults, and (4) estimation of

unobserved control parameters. Neural network techniques were also implemented

in [Perla et al., 2004] following the generalized observer scheme [Frank, 1987] to val-

idate sensor measurements in a dynamic system with time delays. Furthermore, a

systematic methodology that combined the advantages of artificial intelligence and

statistical analysis was developed in [Alag et al., 2001] to address the issues of sensor

validation in the presence of multiple faulty sensors or system malfunctions. Based

on direct measurements from the sensors, the proposed method was developed to

accomplish four tasks including redundancy creation, state prediction, sensor mea-
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surement validation and fusion, and fault detection via residual change detection.

2.3 Research Challenges

Despite these existing research efforts, the detection, isolation, and compensation

of the instrument faults in a dynamic system remains a challenging problem. In

the application of the automotive engine, for instance, the demands for higher fuel

efficiency and reduced emissions has driven the development of advanced powertrain

technologies such as the turbocharger and the dual-cam variable valve-train. The

introduction of additional components into the conventional engine enables the ex-

ploitation of advanced combustion strategies, which also raises the need for additional

sensing elements such as the ethanol sensor in flex-fuel vehicles for the development

of dedicated controls. In the mean time, the use of additional sensors also introduces

system complexity, and thus raises challenges in diagnosis.

Due to the cost constraints in most applications, the use of a hardware redun-

dancy approach is limited. Moreover, despite accumulated system knowledge, the

additional components and sensing elements introduce uncertainties into the system.

Thus, significant efforts are required to augment the existing model-based diagnos-

tic system or knowledge-based expert system. With advances in measurement and

simulation technologies, the data-driven approach has demonstrated promising po-

tentials in various domains including modeling, optimization, controls, and diagno-

sis. However, due to the lack of a thorough understanding of the target system,

such an approach could encounter challenges in the identification and compensa-

tion of faults. Furthermore, the requirements of real-time system monitoring, such

as the On-Board Diagnosis (OBD) requirements in automotive applications, raises

additional challenges due to the constraints of online memory and computation ca-
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pabilities. Therefore, approaches that could integrate the existing first-principle

knowledge into the data-driven approaches are necessary to deal with the detection,

isolation, and compensation of instrument faults in a dynamic system with increasing

complexity.

The goal of the proposed research is to explore methods that can accomplish quan-

titative assessment of sensor performance in a sensor network and compensation of

the effects of its degradation on system control and diagnosis. Without the use of

duplicate sensing hardware, the method aims to utilize the embedded analytical re-

dundancies for the detection and isolation of faulty sensors, even in the presence of

failures in the monitored system. With a quantitative assessment of the performance

of each sensor within the network, the measurements of a faulty sensor can be re-

constructed and its effects on the controller as well as other measured variables can

be compensated, thus improving the reliability of the target system.

In order to accomplish an independent and quantitative assessment of the per-

formance within a sensor network and its monitored system, research is needed to

overcome the following challenges:

• Identify the underlying analytical redundancies in the target system using sensor

measurements and control signals observed during regular operations rather

than using special inputs

• Isolate the intertwined dynamics of the sensor(s) and the monitored system,

• Eliminate the influences of a fault in one sensor on other sensors

• Isolate of the effects of a fault in the sensor network and one in the monitored

system on the collected measurements.



CHAPTER III

Sensor Fault Detection and Isolation in Linear Systems

3.1 Introduction

In this chapter, a subspace model identification based approach is proposed to

identify and track the various dynamic components in a linear system. As the sensor

measurements depict compound behaviors, the model identified using the control

signals and sensor readings should capture the dynamics of the monitored system

and the sensor itself. Inspired by the fact that the dynamics of the sensor is much

faster than that of the monitored system, this approach is employed to detect, isolate,

and compensate for the incipient sensor failures without the need for any redundant

sensor or special input signals. In this work, the time constant and the DC gain are

identified as the key performance indicators because they characterize the dynamic

and steady-state response of a system. The proposed approach extracts and tracks

the dominant time constant and gain of the monitored system and the sensor, thus

enabling quantitative assessment of the incipient failure.

The reminder of this chapter is organized as follows. In Section 3.2, an approach

that can identify the slow and fast dynamics in a linear system and track the asso-

ciated DC gains is presented to detect and isolate the performance degradation in

the monitored plant and that in the sensor. Once the source of the degradation is

37
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identified, the proposed approach compensates the incipient failure in the sensor. In

order to evaluate the performance of the proposed approach, a simulation model is

developed in Section 3.3 for the automotive electronic throttle system with an angu-

lar sensor. The proposed approach has been shown to be effective in detecting and

isolating the degradation of the throttle position sensor from that of the electronic

throttle system.

3.2 Methods

3.2.1 Problem Statement

The problem of sensor performance assessment considered in this chapter is based

on the system structure shown in Figure 3.1, where sensor readings contain the

dynamics of the monitored system and the sensor itself, as well as the influence

of process disturbances, wp(t), and measurement noise, wn(t). Sensor performance

will be assessed using the observed control signal uc(t) and measured output signal

ym(t) without the use of redundant sensors. The method for detection, isolation, and

compensation of sensor degradation is developed based on the following assumptions.

(i). There is no nonlinearity involved in the compound system that is composed of

a monitored system and a sensor monitoring the system output.

(ii). The dynamics of the sensor is much faster than that of the monitored system.

This assumption is not very restrictive because the dynamics of the sensor should

be at least 5-10 times faster than that of the monitored system so that the

dynamics of the monitored system can be captured.

(iii). The process disturbances wp(t) and measurement noise wn(t) are wide-sense

stationary processes.
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It should also be noted that the process disturbances wp(t) and the measurement

noise wn(t) are assumed to enter the target system at different locations. The process

disturbances wp(t) enters the system between the monitored plant and the sensor,

while the measurement noise wn(t) enters after the sensor. This assumption is critical

for the isolation of the gain factors in the monitored plant and sensor, which is

described in more details in the remainder of this section.

Monitored 

System
Sensor

++ +

Control 

Signal uc(t)

Process 

Disturbances wp(t)

Measurement 

Noise wn(t)

Measured 

Signal ym(t)

+

Figure 3.1: Structure of the compound system

Since the compound system in Figure 3.1 is linear and causal, the measured signals

ym can be described in terms of the available input signals uc and the unknown

process disturbances wp and measurement noise wn in the following relation.

Ym(s) = Gp(s)Gs(s)Uc(s) +Gs(s)Wp(s) +Wn(s) (3.1)

where Gp(s) and Gs(s) describe the dynamics of the monitored system and the

sensor, respectively. In this thesis, Gp(s) and Gs(s) are represented in the following

pole-zero-gain form

Gp(s) = kp
Np(s)

Dp(s)
(3.2)

= kp
(s+ zp1)(s+ zp2) . . . (s+ zpnp)

(s+ pp1)(s+ pp2) . . . (s+ ppmp)
, np < mp

Gs(s) = ks
Ns(s)

Ds(s)

= ks
(s+ zs1)(s+ zs2) . . . (s+ zsns)

(s+ ps1)(s+ ps2) . . . (s+ psms)
, ns < ms

where kp, Np, and Dp are the gain, numerator, and denominator of Gp, while ks,

Ns, and Ds are those of Gs. In order to describe the dynamics of a high-order
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linear time-invariant (LTI) system, each pole of the system transfer function will

be associated with a time constant which is defined as the inverse of the distance

between the location of the corresponding pole and the imaginary axis in the complex

plane. In the remainder of this chapter, we use τp and τs to denote the time constants

associated with the poles of Gp and Gs, respectively.

The time constants and gains of the sensor indicate its response speed and mag-

nification capability with respect to the measured variable. Degraded sensor mea-

surements can be caused by changes in its associated time constant or gain factor.

Similarly, according to (3.2), the performance of a monitored system can also be

described in terms of its gain and time constants. Thus, to identify the degrading

sensor and distinguish its degradation from that in the monitored system, the gains

and time constants of the sensor and the monitored system should be identified and

tracked simultaneously.

3.2.2 Subspace Identification Algorithms

During the last two decades, subspace identification algorithms have attracted

significant interest in control community because they can deal with multiple-input

multiple-output (MIMO) system identification in a straightforward way [Van Over-

schee and De Moor, 1996; Verhaegen and Dewilde, 1992; Viberg, 1995]. Unlike

classical approaches, such as the prediction error methods (PEM), subspace model

identification (SMI) approaches obtain the Kalman filter states of a dynamic system

directly from the input-output data using numerical linear algebra methods such as

QR factorization and singular value decomposition (SVD). In this way, SMI methods

avoid those iterative and nonlinear optimization procedures used in classical iden-

tification approaches, which not only makes them faster in computation but also

intrinsically robust from a numerical point of view. Moreover, in SMI methods, the
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order of the model is the only user-specified parameter, which can be determined by

the inspection of the dominant singular values of a matrix that is calculated during

the identification.

In the subspace identification context, the mathematical model of the unknown

system is assumed to be given by an nth order causal linear time-invariant (LTI)

state-space model:

x(t+ 1) = Ax(t) +Bu(t) + w(t) (3.3)

y(t) = Cx(t) +Du(t) + v(t)

subjected to zero-mean, white noise processes w ∈ Rn and v ∈ Rl, with covariance

matrix

E







w(i)

v(i)



(
wT (j) vT (j)

)

 =




Q S

ST R


 δij (3.4)

where sufficient measurements of the input u ∈ Rm and the output y ∈ Rl are given.

Derived from the linear system (3.3), the input-output algebraic equation that leads

to the main theorem in SMI methods can be expressed as:

Y = ΓrX +HrU + ΣrW + V (3.5)

where Y ∈ Rrl×N is the output data matrix which can be constructed by the Hankel

matrix using (N + r − 1) past and current data as

Y =

[
Yr(t), Yr(t+ 1), . . . , Yr(t+N − 1)

]

where

Yr(j) =

[
yT (j), yT (j + 1), . . . , yT (j + r − 1)

]T

X ∈ Rn×N is the matrix constructed by the system states x ∈ Rn, while U ∈ Rrm×N ,

W ∈ Rrn×N and V ∈ Rrl×N are constructed similarly to Y, by arranging properly N
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(column) vectors of the input u, system noise w, and observation noise v, respectively.

Matrix Γr ∈ Rrl×n is the extended observability matrix, and Hr ∈ Rrl×rm, Σr ∈

Rrl×rn are lower block triangular matrices consisting of system matrices (for detail

structures, see e.g. [Ljung, 1999; Verhaegen and Dewilde, 1992]).

The key problem dealt with by the subspace identification algorithms is the con-

sistent estimation of the column space of the extended observability matrix Γr from

the input-output data, where Γr is defined as

Γr =

[
CT (CA)T · · · (CAr−1)T

]T
(3.6)

Indeed, if the column space of Γr is known, then matrices A and C can be determined

(up to a similarity transformation) in a straightforward way by exploiting the shift

invariance of the column space of Γr. If Â and Ĉ are known, B, D and x0 can be

estimated by solving the linear regression problem:

arg min
B,D,x0

1

N

N∑

t=1

‖y(t)− Ĉ(qI − Â)−1Bu(t)−Du(t)− Ĉ(qI − Â)−1x0δ(t)‖2

where q is the time-shift operator, and I is the identity matrix.

As proved in [Ljung, 1999], under the assumptions that the input u is persistent

and uncorrelated with the process noise w and measurement noise v,

Or =
1

N
YΠ⊥UΦT (3.7)

converges to the true Γr (up to a similarity transformation) as the number of measure-

ments N goes to infinity. Π⊥U in Or performs projection, orthogonal to the matrix U,

thus removing the U-term in Y. To further remove the noise term in Y, Φ ∈ Rs×N is

constructed by arranging N vectors of φs ∈ Rs in various forms, among which a typi-

cal choice would be φs(t) =

[
yT (t− 1) . . . yT (t− s1) uT (t− 1) . . . uT (t− s2)

]T
.
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Rather than being performed directly on Or, the singular value decomposition is then

applied as

W1OrW2 =

(
U1 U2

)



S1 0

0 0







V T
1

V T
2


 = U1S1V

T
1 (3.8)

for more flexibility, where W1 ∈ Rrl×rl and W2 ∈ R(ls1+ms2)×α are the weighting

matrices. Existing algorithms such as MOESP, N4SID, and CVA employ different

choices of W1 and W2. Discussions on these effects can be found in [Bauer et al.,

2001; Bauer and Ljung, 2002].

Directly from (3.8), the N4SID algorithm developed in [Van Overschee and De Moor,

1994] is employed in this chapter to determine the order of the system as the number

of non-zero singular values in S1, while the extended observability matrix is esti-

mated as Γr = U1(S1)1/2. However, when the signal-to-noise ratio (SNR) in the

measurements is small, N4SID algorithms would not be able to provide an accurate

estimation of the system order because the separation between the signal and noise

singular values in S1 tends to vanish [Bittanti et al., 1997, 2000]. To achieve high

accuracy in pole identification, wavelet denoising [Donoho, 1995; Donoho and John-

stone, 1994; Donoho et al., 1995] techniques could be employed to pre-process the

noisy measurements.

If we define Ŷ as the k -step ahead predictors, then it follows from (3.5) that

Ŷ = ΓrX̂, where X̂ is made up from the predicted Kalman-filter states x̂(t|t − 1)

which is the best estimate of x(t) based on past input-output data. Thus, the state

sequence X̂ can be obtained as X̂ = Γ†rŶ, where the symbol † indicates the operation

of pseudo-inverse [Strang, 1998]. With the states x̂(t) given, we can estimate the
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process and measurement noise as

w(t) = x̂(t+ 1)− Âx̂(t)− B̂u(t) (3.9)

v(t) = y(t)− Ĉx̂(t)− D̂u(t)

and matrices S, R, and Q in (3.4) can be estimated in a straightforward fashion.

