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â    speed control model 

YX aa ˆ,ˆ   Acceleration estimates by X-Y Kalman filter in global coordinate system 

ACAS  Automotive Collision Avoidance System 

2,1 dd   Intersection parameters (distance) 

DAS  Data acquisition system 

(.)if   i-th objective function 

FOV   Field of view 

FN   False negative 

FP   False positive 

GT   Gap time 

21,kk   Parameters for predicted speed profile 

LB   Leading buffer 

iLB   Leading buffer for i-th through vehicle 

LTAP/OD Left turn across path – opposite direction 

nFN   Number of false-negative events 

nFP   Number of false-positive events 

nSB   Number of successful braking events given a true positive event 



  

xiii 

nTN   Number of true-negative events 

nTP   Number of true-positive events 

nUB   Number of successful braking events given a true positive event 

21, pp   Parameters for reference speed profile for deceleration stage 

(.)P   Probability of an event 

PET   Post encroachment time 

POV   Principal other vehicle 

21,qq   Parameters for reference speed profile for acceleration stage 

RR ,   Range and range rate of a target from the radar 

RDCW  Road Departure Crash Warning System 

s   Path coordinate 

PS   Pareto set 

SV   Subject vehicle 

SB   Successful braking 

TB   Trailing buffer 

iTB   Trailing buffer for the i-th principal other vehicle 

FN   False-negative 

FP   False-positive 

SB   Successful braking 

TN   True-negative 

TP   True-positive 

UB  Unsuccessful braking 

rt   Transversal distance of a target from the center line of field of view of the  

  radar 

TTC   Time to collision 

SVT2C   Time for the left turn vehicle to arrive at encroachment zone (if it turn  

  second), or leave encroachment zone (if it turns first) 



  

xiv 

POVT2C  Time for the through vehicle to leave encroachment zone (if the left turn  

  vehicle turns second), or arrive at encroachment zone (if the left turn  

  vehicle turns first) 

U   DAS speed 
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Chapter 1 

Introduction 

 

 

1.1 Unprotected Intersection Left Turns at Signalized Intersections 

Intersection safety is a major concern in traffic safety. More than one million crashes 

occurred at intersections in the United States in 2009 and approximately 40 % of them 

led to injuries or fatalities [1]. Typical intersection crashes are classified into five cases 

depending on path crossing types: Left Turn Across Path/Opposite Direction, Left Turn 

Across Path/Lateral Direction, Left Turn Into Path, Right Turn Into Path and Straight 

Crossing Path [2]. This dissertation focuses on the first type of scenario abbreviated by 

LTAP/OD, which involves a left turning vehicle and an oncoming through vehicle(s) in 

the opposing traffic (Figure 1.1). The LTAP/OD crash is the second most frequent path-

crossing type crash and accounts for 27 % of intersection path-crossing crashes [3]. If an 

LTAP/OD scenario occurs with an unprotected (or “permissive”) left turn at signalized 

intersections (Figure 1.1), the left turn vehicle driver must detect the through vehicles, 

judge their speeds and distances, and select the appropriate timing for making the turn. 

The main causes of these crashes are believed to be: 1) misjudgment of available gap, 2) 

misjudgment of the through vehicle speed, 3) failure to detect a through vehicle caused 

by an obstruction of vision, and 4) failure to detect a through vehicle due to careless 

oversight (“looked but did not see”) [4, 5]. An example driver assistance system for the 

LTAP/OD scenario and potential design concept are briefly mentioned in Section 1.4. 
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Figure 1.1 Schematic of unprotected LTAP/OD at a signalized intersection. 

 

1.2 Conflict Analysis for Intersection Left Turns 

In order to design an efficient intersection left turn assistance system, human drivers’ gap 

acceptance behavior needs to be understood. This is achieved by computing appropriate 

conflict metrics to quantify such behavior.  

 

Efforts to develop conflict metrics for road traffic safety were begun in the early 1970s 

[6]. Although it seems obvious that there is a relationship between the number of near-

miss cases and the number of accidents, observing such a relationship in a reasonable 

way is difficult unless near-miss cases are clearly defined since the definition of near-

miss can be different depending on individuals [6]. Therefore, conflict metrics are useful 

to provide objective judgments of conflict level by quantifying near-miss situations. 

 

For the LTAP/OD case, conflict metrics are computed when the left turn vehicle, (subject 

vehicle, or SV) and through vehicle (principal other vehicle, or POV) are in either one of 

the following particular vehicle configurations of interest as shown in Figure 1.2. For 

each of these, a conflict point is defined as being in the encroachment zone, which is the 

intersection of the areas traced by the vehicles as they proceed. A conflict point is a 

fictitious collision point if time is delayed or advanced depending on the configuration of 

the SV and POV by the amount of spare time between those vehicles. Therefore, the 

conflict point should be defined so that the spare time becomes the shortest. In the 

LTAP/OD scenarios, two cases are possible depending on the vehicles’ configuration. 
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The first case represents, “the SV crosses the intersection first” before the POV (Figure 

1.2(a)) and the second case, “the SV crosses second” (Figure 1.2(b)). In the first case, the 

conflict point is located at the last point where the SV leaves the encroachment zone and, 

for the second case, it is found at the first point where the SV arrives at the encroachment 

zone. Also, note that since the vehicle shapes are assumed to be rectangular, the speed 

changes of the vehicles are negligible in and near the encroachment zone and the edges of 

the encroachment zone are approximately linear to make the conflict point always appear 

on one of the vertices of the encroachment zone. As a result, a conflict point is typically 

found in the top-right corner of the encroachment zone for the case of the SV crossing 

first (Figure 1.2(a)) and the bottom-left corner for the other case (Figure 1.2(b)). 

 

(b)

Conflict point

(Arrival point)

(a)

Conflict point

(Departure point)

POV

SV

Encroachment zone

 
Figure 1.2 Left turn conflict points: (a) subject vehicle crosses first (conflict point is at 

departure point) and (b) subject vehicle crosses second (conflict point is at arrival point). 

 

Example conflict metrics for the LTAP/OD scenarios are the post encroachment time 

(PET) [7], gap time (GT) [7, 8], and leading buffer/trailing buffer (LB/TB) [5, 9, 10]. 

Among these, the PET was originally defined as “…the time from the end of 

encroachment to the time that the through vehicle actually arrives at the potential point of 

collision…” [7]. Although this definition solely explains the case of the SV crossing first, 

it can be enhanced easily for the crossing second case based on Figure 1.2(b). Therefore, 

the PET is an actual measure of the available gap when the vehicles are in the conflict 

configuration, and it is defined uniquely for each event. On the other hand, the GT and 

LB/TB is computed prior to when the vehicles form the conflict configuration. In fact, 
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these conflict metrics are computed by taking the difference between the times at which 

the SV and POV reach the conflict point. The only difference between the PET, and GT 

and LB/TB is that the PET utilizes the actual times when the vehicles are at the conflict 

point while they are predicted times in the other metrics. This indicates that each of the 

predictive measures becomes a function of time or position.  

 

Among the predictive conflict metrics, a noticeable difference in the LB/TB from the 

other conventional ones (e.g. the GT) is the use of a variable reference speed profile for 

the SV speed prediction, while the GT assumes a constant speed. The variable reference 

speed profile is expected to overcome the issue of the constant speed assumption in a 

predictive setting (as required by the assistance system which needs to give a warning 

before starting to turn left); for example, a predicted gap time between the SV and POV 

becomes infinite when the SV is stationary at the intersection.  

 

In order to conduct the conflict analyses, vehicle trajectories of LTAP/OD events are 

necessary and are prepared by reconstructing vehicle trajectories using naturalistic 

driving data in this dissertation. Trajectories of both the SV and POV in the opposing 

traffic are reconstructed from field operational test data. There are technical challenges 

associated with this data from vehicle based sensors that are resolved by multiple use of 

Kalman filtering. One issue is the heading angle error due to randomly scattered GPS 

data at slow SV speed. Since POVs are only relatively detected by the forward sensors on 

the SV, a small heading angle error could result in a large positional error. This is 

resolved by the constant speed Kalman filter. Another issue is sampling timing errors 

between different sensors. The latency time difference correction is performed to adjust 

the time scales in these sensors.  

 

After the trajectory reconstruction is complete, an extensive analysis of conflict metrics is 

conducted to find the typical gap acceptance behavior of the human driver measured by 

the PET. Its results suggest basic threshold values to be employed in decision 

components in the driver model and the design of a left turn assistance system. A left turn 

assistance system should have a reasonable method to evaluate whether a gap is 
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acceptable for a left turn and this process involves predictions of future vehicle motion. 

The LB/TB is adopted for this purpose due to its advantage over the other predictive 

metrics.  

 

1.3 Modeling the Human Driver for Intersection Left Turns 

Early attempts of human driver modeling focused on path tracking based on closed-loop 

servomechanisms, e.g. quasi-linear model [11, 12], cross-over model [13] and optimal 

preview control model [14]. A shortcoming of these models is that they assumed a 

predetermined reference path. On the other hand, a lane keeping model based on 

reference yaw rate defines no explicit reference path [15]. It was shown that vehicle yaw 

rate was confined between critical yaw rate envelopes while driving within lane 

boundaries [16]. Risk is considered as a factor used by the driver to adapt to varying 

situations. This type of model is called a motivational model [17-19]. Commonly used 

quantitative measures of risk are time to collision (TTC) [6, 8] and time to line crossing 

(TLC) [20, 21]. On the other hand, a hierarchical model based on the type of driver 

behaviors has knowledge-based, rule-based and skill-based behaviors from higher to 

lower level [22]. In driver modeling, knowledge-based behavior applies when the driver 

encounters an unfamiliar situation and case-by-case problem solving is required. Rule-

based behavior is the application of rules obtained through experience. Skill-based 

behavior represents automatic reaction within vehicle control. Another hierarchical model 

distinguishes by tasks, i.e. strategic, tactical (maneuvering) and operational (control) 

tasks [23]. Strategic task involves planning of travel route, tactical task represents driving 

maneuvers, and control task is control action to operate the vehicle. The combination of 

these behaviors and tasks in the hierarchical models indicates the level of proficiency in 

driving [23, 24]. Moreover, each task involves cyclic information processing which 

contains selection, processing and action, and the driver is assumed to adjust the vehicle 

speed so that an available time to complete one cycle becomes larger than the time 

needed to do it [25, 26]. 
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For intersection left turns, a speed control model dedicated to this type of scenario is 

especially needed since the vehicle speed tends to vary widely during a left turn. Speed 

control behavior of human drivers has been researched since the 1950’s, but there have 

not been large and highly detailed data sets from naturalistic driving available until now. 

Many previous models have focused on traffic flow on highways, headway control and 

longitudinal dynamics being the main considerations [27-31]. Driving on curved roads or 

making intersection left turns requires additional consideration due to lateral control. 

Examples of existing models are based on time-to-lane-crossing (TLC) [21], lateral 

acceleration margin [32], total acceleration [33], lateral jerk [34], sight distance [35], and 

stopping distance [36]. However, none of these models can address the driver’s need to 

simultaneously address multiple potential outcomes – stopping or turning at an 

intersection – and hence a new approach has been developed. 

 

Visual and vestibular systems are the most relevant sensory inputs for human drivers [37]. 

Drivers receive a wide range of information which may affect speed choice, including 

road geometry (e.g. lane width and curve radius [38-41]), as well as general road 

conditions [42]. In the scenario of an intersection left turn, the dominant factor during the 

straight line approach is presumed to be the anticipation of the acceleration required to 

either make the turn or stop before making the turn. Here, complex behaviors relating to 

traffic, such as adjusting speed in anticipation of a gap, are not considered. The 

acceleration “penalty” for turning or braking too quickly (for safety or comfort) places an 

upper limit on the entry speed, depending on the distance from the turn. It is clear that 

human drivers learn and adapt their behavior with experience and that only visual 

information is available for the underlying control reference for speed control on 

approach to an intersection; of course vestibular and other cues (e.g. vehicle pitch 

response and brake pedal force) may be useful for modulating the vehicle speed. In this 

dissertation, the visual reference signal are focused mainly, and while the specific optical 

or physiological mechanisms involved are not considered, it is sought to make use of 

variables involving motion and distance that are instantaneously available to the driver 

and do not require critical knowledge of friction or estimation of stopping distances, etc. 

As a side note, one reason to support this working hypothesis is that, from experience, the 
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anticipated “penalty” is equally available to passengers and drivers; even if a passenger is 

not an experienced driver, they may apply a non-existent “brake pedal” when the 

approach seems too fast. 

 

In this study, the longitudinal control is developed based on the anticipated acceleration 

reference (AAR) model which utilizes the directional error between the current heading 

angle and reference heading angle parallel to the lane boundary. The driver parameters in 

the AAR model are tuned by fitting the acceleration profile obtained from the simulations 

to the acceleration from the driving data. For the lateral control, a preview tracking model 

[43] is adopted which compensates the yaw rate and angle errors. The Monte Carlo 

simulations are run for various driver parameter values selected from the determined 

ranges to provide a large number of left turns for designing a left turn assistance system 

using the MATLAB
®

 Simulink and CarSim
®
 vehicle model. 

 

1.4 Designing a Left Turn Assistance System 

In order to avoid LTAP/OD crashes, the assistance system needs to evaluate the conflict 

level accurately by estimating the future trajectories using the vehicle kinematics at a 

proper time so that an effective warning signal can be given at a sufficiently distant 

location from the intersection in order for the SV to stop safely. Three types of 

intersection collision avoidance system are considered: 1) vehicle-based system, 2) 

infrastructure-based system, and 3) vehicle-infrastructure cooperative system. As an 

example of the cooperative system, the Cooperative Intersection Collision Avoidance 

System for Signalized Left Turn Assist (CICAS-SLTA) [44] focuses on the LTAP/OD 

scenarios with unprotected left turns at signalized intersections, communicating with the 

vehicles through the dedicated short range communications (DSRC) [45]. Since 

signalized intersections with unprotected left turns generally have a larger traffic volume 

compared to unsignalized intersections on rural roads, making a proper decision to start a 

left turn is crucial in terms of safety. Assistance system such as the CICAS-SLTA is 

expected to help the SV driver perform such a maneuver more easily. In addition, this 
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concept of adding a supporting system to an existing infrastructure can be significantly 

less expensive than replacing with a new traffic signal with a protecting left arrow [44]. 