Given Â, Ĉ, Ŝ, R̂, and Q̂, the Kalman gain K could then be computed from the

Riccati equation.

3.2.3 Detection and Isolation of an Incipient Sensor Failure

Using the N4SID algorithm, the compound system in Figure 3.1 with model struc-

ture (3.3) is identified as

x̂(t+ 1) = Âx̂(t) + B̂uc(t) + K̂e(t) (3.10)

ym(t) = Ĉx̂(t) + D̂uc(t) + e(t)

where the residuals e are white noise with zero-mean, if the model is properly fitted1

[Ljung, 1999]. This state-space model can be transformed into a transfer matrix as

Ym(q) =
[
Ĉ(qI − Â)−1B + D̂

]
Uc(q) + Ĉ(qI − Â)−1K̂E(q) + E(q) (3.11)

By comparing (3.1) and (3.2) with (3.11), it follows that Ĉ(qI − Â)−1B̂ and Ĉ(qI −

Â)−1K̂ identify Gp(s)Gs(s) and Gs(s) in the discrete domain, respectively. Tracking

of the poles of Ĉ(qI − Â)−1B̂ readily yields the time constants of the monitored

system and sensor. Due to the presence of gradual degradation, the system in (3.10)

slowly varies with time. Originally developed for time-invariant systems, the N4SID

algorithm can be applied for time-varying systems if the input-output algebraic rela-

tions in (3.5) change slowly [Verhaegen and Deprettere, 1991; Ohsumi and Kawano,

1In the reminder of this chapter, we assume the model is properly fitted
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2002]. Assuming a gradual degradation in (3.1), the use of a fixed-length moving

window in this work enables the N4SID algorithm to track the change of system dy-

namics. The selection of a small moving window enables fast detection of a change

in the target system, but makes the parameter estimation more sensitive to system

noise and introduces higher computational requirements.

Within each of these windows, a state-space model in the form of (3.10) is esti-

mated. The matrices of a model identified in the ith window are denoted as Âi, B̂i,

Ĉi, D̂i, and K̂i. In this way, the dynamics of the system can be continuously moni-

tored with all its associated time constants identified. Then, based on the assumption

that the sensor should have much faster dynamics than the monitored system, the

time constants associated with the monitored system are expected to be much larger

than those of the sensor. Therefore, the changes in the dynamics of the monitored

system and those of the sensor can be isolated. Moreover, from Ĉ(qI − Â)−1B̂, the

term kpks can be estimated in the product form. With Ĉ(qI − Â)−1K̂ expressed in

the form of k̂k
Nk(q)
Dk(q)

, it follows from (3.1) and (3.2) that in the ith window

k̂ik · std(ei) = kis · std(wip) (3.12)

where std(·) denotes the standard deviation of a probability distribution. Then, ks

can be continuously estimated as

kis = k̂ik
std(ei)

std(wip)
(3.13)

Although the statistical properties of the process disturbance are unknown, the

changes of the sensor gain can be detected and isolated using the wide-sense sta-

tionarity of wp through normalization of the sensor gain kis. The normalized sensor

gain (kis)
n in the ith window, can be estimated as

(kis)
n =

kis
k0
s

=
k̂ik

k̂0
k

· std(ei)

std(e0)
·
std(w0

p)

std(wip)
=
k̂ik

k̂0
k

· std(ei)

std(e0)
(3.14)
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where the 0th window is considered as the reference2 window for normalization. Sub-

sequently, the normalized gain of the monitored system (kip)
n can be obtained in a

straightforward way. The identification and isolation of gain changes in the sensor

and monitored plant are summarized in Figure 3.2.

Figure 3.2: Summary of equations to identify gain changes in sensors and monitored plant

Based on this method summarized in Figure 3.3, a sensor with a changed response

and/or deteriorated magnification capability can be detected and isolated.

3.2.4 Compensation for an Incipient Sensor Failure

The identified models for the monitored system and the sensor can be utilized to

temporarily reconstruct the measurements of the degrading sensor before the sensor

is replaced or repaired. This could improve accuracy of the collected information

despite the presence of sensor degradation. Once significant changes in any key

performance indicator of the sensor are detected, its readings should be corrected

correspondingly to compensate for the adverse effect of the degrading parameter,

before the sensor readings are used for system performance diagnosis and control.
2The reference window should be a window we know the sensor is behaving normally.
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Fit a proper model to the data within the 

moving window using the subspace model 

based system identification method

x(t+Ts) = A(t)x(t)+B(t)y(t)+Ke(t)

y(t) = C(t)x(t)+D(t)y(t)+e(t)

Degrading 

Monitored System

Changes in slow 

dynamics?

Degrading Sensor

Changes in fast 

dynamics?

Identify its poles and distinguish those 

related with the slow and fast dynamics

Myu(z) = Y(z)/U(z) = C(zI-A)
-1
B+D Mye(z) = Y(z)/E(z) = C(szI-A)

-1
K

Calculate the normalized sensor gain (ks)
n 

using residuals filtered by Mye(z)

Obtain the normalized gain (kskp)
n)
in a 

product form by factorizing Myu(z)

Calculate the normalized gain of the 

monitored plant (kp)
n

(kp)
n
 Changes?(ks)

n
 Changes?

Tracking of 

Dynamics

Tracking of 

Gain Factors

Figure 3.3: Flow chart of the procedures to detect and isolate an incipient sensor failure

As shown in Figure 3.4, if the gain of the sensor decreases, its readings should

be inversely magnified with its normalized gain (kis)
n within each time window so

that the adverse effects caused by the magnification capability deterioration can be

compensated. On the other hand, if the dynamics of the sensor changes, its readings

should be reconstructed with a properly constructed filter ds(q)
dnoms (q)

, where ds(q) and

dnoms (q) denote the degraded and nominal dynamics in the sensor, respectively.

The level of normalized gain or time constant changes at which sensor degradation

is considered significant enough, can be selected either in an ad hoc way or through

more systematic threshold decision schemes, such as those used in Statistical Process

Control (SPC) [Norton, 2005; Weaver and Richardson, 2006].
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Figure 3.4: Reconstruction scheme for an incipient sensor failure

3.3 Case Study

3.3.1 Electronic Throttle Model

In modern vehicles, an electronic throttle realizes the link between the driver gas

pedal and throttle plate with a DC servomotor, which enables the engine control unit

to set optimal throttle position reference values for various engine operation modes.

In this way, an electronic throttle not only improves drivability, fuel economy, and

emissions, but also provides the implementation of engine-based vehicle dynamics

control system including traction control [Huber et al., 1991]. The electronic throttle

consists of a servo-motor throttle body, a Throttle Position Sensor (TPS), and a

position control strategy.

To provide a basis for the development of health monitoring strategies, the dy-

namic system model, illustrated in Figure 3.5, is presented in [Conatser et al., 2004]

to describe the behavior of an electronic throttle body. Based on this model and

after neglecting the small torque caused by the airflow through the throttle plate,

a linear process model with its nomenclature listed in Table 3.1 is developed in the
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state-space model form
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uc, (3.15)

and

y = x1 (3.16)

with the system state and input vectors defined as x =

[
θ θ̇ ia

]T
, uc = ea, and

θ = θt + θ0, and parameters J = N2Jm + Jg and Kf = N2bm + bt.

exist to apply model-based strategies which incorpo-
rate mathematical models for the physical system
(Gertler, 1988). The model-based methods continually
compare measured values of the system inputs/outputs
to the respective modeled values to determine whether
the system is functioning properly. Model-based meth-
ods may detect faults in a more reliable manner via
microprocessor-based algorithms rather than redundant
sensors (Isermann, 1981). If a fault is detected, then the
anomaly must be isolated to permit responsive mea-
sures. In this research, a diagnostic system will be
designed to detect and isolate failures in an electronic
throttle control system.

The paper is organized as follows. A behavioral
model is presented for the electronic throttle control
system in Section 2. System health monitoring strategies
are introduced and discussed in Section 3 with the
design of parity detection and parametric isolation
methodologies. In Section 4, representative numerical
results are presented which demonstrate the detection
and isolation of a suite of ETC failures. Finally, the
summary is presented in Section 5.

2. Electronic throttle control system model

A prototype servo-motor throttle body, as shown
in Fig. 3, was selected to derive the behavioral
model (Eriksson & Nielsen, 2000) for the system
health monitoring strategies. The electro-mechanical
dynamic system model, shown in Fig. 4, describes
the normal ‘‘no failure’’ ETC hardware opera-
tion (Conatser & Wagner, 2000). The ETC system
uses a torque motor to rotate the throttle plate
between 0oyop=2 radians (i.e., closed to wide-
open-throttle). The servo-motor is controlled by
the applied armature voltage, ea: The governing

differential equation for the armature current, ia;
becomes

dia

dt
¼

1

La

� �
�Raia � Kb

dym

dt
þ ea

� �
; ð1Þ

where Ra and La represent the armature resistance and
inductance, respectively. The back emf due to the motor
rotation is Kb dym=dt

� �
: The motor and throttle body’s
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Fig. 3. Prototype of an electronic throttle control system.
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Figure 3.5: Mechatronic system diagram for throttle-by-wire system [Conatser et al., 2004]

Table 3.1: Nomenclature for the electronic throttle system
Symbol Description Symbol Description

bm motor damping constant bt throttle damping constant
ea motor voltage ia armature current
Jg throttle moment of inertia Jm motor inertia
J equivalent moment of inertia Kb back emf constant
Ksp throttle spring constant Kt motor torque constant
La armature inductance N gear ratio
Ra armature resistance Ta torque due to airflow
Tg torque transmitted from gears TL load torque
Tm torque applied by motor Tsp torque due to return spring
θ throttle plate angular position θ0 pre-tension angle of spring
θm armature angular position θang measured throttle angle position
τTPS time constant of a TPS kTPS voltage constant of a TPS

Taken as the feedback signal, the position of the throttle plate is then measured

by TPS. Inside the TPS is a variable resistor with its wiper arm connected to the
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throttle plate. As the wiper arm moves along the resistor, its output voltage changes

accordingly, thus indicating the position of the throttle plate. Due to existence of

magnetic permeability in materials, inductance is also present in the resistor. Thus,

the dynamics of the TPS can be modeled as a first-order system with a small time

constant.

In (3.15), linear models are utilized for the transmission friction and dual return

spring, which significantly simplifies the process model. For the development of a

control strategy including compensation of dynamic friction and dual return spring

nonlinearities at the limp-home position, a more complex model has been developed

in [Scattolini et al., 1997].

3.3.2 Detection and Isolation of an Incipient Sensor Failure

A Matlab/Simulink3 simulation with the set of parameters used in Conatser et al.

[2004] has been created and run for t = 50.0s using a time-step of ∆t = 1.0× 10−4s.

A set of failures, as listed in Table 3.2, are introduced to explore the detection and

isolation capability of the method developed above. These failures are introduced

by gradually increasing (↗) or decreasing (↘) the corresponding model parameters,

starting at time moment t = 25.0s in the simulation. Fault 1 and Fault 2 are incipient

TPS failure caused by an increase of time constant, τTPS, and a decrease of gain,

kTPS, while Fault 3 and Fault 4 are Electronic Throttle (ET) system failure caused

by an increase of motor torque constant, Kt, and back emf constant, Kb.

Table 3.2: Faults, parameter changes, and fault decision table
Parameter values

No. Parameter Magnitude (%) τ̂TPS k̂
(n)
TPS k̂

(n)
ET â1 â2 â3

1 τTPS 50 (↗) ↗ – – – – –
2 kTPS 40 (↘) – ↘ – – – –
3 Kt 40 (↘) – – ↘ – ↘ –
4 Kb 40 (↘) – – – – ↘ –

3Registered trademarks of The MathWorks, Natick, MA, 2002.
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In this work, thresholds are established in a straightforward fashion as the 3σ

limits using standard SPC techniques [Norton, 2005]. Under nominal conditions,

the estimated time constants and normalized gains associated with the TPS and

ET system are illustrated in Figure 3.6. The time constants, τTPS and τET =

[ τET,1, τET,2, τET,3 ]T , identified in Figure 3.6(a) have different magnitudes of

10−4,10−3,10−2, and 100. Based on the prior knowledge that TPS has first-order

dynamics and its response should be at least 2-5 times faster than that of the ET

system, it can be concluded that the time constant of magnitude 10−4 is that of the

TPS. Due to the small sampling time, the estimation errors of the time constants are

magnified when the system poles identified in the discrete domain are transformed

into the continuous domain. Nevertheless, despite the occasional outliers, the esti-

mated time constants and gains in Figure 3.6 stay within the thresholds while the

system is fault-free.

The effects of Fault 1 and Fault 2 are shown in Figure 3.7 and Figure 3.8, respec-

tively. It can be seen that only parameters τ̂TPS and k̂TPS exceed their thresholds

showing the expected degradation pattern in Figure 3.7 and Figure 3.8, respectively.

Figure 3.9 and Figure 3.10 show the results from the simulation when Fault 3 and

Fault 4 occur in the ET system, respectively. Under both faults, some of the esti-

mated time constants of the ET system exceed the thresholds, while both the time

constant and gain of the TPS stay within the thresholds. Furthermore, Fault 3 and

Fault 4 can be differentiated since (k̂ET )n exceed the threshold under Fault 3, but

stays within the thresholds under Fault 4.