 

Since the assistance system needs to predict the future conflict in order to provide a 

warning at the proper time based on the gap acceptance behavior obtained from the 

conflict analysis, some level of error is unavoidable. Such an error is caused by 

mismatches between the actual and estimated vehicle trajectories and between actual and 

estimated speed profiles. Moreover, the level of the error varies depending on values of 

the system parameters as well (e.g. SV position at which the conflict measure is 

computed). For example, as the vehicle approaches the intersection, the accuracy of the 

prediction increases. Of course, the high rate of successful detections of potential 

conflicts is of a primary interest to achieve, but an overly conservative system design (i.e. 

a warning signal is issued to a small level of conflict) increases the rate of unnecessary 

warnings which would cause drivers’ frustration and unnecessary change in their driving 

state. A warning signal is referred to as “true-positive (TP)” if attempting a left turn is 

predicted as unsafe and making a left turn is actually unsafe. Here, the safety of an event 

is estimated by comparing the predicted conflict measurement (i.e. LB/TB) with the 

actual safety threshold represented by a PET value determined from the naturalistic 

driving data analysis. Similarly, a warning signal is considered as “false-positive (FP)” if 

it is predicted as unsafe while turning left it is actually safe with no warning provided. 

P(TP) and P(FP) are used as performance measures in a safety system design [46-50]. 

Figure 1.3 shows conceptual probability density distributions of the estimated safety level 

for safe events (right) and unsafe events (left). By comparing the estimated safety level 

with the threshold, Δ, the assistance system estimates whether an event is safe or unsafe. 

Due to the estimation error in the estimate, there will be an overlap between the two 

distributions. P(TP) is defined by the area (2)(1)  and P(FP) is the area (2). It is noted 

that the complementary areas can also be defined, i.e. false-negative, (P(FN) or (3)) and 

true-negative (P(TN) or the area (4)(3) ) are complementary to P(TP) and P(FP) 

respectively. Although it is omitted here, a similar diagram can be made for the LB as 

well. Since sets of safe and unsafe events are exclusive to each other, 1)FN()TP(  PP  

and 1)TN()FP( PP . 
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P(TP) and P(FP) obtained for various parameter values are often plotted to make a 

receiver operating characteristics (ROC) curve [46-52]. A typical ROC curve consists of 

P(TP) in the vertical direction and P(FP) in the horizontal direction. This is convenient to 

visualize the trade-off between the two probabilities by a single curve. A schematic of an 

ROC curve is shown in Figure 1.4. Once an ROC curve is made, an operating point is 

ready to be selected based on subjective design criteria and corresponding parameter 

values are found for implementation. Moreover, P(TP) and P(FP) are affected not only 

by the selected parameter values but also by inherent characteristics of a system because 

they determine the shapes and relative location of the distributions. If a system can judge 

whether an event is safe or unsafe more accurately than another system, the probability 

density distributions will be more separate. In this case, the ROC curve will be closer to 

the corner at the (0, 1) coordinates in Figure 1.4. On the other hand, an ROC curve for a 

less accurate system will shift toward the diagonal line. Of course, the above condition 

for finding an operating point may be subject to change depending on the design criteria. 

In fact, the ROC curve is a set of points, each of which is an optimal solution in the sense 

of the Pareto optimality. A Pareto set can be formed based on the concept of dominance.  

 

Moreover, the SV location at which a warning signal is issued if the system detects a 

potential conflict affects the rates of successful braking (SB) or unsuccessful braking 

(UB) to reach rest before entering the intersection. These are defined given a warning 

signal, or under the condition of TP. 
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Figure 1.3 Conceptual distributions of conflict estimation. 
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Figure 1.4 Schematic of receiver operating characteristic curve. 
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1.5 Research Objectives 

This research aims to investigate the viability of driver assistance systems to improve the 

safety of unprotected left turns at signalized intersections. It requires realistic 

understanding of the nature of the problem to develop a quantitative method for the 

system design and evaluation of the system. In order to achieve these requirements, 

naturalistic driving data are used to derive information about the gap acceptance behavior 

of human drivers. An assistance system should estimate or predict the conflict level 

before the vehicle starts turning, giving sufficient time to warn the driver in advance. 

Because of the complex and stochastic nature of the human-in-the-loop system, the test 

conditions are best suited to a Monte-Carlo simulation approach, where a large number of 

left turn events are generated to estimate the overall system performance. This is 

achieved by expanding the available set of left turn events from the driving data using a 

simulation model. The simulation model is to reflect the driving characteristics of actual 

drivers, based on the driving data analysis, with special attention given to vehicle speed 

control during the approach to the intersection; this is because the speed profile has a 

strong effect on gap timing during a left turn, and hence on the intersection conflict 

analysis.  

 

The assistance system is to be formulated based on a proposed design methodology to 

maximize the system performance with an acceptable level of detrimental effects due the 

trade-offs between the design objectives. Specifically, the following are to be carried out. 

 

1) Trajectory reconstruction 

This is approached by multiple applications of Kalman filtering and measurement 

fusion to the left turn events found in naturalistic driving data. 

2) Conflict analyses 

The post encroachment time (PET) is computed for each left turn event to find the 

gap acceptance behavior of left turn drivers. A predictive conflict metric (LB/TB) 

is developed as the predictive measure of the PET by using the variable reference 

speed profile for the subject vehicle (SV) and constant speed for the principal 



 

12 

other vehicle (POV). The concept of buffer band is introduced for visualization of 

the safety level given predictive measures and the PET thresholds. 

3) Modeling the human driver  

It is crucial to predict the speed profile of the SV accurately for the calculation of 

the LB/TB. The speed control model for free left turns is developed based on a 

new concept of anticipated acceleration reference (AAR). The AAR is validated 

for both individual left turn events and the averaged speed of multiple events. For 

the latter, the Monte Carlo simulations are conducted to prepare a large number of 

events.  

4) Designing a driver assistance system 

An assistance system is designed and evaluated for scenarios where the SV driver 

“looked but did not see”. Monte Carlo simulation makes use of the human driver 

model, as well as vehicle and other sub-models. Optimal system parameter values 

are found based on the Pareto optimality. 

 

The dissertation is organized as follows. In Chapter 2, the naturalistic driving data used 

for the trajectory reconstruction is described, the trajectory reconstruction process is 

presented in Chapter 3, the conflict analysis procedure is explained in detail in Chapter 4, 

detailed descriptions of the simulation model, parameter tuning and the result of the 

Monte Carlo simulations are presented in Chapter 5, an assistance system is designed by 

using the proposed design procedure which is based on the Pareto optimality in Chapter 6, 

and conclusions and future topics are summarized in Chapter 7. 
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Chapter 2 

Data Sources 

 

 

2.1 Naturalistic Driving Data 

Candidate LTAP/OD events were obtained from a naturalistic driving database, which 

was the field operational test for the road departure crash warning system (RDCW-FOT) 

previously conducted at the University of Michigan Transportation Research Institute 

(UMTRI) [53]. Although the RDCW-FOT was originally conducted to develop lane 

departure warning (LDW) and curve speed warning (CSW) systems, these systems did 

not generate warnings during left turns except for few cases. The vehicle-based data 

acquisition system (DAS) with approximately 400 data channels installed in the test 

vehicles (11 of 2003 Nissan Altima 3.5 SE) recorded necessary information for the 

trajectory reconstruction using a differential GPS (DGPS), vehicle sensors, forward 

radars for object detection and video cameras. A brief explanation about the RDCW-FOT 

and the instrumentation of the test vehicles is noted in Appendix A. The RDCW data is 

considered naturalistic since the test drivers were randomly selected from the general 

public, were given no guidance from the research staff during driving and no RDCW 

warning was generated during left turns excluding a small number of cases. Seventy-

eight test drivers were recruited from three different age groups: younger (20-30), middle 

(40-50) and older (60-70). Each age group contained 26 subjects with equal numbers of 

males and females. The test drivers drove the test vehicles as substitutes for their personal 

vehicles for 26 days.  

 

Recorded driving data showed that most trips were made in southeast Michigan which 

consists of seven counties. In this study, two counties were selected for mining left turns 

for the analysis. Washtenaw County was selected since UMTRI had an intersection 
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database provided by the county’s road commission. In other words, unprotected left 

turns can easily be distinguished from protected ones by the signal type information. 

However, the number of left turns was not sufficient for the gap analysis by age and 

gender groups (Section 4.3.3). Therefore, an additional data source was desired. Oakland 

County, the second selected county, included a large number of left turns, but signal 

information was not available. In this case, unprotected left turns had to be identified 

through manual search using the video data. The detailed procedure is explained in 

Section 2.2.1. 

 

2.2 Initial Screening of Driving Data  

2.2.1 Data Retrieval 

To retrieve the left turn event data from the naturalistic driving database, MATLAB
®
 was 

used to send SQL queries with parameters to identify particular events. Those parameters 

were Driver #, Trip #, Start time and End time (recorded in centi-seconds) and were 

chosen from a list of all relevant left turn events detected in the naturalistic driving 

database. In the figure, SEMCOG ID is a label code that uniquely identifies the 

individual intersection, and Type represents the type of the intersection’s traffic control 

indicated by either TS (traffic signal) or FL (flashing light). Additional information about 

whether an intersection of the TS type was protected or unprotected was given in a 

separate intersection database table (Washtenaw County only).  

 

On the other hand, such intersection data is not available for Oakland County and signal 

types are known as either signalized or flashing light only. Therefore, whether a left turn 

was protected or unprotected was determined by video observation for each left turn. If 

the SV or another vehicle also waiting to turn left in front of the SV crossed the stop bar 

while POVs were approaching, the left turn was identified as unprotected. It is possible 

that those left turns are actually filtered cases which mean that the left turn vehicle is not 

protected until some period of time is passes and a left arrow appears. However, POVs 

are decelerating or stopped and such cases can be rejected. If POVs did not exist in the 

camera view and the SV turned, it cannot be confirmed if this left turn was protected or 
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unprotected. In this case, this event was left open and checked again later after checking 

all the left turns to see if there were left turns that happened in the same intersection and 

direction. 

 

Moreover, the retrieved data contained necessary variables to reconstruct the SV and 

POV trajectories sensed by the GPS, motion sensors and forward radars. Each left turn 

event was manually examined to test if it had an appropriate time range for the conflict 

metric analyses. The Start and End times were previously found automatically via SQL 

queries of turning motions. For analysis here, the retrieved data was extended by ten 

seconds before the Start time and after the End time, mainly to improve the latency time 

estimations between variables from different onboard modules.  

 

 

Figure 2.1 List of left turn events in the naturalistic driving database. 
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2.2.2 Variable Selection for Trajectory Reconstruction 

In order to reconstruct the vehicle trajectories, kinematic variables must be obtained by 

either directly accessing desired variables or deriving ones from retrieved variables. In 

order to obtain the best results, the most suitable set of variables were to be determined 

before beginning reconstruction of the trajectories. Variables required for absolute 

location of the vehicle were position and heading angle, and for the SV the only direct 

measurement was via GPS, which included differential correction.  

The differential correction of the GPS was from a regional rather than a local base station 

and absolute positional accuracy had a margin of error of less than 1m (Table A.5), 

which is accurate enough for the SV trajectory reconstructions ( 1.0 s error for 10m/s) for 

the conflict analysis. However, the random errors due to noise inherently present in GPS 

data is undesirable. For this purpose, a standard Kalman filter was adopted; this is 

advantageous because velocity and acceleration estimates are determined directly from 

the filter. In the SV trajectory reconstruction process, the accurate heading angle of the 

SV was considered crucial to maintain the relative orientations of the SV and POV; 

otherwise, the error (increasing in proportion to the distance between the two vehicles) 

would cause a distorted POV trajectory, since the POV motion was available only 

relative to the SV. There were three options for finding the SV heading angle: 1) recorded 

GPS heading angle directly available in the database, 2) on-board yaw rate sensor   to be 

integrated, and 3) multiple angular measurement sources, including the Kalman filter 

generated trajectory.  

 

The first choice had a significant defect due to a truncation in the speed range of less than 

5 m/s – see Figure 2.2. For the second option, simple integration of the yaw rate creates a 

smooth curve but requires additional information for the initial heading, and is likely to 

cause an absolute drift error which accumulates as the integration time increases. 

Therefore, the third option, angular measurement fusion to fuse GPS and inertial sensor 

(INS) measurements is commonly practiced for vehicle tracking purposes [4, 44, 54, 55]. 

In fact, it actually performed the best among these three options. A procedure for the 

application of the angular measurement fusion is described in Section 3.2.4. 
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The kinematic variables available from the radar, used to generate the POV trajectory, 

were range R, range-rate R  and lateral offset tr. In addition, longitudinal acceleration ax 

and lateral acceleration ay collected from the onboard accelerometer were retrieved from 

the database in order to validate the heading angle of the SV resulting from the angular 

measurement fusion. Table 2.1 summarizes the sets of variables used in the process of 

reconstructing the SV and POV trajectories. 

 

 
Figure 2.2 Inaccurate GPS heading angle. 

 

Table 2.1 Variables retrieved for the trajectory reconstruction process. 

Vehicle Variables for trajectory reconstruction Variables for validation 

SV X, Y,   ax, ay,   

POV R, R , tr  

 

 

Unrealistic heading change 
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The sampling rates of these variables were 10Hz for  YX ,  and  , and 20 Hz for 

 rtRR ,,   and  yx aa , . However, the sampling rate for the GPS was slower – the GPS 

data were updated at 4 Hz and in a way that was not fully synchronized with the other 

variables so that the GPS samples, while recorded at 10Hz, typically stayed constant for 

2 or 3 time steps. This fact (due to GPS clock update limitations) motivated the use of a 

time varying Kalman filter for those variables with varying time steps. 

2.2.3 Selection and Fine-Tuning of Left Turn Events 

Candidate left turn events were selected through a screening and tuning process as shown 

in the screenshot below – Figure 2.3. In the naturalistic driving database, the radar data 

were sometimes unavailable due to, for example, device limitations and malfunction in a 

specific test vehicle during a specific test period, and it also happened that a constructed 

SV trajectory was corrupted due to excessively noisy GPS data; such turning events were 

not considered amenable to analysis and were also removed from the candidate left turn 

event set. Moreover, the established list of turning events in the naturalistic driving 

database sometimes do not contain real left turn events – e.g. a sharp curve in the road 

was being negotiated. In addition, the RDCW system occasionally gave a warning to the 

driver during a left turn, and the driving behavior would not be representative, so such 

cases were excluded. Figure 2.4 shows examples of the three problematic cases: (a) 

corrupted trajectory due to large errors in the GPS data, (b) improperly assigned time 

range, and (c) non-left turn case. The stars indicate the trajectories for the period of time 

of an event and the solid lines show the trajectories in a time range with the extra 10 s for 

both the Start time and End time. 

 

As mentioned earlier, the time range between the Start time and End time could be 

modified from the original one. These times were checked visually for each left turn 

event and, if necessary, adjusted manually so that the trajectory was fully included within 

the time period. Criteria for proper time range were: 1) the trajectory was to start and end 

at small values of yaw rate, 2) the lowest speed before the turn was to be included and 3) 

any following or previous turn was to be excluded where necessary. Note that even if an 

original pair of the Start time and End time of a left turn event was changed to different 
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values, it was specified by the original times along with the other numbers, Driver # and 

Trip #, to fully identify the event in the initial event table shown in Figure 2.1. 

 

 

Figure 2.3 Screenshot of event screening process. 

 

 

 

 

 

 

 

 

(a) Corrupted trajectory 

(Discarded) 

(b) Improper time range 

(Corrected) 

(c) Not a left turn 

(Discarded) 

Figure 2.4 Examples of inappropriate cases to be corrected or removed. 
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2.2.4 Summary of Left Turn Events in the Driving Database 

The tables below show summary information about all detected left turns in the 

naturalistic driving database after the initial data checks and screening were performed as 

mentioned in the last section. The initial set of left turns was detected via a simple 

algorithm based on vehicle kinematics: first each quadrant with a horizontal axis in the 

west-east direction and a vertical axis in the south-north direction was quantized. Then, if 

the heading angle of the SV changed from one quadrant to another in counterclockwise 

direction, the motion was considered as a candidate left turn. These events were then 

matched to locations in the intersection database for Washtenaw County or confirmed in 

the video data to generate the initial candidate left-turn set. More than 70 % of all these 

left turns are valid for the trajectory reconstruction (Table 2.2), 60 % of the intersections 

are provided with unprotected signals (Table 2.3) and 50 % of all the left turns detected 

were unprotected left turns (Table 2.4). It should be noted that the number of left turns 

found in Oakland County is much smaller than those in Washtenaw County because the 

type of left turns (i.e. protected or unprotected) in Oakland County was determined by 

using detected POVs in the video, whereas this was achieved by using the intersection 

database for Washtenaw County. 

 

Table 2.2 Summary of left turns. 

 Number of left turns Percentage 

Washtenaw Oakland Total 

Valid left turns 1191 664 1855 70.7 

Corrupted results 116 59 175 6.7 

Non-left turn events 149 240 389 14.8 

Left turns but data missing 115 85 200 7.6 

RDCW warning on 5 0 5 0.2 

Total 1576 1048 2624 100 

 

Table 2.3 Types of intersections. 

Intersection type Number of intersections Percentage 

Washtenaw Oakland Total 

Unprotected 199 209 408 61.0 

Protected 108 118 226 33.8 

Flashing light 35 0 35 5.2 

Total 342 327 669 100 
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Table 2.4 Types of left turns. 

Intersection type Number of left turns Percentage 

Washtenaw Oakland 

(with POV) 

Total 

Unprotected 594 173 767 53.2 

Protected 476 38 514 35.7 

Stop sign/Flashing light 92 1 93 6.5 

Unknown 29 38 67 4.7 

Total 1191 250 1441 100  
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Chapter 3 

Trajectory Reconstruction 

 

 

3.1 Overall Procedure and Kalman Filtering 

3.1.1 Variable Selection 

The primary sensor for the SV trajectory reconstruction was the GPS position (X, Y). The 

yaw rate   from the yaw rate sensor was also used to fuse with the heading angle 

obtained from the GPS to improve the SV heading angle. For the POV, target point 

information such as range R, range rate R  and transversal distance tr (to derive azimuth 

 ) measured by the forward radars was used (see Table 2.1). Since the GPS data was 

given in geographic coordinates, it needed to be transformed into Cartesian coordinates 

by projecting onto a plane tangent to the globe at the initial SV position. In addition, the 

forward camera was used for manual review and the face camera could be used to receive 

contextual information for manual review. In fact, the heading angle was available 

directly from the GPS in the naturalistic driving database, but its value was held constant 

when the vehicle speed became slower than 5 m/s and moreover the time history is not 

smooth through the whole time range due to noise from the GPS. As a result, this became 

a significant issue for accurate trajectory reconstructions especially for POVs, since they 

were detected relatively to the SV. This problem was resolved by using the constant 

speed Kalman filter and angular measurement fusion.  

3.1.2 Flowchart of the Analysis 

Figure 3.1 shows a flowchart of the overall process performed in the trajectory 

reconstruction and conflict metric analysis. It contains four major tasks: data retrieval 
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from the naturalistic driving database, reconstruction of SV trajectories, reconstruction of 

POV trajectories and computation of the conflict metrics.  

 

Several types of Kalman filters were used for the trajectory reconstructions in 

components labeled (1), (2), (4) and (9). Standard (or X-Y) Kalman filters are used in (1), 

(2) and (9). For (2), source data was modified before the X-Y Kalman filter was applied 

(constant speed Kalman filter). A measurement fusion was achieved in (4) by fusing ̂  

and  . 

SV trajectory

(X, Y)

̂,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ
YXYX aavvYX







 ~

,
~

,
~

POV trajectories

(7) Target point plot

(1) X-Y KF (SV)

(2) Constant speed KF

 ˆ

(4) Angular 

measurement fusion



1t

Road map, 

video

(6) Latency in GPS 

vs. radar data

2t


~

RDCW data

(9) X-Y KF (POVs)

(10) Conflict metrics 

calculation

Conflict metric analysis

(8) Track association

(3) Latency in GPS 

yaw rate vs. DAS 

yaw rate

YX ˆ,ˆ



ˆ

YX aa ˆ,ˆ

(5) Coordinate 

transformation
yx aa ˆ,ˆ

yx aa ,

rtRR ,, 

Radar Inertial Sensor

GPS

: Data flow

: Variable comparison

 
Figure 3.1 Flowchart of the conflict metric analysis. 
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The sampling rates of these variables were 4 Hz for (X, Y), 10 Hz for  , and 20 Hz for 

 rtRR ,,   and  yx aa , . Due to a lack of synchronization between the sampling rate of the 

DPGS (4 Hz) and the recording rate of the data acquisition system (DAS) (10 Hz), 

varying time steps were utilized. Alternatively, if more data points were needed, an 

integration scheme would be used for time update for when the GPS data were missing 

[54, 55], but in our analysis the GPS sampling rate is considered fast enough for the 

conflict metrics analysis.  

 

3.2 Trajectory Reconstruction for Subject Vehicles 

3.2.1 X-Y Kalman Filter 

Of three slightly different types of Kalman filters used in the trajectory reconstruction, 

the basic concepts adopted, such as Wiener process acceleration model, varying time step 

and backward sweep before forward sweep are employed in each of them. A common 

structure of such Kalman filters is summarized in Appendix C. 

 

The first Kalman filter is applied to (X, Y) in order to obtain position, velocity and 

acceleration estimates of the SV. The obtained states are denoted, XYX avvYX ˆ,ˆ,ˆ,ˆ,ˆ  and 

Yâ . This result has revealed that the position estimate error is negligible in the high speed 

region. The filter smoothes speed and acceleration, but there appears to be a slight time 

delay in the acceleration estimate. However, the overall results indicate a high level of 

correlation between the direct measurements from the speed sensor and accelerometer 

compared to those estimated from GPS measurements. 
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Figure 3.2 Results of the X-Y Kalman filter for the subject vehicle: trajectory (top), speed 

(bottom-left) and acceleration magnitude (bottom-right). 

 

3.2.2 Constant Speed Kalman Filter 

Although the trajectory estimation looks good on a large scale, estimating yaw angle ̂  

from the velocity estimate  YX vv ˆ,ˆ  causes a large heading error whenever vehicle speed 

is low – at low speed the following equation, used for the estimate, becomes ill-

conditioned: 

 

X

Y

v

v

ˆ

tanˆ 1 .         (3.1) 

 

As a result, a raw vehicle trajectory tends to possess a dense cluster of points in a small 

area, with values dominated by small errors.  
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Figure 3.3 Corrupted trajectory due to the low subject vehicle speed. 

 

 
Figure 3.4 Heading error due to the low subject vehicle speed. 

 

The “constant speed Kalman filter” is used to resolve this issue by assuming the vehicle 

moves at a constant speed on the left turn path. Essentially, this creates equally spaced 

points (e.g. 1 m apart between two adjacent points) to remove any cluttered dense regions 

(Figure 3.5 (a)). A fictitious time domain is used to run a constant speed vehicle which is 
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also equally spaced (e.g. 0.1 s of intervals). Then, using Equation (3.1) a new heading 

angle can be made. Consequently, after recovering the real time domain, the improved 

heading angle  ˆ  is obtained (Figure 3.5(b)). Figure 3.6 shows the speed estimate of the 

constant speed Kalman filter.  

 

 
(a) 
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(b) 

Figure 3.5 (a) Equally spaced points to avoid the heading error and (b) resulted improved 

heading angle. 
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Figure 3.6 Speed estimate obtained from filtering the equally spaced trajectory in the 

fictitious time domain. 

 

3.2.3 Latency Time Difference between the GPS and DAS 

Due to different modules used in the data processing for the GPS and DAS,  ˆ  (GPS-

based) and   (yaw rate sensor), which are the measurements selected to be fused for 

further heading angle improvement, contain distinct latency times. Therefore, the 

difference between these times (Δt1) needs to be estimated and   is to be shifted by Δt1 

to align both variables, i.e. the GPS time is used as datum time domain. 

 

The yaw rate is first derived from  ˆ , based on the fact that the curvatures of the SV path 

are the same for both of the fictitious and real time scales. Thus, 

ˆ  is given by, 
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Then, Δt1 is calculated by minimizing a cost function, that is, 

 

    21
1

ˆmin
1

tttf kk

N

kt



 

,      (3.3) 

 

where N is the number of sampling points in the left turn event. 

 

In the example event, the time shift between the GPS yaw rate,  
̂

, and the DAS yaw rate, 

 , was 0.45 s by which  
̂

 was delayed. By choosing the GPS time as the reference time, 

  was shifted by that amount to the right as shown in Figure 3.7. 

 

 
Figure 3.7 Result of the latency time estimation. 

Δt1 
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3.2.4 Angular Measurement Fusion 

The motivation behind the fusion process is that the GPS always gives an absolute 

position over the entire time range but tends to contain undesirable noise, while the yaw 

rate sensor gives a smooth curve but with a drifting error when it is integrated over time. 

The fusion is to provide a pooled estimate that improves either sensor used in isolation. 

The measurement fusion has been adopted here because of its superior performance to 

the state variable fusion with a smaller covariance [56]. 

 

Fusion starts with the measurements  ˆ  and   and the Wiener process acceleration 

model is again used for the angular motion in discrete-time as shown below: 
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The components of the measurement matrix C are  001KFC  and 

 010DASC  [57]. The fused measurement noise covariance is R=diag(RKF, RDAS) 

where RKF and RDAS are the individual measurement noise covariance. In Figure 3.8, it 

can be seen clearly that  ˆ  has been smoothed by the measurement fusion, particularly at 

the beginning of the event. More importantly, the time rate of change of these signals is 

consistent with the yaw rates measured on the vehicle. 
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Figure 3.8 Smoothed heading after the angular measurement fusion. 

 

3.2.5 Validation of the Fused Heading 

 As in the first part of the validation process, the fused heading angle,
~

, was examined 

by comparing it to the GPS-based heading,  ˆ , along with a comparison of the fused yaw 

rate, 
~

, with the DAS yaw rate,  . As the second part, an independent validation was 

based on the resolved acceleration components  yx aa ˆ,ˆ  being compared with those 

obtained directly from the vehicle-based sensor  yx aa , . In this second case, 
~

 was 

required to transform  YX aa ˆ,ˆ  in the global coordinate system into  yx aa ˆ,ˆ  in the local 

one. 

 

Figure 3.9(a) shows that the mean error in 
~

 vs.  ˆ  was 0.54 degrees and the standard 

deviation was approximately 2 degrees. The largest deviation occurred while the SV was 
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turning. In the worst case scenario, the error might be fully attributed to the estimation of 


~

 in the measurement fusion process, e.g. because of noisy data in the GPS. It is highly 

unlikely that the errors are all due to 
~

 but this does give a reasonable upper bound on 

the errors in the estimated heading angle. In any case, the remaining errors in the heading 

angle estimate will have some effect on the POV trajectory. As mentioned later, some 

further refinement of the POV trajectory will also be possible: the speed of the POV can 

be improved by using R  measurements and a wrongly directed heading angle for the 

POV can be corrected by using an appropriate extrapolation method in order for the POV 

trajectory to reach the intersection for reasonable results from the conflict metrics. In 

terms of the lateral position error, the deviation would be about 3.5 m for 2 degrees of 

heading error for the POV located 100 m away from the SV. At this stage we believe the 

heading angle estimates are as accurate as can reasonably be constructed from the 

available data. The following figures show examples of heading angle and yaw rate 

comparisons. 