In fact, the compound system can also be expressed in the form of a transfer
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Figure 3.6: The time constants and normalized gains identified under nominal operations



53

0 5 10 15 20 25 30 35 40 45 50
2

3.5

5
x 10

-4

 T
P

S
 [s

ec
]

0 5 10 15 20 25 30 35 40 45 50
1.4

1.6

1.8
x 10

-3

 E
T

,1
 [s

ec
]

0 5 10 15 20 25 30 35 40 45 50
0.034

0.038

0.042

 E
T

,2
 [s

ec
]

0 5 10 15 20 25 30 35 40 45 50

1

1.5

2

 E
T

,3
 [s

ec
]

time [sec]

(a) Time constants

0 5 10 15 20 25 30 35 40 45 50

0.6

0.8

1

1.2

1.4

k T
P

S

0 5 10 15 20 25 30 35 40 45 50

0.7

0.8

0.9

1

1.1

1.2

1.3

k E
T

time [sec]

(b) Normalized gain

Figure 3.7: The time constants and normalized gains identified under Fault 1
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Figure 3.8: The time constants and normalized gains identified under Fault 2
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Figure 3.9: The time constants and normalized gains identified under Fault 3
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Figure 3.10: The time constants and normalized gains identified under Fault 4
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function as

θang(s)

Wp(s)
=

kTPS
τTPS

s+ 1
τTPS

(3.17)

θang(s)

Uc(s)
=

θang(s)

Wp(s)
· kET
s3 + aET,1s2 + aET,2s+ aET,3

where

aET,1 =
(JRa +KfLa)

JLa

aET,2 =
KfRa +N2KbKt +KspLa

JLa

aET,3 =
KspRa

JLa

with the estimated model coefficients of the ET system, that is parameters âET,1,

âET,2, and âET,3 illustrated in Figure 3.11(a) and Figure 3.11(b). As indicated in

(3.17), since Kt is involved both in the gain kET and in the coefficient aET,2, the

decrease of Kt causes the decrease of (k̂ET )n in Figure 3.9(b) and the decrease of

âET,2 in Figure 3.11(a). On the other hand, Kb is only involved in the coefficient

aET,2, thus causing a decrease in âET,2 in Figure 3.11(b). Thus, with some prior

knowledge on the model structure of an ET system, one may be able to trace the

degradation down to specific physical parameters, which can further help to isolate

faults in the motor and those in the throttle body.

3.3.3 Compensation for an Incipient Sensor Failure

After significant degradation of the sensor has been detected using the method

described above, its adverse effects in the readings can be compensated in the way

illustrated in Figure 3.12. If the gain of TPS changes, the measurements can be

reconstructed by multiplying its readings with 1

(k̂TPS)n
. On the other hand, if the

dynamics in this first-order system deteriorates, the changing dynamics can be com-

pensated by filtering its readings with a filter τ̂TPS ·s+1
τ̂nomTPS ·s+1

where τ̂nomTPS denotes the mean
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Figure 3.11: The model coefficients identified under Fault 3 and Fault 4
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value of the sensor time constants identified under normal operation. In this way, the

deteriorated dynamics in the sensor is in fact replaced with the nominal one. Once

τ̂TPS or (k̂TPS)n identified in Figure 3.7(a) and Figure 3.8(b) exceed their control

limits, the sensor readings are considered no longer reliable and the reconstructed

measurements are taken instead as the feedback signals. As shown in Figure 3.12,

such reconstruction scheme is able to reduce the errors in the readings of a degraded

sensor, thus achieving improved accuracy despite the presence of degradation. In the

figure, the measurement errors of a degrading sensor with and without reconstruction

capability are denoted as ed and er, respectively. In fact, only the errors illustrated

in the red dotted line are obtained when reconstruction is implemented.

3.4 Summary

The method introduced in this chapter is able to identify the dynamics of the

compound system consisting of a sensor and a monitored system, as well as separate

the dynamics of the sensor from that of the monitored system. As a result, the

method is capable of detecting and quantifying sensor performance degradation in

the compound system without the use of redundant sensing equipment, where either

the plant or the sensor monitoring that plant could undergo degradation in their

dynamic properties. In addition, the method accomplishes identification of sensor

and plant dynamics using inputs observed during normal system operations, rather

than using special inputs. Consequently, such method is capable of assessing sensor

health as the system operates, rather than off-line. Furthermore, this method is

able to improve the accuracy of collected information despite the presence of sensor

degradation by directly compensating for the adverse effects of the degradation in

its readings.
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In terms of possible future work, sensor validation in nonlinear systems repre-

sents a natural extension of the work developed for linear systems in this chapter.

Furthermore, considerations of sensor dynamics identification and separation from

those of the monitored system, in the presence of multiple connected systems that

are monitored by many sensors is another possible future challenge.



CHAPTER IV

Input Selection for Nonlinear Dynamic System Modeling

4.1 Introduction

As more advanced functionalities are incorporated into single engineering applica-

tion for superior performance, an ever-increasing number of interconnected electro-

mechanical components are equipped, which results in a dramatic increase in the

complexity after nonlinearities are introduced. Since the conventional first-principle

modeling techniques require a thorough understanding of the target physical sys-

tem, they have become insufficient and even impossible to handle such complex and

highly nonlinear dynamic systems. Consequently, data-driven modeling techniques

have been employed during the past few decades in various applications. Despite

the differences in their underlying development concepts and mathematical theories,

the performance of these algorithms depends significantly on the selection of input

variables.

In order to properly select the input variables for a nonlinear dynamic system,

several approaches based on Principal Component Analysis (PCA) [Li et al., 2006;

Zhang, 2007] and mutual information [Battiti, 1994; Zheng and Billings, 1996] have

been developed and applied for pattern recognition and classification using artificial

neural networks. However, these classical, linear multi-variate statistical tools have

62
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been shown to be unreliable and insufficient for the input selection problem when

there exists high correlation among the candidate input variables and their relation

with the system outputs is highly nonlinear [Neter et al., 1996]. Moreover, the use

of PCA also hampers the link back to the physical variables of the system.

Another straightforward method to solve such a problem is to compare all possible

combinations of the candidate input variables using a predefined evaluation criterion.

Inspired by this idea, several methods such as hypothesis testing [Cubedo and Oller,

2002], forward selection, and backward elimination [Mao, 2004; Whitley et al., 2000]

have been developed to reduce its computational load and applied for input selection

in linear system modeling. Although they can be used to detect the model structure

of nonlinear polynomial models [Gaweda et al., 2001; Lin et al., 1996; Sugeno and

Yasukawa, 1993], which have or can be converted into linear-in-the-parameters struc-

tures, these algorithms are in fact performing term1 selection rather than variable

selection for the nonlinear relations [Mao and Billings, 1999].

This chapter presents an alternative solution to the problem of selecting the ap-

propriate input variables2. for nonlinear dynamic models by converting it into one of

a set of linear models. The proposed method integrates a linearization sub-region di-

vision procedure using the Growing Self-Organizing Network (GSON) together with

the all-possible-regression linear subset selection method. Compared with the con-

ventional input selection, genetic algorithm is employed to solve the combinatorial

optimization problem introduced by the all possible regression algorithm. In ad-

dition, a performance evaluation criterion is also proposed for the multiple model

1A term is defined here to be a composition of the input variables via nonlinear operations. For example, for a
nonlinear function y = a1x21 +a2cos(x2)+a3x1x2, x1 and x2 are considered as the input variables, while x21, cos(x2),
and x1x2 are the corresponding terms.

2In the reminder of this thesis, the input variables of a nonlinear dynamic system in fact include the regressors of
both system inputs u and outputs y. For example, in a two-input single-output nonlinear dynamic model y(t+ 1) =
cos(y(t)) + u1(t)eu2(t−1), S =

{
y(t), u1(t), u2(t− 1)

}
lists all the input variables to y(t+ 1).
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system based on the minimum description length principle [Rissanen, 1978; De Rid-

der et al., 2005]. Without requiring a great amount of prior knowledge of the target

system, this method can be applied for a wide range of nonlinear model forms such

as the nonlinear polynomial model and neural networks. As demonstrated with the

numerical simulation examples as well as a real-world system identification problem

with the diesel engine airflow system, this method can be used to automate the

modeling process and achieve models with desirable modeling accuracy as well as

generalization capability.

The remainder of the chapter is organized as follows. In Section 4.2, the method

for the selection of input variables in a nonlinear dynamic model is proposed. The

input selection problem is first stated and then the linearization sub-region partition

algorithm as well as the use of genetic algorithm is presented. In Section 4.3, the

effectiveness of this method is demonstrated via two numerical simulation examples

and the air path system of a diesel engine.

4.2 Method

4.2.1 Problem Statement

Consider a nonlinear dynamic system with p outputs and q inputs described by

yi(t) = fi(s) + ei(t), i = 1, . . . , p (4.1)

where si = [si,1, . . . , si,di ]
T is a di-dimension vector including the candidate input

variables, yi and ei denote the scalar output and white noise respectively. Based

on the assumption that the target system is causal, the candidate input variable si

can be either the regressor of the output yi(t− nyi), ∀yi ∈ [y1, . . . , yp]
T , nyi > 0 or

that of the system input uj(t − nuj), ∀uj ∈ [u1, . . . , uq]
T , nuj > 0. In this work,

the system outputs are defined as the key performance variable of the target system,
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while the system inputs are the available signals collected from the controller and

the sensors.

To develop the novel input selection method, consider a nonlinear dynamic model

(4.1) with the following assumptions

A1 The input variables si = [si,1, . . . , si,di ]
T are bounded in a di-dimensional com-

pact domain denoted by S

si = [si,1, . . . , si,di ]
T ∈ S, i = 1, . . . , p

A2 The system outputs y = [y1, . . . , yp]
T are bounded.

A3 The nonlinear dynamic model f = [f1, . . . , fp]
T is composed of smooth func-

tions.

Given an operating point s0 = [s0
1, . . . , s

0
d]
T

in the interior of the domain S,

assumption A3 ensures there exists the Taylor expansion of f(·) at point s0 as

f(s) = f(s0) +
∂f

∂s
(s0)(s− s0) +

1

2!
(s− s0)T

∂2f

∂2s
(s0)(s− s0) + . . . (4.2)

Then, within a small region {s : ‖s − s0‖ < ε} around s0, the nonlinear dynamic

system f(s) can be approximated with the first few terms of the Taylor series in (4.2)

with arbitrary accuracy as ε→ 0, which enables the linearization of f(s) at s0 in the

form

f̂L = bL + aTLs + ξ (4.3)

where bL = f(s0) − ∂f
∂s

(s0)s0, aTL = ∂f
∂s

(s0), and eL is the modeling error due to the

linearization.

After comparing the nonlinear dynamic system (4.1) and the linearized model

(4.3), it is not difficult to conclude that if any input variable ∀si,l ∈ [si,1, . . . , si,di ]
T
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is relevant to the output yi in the original nonlinear function fi, i = 1, . . . , p, it will

also make a significant contribution to the output in the linearized model [Mao and

Billings, 1999]. Furthermore, since the coefficients of the linearized model in (4.3)

are operating region dependent [Billings and Voon, 1987], the significance of input

variables is also operating region dependent. Therefore, the method proposed in

this chapter incorporates a linearization sub-region division algorithm to convert the

input selection problem of a nonlinear dynamic model into one of a set of linear

models.

4.2.2 Linearization Sub-Region Partition

The divide-and-conquer modeling paradigm solves a complicated problem by

breaking it down into multiple sub-problems that are simpler to solve, and the

global model is obtained by combining these local solutions using a proper inter-

polation function. Due to its capability of providing simple and efficient solutions

to difficult problems, this concept has been employed in the design of algorithms

for various engineering applications. In the field of system identification, the divide-

and-conquer concept has driven the development of effective modeling techniques,

such as Takagi-Sugeno fuzzy modeling [Babuska, 1998], piecewise linear modeling

[Billings and Voon, 1987], and the growing structure multiple model algorithm [Liu

et al., 2009a]. Instead of identifying a complex dynamic nonlinear system in a direct

manner, these methods first partition its operating region into multiple sub-regions

within each of which a simpler model is fitted, and then combine these local models

for the approximation of the global system behavior.

While too fine a partition may result in surplus sub-regions and cause the problem

of over-fitting, too coarse a partition may lead to poor approximation of the system

behavior using a linearized model in the sub-region with high nonlinearity. A simple
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and intuitive approach for sub-region division is to equally divide each candidate

input variable into proper value ranges so that desirable modeling accuracy in all

operating sub-regions can be guaranteed. This approach has been successfully ap-

plied for the piecewise linear identification of nonlinear systems [Mao and Billings,

1999]. Since the nonlinearity of a system is not necessarily evenly distributed over

its operating region, a clustering approach was used in [Billings and Voon, 1987]

to merge some of the evenly divided sub-regions based on a similarity based mea-

sure. The Takagi-Sugeno fuzzy model [Babuska, 1998], on the other hand, partitions

the operating region according to a number of implications based on pre-determined

premise variables. Each premise variable is then divided into different value ranges so

that a region with higher nonlinearity can be accordingly partitioned into more sub-

regions. However, it requires a lot of a priori knowledge of the physical system for

these methods to determine either a proper set of premise variables and implications

or appropriate value ranges.