 

 
(a) 
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(b) 

Figure 3.9 Comparisons of (a) fused heading vs. GPS heading (b) fused yaw rate vs. yaw 

rate from yaw rate sensor. 

 

For further validation, the coordinate transformation from the global to local coordinate 

system was achieved by, 
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Figure 3.10 shows that the coordinate transformation results reasonably represent each 

component of the SV acceleration. For the lateral components, it can be recognized that 

ya  was biased by about 0.5 m/s
2
 which might be a calibration error or the result of cross-

slope (since the SV was at rest in the beginning period). 
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(a) 

 
(b) 

Figure 3.10 Comparisons of (a) longitudinal and (b) lateral components of the Kalman filter 

based acceleration vs. those of on-board measurement. 
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3.3 Trajectory Reconstruction for Principal Other Vehicles 

3.3.1 Locating Target Points 

By using the SV trajectory reconstructed in Section 3.2, the target points detected by the 

forward radars were located on the two dimensional plane. The radars gave information 

about the target motion by R , R  and tr (range, range-rate and lateral deviation – a 

surrogate for azimuth (Figure 3.11). The radars on the test vehicle were installed behind 

the fog light on each side located at 0.65m away from the mid-point of the frontal edge, 

with the center line of the field of view (FOV) canted 3deg outward. Therefore azimuth 

angle   was calculated by the following equation, 

 

  L
c

t /1tan         (3.6)  

 

where 180/3,cos,65.0sin   RLR
c

t  and  R
r
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Figure 3.11 Geometry used in the azimuth calculation. 

 

The ISO coordinate system was used for both radars while the SAE coordinate system 

was applied to all other parts in the analysis. 

 

A resulting target point distribution is shown in Figure 3.12. In the figure, LF and RF 

indicate the radars on the left and right respectively and stationary objects (triangles) 



 

37 

detected by the radars were also plotted for use in the next section to remove the latency 

time difference between the GPS and radars. In this example, there were two vehicles 

confirmed by video observation: a truck in front of the SV and a POV approaching the 

intersection. Previously, Δt1 was used as an estimate for the latency time difference 

between the SV motion based on the GPS position and DAS, but it might not be the best 

choice – see the distorted POV trajectory in Figure 3.12. This result brought a need for a 

second adjustment of the time difference between GPS and radar timing. This issue will 

be discussed in the next section. 

 

 
Figure 3.12 Target point distribution and detected static (slow) objects by using Δt1 as the 

initial estimation of the latency time between the GPS and radars. 

 

3.3.2 Latency Time Difference in GPS and Radars 

It has been recognized that another latency time difference adjustment is needed, since 

this latency time difference is between the GPS and forward radar rather than the yaw 

POV trajectory 
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rate sensor. This issue was confirmed by both a scenario in which an SV was driven 

straight and going to stop at a red signal behind a car already stopped and waiting as well 

as the bent POV trajectory in Figure 3.12. The distribution of the stopped car was not 

condensed but stretched as if it had been moving with its direction being the same as that 

of the SV trajectory. Therefore, a second optimization problem is to be formulated in 

order to estimate another time shift Δt2. This issue can be treated similarly to the 

calculation of Δt1. However, the variable used here is the scattering of the target points 

which consists of stationary objects and the degree of the scattering of the target points is 

defined as the sum of the distances to the points of a stationary object from its geometric 

centroid. Therefore, for the j-th stationary object the cost function is defined as, 
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where (xj,k, yj,k) represented the k-th point in the j-th stationary object and (xj,c, yj,c) is the 

coordinates of the geometric centroid of the same object. Consequently, a multi-objective 

optimization problem is formulated for multiple objects, using the weighted sum method, 
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where wj is the weighting factor for the j-th stationary object and its value is defined as 

the reciprocal of the product of the average range jR  and number of points N in the 

object, i.e.  NRw jj /1 . 



 

39 

 
Figure 3.13 Result of the latency estimation by the multi-objective optimization to minimize 

the distributions of the static objects. 

 

3.3.3 Target Point Association 

The next step is to connect relevant target points to make POV trajectories. It can be 

achieved by the following 4-step procedure: 1) tracklet construction, 2) ambiguity 

resolution, 3) tracklet connection and 4) connection by kinematic variables. In the 

followings, the details of each step will be explained. 

 

1) Tracklet construction 

Tracklets were constructed on a one-time step basis using the following criteria – 

neighboring points are connected: 

 

Corrected POV 

trajectory 
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where ε’s are threshold values and 
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The target point IDs of the predecessor and successor to be connected with a point in the 

current time step are then stored in a connectivity matrix. Then, to fully reconstruct the 

trajectories, the breadth first tree search method is applied. At this stage, all candidate 

paths are retained. The conceptual scheme is represented in the tree diagram in Figure 

3.14. 
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Figure 3.14 Tree diagram reflecting connectivity matrix information and resulted candidate 

paths to be screened by the ambiguity resolution to find the most likely one. 
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2) Ambiguity resolution 

Possible split or merged segments produced by the tree search due to relatively loose 

threshold values for the connectivity criteria in the last step are eliminated by using the 

normalized distance squared (NDS) to the ambiguous node [58]. The ambiguous node is 

located at the point immediately after a split point or coincides with a merging point. The 

NDS was defined as, 

 

 jii
T

jiji ddd ,
1

,, ySy
         (3.11) 

 

where )1()(,  jjd iiji yyy . 

 

The last equation for dyi,j was the measurement residual and Si was the innovation 

covariance at the j-th point (ambiguous node) of the i-th segment. The ambiguous node is 

assigned to the segment which cause the smallest di,j. 

 
Figure 3.15 Detected ambiguous nodes.  

Ambiguous node 2 

(merging) 

Ambiguous node 1 

(merging) 

Ambiguous node 3, 4 

(splitting) 
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Figure 3.16 Ambiguity resolution. 

 

3) Tracklet connection 

Since an object might not be scanned at every time step, fragmented segments may occur. 

To resolve this, the same criteria used in (1) are adopted to connect split segments, but 

with an extended time range. When multiple choices are possible in the expanded 

admissible region, the ambiguity resolution described in (2) is employed. 

 

4) Connection by kinematic variables 

Speed between every two contiguous points in a segment was calculated geometrically 

using the target-point positions and, if there were any segments in which the speed was 

faster than a threshold value, the segment was separated at the points. This was continued 

until no separation was found. The issue which motivated the use of this filtering was that 

it was possible for target points from different objects while the SV is turning to be 

connected wrongly due to the lack of the angular speed of the azimuth. In other words, if 

there are points in distant locations for which R , R  and   of a point are close to those of 
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the other, they may be wrongly connected based on the methodology in the previous 

stage. There was one separation in the example case as shown in Figure 3.17. 

 

 
Figure 3.17 Segment separation by the speed filter. 

 

Similarly, the acceleration was utilized to search possible additional connections between 

the segments. It was also found geometrically in the same manner as in the speed filter. In 

addition, since a length of one time-step (0.1 s) was considered for searching the target-

point connectivity, it was expanded to a longer time period (e.g. 0.5 s). 

 

For a pair of segments to be evaluated for their association, two acceleration values were 

calculated by choosing the last point from the first segment and the first two points from 

the second for the first acceleration; then the last two points from the first segment and 

the first point from the second segment were selected for the calculation of the second 

acceleration. Then, the difference of these values was compared with a threshold value. 

In the example case, there was no segment associations found, so the following result was 

taken from another left turn event (Figure 3.18). 

Separated segment 
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Figure 3.18 Segment association by the acceleration filter. 

Associated segments 
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Finally, reconstructed POV trajectories made with the above methods are shown in 

Figure 3.19. This figure contains the result using the left radar only, since the right radar 

is not significant for detecting POVs which is on the left side of the SV before turning. 

However, the right radar is still useful for detecting stationary objects on the road side for 

the latency difference correction. 

 
Figure 3.19 Reconstructed trajectory of the principal other vehicle. 

 

3.3.4 X-Y Kalman Filter 

The X-Y Kalman filter can be used for the POVs as well as for an SV to estimate their 

position, velocity and acceleration in global coordinates. Sufficiently accurate position 

and speed of the POVs are crucial for conflict metrics analysis. As convenient measures, 

distance and relative speed between the SV and POV derived from their global variables 

(Kalman filter estimates) can be used to compare with R  and R . Results have shown 

that, despite a fairly accurate distance, the relative speed tends to contain large errors. 

This is due to insufficient data points available in the POV tracks, and the backward 

POV Trajectory 
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Kalman filter does not converge to appropriate initial estimates and state covariance for 

the forward Kalman filter. In order to resolve this issue, the velocity estimate is replaced 

with another velocity computed by the following equations using Kalman filter position 

estimate and R . 
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Since the current interest is only POVs on the other traffic before the SV turns, the POV 

heading angle is assumed to be   SVPOV . 

SV

POV


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POVv
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RR ,
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Figure 3.20 Orientations of the subject and principal other vehicles. 
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Figure 3.21 Modified results of the X-Y Kalman filter for the through vehicle with the 

alternative velocity. 

 

3.3.5 Extrapolation of Principal Other Vehicle Trajectory 

With the field of view of the forward radars (8 degree), the POV cannot be detected all 

the time while the SV is turning, but its future trajectory must be predicted for the 

conflict metrics. Extrapolation of the trajectory was achieved by assuming that the POV 

kept the velocity of the last point of the trajectory after it disappeared from the radar, with 

some adjustment made to keep the POV in its current lane. Such assumptions appear 

inevitable since the POV motion is not available once the SV has turned.  

 

As mentioned, a primary issue in the extrapolation process using the POV velocity is 

direction rather than speed- the final part of such POV trajectory may direct it off the 

road and cause a significant error in an extrapolated trajectory. Hence, for extrapolation, 

the magnitude of the velocity vector was used, and, for the direction, the POV was 

assumed to travel on an imaginary straight path which was created by connecting two 

points: the last point of the POV trajectory and a point defined at 3.6 m (typical lane 
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width) away from the left turn lane where the SV was located to the left of the SV in its 

lateral direction. This is illustrated in Figure 3.22. 

 

 

Figure 3.22 Extrapolated trajectory of the principal other vehicle. 

 

3.4 Example Result 

Figure 3.23 shows examples of completed trajectories in each of which an SV and two 

POVs drawn on an aerial map of an intersection. It can be noticed that vehicle trajectories 

did not fit in the traffic lane perfectly due to errors in the GPS and map data. Nevertheless, 

it seems fairly acceptable for conflict metric analysis. Besides, in terms of the relative 

positions between the SV and POV, the result shows an acceptable linear extrapolation to 

compensate for the error in the lateral position of the POV.  

3.6m 

Trajectory from 

radar data 
 

 

 

Extrapolated 

trajectory 
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Figure 3.23 Examples of reconstructed trajectories. 

SEMCOGID#81000125 

Rawsonville Rd@ Willis Rd 

Washtenaw County, Michigan 

 

Driver=8, Trip=165 

Start time=41000,  

End time=42000 

SEMCOGID#81000083 

Huron River Dr@Superior Rd 

Washtenaw County, Michigan 

 

Driver=39, Trip=25 

Start time=37000,  

End time=38000 

SEMCOGID#81000148 

M153@Prospect Rd 

Washtenaw County, Michigan 

 

Driver=39, Trip=42 

Start time=79000,  

End time=80000 
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Chapter 4 

Conflict Analysis 

 

 

4.1 Leading Buffer and Trailing Buffer 

The LB and TB are calculated at distinct conflict points as mentioned earlier, but the 

computation schemes are exactly identical (see Section 4.2.2). Moreover, the LB/TB is 

analogous to the GT [7, 8] representing the “spare time” between the two vehicles. A 

significant advantage of the LB/TB over the GT is its way of predicting the SV speed. 

Although the original definition of the GT states that it can be used for both cases when 

the SV crosses first and second [7], its use of constant speed assumption can cause an 

infinitely large estimated time if the SV speed is very low. An alternative way to estimate 

the SV motion is based on a nominal acceleration and speed [4]. In this study, the 

reference speed profile (Uref) is an experimentally derived speed profile by averaging 

available “free turns” (meaning that the SV turns without being forced to stop by a POV, 

signal and/or pedestrian). It is to be found for each direction of a left turn for an 

intersection. It is intended to predict the time reasonably from any SV speed (see Section 

4.2.1). The varying conflict point location depending on the vehicles’ configuration 

(Figure 1.2) is also a benefit adopted in the LB/TB. Caution must be taken; both the LB 

and TB must be calculated for all approaching POVs until finding a pair of POVs 

between which the SV will make a left turn with an acceptable gap in order to find which 

conflict point represents the more critical measurement for each POV. Example 

applications of the LB/TB are discussed in Section 4.5. 
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4.2 Calculation of the Leading Buffer and Trailing Buffer 

4.2.1 Reference Speed Profile and Predicted Speed Profile 

For the SV, the reference speed profile, Uref, represents a free turn motion. It is created by 

averaging actual free turns with no conflicts where, even if they exist, the first POV will 

still take a long time to reach an intersection. By considering potential effects from 

intersection geometry, Uref is made for each intersection and each direction within the 

intersection. The resulting Uref is a function of position only along a left turn path with an 

origin located at the stop bar on the original road where the SV is located before making 

a left turn (Equation (4.1) to (4.5)).  
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where s is the path coordinate of the SV, p1, p2, q1 and q2 are shape parameters, Uth is 

threshold speed, sc1 is the abscissa of the intersection between f1 and f2 and sc2 is that 

between f2 and f3. 
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Figure 4.1 Preparation of the reference speed profile. Free turns at a single intersection 

from data (top), and averaged speed profile and its curve fit result (bottom). 