Self-organizing networks (SON) [Kohonen, 1995], one of the vector quantization

techniques known for its capability of unsupervised learning, have been proposed in

[Barreto and Araujo, 2004; Principe et al., 1998] to partition the operating region

into sub-regions through Voronoi tessellation:

Vm = {s : ‖s− ξm‖ ≤ ‖s− ξn‖, ∀n = 1, . . . ,m− 1,m+ 1, . . . ,M} (4.4)

where ξm, m = 1, . . . , M are the weight vectors of the SON. Given the number of

regions M , locations and shapes of those regions defined by ξm need to be adjusted

according to the input-output mapping. Since the input selection problem is gener-

ally solved in an off-line manner, the batch SON training algorithm is employed for
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updating the weight vector ξm at iteration step k using the following equation.

ξm(k + 1) = ξm(k) + ζm(k)h(k, dis(m, c)) [s̄m − ξm(k)] (4.5)

where s̄m(k) is the mean of the data vectors in the mth region. ζm(k), the normalized

modeling errors at iteration step k, introduces a penalty to achieve a balance between

the effects of visiting frequency and modeling errors in a local region m Liu et al.

[2009a]. ζm(k) is calculated as

ζm(k) =
ēm(k)

maxiēi(k)
(4.6)

ēm is the mean of the modeling error of ‖em(k)‖ with em(k) = y(k)− ŷm(k). h(·, ·) is

the neighborhood function [Kohonen, 1995] with a common choice in the following

form

h(k, dis(m, c)) = exp

(
−dis(m, c)2

2σ2(k)

)
, m = 1, . . . , M (4.7)

Here, σ(k) denotes the width of the neighborhood function employed in the growing

self-organizing network, and c(k) is the Best Matching Unit (BMU) of the training

vector s at iteration step k, which is obtained as

c = arg min
m
‖s− ξm(k)‖, ∀m ≤M (4.8)

Then, a partition of the operating region of the system can be defined by assigning

BMUs to the observation vectors s. σ2(k) is generally a non-increasing function over

iterations that defines the width of the effective range of the neighborhood function.

However, the number of Voronoi regions M (i.e., nodes in the self-organizing

networks) and the network structure (i.e., connections among the nodes in the self-

organizing networks) still need to be selected in advance. In order to avoid the

distortion caused by the fixed structure and size in the conventional self-organizing

networks, the GSON such as growing neural gas [Fritzke, 1995], growing cell structure
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[Fritzke, 1994] and growing self-organizing map [Alahakoon et al., 2000], have been

recently developed. By incorporating specific growth and deletion mechanisms, the

GSON can automatically determine the number of nodes as well as its structure, thus

resulting in a more accurate description of inherent data structures. The growth and

deletion mechanism enables the network to start growing from a small number of

nodes and stop once a stopping criterion is satisfied such as the maximum number

of nodes and the maximum tolerable quantization error.

In order to reduce the amount of required a priori knowledge about the tar-

get physical system, the GSON is employed in the proposed method, as shown in

Figure 4.1, to partition the input-output mapping space into small sub-regions by

including both inputs and desirable outputs into the vector s [Ge et al., 2000]. The

proposed method is schematically illustrated in Figure 4.1. Table 4.1 lists the asso-

ciated parameters are employed in this approach.

Derive the candidate input variables by 

constraining the dynamic terms to be considered

Derive an appropriate partition of the operating 

region using a growing self-organizing network

Encode the potential solutions to the input 

selection problem using the binary scheme

Identify the nonlinear model with a set of 

linear ARX models, one in each sub-region

Evaluate the fitness of each potential solution 

with minimum description length principle

Genetic Algorithm

Select parameters for the genetic 

algorithm based input selection 

Iterates until the maximum fitness 

value converges

Linearization Sub-

Region Parition

Update coefficients of the 

local ARX models

Update the weight vectors ηm

Are stopping criteria 

S1-S4 satisfied?

Insert a new node near the 

region with highest nonlinearity

Fine tuning

End

YesNiter < N0

No

Yes

Initialization

{Nelite, Npop, (Ngen)max, Mcrossover, 

Rcrossover, Rmutation}

{Bna, Bnb, Bnk}

{emax, r, (Nreg)max}

Figure 4.1: Flow chart of the genetic algorithm based input selection methodology

Within each sub-region, the efficient least square algorithms are used to estimate
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Table 4.1: List of parameters used in the method proposed in Figure 4.1
Parameter Description
Bna

, Bnb
, Bnk

number of bits to encode na, nb, nk
emax maximum allowed error evaluated based on the root mean square error
r minimum ratio of the number of samples in each sub-region to that of free

parameters in the model
Nelite number of top ranked solutions of the current generation to be preserved

into the next one
Npop number of solutions evaluated in each generation
(Ngen)max maximum number of generations
(Nreg)max maximum number of linearization sub-regions
Mc crossover methods: one, two, multiple point crossover
Rc crossover rate
Rm mutation rate

the parameters of an Auto-Regressive model with eXogenous inputs (ARX) in the

following form.

A(z)y(t) = B(z)u(t− nk) + e(t) (4.9)

where nk ∈ Rp×q defines the transport delays between the output and candidate input

variables, while A(z) and B(z) are polynomials in terms of the backshift operator

z−1 that can be expressed in the form of

A(z) = a1z
−1 + a2z

−2 + . . .+ anaz
−na

B(z) = b1 + b2z
−1 + . . .+ bnbz

−nb+1 (4.10)

Here, na ∈ Rp×p denotes the auto-regressive order of model in (4.9)), while nb ∈ Rp×q

is the order of its exogenous part. For the purpose of system identification, ‖e(t)‖

is employed in the GSON as a measure for modeling accuracy. In order to achieve a

proper partition of the operating region, the following stopping criteria are imposed

in the GSON.

S1 The maximum allowed output error emax in the estimated multiple model system

to ensure the modeling accuracy

S2 The maximum number of nodes (Nreg)max in the GSON to constrain complexity
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S3 The number of samples in each sub-region with the constraint of Nm > rnθ, m =

1, . . . , M where nθ is the number of free parameters in the model

S4 The condition imposed on the least-squares estimator θ̂m = (STmSm)−1STmYm in

each sub-region Vm as

cond(STmSm)

1/ε
< 1× 108

where function cond(·) computes the condition number of a matrix; θm de-

notes the coefficients of the local ARX model, while Sm and Ym are matrices

constructed using the samples of input variables and outputs in sub-region Vm

respectively. ε = 2.2204×10−16 is defined as the floating-point relative accuracy

in MATLABr3

While stopping criterion S1 avoids the problem of poor estimation performance

caused by insufficient number of sub-regions, stopping criteria S2 - S4 help to solve

the problem of surplus partitions, which results in some sub-regions ending up with

too few training samples.

Given a partition of the operating region along with the corresponding local ARX

models, the overall dynamics of the nonlinear dynamic system described by (4.1) can

then be approximated by combining the local models from different sub-regions via

the following interpolation function.

ŷ(t+ 1) =
M∑

m=1

νm(s(t))F̂m(s(t))

νm(s(t)) =
ρm(s(t))∑M
i=1 ρi(s(t))

, m = 1, . . . , M (4.11)

where ŷ denotes the estimated outputs and F̂m, m = 1, . . . , M are the local models

identified using least square algorithms, while ρm(s), m = 1, . . . , M are the vali-

dation functions describing the validity of the local function in terms of s. In this
3Registered trademarks of The MathWorks, Natick, MA 2002.
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chapter, an interpolation function

ρm(s(t)) =





1, s(t) ∈ Vm

0, o.w.

(4.12)

is employed so that a local model Fm is only valid when the vector s is located in

sub-region Vm (For more details, please refer to [Liu et al., 2009a] and references

therein).

4.2.3 Input Selection

Once a proper partition of the operating region is obtained, the input selection

for the nonlinear dynamic model can be converted into one for a set of linear ARX

models, which enables the use of algorithms for forward selection, backward elimina-

tion, stepwise selection, all possible regression, etc. Due to its superior performance

as demonstrated in [Gunst, 1980], the all possible regression algorithm is used, which

in fact solves the input selection problem using a combinatorial optimization strat-

egy. Since the all possible regression algorithm selects the target model from a set

of models that are constructed with different combinations of the candidate inputs,

it also introduces a significant computation load. For example, a model with k can-

didate input variables in S actually requires the all possible regression algorithm to

evaluate 2k − 1 models. Therefore, genetic algorithm [Goldberg, 1989] is employed

in the present study to solve this combinatorial optimization problem. Inspired by

evolutionary biology, genetic algorithm has been widely used as a search technique

to find the exact or approximate solution(s) to an optimization problem. Known for

its robustness, genetic algorithm is able to perform an effective search as long as its

solution domain is represented in a proper genetic form and the fitness functions is

well defined.
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Gene Encoding The input variables sl, l = 1, . . . , d to be selected for the nonlinear

dynamic system in (4.1) can be represented via the model structure parameters na,

nb, and nk as defined in (4.10). The set of candidate input variables S is derived as

S =

{
y(t− 1), . . . , y(t− na), u(t), . . . , u(t− nd − nb + 1)

}

with y =

[
y1, . . . , yp

]T
and u =

[
u1, . . . , uq

]T

Due to its simplicity, the binary coding scheme is employed here to encode parameters

na, nb and nk into p binary strings in G in the form of

G =

{
g1, . . . , gp

}
(4.13)

where gi, i = 1, . . . , p encodes all the information that belongs to output variable

yi as

gi =

{
(
gnay1
)i
, . . . ,

(
gnayp

)i
,
(
gnbu1
)i
, . . . ,

(
gnbuq

)i
,
(
gnku1
)i
, . . . ,

(
gnkuq

)i }

Here,
(
gnayi′

)i
, ∀yi′ ∈ [y1, . . . , yp]

T encodes the auto-regressive order na of output

yi′ on output yi, while
(
gnbuj

)i
and

(
gnkuj

)i
, j = 1, . . . , q encodes the exogenous or-

der nb and its corresponding transport delay between output yi and input uj, re-

spectively. Furthermore, a gene is considered as illegal if
(
gnkuj

)i
is nonzero while

(
gnbuj

)i
, ∀uj ∈ [u1, . . . , uq]

T is zero. With some a priori knowledge of the system

dynamics, parameters Bna , Bnb , and Bnk are employed to constrain the number of

potential input variables to be considered by specifying the number of bits to encode

the maximum values of na, nb and nk in binary strings, respectively.

Fitness Function With an interpolation function in (4.11), the multiple model algo-

rithm introduced above in fact minimizes the objective function J =

[
J1, . . . , Jp

]T
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as

Ji =
N∑

t=0

(yi(t)− ŷi(t))2

=
M∑

m=1

∑

s(t)∈Vm

(yi(t)− ŷi(t))2 , i = 1, . . . , p (4.14)

With a proper partition of M sub-regions, as more candidate input variables si are

included in the model, the value of the objective function Ji, i = 1, . . . , p decreases,

thus resulting in a more accurate model. However, the generalization capability of the

model also decreases because as more free parameters are added, the identified model

tends to get over-fitted to the training data [Ljung, 1999; Pintelon and Schoukens,

2001].

To achieve a balance between modeling accuracy and model complexity, statis-

tical information theory has been widely applied to various system identification

problems. Compared with Akaike information criterion (AIC) [Akaike, 1974], the

minimum description length (MDL) criterion [Rissanen, 1978] has shown its capabil-

ity of providing more accurate estimation of the model order, especially in the case

of short data. Therefore, a modified MDL criterion [De Ridder et al., 2005] has been

incorporated in this method as the fitness function.

f iMDL =
M∑

m=1


 1

Nm

∑

s(t)∈Vm

(yi(t)− ŷi(t))2 +
ln(Nm)(nθ + 1)

Nm − nθ − 2


 , (4.15)

i = 1, . . . , p

where Nm is the number of samples located in sub-region Vm, and nθ is the number

of candidate input variables si that are selected (i.e., the number of free parameters)

in the model.
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4.3 Validation and Evaluation

4.3.1 Numerical Examples

Example 1 A two-input and two-output nonlinear system

y1(t) = 0.8y1(t− 1)− 0.1y2(t− 1) + u1(t− 2) + 0.4u2
1(t− 2)

−1.2u1(t− 1)u2(t− 2) + e1(t)

y2(t) = 0.5y2(t− 1) + 0.5y2(t− 2)u2
2(t− 1) + u2(t− 2)

+u2
1(t− 1) + e2(t) (4.16)

where inputs u1 and u2 are independent random variables uniformly distributed in

the range of (0, 0.5) and (0, 1), respectively; noises e1 and e2 are normally distributed

random variables with zero mean and variance 0.01 and 0.04.

Figure 4.2 illustrates in color the linear correlation coefficient4 of any two variables

listed in the vector x(t).

x(t) =

[
y(t)︸︷︷︸
BOX1

, y(t− 1 : t− 3)︸ ︷︷ ︸
BOX2

, u(t : t− 5)︸ ︷︷ ︸
BOX3

]

with

u = [u1, u2]T , y = [y1, y2]T (4.17)

BOX1, BOX2, and BOX3 correspond to the three red rectangles located from the

upper left corner to the lower right corner in Figure 4.2. Here, black indicates that

two variables are linearly dependent, while white indicates that they are independent.

Due to the independency in u, there does not exist correlation among the regressors

of the inputs u(t : t− nk − nb + 1) in BOX3. However, significant correlation exists

among the output variables y(t− 1 : t− na) in BOX1 and BOX2.

4The correlation coefficient of two variables x and y is defined as ρxy =
Rxy

σxσy
, where Rxy denotes the covariance

between x and y, and σx and σy denote their standard deviations.
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Figure 4.2: Normalized linear correlation coefficient among the regressors of the inputs and outputs
in Example 1

In this example, the maximum order for dynamic parameters na and nb in (4.10)

are set as (na)max = 3 and (nb)max = 3, while the maximum delay nk in (4.9)

is set as (nk)max = 7, which determines their corresponding GA parameters to be

Bna = 2, Bnb = 2, and Bnk = 3, respectively. With a properly selected set of GA

parameters, the convergence behavior of the proposed method during one simulation

is illustrated in the lower plot of Figure 4.3. In addition to its fast convergence

in the evolutionary process of selecting the proper input variables, it has also been

illustrated in the upper and middle plot of Figure 4.3 that the solution derived in

(4.18) can lead to desirable accuracy in identifying the nonlinear dynamic model with

a multiple model system. Note that Figure 4.3(a)-4.3(b) and Figure 4.7 all include

(1) upper plot: actual output values in blue solid line and estimated values in red

dotted line, (2) middle plot: residuals between the actual and estimated values, (3)
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lower plot: convergence behavior of the fitness function in the evolutionary process.

g1 = 01︸︷︷︸
gnay1

01︸︷︷︸
gnay2

10︸︷︷︸
g
nb
u1

01︸︷︷︸
g
nb
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001︸︷︷︸
g
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g
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→ na =




1 1

0 2


 , nb =




2 1

1 2


 , nk =




1 2

1 1


 (4.18)

Figure 4.4show the estimated probability distribution and power spectral density

of the model residuals, r = [r1, r2]T . It can be observed that residuals, r, are white

noise, which indicates the multiple linear model with the identified input variables

captured the dynamics in (4.16).

In order to investigate the effects of GA parameters on the convergence perfor-

mance, the proposed input variable selection algorithm has been simulated with

commonly used values for the crossover and mutation rates. In this work, the values

of the crossover and mutation rate that are considered are Rc = [0.75, 0.80, 0.85]

and Rm = [0.1, 0.2, 0.3]. Figure 4.5 shows the histogram of the number of runs to

converge with different crossover rate, Rc, and mutation rate, Rm. Each plot in the

figure was obtained by running 100 simulations with randomly generated initial pop-

ulations. The mean number of runs to converge listed in Table 4.2 suggests that the

optimal crossover and mutation rates for output y1 and y2 are Rc = 0.85, Rm = 0.1

and Rc = 0.75, Rm = 0.1, respectively.

Table 4.2: Mean number of runs to converge in Example 1
y1 y2

Rm = 0.1 Rm = 0.2 Rm = 0.3 Rm = 0.1 Rm = 0.2 Rm = 0.3
Rc = 0.75 59.43 67.22 86.72 37.87 53.63 46.47
Rc = 0.80 52.47 67.40 76.02 39.97 55.38 69.03
Rc = 0.85 52.44 64.17 73.71 37.98 53.76 57.18
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Example 1
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Figure 4.5: Selection of crossover and mutation rates in Example 1
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Example 2 A three-input and one-output nonlinear system

y(t) = 0.8y(t− 1) + u1(t− 6)u2(t− 4)

+0.5 exp
(
0.4u2

1(t− 6)
)

+ e(t) (4.19)

where inputs u1 and u2 are independent random variables uniformly distributed in

the range of (−0.5, 0.5); noise e is a normally distributed random variable with zero

mean and variance 0.0025. To evaluate the performance of the proposed method

when there exist abundant highly correlated input variables, a third input u3(t) =

u1(t) + u2(t) + eu(t) where eu is a normally distributed random variable with zero

mean and variance 0.01 is introduced in this example.

Figure 4.6 shows the correlation coefficients of any two variables in the vector

x(t).

x(t) =

[
y(t)︸︷︷︸
BOX1

, y(t− 1 : t− 3)︸ ︷︷ ︸
BOX2

, u(t : t− 10)︸ ︷︷ ︸
BOX3

]

with u = [u1, u2, u3]T . BOX1, BOX2, and BOX3 correspond to the three red

rectangles located from the upper left corner to the lower right corner in Figure 4.6.

In addition to the significant correlation among the regressors of the output y(t− 1 :

t−na) in BOX2, there exists high correlation between the regressors of the redundant

input variable u3 and those of inputs u1 and u2 in BOX3.

In this example, the maximum order for dynamic parameters na and nb in (4.10)

are set as (na)max = 3 and (nb)max = 3, while the maximum delay nk in (4.9) is set as

(nk)max = 10, which determines their corresponding GA parameters to be Bna = 2,

Bnb = 2, and Bnk = 3, respectively. With a properly selected set of GA parameters,

the proposed input variable selection approach is able to identify the exact solution



82

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: Normalized linear correlation coefficient among the regressors of the inputs and outputs
in Example 2

as (4.20) and exclude all the redundant variables that are associated with u3.

g = 01︸︷︷︸
gnay

01︸︷︷︸
g
nb
u1

01︸︷︷︸
g
nb
u2

00︸︷︷︸
g
nb
u3

110︸︷︷︸
g
nk
u1

010︸︷︷︸
g
nk
u2

000︸︷︷︸
g
nk
u3

→ na = 1, nb =

[
1 1 0

]
, nk =

[
6 4 0

]
(4.20)

Figure 4.8 show the estimated probability distribution and power spectral density

of the model residuals, r. It can be observed that residuals are white noise, which

indicates the multiple linear model with the identified input variables captured the

dynamics in (4.19).

The convergence performance of the proposed approach in this example is also

investigated for the same set of crossover and mutation rates in Example 1. It can

be observed from Figure 4.9 and Table 4.3 that Rc = 0.75 and Rm = 0.3 leads to the

best performance.

It can observed in the mean number of runs to converge in Table 4.2 and Table 4.3
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Figure 4.9: Selection of crossover and mutation rates for GA in Example 2

Table 4.3: Mean number of runs to converge in Example 2
y1

Rm = 0.1 Rm = 0.2 Rm = 0.3
Rc = 0.75 413.27 450.99 348.43
Rc = 0.80 404.76 475.27 389.93
Rc = 0.85 471.71 446.60 483.22

that the proposed approach demonstrated a better convergence performance in Ex-

ample 1. The existence of the highly nonlinear term exp (0.4u2
1 (t− 6)) in (4.19) and

the introduction of the highly correlated input variable, u3, makes the selection of

the most significant input variables in Example 2 a more challenging task.

4.3.2 Diesel Engine Air Path System

The input variable selection approach proposed in this paper has also been applied

to construct fault detectors for the air path system of a four-cylinder diesel engine

as illustrated in Figure 4.10. The target air path consists of the components: [C.1]

hot-wire air flow meter, [C.2] turbocharger, [C.2a] compressor, [C.2b] variable noz-
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zle turbine (Vnt), [C.3] boost manifold, [C.4] charge air cooler, [C.5] throttle valve

(Thr), [C.6] air intake manifold, [C.7] exhaust gas recirculation valve (Egr), [C.8]

exhaust gas recirculation cooler, [C.9] exhaust gas manifold (Exh), and [C.10] engine

(Eng). The use of the turbocharger and exhaust gas recirculation (EGR) results

in coupled dynamics in the intake and exhaust systems. The recirculated cooled

exhaust gas affects the temperature, pressure, and oxygen concentration of the air

mixture in the intake manifold. In turn, the air mixture entering the engine influ-

ences the combustion behaviors, thus affecting the exhaust gas conditions. Similarly,

the turbocharger couples the intake and exhaust systems by utilizing the exhaust

gas energy to improve the engine volumetric efficiency. The air path is controlled

by the position of the electro-pneumatic actuated throttle valve [C.5], XThr , the

exhaust gas recirculation valve [C.7], XEgr, and the variable nozzle turbine [C.2b],

XV nt. The injected fuel quantity, WFuel, directly commanded by the torque, and the

engine speed, NEng, measured by the engine speed sensor, are considered as mea-

surable disturbances in this work. In order to enable the close-loop air/fuel control,

an Exhaust Gas Oxygen (EGO) sensor measuring the oxygen concentration in the

exhaust gas, λ, is installed at the exit of the system.

Figure 4.11(a) shows the system inputs that include the control commands and the

measurable disturbances, while Figure 4.11(b) shows the system outputs that include

the key sensor measurements. Here, (XThr, XEgr, XV gt) denote the relative position

of the throttle, EGR valve, and VGT vane in reference to their lower mechanical

limits. Other variables, except the ambient pressure, pAmb, are normalized using the

min-max method in (4.21) with the minimum and maximum of the variables derived

from the training data.

z̄ =
z −min(z)

max(z)−min(z)
(4.21)
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Fig. 1. Air path of a diesel combustion engine: [1] hot-wire air flow meter, [2] turbo charger, [2a]
compressor, [2b] variable nozzle turbine (Vnt), [3] air intake manifold (Air), [4] intercooler, [5]
throttle valve (Thr), [6] exhaust gas recirculation (Egr) manifold, [7] EGR valve, [8] exhaust gas
manifold (Exh), [9] engine (Eng).

thus is simple to implement and to adapt to plant
model changes.

The paper is organized as follows: In Section 2
the functionality and the model of the engine air
path are briefly illustrated. This is followed by
a short description of the combined state and
parameter estimation problem. In Section 3 an
estimation algorithm is proposed, applicable to a
wide class of nonlinear constraint state estimation
problems. The proposed algorithm is applied to
the air path of the diesel combustion engine and
experimentally validated in Section 4.

2. DESCRIPTION OF THE AIR PATH

The considered air path basically consists of the
eight components shown and specified in Figure 1.
The special structure of the air path results in a
strong coupling among the different system states.
The recirculated exhaust gas affects the air-mix
that streams out of the EGR manifold [6] into the
engine [9] by changing its temperature, pressure,
and oxygen content. In turn, the air-mix influ-
ences the exhaust gas that is leaving the engine
and streaming through the exhaust manifold [8].
A second feedback is realized through the turbo
charger [2]. It couples the input air flow with the
exhaust gas flow.

The air path is controlled by the effective area
AThr of the electro-pneumatic actuated throttle
valve [5], the exhaust gas recirculation valve AEgr

[7], and the variable nozzle turbine AVnt[2b]. The
injected fuel ratio ṁF and the engine speed nEng

can be regarded as measured disturbances. Thus

the air path is subject to the vector of input
signals (sampled at discrete time k)

uk =
[
AVnt,k AThr,k AEgr,k nEng,k ṁF,k

]T
.

(1)

The pressures (pAir, pEgr, pExh), the gas masses
(mAir,mEgr,mExh) of the manifolds [3], [6] and [8]
and the oxygen content mO2Egr are concatenated
together with the turbo charger angle speed ω in
the state vector of dimension nz = 8 as follows:

z =
[
pT mT ω

]T
. (2)

The following output signals are measured: the
pressure of the compressed air pAir and the in-
coming air flow ṁAir. The measurements are taken
at discrete-time k. The vector of measurements is
formed as

yk =

[
pAir,k

ṁAir,k(pAir, ω)

]
. (3)

The efficiency of the variable nozzle turbine ηVnt

is a constant (or slowly varying) parameter that
has to be estimated combined with the system-
state z. For further considerations the following
notation holds

ϑ = ηVnt. (4)

A continuous-discrete form of the augmented-
state formulation proposed in (Gelb et al., 1974)
is employed. The model is given in the form

[
zk+1

ϑk+1

]
=

[
zk

ϑk

]
+

∫ tk+1

tk

[
f(z,u, ϑ)

0

]
dt+

[
wz,k

wϑ,k

]

yk = h(zk,uk, ϑk) + vk . (5)

The augmented system-model (5) contains nine
state variables, five input- and two output signals
(see Figure 1). To exclude singular states (e.g.

Figure 4.10: Air path of a diesel combustion engine [Aßfalg et al., 2006]

where z̄ denote the normalized variable of z, min(z) and max(z) are the minimum

and maximum values of z. In this work, the intake air mass flow rate, WAir, and

the pressure in the boost manifold [C.4], pBst are selected as the key performance

variables for air path system diagnosis, thus y = [WAir, pBst]
T . In a diesel engine, the

injected fuel quantity, WFuel, are commanded to deliver the desired torque demands,

while λ is employed as the feedback signal to derive the desired intake air quantity. It

can be observed in Figure 4.11 that the data are collected under wide-open throttle

conditions, WThr = 100%, with little variations in the ambient pressure, pAmb. In

addition, measurements of the turbocharger rational speed, Ntc, that were collected

at the engine dynamometer in this work are generally not available in a commercial

vehicle platform. Therefore, in order construct models for output variables, WAir

and pBst, the input variables are selected u = [TBst, XEgr, XV gt, NEng]
T .

The experimental data were collected at the rate of 50Hz, thus resulting in a

sample time of 20ms. In order to avoid error propagation through the feedback of
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Table 4.4: Modeling performance evaluation via χ
Data A Data B Data C

Model with full inputs 1.84% 2.07% 1.45%
Model with selected inputs 1.47% 1.99% 1.32%

the output variable itself which could potentially hamper the diagnostic capability,

the auto-regressive terms are not included in this work, that is (na)max = 0. With

the engine speeds ranging from 1500RPM up to 4000RPM, an average combustion

cycle lasts about 40ms. Thus, the dynamic parameters are set as (nb)max = 3, and

(nk)max = 3, thus Bnb = 2, and Bnk = 2. With a properly selected GA parameters,

the proposed method converged to a solution within 60 generations for output y =

[WAir, pBst]
T .