 

As a result, the predicted speed profile, Upred, can be constructed by using Uref in the 

following equation. 

 

     
ref

ssk
refpred UesUkssU 

 02)(; 010       (4.6) 

 

where s0 is a SV position at which the LB/TB will be computed and k1 and k2 are 

parameters. The first parameter is set to the speed at s=s0 (i.e. k1= U(s0)) so that the 

coefficient of the exponential part specifies the speed difference at that point (s=s0) and 

the second parameter is a constant (e.g. k2=0.3). This function converges to the Uref 

exponentially to compensate for speed deviation and to provide a predicted speed profile. 

It is to be updated at each location on the SV path. Figure 4.2 shows that an example 

Upred curve was found using the initial SV location along a time axis. 
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Figure 4.2 Example of the predicted speed profile. 

 

For POVs, it is considered rather trivial since they are unlikely to change their speeds 

greatly. Therefore, the speeds of POVs have been assumed to be constant. 

 

4.2.2 Application of Predicted Speed Profile 

The Upred explained above is used to predict TC(SV) (time when the SV is arriving at the 

conflict point for an LB case or leaving that point for a TB case) and can be computed by 

integrating the inverse of Upred along s; 
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where s0 is the longitudinal track coordinate at t (time of LB/TB computation) and sC and 

tC are those for the SV at the conflict point. TC(POV) can be calculated in a similar way, but 
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the result becomes a straight line because of the POV trajectory extrapolated using a 

constant speed as mentioned in Section 4.2.1. Therefore, 

 

 

POV

POVC
U

tD
tT )()(         (4.8) 

 

where D(t) is the length of the path between the POV and conflict point at the time of 

LB/TB computation and UPOV is the POV speed, that is constant. The LB/TB can be 

calculated now by the equation 

 

   tTtT
SVCPOVC )()(

LB/TB  .       (4.9) 

 

where the value is defined to become negative if a left turn scenario is an LB case. 

 

It is worth clarifying the relationship between the order of the SV’s crossing 

encroachment zone and the LB/TB. Although the terms “TB (or LB) case” and “SV 

crossing first (or second)” can be used interchangeably, the LB and TB can be computed 

for either vehicle configuration in Figure 1.2. It is a matter of fact that the TB is the more 

significant measurement than the LB in the case of the SV crossing first and the LB is the 

more suitable conflict metric than the TB in the other case. In this case, the sign of a non-

significant measurement would be opposite if it were a significant one. In practice, both 

measurements are to be computed, since which measurement is more important than the 

other is not known in advance. 
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4.3 Post Encroachment Time for Accuracy Check 

The Post Encroachment Time (PET) is now computed using the vehicle trajectories 

reconstructed from the driving data, and distributions from the results are to be shown for 

all detected left turns with POVs. Further analysis will be undertaken to see which factors 

influence the PET distributions. Attention is limited to factors that are directly available 

in the objective data: POV speed and driver types. Other factors may be of interest, 

including the size of the oncoming vehicle, visibility and road condition; but these factors 

are not directly available in the driving database and will not be analyzed here. 

4.3.1 Overall Post Encroachment Time Distributions 

Among the unprotected left turn events mined from the naturalistic driving database 

(RDCW-FOT) (Table 2.4), 530 through POVs were involved which confirmed those left 

turn events as unprotected LTAP/OD scenarios at signalized intersections. A distribution 

of the PET is shown in Figure 4.3 for each of the cases of the SV crossing first and 

second. Since the detections of POVs were made relatively to the SVs in the trajectory 

reconstruction, which were often not completely stationary even when they turned second 

after a POV, the resulted POV motion can contain larger error than another setup where 

fixed radars are used at selected intersections. Nevertheless, at the 20th percentile of the 

distributions in Figure 4.3, the PETs for the crossing first and second cases are 2 s and 

1 s respectively which are the same as those reported in another research using site-

based radars at selected intersections [9] and would be considered as critical spare times 

for typical left turns in the LTAP/OD scenarios.  
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(a) 

 
(b) 

Figure 4.3 Cumulative percentage of the post encroachment time: (a) subject vehicle crosses 

first and (b) second. 
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4.3.2 Effect of Principal Other Vehicle Speed 

It is expected that driver acceptance of an available gap varies depending on the POV 

speed due to a potential increase of the threat level the driver feels as the POV speed 

increases. Figure 4.4 shows distributions for different speed ranges. Since a speed limit of 

each road is unavailable, actual POV speed was used to classify the left turn events into 

two sets with slow and fast POVs respectively. A threshold speed to distinguish slow and 

fast POVs was set to 30 mph or 33.13 m/s. Clearly, the ratio of the number of positive 

PETs to the number of negative PETs in left turn events with fast POVs is less than that 

in the events with slow POVs. For the distribution made for slow POVs, 9.41 % is 

attributed to the SV turning first. On the other hand, 5.17 % accounted for the SV turning 

second for the fast POVs. 

 
(a) 
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(b) 

Figure 4.4 Histograms of the post encroachment time for different speed ranges of principal 

other vehicles: (a) slow and (b) fast. 

 

4.3.3 Age and Gender Effects 

Figure 4.5 shows separate PET calculation results for younger, middle and older age 

groups, and Figure 4.6 for male and female groups. In both cases, no clear difference can 

be observed. Of course, error in the results can be a reason for this, but there could be 

other factors related to the drivers’ ability to estimate the gap accurately and vehicle 

control skill. For example, previous studies showed that human drivers consistently 

underestimated the TTC [59-66], and the degree of underestimation is the largest in the 

older driver group [67, 68]. However, this fact did not result in larger PET values which 

correspond to safer decisions. Instead, the threshold of the accepted PET for the older 

drivers is not different from the other age groups’. In fact, the crash rate among older 

drivers is not significantly less than among the other age groups [1]. In [65], it is said that 

the lack of the potential beneficial outcome of reducing the number of accidents in which 

older drivers are involved occurred because the underestimation of the approaching 
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vehicle is irrelevant to the judgment of whether a potential collision would occur or not. 

Alternatively, driving ability is considered to affect gap acceptance behavior [66] in 

which it was observed that the older drivers selected a larger gap between two POVs in 

left turn into path (LTIP) events due to slower speed than the other age groups. Although 

our study focuses on the LTAP/OD scenarios only, a similar gap acceptance tendency 

may exist since it is required to estimate the time taken to clear the encroachment zone 

for the self vehicle. Table 4.1 shows the mean and standard deviations of the maximum 

lateral acceleration in left turns calculated for each age/gender group as a brief measure 

of the speed selections of the drivers during driving in intersections. The mean values 

consistently decreases across the age groups. It indicates that older drivers select slower 

speeds in an intersection compared to younger drivers. It could be implied that an 

underestimated time to arrival of a POV by an older driver is cancelled out by the time of 

exiting the encroachment zone to have the same PET as younger drivers. 
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(a) 

 
(b) 

Figure 4.5 Distributions of the post encroachment time by age: (a) male and (b) female. 
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Figure 4.6 Distributions of the post encroachment time by gender. 

 

Table 4.1 Average maximum lateral acceleration in left turns by age and gender. 

 Younger Middle Older 

Male 
μ [m/s

2
] 3.80 3.64 3.36 

ζ [m/s
2
] 0.84 0.67 0.54 

Female 
μ [m/s

2
] 3.68 3.08 3.18 

ζ [m/s
2
] 0.72 0.67 0.54 

 

4.4 Buffer Bands for Multiple Principal Other Vehicle Cases 

If there is only one relevant POV, the significant conflict metrics will be the TB. This is 

because it is a relatively simple task for the SV to cross the encroachment zone after the 

POV without causing a collision. In this case, the LB might be used only to determine 

when a warning by the assistance system should be turned off. On the other hand, if there 

are multiple POVs, the LB needs to be evaluated as well as the TB because it is crucial to 

establishing suitable gaps for a safe left turn between POVs of a particular pair. In this 
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section, the buffer band is introduced. With these concepts, available gaps between POVs 

can easily be visualized for the purpose of finding an acceptable gap. There are a few 

important facts about the LB/TB; 1) the LB must be negative if the SV crosses second, 2) 

the TB must be positive if it crosses first, and 3) TB is always smaller than the LB when 

computed for any single POV (this can be proven easily by computing the difference, LB 

minus TB, using times to reach or leave the conflict point of the vehicles for any 

configuration of the SV and POV as long as the assumptions in Section 1.2 are 

maintained). As a result, the following relations hold; LBTB0   for the case of the SV 

crossing first and 0LBTB   for the other case. Consequently, the buffer band is 

created by the LB curve (upper bound) and TB curve (lower bound) for each POV, and 

the SV is unable to start a left turn when the condition, LB0TB  , is true. In other 

words, a left turn is achievable only when both have the same signs. 

 

For a multiple POV case, if there is an enough gap between two POVs with which a safe 

left turn can be expected, the conditions for this situation are,  

 









 TB1

LB

TB

LB

i

i
, )11(  ni .      (4.10) 

 

where n(>2) is the number of approaching POVs, LBi is the LB of the i-th POV, TBi+1 is 

the TB of the (i+1)-th POV which follows i-th POV, ΔLB(<0) is that for maximum 

acceptable LB and ΔTB(>0) is a threshold for minimum acceptable TB. As a result, a 

relationship, TBi<LBi<0<TBi+1<LBi+1, holds for an acceptable gap. The band gap 

between the buffer bands of the two POVs lies across the horizontal line at the ordinate of 

0 s on the predicted-time vs. time plot. 

 

∆LB and ∆TB are crucial parameters in the intersection assistance system since safety 

judgment is directly affected by these values as shown in expression (4.10). However, a 

result of the LB/TB calculation always contains an error, so it is required to adjust ∆LB 

and ∆TB properly so as to minimize the effect of the error between PET and LB/TB on the 

assistance system performance. This issue is the main objective in Chapter 6; virtual free 
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left turn events with POVs created by the Monte Carlo simulations are used for which it 

is evaluated how accurately LB/TB can judge whether the events are safe or unsafe by 

comparing with their PET values. Then, system parameters are tuned to optimize the 

system performance for relevant design criteria. 

 

4.5 Example Events 

In the following, two examples with multiple POVs are considered. The first example 

contains two POVs. The SV turns between these POVs. In the second example, there are 

also two POVs, but the SV makes a left turn after both POVs leave the encroachment 

zone. In both examples, we assume thresholds 1LB  s, 2
TB
 s and hence the 

difference between these threshold is 3 s, which represents the thickness of the prohibited 

area across which the buffer bands cannot lie when the SV turns left. 

 

In the first example, the PET of the POV1 (leader) was 9.3 s and that of the POV2 

(follower) was 32.1 s. At s1.17t , at which the POV2 was detected, 67.3LB
1

 s 

and 34.1TB
2
 s. Thus, 

LB1
LB  , but TB2 did not satisfy the second condition in 

expression (4.10). Consequently, although the SV actually turned between these POVs, it 

would have been advisable to have made the turn earlier, if possible; given the “late start” 

of the executed turn, and the parameters assumed above, the assistance system would 

naturally have advised against making this particular left turn. 
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Figure 4.7 Buffer bands for two principal other vehicles (Example 1). 

 

In the second example, both POVs crossed the encroachment zone earlier than the SV, so 

PET values of POV1 and POV2 were 91.1 s and 32.0 s, respectively. In Figure 4.8, a 

noticeable difference from the last example can be seen in the overlapping region. This 

indicates the SV could not turn between these POVs since it is impossible to satisfy both 

of the conditions in expression (4.10). As a result, the SV crossed the encroachment zone 

after both the POVs did. At the initial time ( 01.1t s), the union set of the two buffer 

bands spread from 57.2 s to 41.1 s – crossing the zero time and hence making the turn 

infeasible (Figure 4.8). As the SV waited, the whole band shifted downward until it 

became completely on the negative side at 06.4t s. The SV started turning about 

8.4t s as indicated by the change of the slope of the LB2 curve and reached the conflict 

point at 54.6t s with 32.0PET  s as described above. 

 

POV 1 

POV 2 
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Figure 4.8 Buffer bands for two principal other vehicles (Example 2). 

 

These two examples indicate a plausible analysis method for setting true gap acceptance 

where the gap is to be between a pair of POVs, not just a gap time relative to a single 

POV. In congested traffic conditions this is an important consideration, especially as the 

existence of a steady stream of oncoming traffic naturally leads drivers to look for gaps 

and potentially take risks to avoid what are perceived as excessive delays. Objective 

information on gap feasibility would undoubtedly help the driver, particularly if this 

information were available early to allow smooth execution of the turn. 

 

4.6 Effect of Intersection Geometry on Reference Speed Profile 

It may be reasonable to anticipate that the turning time varies depending on the 

intersection geometry since it affects the length and curvature of a turning path. In this 

section, a possible relationship between parameters for the intersection geometry and 

those for the reference speed profile is investigated. 

 

POV 1 

POV 2 
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The size of an intersection is specified by the lengths of segments connecting the 

intersection node and stop bar node and the shape is defined as the angle made by those 

segments. In Figure 5.4, point A is a stop bar node on a road on which the SV is initially 

located, point B is a stop bar node of the other road onto which the SV is turning, and 

point C is the intersection node. The length d1+d2, the sum of the lengths of segments AC 

and BC, is selected to indicate the intersection size, and the angle δ is the angle between 

those segments to represent the shape of the intersection. 

 

d1

d2

δ
A

B

C

Left turn path

 
Figure 4.9 Intersection geometry. 

 

Figure 4.10 shows relationships between the parameters for the reference speed profile, 

p1, q1, and Uth and those for the intersection, d1+d2 and δ. Note that p1 and q1 are 

acceleration values in the deceleration and acceleration phases during a left turn. 

 

Contrary to the original expectation, neither the size nor shape of the intersection shows a 

clear and direct relationship to the parameters in the reference speed profile except for Uth, 

which becomes larger as d1+d2 increases or δ decreases. While it might be concluded that, 

within the range of intersections considered, the turning vehicle follows a uniform 
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reference speed profile, it is also clear that the variations in the parameters are large 

compared to the mean. These variations could be arising from sampling errors (since in 

many cases the samples are small), or from other factors such as road class, traffic 

density, presence of pedestrians, road roughness, lane marking quality etc. Most likely, 

both sources of variation are present, so the approach taken is to treat each intersection 

(and indeed each turning movement within that intersection) as a distinct case that 

requires the construction of a unique reference speed function. 

 

 
(a) 
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(b) 

Figure 4.10 Relationship of the reference profile parameters with intersection geometry: (a) 

the intersection size and (b) shape. 
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Chapter 5 

Driver Model for Intersection Left Turns 

 

 

5.1 Overview 

In this chapter, the driver model including both the longitudinal and lateral controls is 

constructed. The speed control model is based on the anticipated acceleration reference, 

â , which is computed solely from visual preview information. The relationship between 

â  and resulting vehicle accelerations are studied for both stopping and turning events 

using the naturalistic driving data. It unifies the two types of risks in controlling speed, 

braking to rest at the stop bar and turning left, by monitoring them at their respective 

preview points. A closed-loop model without the lateral control is used to tune the model 

parameters. The lateral control is based on a path following model in which a desired 

path to be followed is predetermined (Section 5.5). The driver cue for the control is the 

yaw rate error between the vehicle yaw rate and desired yaw rate at the preview point 

found from the visual cue. 

 

In the following sections we define the anticipated acceleration reference (AAR), which 

may be based on lateral acceleration (AAR = yâ ), longitudinal acceleration (AAR = xâ ) 

or in some combined form â . Detailed analysis of AAR and its contribution to a closed-

loop control model are conducted. Section 5.2 focuses in more detail on the overall speed 

control model, and the concept and definition of AAR. In Section 5.3, AAR time-

histories are extracted and analyzed for both straight-line braking to rest and for making 

intersection left turns. In Section 5.4, system identification is conducted, optimizing 

closed-loop simulations against measured driving data; in this way real-world parameter 

ranges are determined. Section 5.5 shows Monte Carlo simulations using a full simulation 
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model which is enhanced to include a detailed vehicle model and steering control of the 

driver in addition to the speed control. Section 5.6 summarizes additional important 

characteristics of left turning drivers and briefly considers the possibility of extending 

AAR to model speed control in curves. 

 

5.2 Speed Control Based on Anticipated Acceleration Reference 

As mentioned above, for unprotected intersection left turns, the driver is aware of two 

possible outcomes – braking to rest if there is no sufficient gap (or if the signal changes 

to red), or reducing the speed to be low enough to attempt the turn. During the 

intersection approach, both outcomes may be anticipated simultaneously. Perception of 

acceleration is a primary factor relevant to speed choice; for example, the human drivers 

accept higher lateral accelerations in a fixed-base driving simulator compared to a 

motion-base counterpart [32]. Here it is a basic modeling hypothesis that speed control 

during the approach to an intersection is directly related to anticipation of lateral or 

longitudinal acceleration. It is assumed that this reference is repeatedly updated based on 

current speed and distance information, and is also defined in a way that is common to 

both stopping and turning. The need for a suitable reference is clear – it enables a driver 

to avoid excessively high speed leading to severe braking or turning to avoid collisions 

with other vehicles or fixed obstacles. On the other hand, excessively slow approach 

speed causes delay, possible frustration for passengers, as well as for drivers of following 

vehicles.  

 

We classify a left turn into three stages: (a) approach stage, where speed is mostly 

reduced and lateral accelerations are small (b) turn stage, where lateral accelerations 

dominate over longitudinal accelerations, and (c) the exit stage when forward acceleration 

in positive and path curvature is progressively reduced. As mentioned above, the 

anticipated acceleration reference (AAR) takes account of the possibility that either a turn 

is made or the vehicle is to be brought to rest – simultaneously addressing potential 

longitudinal and lateral conflicts. One or both of the anticipated accelerations may be 

active in the control loop at any time t, and we denote this by )(ˆ ta . 
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Figure 5.1 shows a block diagram of the overall longitudinal control system. Here the 

vehicle is simply represented as a pair of integrators (“longitudinal vehicle dynamics”) 

with input equal to the applied acceleration; this simple model is considered sufficient for 

identification and validation of the driver model. On the other hand, for detailed 

simulation a more realistic model will be used in Section 5.5. The driver’s control signal 

xu equals the rate of pedal motion (brake or accelerator pedal) which conveniently 

assigns 0xu  when speed is kept constant. The saturating integrator converts pedal 

motion to applied vehicle acceleration, taking account of limited friction and engine 

power. 

 

Longitudinal 

Vehicle Dynamics

Us,

Kx

xu

â

+
−



),,( Usf

xa

des
xa

Driver

Target point on road

Saturating 

Integrator
se 

 ag ˆ

Lateral Vehicle 

Dynamics

speed control modelâ

 
Figure 5.1 Block diagram of the closed-loop model. 

 

The upper half of the driver control block (“driver”) is simply a proportional gain xK  

combined with a time delay  , having transfer function se  . In the lower half is the 

speed control model which outputs a desired longitudinal acceleration des
xa ; the 

difference between this and the forward acceleration xa  from the vehicle is fed back into 

the proportional gain and time delay. The sub-model for desired acceleration, 

),ˆ( y
des
x aaga  , determines how quickly the driver wishes to respond to changes in 

anticipated acceleration (and current lateral acceleration ya , where relevant); this is 
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formulated in Section 5.4. Now we focus on the anticipated acceleration sub-model for 

AAR, ),,(ˆ  Usfa . 

 

AAR is initially defined based on anticipation of making a future turn, given the current 

vehicle speed U. The expression for â  includes s to represent the longitudinal position of 

the vehicle on its path. The severity of the turn is represented by the change in heading 

angle,   Q , between the current value   and a future value Q ; Q is the 

driver’s chosen target point (Figure 5.2). For a left turn at a simple 4-leg intersection we 

expect 90  Q , assuming the target point is chosen close to the exit of the 

intersection and the target direction is parallel to the exit road. However, the model will 

also use smaller values of  , especially if the vehicle has begun to turn and the target 

point is somewhere near the apex of the turn. Q is notionally the gaze point where the 

driver directs his or her visual attention, and this is expected to be updated, especially 

during the turn phase. Based on an assumed constant rate of turn (Figure 5.2) we easily 

obtain the equation: 

 

 
d

U

R

U
ay

2/sin2
ˆ

22 
        (5.1) 

 

where PQd  is the distance to the target point and R is the radius of turn. Here d 

depends on position s and the strategy adopted by the driver for selecting Q. For 

simplicity we assume that the driver selects Q so that a constant radius path is feasible or 

reasonably anticipated. Note that this definition of AAR is determined by immediately 

available visual information; it requires no predictive analysis (e.g. prediction of speed 

changes or estimating future vehicle motion) and is available even when the vehicle is 

being driven on a straight line path – it is only necessary to anticipate turning, by 

selecting a target point, for its use to be feasible. 
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Figure 5.2 Geometry for â  calculation based on circular path and constant speed. 

 

Equation (5.1) requires no complex analysis of vehicle dynamics or prediction of 

combined slowing and turning. There is no expectation that the driver actually computes 

this formula; since it is simple and kinematically-based, it is reasonable to assume a 

driver builds a corresponding associative map between the visual stimulus derived from 

),,( dU   and the following response yâ , based on repeated experience, including 

driving through curves and through experience as a passenger. Equation (5.1) is then a 

mathematical expression approximating such a map. 

 

There is a similarity between this expression for yâ  and the required deceleration for the 

simpler case of speed control for braking to rest. In [36] Levison presents a stopping 

distance model where the driver is assumed to predict the constant acceleration required 

to brake to rest. In this case the required acceleration becomes a longitudinal acceleration 

reference 

 

d

U
ax

2
ˆ

2

 .         (5.2) 

 

The same reference was previously shown to be applicable to straight-line braking by Lee 

[69], in this case based on the concept of a constant “tau-dot” strategy. In the present 
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paper, equations (5.1) and (5.2) are interpreted in a consistent manner: the driver is 

presumed to react and reduce speed once the anticipated acceleration (or deceleration) 

reaches a critical limit, and brake pedal effort is continuously modulated to prevent â  (i.e. 

xâ  or yâ  as appropriate) exceeding this limit. Again, the learning process for equation 

(5.2) is presumed to be similar to that of equation (5.1) – based on visual preview and 

learned over many similar events. Comparing (5.1) and (5.2), the two reference 

accelerations become equal for a particular change in yaw angle: 

 

 
 

d

U

d

U

2

2/sin2 22




       (5.3) 

 

or 

 

 29)arcsin(2
4
1

0 d       (5.4) 

 

When considering the intersection approach stage, we assume that both AAR values are 

monitored simultaneously by the driver, though only one should be active in the control 

loop. If one AAR reference renders the other irrelevant (e.g. stopping is possible so speed 

can be sufficiently reduced for turning) we say it is dominant. We also assume that the 

gaze point for stopping (expected to be near the stop bar) and turning (expected to be 

closer to the planned intersection exit) may be different, and denote them as xQ  and yQ  

respectively. 

 

For heading angle changes less than 29 , deceleration based on yâ  can be less severe 

than for stopping, while for  29  the dominant strategy is to act as if braking to rest 

is required. During the initial approach to a typical intersection, we expect the latter case 

to hold (target points, or expected “gaze points”, for stopping and turning are close 

together and  29 ). Later, in close proximity to the turn, the target point yQ  may 

be further away than xQ . As long as yx aa ˆˆ   no firm decision is required from the 



 

75 

driver; since stopping is feasible, speed can be reduced to zero, and therefore made 

sufficiently small to eventually complete the turn. However, at a crossover point, where 

yx aa ˆˆ  , it becomes necessary to commit to turning or stopping; higher speeds can be 

maintained for turning than for stopping and (assuming there is no obstacle to turning) 

yâ  provides the dominant strategy. 

 

Thus, we propose there is a switch in driving mode, from approach stage to the turn stage, 

at the crossover point where the values of xâ  and yâ  are equal. In Section 5.3, we test 

this idea using naturalistic driving data. To be specific, yQ is selected at a pre-defined 

location, where the vehicle path reaches the lane centre adjacent to the stop bar of the exit 

road; 
yQ  is defined by the direction of the exit road. On the other hand, xQ is obtained 

by a best-fit procedure: it is placed at the stop bar of the entry road, and then the precise 

location is adjusted to minimize the difference between the maxima of || xa  and xâ  

during the approach stage.  

 

Additionally, the second driving mode switch, from the turn stage to exit stage, is 

assumed to be at the point of maximum curvature in the naturalistic driving data. 

Equivalently, for use in the closed-loop simulation model (Section 5.5), switching takes 

place when the steering angular velocity is reversed. The exit stage is included for 

completeness, and is not reliant on the AAR model. 

 

The point of the second mode switch was selected from three possible variables: 1) point 

of maximum curvature, max|c|, 2) maximum yaw rate, max|r|, and maximum lateral 

acceleration, max|ay|. For each of these, the offset values were measured from manually-

detected exiting points of actual free left turns. Each of the manually-detected exiting 

points was found at the point at which 0xa m/s
2
 after starting to release the brake pedal. 

Resulting distributions (Figure 5.3) show that the one with respect to max|c| location has 

the sharpest and the closest peak to 0 m. Therefore, max|c| was selected as the onset point 

of the exit stage. The mean and standard deviation are 19.0 m and 13.6 m, respectively. 
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Figure 5.3 Distributions of offsets of selected measurements for the exit stage. 

 

5.3 Calibration of the Speed Control Strategy 

In this section the full speed control model of Figure 5.1 is not used; rather the reference 

â  is computed directly from the naturalistic driving data to test whether it is suitably 

controlled by human drivers, and hence can be validated as a plausible control reference. 

5.3.1 Braking to Rest 

Figure 5.4 shows a comparison between xâ  and vehicle longitudinal acceleration xa  for 

an event involving braking to rest at the stop bar for a red traffic signal. In this example, 

there was an initial coast-down deceleration of 0.5 m/s
2
 due to aerodynamic and other 

drag effects, followed by actual braking at around m107s . Braking started when xâ  

reached approximately 45.1 m/s
2
 and it can be seen that xâ  was regulated between an 

upper bound ( 7.1 m/s
2
) and lower bound ( 4.1 m/s

2
) until the vehicle speed became slow 

near the stop bar. These upper and lower bounds were determined as the maximum and 



 

77 

minimum decelerations respectively between the time of first brake application and the 

time when the vehicle was within 5 m of the final stopping location. The last 5 m before 

stopping was excluded since the control of speed and acceleration are highly variable in 

close proximity to the stopping point. It is especially important to note that while the 

reference xâ  is controlled within tight limits the actual vehicle acceleration fluctuates 

considerably. This suggests that xâ  is a plausible control reference, while other dynamics 

may generate larger variations in actual vehicle response. Similarly, even though 

equation (5.2) is derived from constant decelerations, the vehicle deceleration is far from 

being constant at all times. The example shown is typical of many straight-line braking 

events, but it should be noted that there exist individual cases do not fit the model so well. 

We return to the question of driver variability and goodness of fit when considering the 

full model for intersection left turns (Section 5.4). 

 
Figure 5.4 Vehicle acceleration 

x
a  and anticipated acceleration xâ  for an event of braking 

to rest. (note: for consistency, â  is shown positive) 

 



 

78 

5.3.2 Intersection Left Turns 

For a selected left turn event, Figure 5.5 shows an aerial photograph of the intersection 

and the measured vehicle trajectory; review of video recorded from an onboard camera 

confirmed the absence of other traffic etc. that might bias the speed control. The circle 

shows the assumed location of xQ  (target point for xâ ) and the triangle denotes the 

assumed position of yQ  located next to the stop bar. In addition, the squares indicate the 

start and end locations of the turn motion, defined as the interval when yaw rate r 

satisfies the condition 1.0r rad/s. 