To illustrate the effectiveness of the proposed method, the performance of two

Growing Structure Multiple Model System (GSMMS) Liu et al. [2009a] in the form

of (4.11) are compared in Table 4.4. One of the model includes the full set of input

variables with nb,j = (nb)max and nk,j = (nk)max for j = 1, ..., q (q = 4), while the

other model only includes those input variables that are selected by the proposed

approach. Both of the models are identified using one set of training data, and

their performances are evaluated via χ, defined in (4.22), using three separate sets

of testing data. All the training and test data are collected under normal operations

under the same drive cycle.

χ =
1

p

p∑

i=1

ēi
max(ȳi)

× 100% (4.22)

ēi =

√√√√ 1

N

N∑

t=0

(
ȳi(t)− ˆ̄yi(t)

)2

(4.23)

ȳi, i = 1, . . . , p denotes the output variables normalized as in (4.21).

As shown in Table 4.4, the input selection method with the fitness function defined
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in (4.16) is able to reduce the model complexity without compromising its accuracy,

which could help avoid the problem of over-parametrization and potentially improve

the generalization capability of the identified model.

4.4 Summary

A novel algorithm is proposed in this chapter to solve the input selection problem

in nonlinear dynamic system modeling by converting it into one of a set of linear

models. Since linearization of the nonlinear function is operating region dependent,

the growing self-organizing network is employed to provide an appropriate partition

of the operating region, thus enabling the approximation of the nonlinear behavior

with a set of linear auto-regressive local models with exogenous inputs.

With parameters Bna , Bnb and Bnk determined in advance, a set of candidate

input variables S can be derived, from which the proper input variables are se-

lected using the all-possible-regression algorithm. Then, the genetic algorithm is

employed to solve the combinational optimization problem introduced by the all-

possible-regression algorithm while reducing the computation burdened caused by

the huge number of potential solutions. In addition to an efficient encoding scheme,

a fitness function based on the minimum description length principle is employed in

the genetic algorithm in order to achieve a balance between the model complexity

and modeling accuracy.

This input selection method establishes a general approach that can be applied

to various nonlinear system identification algorithms. It has been demonstrated in

the simulation examples and the modeling of a diesel engine airflow system that this

method is able to select the proper input variables for nonlinear dynamic models

even in the presence of high correlation among candidate input variables.



CHAPTER V

Modeling and Diagnosis of Leakage and Sensor Faults in a
Diesel Engine Air Path System

5.1 Introduction

Introduced by CARB (California Air Resource Board), the On-Board Diagnostic

(OBD) system was first made mandatory for gasoline vehicles sold in California

around the mid 1990s. Since then, such OBD requirements have been adopted for

various automotive applications, in other regions of the USA as well as the European

Union. In recent years, the growing demands for emissions and fuel efficiency has

driven the development of advanced powertrain with increased system complexity,

which in turn imposes higher requirements on the OBD system.

When a fault is detected for the first time, the associated fault code is stored with

its status labeled as pending. After such a fault is detected during two consecutive

driving cycles, the Malfunction Indicator Light (MIL) is triggered and the status of

the associated fault code is changed as confirmed. The current automotive diagnostic

system, as reviewed in [Jones and Li, 2000; Rizzoni et al., 1993; Mohammadpour

et al., 2011], performs diagnosis based on a pre-determined fault list that is generated

from past experiences using techniques such as fault tree analysis and failure modes

/ effects analysis. In addition to the limited diagnostic coverage, the current OBD

system may not be able to identify the fault due to the similar observable effects

90
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in the target system. For instance, a leakage in the boost manifold or the intake

manifold could both lead to decreases in the measured boost pressure and intake

pressure as well as an increase in the measured intake air mass flow rate.

The detection of air leakage in the intake manifold of a turbocharged engine, for

instance, can be difficult as the turbocharger will inherently be controlled to counter-

act the fault and maintain the boost pressure at a desired level [Antory, 2007]. As a

sensor in the measuring system can also fail, such a problem becomes even more chal-

lenging. The failure to locate the air leaks could lead to undesired control action on

exhaust gas recirculation, thus resulting in an increase in NOx emissions. In [Cecca-

relli et al., 2009], a nonlinear model-based adaptive observer with fixed and variable

gains was investigated to detect leaks in the intake manifold of a diesel engine. A

nonlinear observer was also proposed in [Vinsonneau et al., 2002] to estimate in real

time the mass air flow rate leaked in the intake manifold of a spark-ignition engine.

Such a model derived from the flow equation through a restriction was also used in

[Nyberg, 2002, 2003], in which a leak in the intake manifold and one in the induction

volume located between the intercooler and throttle, were distinguished using struc-

tured hypothesis test. A parameter identification approach via an extended Kalman

filter was developed in [Nyberg and Nielsen, 1997; Nyberg and Perkovic, 1998] based

on a nonlinear state-space model of a diesel engine air path system in order to detect

possible intake manifold leakage.

The detection of air leakage can be even more challenging when taking into account

potential sensor failures that could result in similar phenomenon in the measured

variables. For instance, a failure in the intake mass air flow sensor and an air leakage

in the intake manifold both lead to a deviation in its measurements from the normal

values. The potential sensor failures considered in this work for air leakage detection
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involve the hot-film mass flow sensor installed at the engine intake and the manifold

absolute pressure sensors. Early work was proposed in [Rizzoni and Min, 1991]

to construct model-based filters for detecting a manifold absolute pressure sensor

failure. Widely adopted in the engine management system, detection of additive

or multiplicative failures in the mass air flow and manifold absolute pressure sensor

has also investigated in [Namburu et al., 2007; Weinhold et al., 2005; Nyberg, 2002;

Vinsonneau et al., 2002; Gunnarsson, 2001; Nilsson, 2007].

In this work, an approach is developed to diagnose faults in the air path of a

diesel engine equipped with a Variable Nozzle Turbine (VNT) and Exhaust Gas

Recirculation (EGR). Developed based on the analytical redundancies among the

variables measured by the existing sensors, the approach constructs three anomaly

detectors in terms of mass flow rate in order to detect and isolate the target faults.

The faults investigated in this work include both sensor failures in the air path system

and air leakage in the manifolds.

The remainder of this chapter is organized as follows. In Section 5.2, a model that

describes the normal system behaviors in the diesel engine air path is presented. In

addition, sub-models to capture the dynamics in sensors as well as the effects of

air leaks are introduced. The nominal model, parameterized with dynamometer

measurements from a diesel engine, is augmented with the sub-models to simulate

the behaviors of the target system failures. In Section 5.3, the fault detection and

isolation residuals, WLeakBst, WLeakInt, and ∆WCyl are constructed based on the mea-

surements from a hot-film mass air flow sensor, WHFM , and the estimated mass air

flow through the throttle, WThr, and that into the cylinders, WCyl. Without the need

for a thorough understanding of the dependencies between the estimated variables

and the identified input variables, the Growing Structure Multiple Model System



93

(GSMMS) system identification algorithm is employed. The diagnostic performance

of the proposed residual variables are then illustrated.

5.2 Diesel Engine Air Path

5.2.1 Description

The target air path, as illustrated in Figure 5.1, consists of the components: [C.1]

hot-wire air flow meter, [C.2] turbocharger, [C.2a] compressor, [C.2b] variable nozzle

turbine (Vnt), [C.3] boost manifold, [C.4] charge air cooler, [C.5] throttle valve (Thr),

[C.6] air intake manifold, [C.7] exhaust gas recirculation valve (Egr), [C.8] exhaust

gas recirculation cooler, [C.9] exhaust gas manifold (Exh), and [C.10] engine (Eng).

The variables that used to describe the system are listed in Table 5.1. The use of

the turbocharger and exhaust gas recirculation (EGR) results in coupled dynamics

in the intake and exhaust systems. The recirculated cooled exhaust gas affects the

temperature, pressure, and oxygen concentration of the air mixture in the intake

manifold. In turn, the air mixture entering the engine influences the combustion

behaviors, thus affecting the exhaust gas conditions. Similarly, the turbocharger

couples the intake and exhaust systems by utilizing the exhaust gas energy to improve

the engine volumetric efficiency.

The air path is controlled by the effective area AThr of the electro-pneumatic

actuated throttle valve [C.5], the exhaust gas recirculation valve AEgr [C.7], and the

variable nozzle turbine AV nt [C.2b]. The injected fuel quantity, WFuel, and the engine

speed, nEng, are considered as measured disturbances in this work. Thus, the input

signals of the air path system, sampled at a discrete time k, are defined as

uk =

[
AV nt,k AThr,k AEgr,k nEng,k WF,k

]T
(5.1)

In order to capture the system dynamics, the state z is defined for the diesel engine
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Table 5.1: Nomenclature for diesel engine air path system
Symbol Description
AV nt Effective cross-section area of variable nozzle turbine
AThr Effective cross-section area of throttle
AEgr Effective cross-section area of exhaust gas recirculated valve
nEng Engine rotational speed
nTurb Turbocharger rotational speed
pBst Boost pressure
pInt Intake manifold pressure
pExh Exhaust manifold pressure
mBst Charge mass trapped in boost manifold
mAir,Int Air mass trapped in intake manifold
mEgr,Int Recirculated exhaust gas trapped in intake manifold
mO2Int Mass of oxygen trapped in intake manifold
mExh Charge mass trapped in exhaust manifold
rO2Thr Mass ratio of oxygen in air through throttle
rO2Int Mass ratio of charge in intake manifold
rO2Egr Mass ratio of oxygen in recirculated exhaust gas
WAir Mass flow rate of inducted air
WHFM Mass flow rate of inducted air measured by hot-film mass air flow sensor
WEgr Mass flow rate of recirculated exhaust gas
WComp Mass flow rate of air through compressor
WTurb Mass flow rate of charge through turbine
WThr Mass flow rate of air through throttle
WCyl Mass flow rate of charge inducted into the cylinders
WExh Mass flow rate of charge leaving the cylinders
WFuel Mass flow rate of injected fuel
WLeak,Bst Mass flow rate of leaked charge in boost manifold
WLeak,Int Mass flow rate of leaded charge in intake manifold
TComp,dn Charge temperature at compressor downstream
TCAC,up Charge temperature at charge air cooler upstream
TCAC,dn Charge temperature at charge air cooler downstream
TEGR Exhaust gas temperature recirculated into intake manifold
TExh Charge temperature in exhaust manifold
VBst Effective volume of boost manifold
VInt Effective volume of intake manifold
VExh Effective volume of exhaust manifold
QLHV Low heating value of fuel
RAir Universal gas constant of air
RInt Universal gas constant of charge in intake manifold
RExh Universal gas constant of charge in exhaust manifold
cp,Air Specific heat capacity at constant pressure of air
cp,Int Specific heat capacity at constant pressure of charge in intake manifold
cp,Exh Specific heat capacity at constant pressure of charge in exhaust manifold
cv,Air Specific heat capacity at constant volume of air
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Figure 5.1: Air path of a diesel combustion engine [Aßfalg et al., 2006]

air path system as

z =

[
p m nTurb

]
(5.2)

where nTurb denotes the turbocharger speed, and p and m denote the pressures and

charge masses in manifolds [C.3], [C.6], and [C.9] as

p =

[
pBst pInt pExh

]T

m =

[
mBst mAir,Int mEgr,Int mO2Int mExh

]T

In the target system, the following output signals are measured at discrete time k.

yk =

[
pBst,k pInt,k WAir,k

]T
(5.3)

5.2.2 System Modeling

The model used in the diagnosis algorithm is based on the principles described in

[Heywood, 1992; Nyberg and Perkovic, 1998]. Following the law of mass and enthalpy

conservation, the pressure pBst and mass mBst in the boost manifold can be modeled
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as

ṗBst =
RAir

VBstcv,Air
(cp,AirWCompTComp,dn − cp,AirWThrTCAC,up) (5.4)

ṁBst = WComp −WThr (5.5)

where WComp and WThr denote the mass air flow rate through the compressor and

throttle, TComp,dn and TCAC,up denote the compressor downstream and charge air

cooler upstream temperature. RAir, cp,Air, and cv,Air denote the gas constant, the

specific heat capacity at constant pressure, and the specific heat capacity at constant

volume for air, respectively. The mass air flow rate through the throttle, WThr, can

be modeled below as an orifice.

WThr = AThr
pBst√
RAirTBst

ΦκAir,Thr

(
pInt
pBst

)
(5.6)

where Φκ,[C.x] captures the restriction of flow to subsonic speeds across the orifice

component [C.x] with the heat capacity ratio κ = cp
cv

. In a specific component, Φκ

can be expressed as

Φκ

(
pup
pdn

)
=





√
κ
κ−1

((
pdn
pup

) 2
κ −

(
pdn
pup

)κ+1
κ

) (
pdn
pup

)
>
(

2
κ+1

) κ
κ−1

√
κ
κ−1

(
2

κ+1

) 1
κ−1

(
pdn
pup

)
≤
(

2
κ+1

) κ
κ−1

(5.7)

where pup and pdn denote the upstream and downstream pressures.