 

 
 (a) 
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 (b) 

Figure 5.5 Example intersection left turn: (a) aerial photo of the intersection and (b) free 

turn vehicle path with the path boundaries. (○: first gaze point, : second gaze point, ×: 

point of maximum curvature,  = left turn start and end locations) 

 

Figure 5.6 shows the traces of xa , ya , xâ  and yâ  for this event, with path longitudinal 

distance s used as independent variable. The markers are the same as for Figure 5.5, with 

the addition of the diamond to show the crossover between xâ  and yâ . The approach 

stage is based on the same model as the braking-to-rest event as shown by xâ . It can be 

confirmed that the trend in xâ  is very similar to that in Figure 5.4, i.e. xâ  saturates at a 

value close to the actual peak deceleration value. As seen in the figure, in the approach 

stage, xâ  is dominant until the crossover is reached at 53s m, which closely 

corresponds to the timing of releasing the brake pedal. Then, the “threat” from yâ  

becomes dominant and the turn stage starts with the speed control based on yâ . Finally, 

the exit stage begins at the × located at about 82s m. In the figure, xâ  and yâ  become 

indeterminate close to their respective gaze points, and the computation shows this 



 

80 

tending to infinite values; neither case affects the control and for clarity the limit points 

are shown at 0ˆ a . 

 
Figure 5.6 Acceleration plots for a left turn event. 

 

5.4 System Identification and Validation of the Speed Control Model: Closed-loop 

System Dynamics 

In this section we complete the definition of the full speed control model of Figure 5.1 

and apply parameter optimization to estimate model parameters. The MATLAB
®
 

function fminsearch was used to minimize the sum of squared errors between the speed 

responses from the simulation and driving data. Two example cases are presented for 

each type of maneuver, braking to rest and left turn, and further results are analyzed from 

a larger event set. 

 



 

81 

5.4.1 Feedback Control Model 

To support parameter estimation and validation, the simple vehicle model from Section 

5.2 is included, while a measured trajectory is used to constrain the degree of freedom of 

lateral motion. Referring to Figure 5.1, the inner loop includes the driver delay, 2.0 s. 

The desired acceleration des
xa  is derived from â  via a piecewise-linear control function 

g(.) in the outer feedback loop. This is essentially a proportional control, but includes 

saturation at the upper and lower limits. For the approach phase it assumes the driver has 

lifted the accelerator pedal, generating a gentle coast-down deceleration 0a . As shown in 

Figure 5.7, when â  exceeds a certain threshold, lb , des
xa  decreases below 0a  and the 

brakes are applied. Proportionality holds until an upper bound ( ub ) on â  is reached, at 

which point the demand is saturated, limiting the maximum braking effort to a level the 

driver is assumed comfortable with. Similar functions are used for the approach and turn 

stages, though for the turn stage positive values of des
xa  can be required, and the driver 

may react to both actual and anticipated lateral accelerations, so the input variable 

),ˆmax( yy aa  is used in place of yâ  – see Figure 5.7. To best match the data, independent 

parameters are used according to the two stages. 

des
xa

â1lb 1ub

1refa

O
0a

des
xa

 yaa,ˆmax

2lb
2ub

2refa
O

2refa

 
(a)      (b) 

Figure 5.7 Nonlinear control function g(.): (a) the approach stage and (b) turn stage. 

 

Coast-down decelerations is obtained from a polynomial function 

 

   2
3210 UcUccUa         (5.5) 
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This accounts for deceleration due to engine torque when the accelerator is not depressed, 

as well as rolling resistance and aerodynamic drag. Model parameters are determined by 

least-squares fitting to several events (all using the same vehicle type) to obtain:  

-2
1 ms2.105c , -1

2 s70.16c  and -1
3 m4789.0c .  

 

For completeness, speed control is applied at the exit stage, but this is not a primary focus 

of this paper; in fact â  and ya  both tend to zero as the vehicle completes the turn, so 

additional driver attributes determine behavior in this third stage. For the exit stage a 

constant desired acceleration is assumed: 

 

 3aades
x           (5.6) 

 

All initial conditions for simulations (position, speed and acceleration) were obtained 

directly from the driving data at the start time of the chosen event. 

 

5.4.2 Braking to Rest at Stop Bar 

Two example cases were analyzed, and resulting parameter values are given in Table 5.1; 

corresponding plots are shown in Figure 5.8 and Figure 5.9. The horizontal lines in 

Figure 5.8(c) and Figure 5.9(c) specify the locations of ub  and lb . It is worth noting that 

ub  and lb  are the model parameters mentioned in Section 5.4.1 and are not expected to 

coincide with the upper and lower bounds of Figure 5.4. In a braking to rest scenario, 

only one speed control mode exists, i.e. the approach stage, so Table 5.1 comprises a 

reduced set of parameters. As shown in the figures, the model can fit the data very well. 

In these results, â  is controlled around 5.1 m/s
2
 and 1.1 m/s

2
 respectively until the release 

of the brake pedal is initiated. 
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Table 5.1 Driver parameters for braking to rest. 

Symbol Quantity 
Value 

Ex. 1 Ex. 2 

xK  [s
-1

] proportional gain 0.723
 

0.873
 

 1ub  [m/s
2
] upper bound of the desired â  range 1.47 0.993

 

 1lb  [m/s
2
] lower bound of the desired â  range 1.19

 
0.840

 

1refa  [m/s
2
] lower saturation value of the saturation block

 
−1.66

 
−1.09

 

 

 

 
(a)      (b) 

 
(c)      (d) 

Figure 5.8 Simulation results for braking to rest (Example 1). 
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(a)      (b) 

 
(c)      (d)  

Figure 5.9 Simulation results for braking to rest (Example 2). 

 

5.4.3 Intersection Left Turns 

Similar results from LTAP/OD events are shown in Figure 5.10and Figure 5.11. The 

measured vehicle path is assumed, and now two sets of parameters are optimized (one for 

approach and one for turning), plus 3a  for the target exit acceleration. The resulting 

parameter values for this example are given in Table 5.2. While it is hard to exactly 

match vehicle longitudinal accelerations with the simple vehicle model, the overall match 

between measurement and simulation is again seen to be very good. Crucially, the model 

respects the crossover point, when yx aa ˆˆ  , which almost exactly matches the timing of 

crossover in the experimental data. This is in spite of the fact that gaze point yQ  was 
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fixed a priori (near the stop bar on the exit road, see Section 5.2) and not estimated from 

data.  

Regarding the parameter values, those in Table 5.2 are significantly larger than those in 

Table 5.1, the events being under different conditions and with different drivers. Clearly, 

the measured vehicle decelerations are also larger in the left turn events than in braking to 

rest, suggesting that different control thresholds are employed. It might be that the 

driver’s sense of urgency or risk is very different between the two cases. Another factor 

may be the greater need for precision in longitudinal positioning when braking to rest, 

and therefore a more conservative set of acceleration thresholds are used. Even though 

the parameters ranges are different, the same mechanism, based on AAR, give results that 

are consistent between the two driving situations. 

 
(a)      (b) 

 
(c)      (d)  

Figure 5.10 Simulation results for left turn (Example 3). 
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(a)      (b) 

 
(c)      (d)  

Figure 5.11 Simulation results for left turn (Example 4). 

 

Table 5.2 Driver parameters for left turns. 

Symbol Quantity 
Value 

Ex. 3 Ex. 4 

xK [s
-1

] proportional gain 2.18
 

2.18 
 

 1ub  [m/s
2
] upper bound of the desired xâ  range 2.85

 
2.62

 

 1lb  [m/s
2
] lower bound of the desired xâ  range 1.85

 
1.62

 

 2ub  [m/s
2
] upper bound of the desired yâ  range 3.46 3.11 

 2lb  [m/s
2
] lower bound of the desired yâ  range 2.46 2.11 

 1refa  [m/s
2
] lower saturation value of the saturation block (approach stage)

 
−3.14

 
−2.77

 

 2refa  [m/s
2
] saturation value for the turn stage 0.602 0.748 

 3refa  [m/s
2
] constant desired acceleration for the exit stage 2.98 1.49 
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5.4.4 Extended Event Sets 

In the above we have seen that speed and other variables match well to selected measured 

events, and use this as evidence that AAR may faithfully reproduce human control 

behavior. On the other hand, human behavior is immensely variable, and we cannot 

expect to capture every event with high fidelity. Now we consider 108 straight-line 

braking events, randomly sampled from a large number (3927) of such events in the 

database. Similarly, for free left turns, an initial random selection of 81 events was made. 

Of these, 26 events were selected because they occurred at a set of eighteen intersections 

for which lane boundaries and stop bar locations had been digitized; Figure 5.5 shows 

one such example. No other criteria were applied in the selection process, and no events 

were removed based on model fitting performance. Comparisons between measurement 

and fitted model are given in Figure 5.12, which shows cumulative distributions of the 

root mean square error (RMSE) in speed for these events: (a) the 108 straight-line 

braking events, (b) the 26 free left turn events. The error is defined: 

 

 NeRMSE
N

i

i /
1

2


         (5.7) 

 

where ie  is the error between the speeds in simulation and measurement at the i-th 

positional point on the road, spanned by average intervals of about 1.4 m; N is the 

resulting number of data points in an event in either data set. For both types of event, 

RMSE is mostly less than 1 m/s (roughly 90% of cases have RMS error less than 1 m/s). 

This indicates that the previous examples are not especially unique. It appears that in the 

absence of extraneous factors (e.g. major visual distractions or competing influences on 

the driver) the AAR model is capable of representing the variety of human speed control 

behavior when making intersection approaches.  

 

Traditionally, after system identification, an independent set of data would be used to 

validate the model; but with human driver modeling it is not reasonable to expect that a 

fixed set of parameters will apply across many events. Therefore, instead, we consider 
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comparisons between Monte Carlo simulations (using the parameter ranges obtained 

above) and make comparisons at the level of the resulting population. 

 

 
(a)         (b) 

Figure 5.12 Root mean square error in speed: (a) straight braking to rest and (b) free left 

turns. 

 

5.5 Monte Carlo Simulations Including Lateral Control 

As mentioned in the introduction, a key motivation in model development is for the test 

and development of future intersection safety systems, where human decision and control, 

as well as event timing, are critical. Data relevant to decision making behavior has been 

obtained in previous studies, particularly in terms of metrics of gap acceptance between 

the SV and POV via conflict metrics such as the time to collision (TTC) [69], gap time 

(GT) [7, 8] and leading and trailing buffers (LB/TB) [5, 9, 10]. In the future, such data 

may be used to perform system identification on decision making sub-models.  

 

Here we limit attention to control aspects, and perform batch simulations for cases where 

the decision to complete the left turn is assumed to have been made. Monte Carlo 

simulation is applied by uniform sampling from the parameter ranges obtained from the 

analysis in Section 5.4.4. Parameter ranges are shown in Table 5.3, where the 

“population” values are used for Monte Carlo simulation; these are unbiased estimates of 

population limits, having a slightly wider range than the sample values [70]. 
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Table 5.3 Ranges of driver parameters for Monte Carlo Simulation. 

Parameter 
Sample 

Minimum 

Sample 

Maximum 

Population 

Minimum 

Population 

Maximum 

 1ub  [m/s
2
] 2.03 3.53 1.97 3.59 

 2ub  [m/s
2
] 2.6 5.1 2.50 5.20 

 1a  [m/s
2
] −3.98 −1.83

 −4.07 −1.74 

 2a  [m/s
2
] −0.89

 
−0.06

 −0.92 −0.03 

 3a  [m/s
2
] 0.4 2.98 0.30 3.08 

 

To improve model validity, we adopt the commercial vehicle dynamics simulation 

software CarSim
®
 (Version 8) to replace the simple vehicle model of Section 5.2. This 

has the advantage that realistic friction limits and vehicle responses are obtained. On the 

other hand, we must now introduce a lateral control model to conduct Monte Carlo 

simulations. This is implemented as a simple path-following steering model, using a 

predetermined intended path. The path is prescribed by joining two straight segments 

with a circular arc as shown in Figure 5.13. 

 

 
Figure 5.13 Intended left turn path using constructed from two lines and one arc segment. 
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The steering control model is of the preview tracking type [43] formulated for simplicity 

and applicability to large angles of turn. It has two levels, similar to the speed control 

model, where the upper level defines a desired yaw velocity, desr , and the lower level is 

designed to track that reference. Reference yaw velocity is firstly determined by the 

requirement to track a target point on the intended path. For an assumed constant radius 

arc and preview distance d (see again Figure 5.2) the desired yaw rate is determined by 

visual preview 

 

 
 
d

U
rrdes

2/sin2 



         (5.8) 

 

This is equivalent to yâ  in equation (5.1), with the factor U converting between yaw rate 

and lateral acceleration (assuming vehicle sideslip angles are small). In addition to this 

feed-forward (preview) reference, path corrections may be required, as determined by the 

local yaw angle error P 
~

, where P  is the instantaneous vehicle yaw angle 

and   is the geometric yaw angle of the circular arc shown in Figure 5.14. This requires 

the addition of a feedback term: 

 

 
d

U
Krr rdes





 

~

        (5.9) 

 

written so the feedback term has a dimensionless gain rK . 

 

Desired path


~

Circular path connected smoothly

Heading direction

Tangent line

d

 
Figure 5.14 Heading error for additional yaw rate requirement. 
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At the lower level, steering rate yu  (angular velocity of the steering wheel) is found by 

proportional control of the error in yaw rate: 

 

  rreKu des
s

yy           (5.10) 

 

where again the feedback gain, yK , is dimensionless. 