The dynamics for the intake manifold [C.6] can be modeled with the state zInt =[
pInt mAir,Int mEgr,Int mO2,Int

]T
as

ṗInt =
RInt

VIntcv,Int
(cp,AirWThrTCAC,dn

+cp,ExhWEgrTEgr − cp,IntWCylTInt) (5.8)

ṁAir,Int = WThr −
mAir,Int

mAir,Int +mEgr,Int

WCyl (5.9)

ṁEgr,Int = WEgr −
mEgr,Int

mAir,Int +mEgr,Int

WCyl (5.10)



97

and

ṁO2,Int = WEgrrO2Egr +WThrrO2Thr −WCylrO2Int (5.11)

WEgr and WCyl denote the mass flow rate of the exhaust gas recirculated into the

intake manifold and that of the cylinder charger entering the cylinders. The EGR

flow rate, WEgr, is also modeled as

WEgr = AEgr
pExh√

RExhTExh
ΦκExh,Egr

(
pInt
pExh

)
(5.12)

and the associated temperature can be modeled as

TEGR =

(
pInt
pExh

)1− 1
κExh

TExh (5.13)

The intake manifold temperature, TInt, can be derived from the ideal gas law as

TInt =
pIntVInt

(mAir,Int +mEgr,Int)RInt

(5.14)

rO2(·) denote the mass fraction of oxygen in the associated flow. Thus, rO2Thr =

rO2Air = 21%, rO2Int can be defined as

rO2Int =
mO2Int

mAir,Int +mEgr,Int

, (5.15)

and rO2Egr depends on the exhaust gas composition. Due to the different composi-

tion of fresh charge and recirculated exhaust gas, thermodynamic properties of the

charge in the intake manifold can be derived as follows.

RInt =
mAir,IntRAir +mEgr,IntRExh

mAir,Int +mEgr,Int

cv,Int =
mAir,Intcv,Air +mEgr,Intcv,Exh

mAir,Int +mEgr,Int

cp,Int = cv,Int +RInt (5.16)

In order to establish the coupling between intake and exhaust system, a simple

engine model is used in this work. The mass flow rate of the charge entering the
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cylinders, WCyl, and the exhaust gas leaving the cylinders, WExh, are modeled as

WCyl = fvol
nEng
60

VEng
2

pInt
RIntTInt

(5.17)

WExh = WCyl +WFuel (5.18)

where fvol denotes the volumetric efficiency and identified to be dependent of engine

speed nEng in RPM . The exhaust gas temperature

TExh = TInt +
fcombWFuelQLHV

cp,Exh(WCyl +WF )
(5.19)

where fcomb captures the combustion efficiency of the engine and identified to be

dependent of cylinder charge composition, λc, and engine speed, nEng. Based on the

estimated TExh, the pressure in the exhaust manifold [C.9] can be modeled as

pExh =
mExhRExhTExh

VExh
(5.20)

and the dynamics of the exhaust manifold can be captured as

ṁExh = WExh −WTurb −WEgr (5.21)

Controlled by the turbine vane position, AV nt, the flow rate of the exhaust gas

through the turbine, WTurb, can be modeled as orifice with effective cross-section

area of AV nt.

WTurb = AV nt
pExh√

RExhTExh
ΦκExh,Turb (5.22)

where AV nt is dependent of the turbine vane position, θV nt, and the pressure ratio

across the turbine, pExh
pAmb

. Here, pAmb denotes the ambient pressure.

Experimental data were collected to parameterize the baseline model for simula-

tions. Due to limited available data, the model was only calibrated for operations

during which the throttle angle, θThr, was left wide open, and the EGR valve, θEgr,

was kept closed. Therefore, the main actuator for the air path system is the vane
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position, θV nt, of the variable nozzle turbine. In addition, the fuel injection quan-

tity, WFuel, as the main actuator for torque control, and the engine speed, nEng,

considered as external disturbances, are illustrated in Figure 5.2. In the remainder

of this chapter, (AThr, AEgr, AV gt) denote the relative effective cross-section area of

the throttle, EGR valve, and VGT vane in reference to their lower mechanical lim-

its. Other variables, except the ambient pressure are normalized using the min-max

method in (4.21) with the minimum and maximum of the variables derived from the

training data.

z̄ =
z −min(z)

max(z)−min(z)
(5.23)

where z̄ denote the normalized variable of z, min(z) and max(z) are the minimum

and maximum values of z.
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Figure 5.2: Diesel engine air path system simulation inputs

In addition to the measured system outputs, y = [ pBst, pInt, WAir, λ ], the

simulation model also provides insights into the exhaust manifold pressure, pExh, the
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turbocharger speed, nTurb, and the charge temperatures in the manifolds. It can

be observed that the target system with its key measured and simulated outputs

illustrated in Figure 5.3 is highly dynamic.

5.2.3 Modeling of Faults

5.2.3.1 Leakage

The leakage is modeled in this work to be located in the induction volume or the

intake manifold. The leak size is assumed to be constant, and the flow through the

leakage is modeled as the flow through a restriction. Such a model has been validated

in [Nyberg and Perkovic, 1998] with desirable results.

If a leak occurs in the boost manifold, its dynamics can be captured as

ṗBst =
RAir

VBstcv,Air
(cp,AirWCompTComp,dn

−cp,Air(WThr +WLeak,Bst)TCAC,up) (5.24)

ṁBst = WComp −WThr −WLeak,Bst (5.25)

where

WLeak,Bst = ALeak,Bst
pBst√
RAirTBst

ΦκAir,LeakBst

(
pAmb
pInt

)
(5.26)

If a leak occurs in the intake manifold, its dynamics can be captured as

ṗInt =
RInt

VIntcv,Int
(cp,AirWThrTCAC,dn

+cp,ExhWEgrTEgr − cp,Int(WCyl +WLeak,IntTInt) (5.27)

ṁAir,Int = WThr −
mAir,Int

mAir,Int +mEgr,Int

(WCyl +WLeak,Int) (5.28)

ṁEGR,Int = WEgr −
mEgr,Int

mAir,Int +mEgr,Int

(WCyl +WLeak,Int) (5.29)

ṁO2,Int = WEgrrO2Egr +WThrrO2Thr − (WCyl +WLeak,Int)rO2Int (5.30)

where

WLeak,Int = ALeak,Int
pInt√
RIntTInt

ΦκAir,LeakInt

(
pAmb
pInt

)
(5.31)
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Figure 5.3: Diesel engine air path system simulation outputs under fault-free conditions
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In this work, the leakage size in the boost manifold, ALeak,Bst, and that in the

intake manifold, ALeak,Int, are assumed to be the same. Figure 5.4 compares the

system behavior under fault-free conditions (F0) with those under boost mani-

fold leakage (F4) and intake manifold leakage (F5). It can be observed that these

two failure modes result in similar behaviors in the measured system outputs y =[
pBst, pInt, WAir,HFM

]T
, which indicates the need for a dedicated fault diagnos-

tic algorithm. The leakage in the boost and intake manifold both lead to decreases

in the boost pressure, pBst, and intake manifold pressure, pInt, as well as an increase

in the intake mass air flow sensor measurements. For the estimated variables, both

faults have similar effects on the exhaust manifold pressure, pExh, and result in a

decrease in the turbocharger speed, nTurb.

5.2.3.2 Pressure Sensor Bias

The dynamics of a pressure sensor is modeled as first-order system.

ps + τ sp ṗs = kspp (5.32)

where ksp and τ sp denote the gain and time constant of the pressure sensor. When

a sensor bias fault occurs, ksp 6= 1 is an unknown constant. The pressure sensor

measurements are then filtered with a varying filter time constant.

ps,f + τLPF ṗs,f = ps (5.33)

where τLPF = 180
nEng

denotes its time constant.

5.2.3.3 Temperature Sensor Bias

The dynamics of a temperature sensor is modeled as a first-order system.

Ts + τ sT Ṫs = ksTT (5.34)
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Figure 5.4: Diesel engine air path system simulation outputs under (F0) fault-free conditions, (F4)
leakage in the boost manifold, and (F5) leakage in the intake manifold
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where ksT and τ sT denote the gain and time constant of the temperature sensor. When

a sensor bias fault occurs, ksT 6= 1 is an unknown constant.

5.2.3.4 Mass Air Flow Sensor Bias

The intake air mass information is necessary for the engine control unit to enable

air/fuel control and thus deliver the desired amount of fuel. With the advantages of

quick response and low air flow restriction, the hot-film mass air flow sensor has been

widely used in automotive industry. The use of a hot-film mass air flow sensor at

the engine intake improves the reliability of the air mass estimation and the engine

system diagnostic capability.

As the electric resistance of the embedded wire varies with temperature, the cur-

rent required to maintain the wire temperature is thus directly proportional to the

mass of air flowing through the sensor. In this work, the dynamics of the mass air

flow sensor is simplified as a first-order system.

WHFM + τHFMẆHFM = kHFMWAir (5.35)

where kHFM and τHFM denote the gain and time constant of the temperature sensor.

When a sensor bias fault occurs, kHFM 6= 1 is an unknown constant.

5.3 System Diagnosis

5.3.1 Fault Detector Design

As described above, the charge flow rate through the throttle, WThr, and that

into cylinders, WCyl, can be modeled as

ŴThr = fThr

(
pBst, θThr, pInt

)

ŴCyl = fCyl

(
pInt, nEng

)
(5.36)
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Without the need for extremely fast detection of faults, only static relations are

considered in this work [Nyberg, 2002]. In a fault-free air path system, the relations

among WThr, WCyl, and the measured mass air flow rate, WHFM , under steady-state

engine operation conditions can be described as

WHFM = WThr, and WThr +WEgr = WCyl (5.37)

When a leakage occurs in the boost or intake manifold, such relations can be aug-

mented as

WHFM = WThr +WLeak,Bst

WThr = WCyl (5.38)

and

WHFM = WThr

WThr +WEgr = WCyl +WLeak,Int (5.39)

WLeak,Bst and WLeak,Int denote the leaked charge mass flow rate in the boost and

intake manifold. Based on these physical models, WLeak,Bst, WLeak,Int and WCyl in

(5.38) and (5.39) can be derived from the intake air mass flow sensor measurements

WHFM , and the estimated charge flow rate ŴThr and ŴCyl.

WLeak,Bst = WHFM − ŴThr

WLeak,Int = ŴThr + ŴEgr − ŴCyl

∆WCyl = WHFM − ŴCyl (5.40)

When the EGR valve is close (i.e. AEgr = 0% as illustrated in Figure 5.2, the
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above fault detectors can be simplified as

WLeak,Bst = WHFM − ŴThr

WLeak,Int = ŴThr − ŴCyl

∆WCyl = WHFM − ŴCyl (5.41)

5.3.2 Fault Detection Construction

The Growing Structure Multiple Model System (GSMMS) system identification

algorithm proposed in [Liu et al., 2009a], combines the advantages of a Growing Self-

Organizing Network (GSON) with efficient local model parameter estimation into an

integrated framework for modeling and identification of general nonlinear dynamic

systems. Based on the ”divide and conquer” philosophy, the GSMMS approach

captures the nonlinear system dynamics with a set of connected multiple models,

each of which is relatively simple in nature and can be analyzed in an analytically

tractable manner.

Consider a nonlinear dynamic system with p outputs and q inputs described by

y(k + 1) = F (y(k), . . . ,y(k − na + 1),

u(k − nd), . . . ,u(k − nd − nb + 1)) + w(k) (5.42)

where u(k) = [u1(k), . . . , uq(k)]T are the system inputs, y(k) = [y1(k), . . . , yp(k)]T

are the system outputs, w(k) = [w1(k), . . . , wp(k)]T are the system disturbances.

Here, na ∈ Rp×p and nb ∈ Rp×q are the system orders, and nd ∈ Rp×q is the time lag

from the moment that excitation is applied until when its effects can be observed

from the outputs.
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Assume the reconstruction space S can be described by the vector

s(k) =
[
yT (k), . . . ,yT (k − na + 1)

uT (k − nd), . . . ,uT (k − nd − nb + 1)
]T

(5.43)

As described in Section 4.2, the dynamics of such a nonlinear system can be ap-

proximated by combining the local linear models from the appropriately partitioned

sub-regions.

ŷ(k + 1) =
M∑

m=1

νm(s(k))F̂m(s(k)) (5.44)

In the sub-region Vm, F̂m(·) denotes the local model, and νm(·) denotes the weighting

functions that determine the validity of local function F̂ for the operation vector s.

Here, the Kronecker delta function is employed for simplicity.

νm(s(k) =





1, if s(k) ∈ Vm

0, o.w.

(5.45)

Various model structures can be utilized to describe the local dynamics [Liu et al.,

2009b]. In this work, the linear local model with parameters θm = [am,bm] is used.

F̂m(s(k)) = am + bms(k) (5.46)

The growing mechanism of a SON enables the GSMMS algorithm to start with a

small number of regions and then grow until a certain stopping criterion is satisfied.

As described in Section 4.2, the topology of the self-organizing map can be described

by a set of weight vectors ξ1, . . . , ξM . After the partition of the operating space is

defined by the network, the best matching unit c(k) can then be determined as

c(k) = arg min
m
‖s(k)− ξm‖ (5.47)



108

For local model identification, the parameters θm,m = 1, . . . ,M are determined

by minimizing the sum of the weighted squared output errors in each sub-region.

Jm(θm) =
1

km

km∑

i=1

ωm(s(k))‖y(i)− ŷm(i)‖2 (5.48)

where km is number of samples in the mth sub-region, and ωm(s(i)) is the weight

factor for the ith observation when updating the model parameters of sub-region Vm.

The weight factor ωm(s(k)) is selected as

ωm(s(k)) = exp

(
−dis(m, c(k))2

2σ2

)
, m = 1, . . . ,M (5.49)

where σ2 denotes the effective range of the weighting function, and dis(m, c(k)) is

defined as the shortest path distance between the representative node m and the

best matching unit c(k) on the self-organizing network. In this work, dis(m, c(k)) is

calculated using the Breath-first algorithm from the adjacency matrix [Sedgewick,

1995].

Assume that all the data are available before the system identification, and thus

the model parameters θ̂m,m = 1, . . . ,M can be estimated using the weighted linear

least square algorithm.

(XT
mWmXm)θ̂m = XT

mWmym (5.50)

where Wm is a diagonal matrix with Wm,ii = ω(s(i)), ∀s(i) ∈ Vm as defined in (5.49).

Xm and ym(i) are constructed with the reconstruction vector s(i) and associated y(i)

in the sub-region m.

5.3.3 Fault Detection

Figure 5.5 illustrates a local fault detection and isolation scheme based on a

multiple model structure. With sufficient data from the monitored system, the key

relations between the inputs u and the measured outputs ys are identified using
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the GSMMS system identification algorithm. With the knowledge of the underlying

physics, properly designed residuals, r, can be generated using the measured outputs,

ys, and the estimated outputs from the GSMMS model, ŷs, identified using fault-

free data. The GSMMS model provides additional information about the operation

regime of the monitored system and the associated behaviors of the system outputs,

ys,m, and the generated residuals, rm. The system controller determines the actuator

signals, u, based on the measured system outputs, ys, and the identified system fault,

If .

ys

Monitored 
System

GSMMS Model

Fault Detection 
and Isolation

m: operation regime

ysu IfResidual 
Generation

System 
Controller

r (rm)

Figure 5.5: Local diagnostic scheme based on multiple model structure

Under normal operation conditions, the residuals in each region of the GSMMS

model should in principle follow a Gaussian distribution. Therefore, at a certain time

step, one of the local models is selected to best describe the current system dynamics

and the residual variable follow a Gaussian distribution in the corresponding region.

However, due to the filling dynamics in the manifolds, the residuals as defined in

(5.41) should have non-zero values during transient operations. In addition, the

switching among the local models in a GSMMS model due to the dynamic operations

also introduces non-Gaussian global behaviors.

As discussed in Section 5.3.1, the relations fThr(·) and fCyl(·) in (5.36) are identi-
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fied based on fault-free data from the diesel engine air path system using the GSMMS

system identification algorithm. As shown in Figure 5.6, the identified model cap-

tures the air path system dynamics in charge mass flow rate and manifold pressures.

Based on the assumption that the models identified using the GSMMS algorithm are

able to capture the dynamics in the associated variables, the residuals generated from

the fault detectors WLeak,Bst, WLeak,Int, and ∆WCyl should follow gaussian distribu-

tion with zero mean value under normal conditions. A fault can thus be detected if

the residuals generated from any of the three fault detectors depict different behav-

iors. The residual variables ŴLeak,Int, ŴLeak,Bst, and ∆ŴCyl in Figure 5.6 follow the

quasi-gaussian distribution with mean value of zero and variance of σ, r ∼ N(0, σ2).
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Figure 5.6: Model behaviors under normal engine operations

Using the simulation model developed in Section 5.2, various faults as listed in

Table 5.2 are simulated. The behaviors of the fault detectors, constructed based on
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the variables of ŴLeak,Int, ŴLeak,Bst, and ∆ŴCyl, under various faults are illustrated

in Figure 5.7-5.11.

5.3.4 Fault Isolation

In order to avoid interpreting the effects caused by the engine transients on the

residual variables as faults, the residuals as defined in (5.41) are evaluated globally

at a sufficiently long period of time. As summarized in Table 5.2, the residuals,

WLeak,Bst, WLeak,Int, and ∆WCyl, that illustrate a global pattern with zero mean

value are marked with X, while those that illustrate a either static or dynamic

global pattern with non-zero mean value are marked with ×. Based on the different

patterns associated with the three residual variables, all the target faults can be

detected.

Table 5.2: Diagnostic Summary
System Condition WLeak,Bst WLeak,Int ∆WCyl

F0 Normal X X X
F1 Intake air mass flow sensor bias × X ×
F2 Boost pressure sensor bias × × X
F3 Intake manifold pressure sensor bias × × ×
F4 Boost manifold leakage × X ×
F5 Intake manifold leakage × × ×

It can be noted that the intake air mass flow sensor bias (F1) and the boost mani-

fold leakage (F4) demonstrate the same pattern of

(
WLeak,Bst, WLeak,Int, ∆WCyl

)
=

(
×, X, ×

)
. However, as illustrated in Figure 5.7(b) and 5.10(a), the behaviors

of the residuals of WLeakBst and dWCyl are significantly different. Under the fault of

intake mass air flow sensor bias, the residuals of WLeakBst and dWCyl show a static

pattern. When a leakage in the boost manifold occurs, these two residuals, on the

other hand, illustrate highly dynamic behaviors. This phenomenon can be explained

by the fact there is actually no change in the dynamics of the target system when

the intake air mass flow sensor fails, while dynamics of a leakage is introduced into
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Figure 5.7: Diesel engine air path system fault diagnosis under (F1) intake hot-film mass air flow
sensor bias
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Figure 5.8: Diesel engine air path system fault diagnosis under (F2) boost manifold pressure sensor
bias
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Figure 5.9: Diesel engine air path system fault diagnosis under (F3) intake manifold pressure sensor
bias
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Figure 5.10: Diesel engine air path system fault diagnosis under (F4) leakage in the boost manifold
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Figure 5.11: Diesel engine air path system fault diagnosis under (F5) leakage in the intake manifold
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WLeakBst and dWCyl due to their dependencies on pBst and pInt. Based on the esti-

mated cumulative probability distribution of all the three residuals in Figure 5.12,

fault F1 and F4 can be also isolated.

-5 0 5 10 15 20 25 30 35
0

0.5

1

W
LeakBst

 [g/s]

cd
f W

L
e

a
kB

st

 

 
F1
F4

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

W
LeakInt

 [g/s]

cd
f W

L
e

a
kI

n
t

-5 0 5 10 15 20 25 30 35
0

0.5

1

dW
Cyl

 [g/s]

cd
f dW

C
yl

Figure 5.12: Cumulative probability distribution of the generated residuals under (F1) intake mass
air flow sensor bias, and (F4) leakage in the boost manifold

It can be also noted that the boost pressure sensor bias (F2) and the intake mani-

fold leakage (F5) demonstrate the same pattern of

(
WLeak,Bst, WLeak,Int, ∆WCyl

)
=

(
×, ×, ×

)
. When the residual variable WLeak,Bst is analyzed in specific opera-

tion regime as indicated by the pressure ratio across the throttle, pBst
pInt

in Figure 5.13,

it can concluded that the abnormal behavior in WLeak,Bst is caused by the unexpected

operation condition. Since the fault detector has not been trained in these operation

regimes, it interprets the unobserved system behavior as faults. With the additional

information given the GSMMS, the fault detector can distinguish the impacts of po-

tential faults and unexpected operation conditions on the target residual variables.
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As illustrated in Figure 5.13, within the well-trained operation regime, the residual

variable WLeak,Bst indicates normal operation, i.e. WLeak,Bst = X. As a result, the

boost pressure sensor bias (F2) and the intake manifold leakage (F5) can be isolated.
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Figure 5.13: Residual variable WLeak,Bst within different operation regimes

5.4 Summary

In this chapter, an engine model is introduced to capture the dynamics in the diesel

air path system via the variables of intake mass air flow rate and pressures in the

various manifolds. Validated against experimental data, such a model not only serves

as the virtual engine to simulate the potential faults of sensors and components in the

target system, but also provides insight into the behavior of the target system. Based

on the knowledge of the target system as well as the engine management system, fault

detectors were designed in order to best isolate the potential faults. The system input
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selection approach developed in Chapter IV was then employed to identify the order

of system dynamics. The growing structure multiple model system identification

algorithm captures the target nonlinear dynamics using multiple linear models in an

appropriate number of sub-regions identified by the growing self-organizing network.

Based on the generated residuals, all the faults can be detected once they statistically

deviate from zero. Evaluated based on the different patterns illustrated by the three

residual variables, most of the faults can also be isolated except the intake mass air

flow sensor bias and leakage in the boost manifold. Due to the dynamic changes

introduced by the boost manifold leakage, these two faults can be further isolated by

investigating the behaviors of the generated residuals. In this work, the cumulative

probably distribution was employed for such investigation.



CHAPTER VI

Contribution and Future Work

6.1 Contribution of the Thesis

This thesis has presented the research attempts in developing practical approaches

for system and sensor fault diagnosis with applications to the automotive system.

The work first looked into the problem of sensor degradation detection and isolation

in a single-input-single-output system as presented in Chapter III, and extended

such efforts to a multiple-input-multiple-output system as presented in Chapter V.

In order to deal with a complex system such as the diesel engine air path system, an

approach is developed in Chapter IV to identify the most related input variables for

the target system performance variable. In particular, the research focused on:

System Dynamics Identification and Analysis The method presented in Chap-

ter III is able to identify the dynamics in a single-input-single-output dynamic sys-

tem. Based on the assumption that the dynamics of the sensor is much faster than

that of the monitored system, the proposed approach identifies the dynamics and

the associated gain factors of the sensor and the monitored system. As a result, the

method can detect and quantify sensor performance degradation in the compound

system without the use of redundant sensing equipment. It is able to distinguish

sensor and plant degradation in an environment where either the plant, or the sensor

120
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monitoring that plant could undergo degradation in their dynamic properties. In

addition, the method accomplishes identification of sensor and plant dynamics using

inputs observed during normal system operations, rather than using special inputs.

Consequently, such a method is capable of assessing the sensor health condition as

the system operates. Furthermore, this method is able to improve the accuracy of

collected information despite the presence of sensor degradation by directly compen-

sating for the adverse effects of the degradation in its measurements.

System Input Selection for Nonlinear System Identification In order to deal with

the increasing complexity in a multiple-input-multiple-output dynamic system, a

method is proposed in Chapter IV to identify the most correlated input variables

and the associated dynamic dependence with the output variable in a nonlinear sys-

tem. Without requiring a thorough understanding of the target system, the proposed

method establish a general approach that can be applied to various nonlinear system

identification algorithms. The growing self-organizing network provides an appropri-

ate partition of the target operation regime, thus enabling the approximate of the

nonlinear behaviors with a set of linear models. As the number of system inputs

including measured variables and control signals increases, the complexity of the in-

put variable and model structure selection problem in a nonlinear system increases

dramatically. The introduction of the genetic algorithm provides an efficient way to

search for the best solution as defined by the minimum description length principle.

The proposed approach has shown its effectiveness with commonly cited numerical

examples and diesel engine air path dynamics modeling.

Diesel Engine Air Path System Diagnosis The method presented in Chapter V is

developed to detect and isolate potential sensor faults and air leaks in a diesel engine
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air path system, a highly dynamic and nonlinear multiple-input-multiple-output sys-

tem. Established using the growing structure multiple model system identification

algorithm, the fault detectors captures the dynamics between the key performance

variable, the intake air mass air flow rate, and the identified most correlated input

variables including the boost and intake manifold pressures. Given the additional

operation region information, the fault detectors can distinguish between the effects

of a fault and unexpected operating condition on generated residuals by looking into

the local models.

6.2 Future Work

The work in this thesis mainly focused on nonlinear system modeling and system

dynamics identification as well as their application to the detection and isolation

of faults in the monitored system and sensors. To enable the application of such

methods in real-world applications such as the diesel engine air path system, some

of the possible future work directions are listed in the following sections.

Improvement of Input Selection Approach The input selection approach for non-

linear system dynamics modeling developed in Chapter IV employs the genetic algo-

rithm in a piecewise linear model structure in which the local regions are identified

using the self-organizing network. The genes are encoded with the model order,

na ∈ Rp×p, nb ∈ Rp×q, and nk ∈ Rp×q with an understanding of the maximum or-

der of system dynamics. In this work, the maximum order of system dynamics is

derived from prior knowledge of the target system. Future work to eliminate such

pre-determined parameters can further help reduce the amount prior knowledge re-

quired. In addition, the current approach compares the accuracy performance of

the multiple linear models based on one common topology. As discussed in [Liu
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et al., 2008], the degree of topology preservation also has an impact on the modeling

accuracy. Therefore, future work could be conducted to optimize both the model

structure as well as the topology for best accuracy.

Exploitation of Fault Detector for Best Coverage In addition, after a fault is de-

tected, it is important to have a scalable fault identification and localization scheme

that can also track new faults in the field. In Chapter V, five potential sensor and

component failures were investigated with the use of two fault detectors constructed

based on the mass flow rate through the throttle, WThr, and that into the cylinders,

WCyl. Derived from the measurements obtained via the hot-film mass air flow sensor

and the estimated values from these two fault detectors, three residual variables of

WLeak,Bst, WLeak,Int, and dWCyl were generated. These three residuals have shown

capability in detecting and isolating all the target failures. In order to fully exploit

the potential of these two fault detectors, future work can be conducted to further

investigate the possibility of detecting other faults such as a stuck valve for exhaust

gas recirculation.

Online Adaptation of Fault Detectors For on-board diagnosis, it is important to

adapt the fault detectors to the component wear in the monitored system. In addi-

tion, a fault detector that is trained offline needs to adapt for unexpected operation

conditions and distinguish such effects from a potential fault. In order to enable on-

line adaptation, a sequential training approach with the following cost function can

be investigated in future to adapt the relations in the fault detectors with real-time

measurements from the system. Due to the limited off-line training data especially

during transients, not only the parameters in the local region but also the partition

of the local regime may need to be updated. Therefore, future work needs to be
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conducted to determine the enabling conditions for such adaptation and investigate

its impacts on on-board system diagnosis.

Jm(θm) =
1

km

km∑

i=1

ωm(s(k))λkm−i‖y(i)− ŷm(i)‖2 (6.1)

where λ is the forgetting factor that adjust the speed of adaptation.
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