 

The feedback gains, rK  and rK  as well as the preview time, Tp, are tuned in Appendix E. 

For TP, the corresponding preview point is located on the intended left turn path and 

different from the gaze points, xQ  and yQ . 

 

The above model was applied to an intersection with 90˚ turns, as shown in Figure 5.15. 

To induce more realistic lateral variability in the path, the location of A was selected 

randomly within a 5 m sample domain that includes the position shown in Figure 5.13. In 

the figure, point A varied between 3.33 m to the North (further from the intersection) and 

2.67 m to the South; then point B is uniquely defined to smoothly connect the first 

segment and the arc at point B. 

 

One thousand left turn events were simulated, and for illustration Figure 5.15 shows a 

sample of 100 results in the form of spatial trajectories and speed curves; corresponding 

results from measured driving data are show in Figure 5.16. Here only six events were 

found at the single specific location modeled. Both the spatial trajectories and speed 

curves are seen to be broadly similar. In particular, the speed curves are similar in two 

important characteristics: (a) the wide dispersion in speed during the approach stage 

converges to a narrower range near the minimum speed; (b) the locations of the minimum 

speed are consistent between the simulations and data, i.e. they occurred slightly after the 

stop bar of the entry leg (located here at 0s m). 
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Figure 5.15 Free left turn trajectories and speed curves from Monte Carlo simulations. 

 

 
 

Figure 5.16 Free left turn trajectories and speed curves from driving data. 

 

Now we make comparison with a larger number of turning events in the data; 46 events 

were found, using 22 different intersections considered broadly similar to the geometry 

used in above simulation. This was based on the criteria that the turn angle was within the 

range 90˚±20˚; from video review, traffic interactions were also required to be minimal. 

Detailed digitization of the intersection geometry was not required since only speed 

distributions are to be compared. The initial position and speed for the simulations were 

randomly sampled from a list of pairs of those measured in the actual events. These initial 

conditions were taken at the instant 10 m before braking occurs in order to avoid 
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including erratic speed variations before the intersection approach dominates speed 

choice. Since different intersections were used, and the stop bar location was not always 

known, the distance variable was set so the datum ( 0s m) occurs at the point of 

minimum speed. This was used to co-locate all events, simulated and measured. 

 

Figure 5.17 shows a comparison between the 1000 simulation results and actual events. 

In each case mean values and “error” bars (  ) are shown. As mentioned, only six of 

these events occurred at the intersection used in the simulation, so some variation 

between measurement and simulation is expected. The overlap is best during the 

approach stage, which is the most critical stage for this study; the deceleration rate is 

similar to measurement and speed variability is also of a very similar magnitude. This 

indicates that parameter value ranges were satisfactory. The simulation model has a lower 

minimum speed within the intersection, and a higher acceleration during the exit stage. 

The lateral control model used a very simple desired path, and also the variations in 

intersection geometry are likely responsible for the minimum speed differences; and, as 

mentioned above, the exit phase was not modeled in detail, being determined by a single 

reference acceleration and using the same control gain as for braking, which is likely too 

simple. Overall, the match appears satisfactory, given that the model is being used to 

idealize highly variable human driving behavior. 
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Figure 5.17 Comparison of speed between data and simulation results. 

 

5.6 Discussion 

This chapter has presented a speed control model based on an anticipated acceleration â  

and confirms its consistency with speed and longitudinal acceleration time histories seen 

in naturalistic driving data. Initial analysis showed that drivers do regulate AAR within 

tight limits during intersection approaches, so it is a plausible variable to apply as a 

control reference in modeling and simulation. Closed-loop simulations were performed 

for two types of model, one including only the longitudinal control only and the other 

including lateral control and a high fidelity dynamic model of the vehicle. The first model 

was used for parameter estimation of the AAR model, and for initial validation for 

individual cases of straight-line braking and free left turn events; the full simulation 

model extended the validation and demonstrated the use of Monte Carlo simulations to 

create a population of virtual left turns at a given intersection. The Monte Carlo approach 

can be used as a tool for investigating intersection safety, and evaluating intersection 

safety systems where the driver may stop or complete the turn. Decision making and 



 

95 

initiating a turn from rest were not included in the model, but there is scope to expand the 

model in the future. 

 

Regarding the decision point to make a free left turn, Figure 5.18 shows the distribution 

of the crossover point between xâ  and yâ  with the stop bar location as its datum, which 

is assumed to be a switching point of the driving mode from the approach stage to turn 

stage. The crossover point will not occur until the SV reaches close to the intersection, 

which is likely to make it difficult to predict whether a driver is actually intending to 

make the turn or come to rest. For the present model we can assume that the decision is 

not fully made until the crossover point. This is substantiated by other research [48] 

where it was attempted to capture the intention to make a left turn by monitoring the 

motions of various body parts. Their result shows that while the rate of true positive is 

about 75 % at around 0.5 s before the left turns were started, the rate of true positive 

drops rapidly when making a prediction point earlier – it becomes 30 % (with the same 

false positive rate) if the prediction is made at 1.5 s before the turn. Therefore, from these 

results, it might be implied that human drivers does not show a clear evidence of the left 

turn decision until they reach sufficiently close to the intersection, consistent with the 

present model formulation that options to turn or stop remain open during the approach. 

In addition, the positive values in the distribution may be related to the intersection 

geometry as well as the driver variations, e.g. the relative locations between the stop bar 

and the shape and size of the intersection. 
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Figure 5.18 Distribution of the crossover point between xâ  and yâ . 

 

Aside from the intersection safety focus of this dissertation, speed control based on AAR 

may be directly applicable to modeling the regulation of speed in curves. A key 

difference from intersection left turns is the definition of gaze point; for intersection left 

turns use was made of the stop bar locations for the entry and exit lanes for xâ  and 

yâ respectively. For speed control in curves is it more appropriate to use a single gaze 

point using the line of the “apex”, the line from the drivers eye to a tangent point on the 

inner curve boundary [71]. Figure 5.20 shows a complex turn where a slight curve (P) 

precedes a sharp turn. The blue solid curves are the lane boundaries and the red dashed 

curve is the measured vehicle trajectory. In contrast to speed control on an intersection 

approach, here yâ  is dominant in the beginning period until a crossover occurs at 

100s m. At this point the driver brakes and for the remainder of the approach to the 

sharp curve xâ  is dominant. Deceleration continues until 280s m where both xâ  and 

yâ  decrease rapidly, due to passing the apex of the turn and the gaze point recedes from 

the driver; it follows that speed is no longer constrained by â  and the driver accelerates. 
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This example suggests how the speed control model, based on anticipated acceleration 

derived from road geometry, can be applied more widely in the future.  

 

Moreover, the reciprocal relationship between the lateral acceleration and vehicle speed 

is an interesting characteristic in general curve driving situations; in steady-state turns 

with various degrees of road curvature, the lateral acceleration decreases monotonically 

as the vehicle speed increases [32, 72-76]. A possible reason for this might be the driver’s 

risk taking behavior; the influence of errors in the estimated road curvature is intensified 

as the vehicle speed increases and it decreases the available safety margin [32].  

 

It is noted that this reciprocal relationship is not observed in left turn cases. Instead, the 

drivers achieved the same ya  regardless of U as can be seen in Figure 5.19 which shows 

a distribution of maximum ya  vs. corresponding U for free left turn events. The 

maximum ya  was detected within the left turn period defined between the time when the 

steer angle magnitude became more than 0.02 rad for the first time and the time when it 

returned to 0.02 rad. The resulting maximum ya  ranges between approximately 3 and 

5 m/s
2
 with an average at about 4 m/s

2
. There would be various reasons for this 

discrepancy from regular curve driving, e.g. a lack of pre-defined road boundaries, lack 

of a clear steady-state period due to a short period of time required to complete a left turn, 

and low vehicle speed. This study will not investigate on this further, but it is interesting 

for a future study. 
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Figure 5.19 Distributions of maximum lateral acceleration vs. corresponding vehicle speed 

during left turns. 
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Figure 5.20 Driving on a sharp curve with a prior slight curve. 

P 
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Chapter 6 

Driver Assistance System for Intersection Left Turns 

 

 

6.1 Overview 

The main objective in this chapter is to investigate the viability of the proposed design 

framework for free left turn based on a candidate assistance system. Each LTAP/OD 

event with a free turn SV represents the scenario in which the SV driver fails to detect an 

oncoming POV (“looked but did not see”) since the driver is assumed to make a left turn 

regardless of the available gap with the POV. Therefore, the driver’s decision process is 

ignored. Nevertheless, the structure of the proposed framework can be applied to other 

left turn scenarios, e.g. misjudgment of available gap, once the LB/TB can be calculated 

appropriately taking into account the driver’s decision process. 

 

The design framework consists of event sampling to create a large set of LTAP/OD 

events in which POVs are superimposed over the free left turn events obtained from the 

Monte Carlo simulations. Then LB/TB calculations are made for each LTAP/OD event to 

estimate the safety type of the LTAP/OD event, and whether an alert should be given. 

Then the warning system parameters are to be optimized in a Pareto optimal sense. 

Analyses of the SV driver’s reaction time before braking are to be included in the 

analysis.  

 

The analysis will focus on the functional performance and parameter tuning, rather than 

detailed hardware and interface design; aspects of system architecture including selection 

of mechanical and electrical components, human machine interface (e.g. visual, auditory 

and haptic) which would affect the attention level and reaction time of the driver are not 

considered [53, 77, 78]. 
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In the following, Section 6.2 gives a description of the assistance system proposed, while 

procedures of event preparation and preliminary analyses necessary for the design 

process are provided in Sections 6.3 - 6.4; Section 6.5 presents an optimization procedure 

to select values for system parameters and Section 6.8 shows results. 

 

6.2 Left Turn Assistance System 

The assistance system is assumed to give a warning when a potential conflict is detected 

using the LB/TB at a specific vehicle location. The system parameters to be optimized 

are: two thresholds, ΔTB and ΔLB (see expression (4.10)) and the distance Dw between the 

SV position and stop bar from which LB/TB is calculated. These parameters affect the 

system performance in different ways – ΔLB and ΔTB determine P(TP) and P(FP) with the 

probability density distribution unchanged, while Dw shifts the locations of the 

distributions, i.e. the degree of overlapping between these distributions varies. For 

example, as Dw approaches 0 (i.e. the stop bar), the LB/TB results are expected to 

become more accurate (less overlapping), and as a result, the trade-off between TP and 

FP can be mitigated. However, if a warning is given too late, there may not be an enough 

distance for the SV to stop safely and the assistance system becomes meaningless. 

Therefore, the warning location is also included in the system parameters. Let us define 

successful braking (SB) as a case in which there is a sufficient distance to reach rest 

without going beyond the stop bar, and unsuccessful braking (UB) as a case in which the 

vehicle exceeds the stop bar during braking. Then the rate of successful braking under the 

condition of TP, P(SB|TP), increases as the warning timing is delayed, but at the expense 

of increasing the rate of unsuccessful braking, P(UB|TP). 

 

A challenge in the left turn assistance system is that it cannot directly determine the 

driver’s decision state while the SV is still sufficiently far from the intersection, i.e. 

whether or not the driver is going to continue braking to stop or proceed to turn left, since 

the SV always decelerates at this point in normal left turns. Specifically, if the driver 

intends to stop, a warning signal is unnecessary and may be recognized as an FP. 

Although resolving this issue is clearly important to reduce the annoyance of the driver, 
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this is beyond the scope of this simulation analysis, in which the driver is always assumed 

to be going to make a left turn. 

 

6.3 Principal Other Vehicle Driver Behavior 

As mentioned, it is assumed that the SV driver is unaware of the oncoming POV and the 

driver’s decision process is ignored. Similarly, the POV is also assumed to be unaware of 

the SV and the POV does not make an evasive maneuver at any level of conflict with the 

SV. Although an appropriate POV intervention (e.g. honking, flashing headlights, 

braking, etc) may reduce the conflict level, the safety system design is made excluding 

the decision making of the drivers for simplicity. Moreover, it is unlikely that the POV 

driver takes a maneuver which increases risk. Therefore, the nominal condition of POV 

driver maintains constant speed is the natural assumption in the design condition. 

 

6.4 Brake Reaction Time and Stopping Distance of the Subject Vehicle 

The minimum distance that the SV driver needs to stop before the stop bar is defined by 

the sum of the distance traveled from when a warning signal is issued to when the brake 

pedal is depressed and the distance traveled during the following brake application period 

until the SV reaches rest. 

 

In [79], a comprehensive review of existing literature revealed that the reaction time 

varies greatly depending on the driver’s expectation that a specific event will occur as 

well as stimulus type, response maneuver, and experimental conditions. Obtained 

experimental distributions are often skewed and the distribution of the brake reaction 

time is approximated more appropriately by a lognormal distribution than by a normal 

distribution [80-82]. Previous studies considered not only the reaction time itself but also 

the movement time. In such studies the reaction time is defined as the time which the 

driver takes to release the accelerator pedal after a warning is given; then the movement 

time is the time taken to move the right foot to the brake pedal to decelerate once the 

accelerator is released. These results are not directly applicable to free left turns. A free 

left turn naturally involves braking to achieve the desired speed for the turn stage and the 
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brake pedal is likely to be depressed when a warning is given to the driver. Therefore, the 

movement time is not included here. In this study, the reaction time distribution is 

adopted from a simulator study for lane change scenarios [83], in which the drivers of the 

lane changing vehicles (the SVs) were told to abort lane change when a warning notified 

them that the vehicle was approaching the SV in the target lane. The subjects used 

steering control to avoid colliding with the vehicle following the SV at the rate of 99.1 % 

of all the lane abort responses. Although the similarity between the steering response in 

the lane change scenarios and the brake response in the LTAP/OD scenarios is vague, 

these responses are natural consequences in the driving scenarios, that is, steering control 

is more dominant than brake control in the lane change cases, while brake control is more 

prevalent than steering control in the LTAP/OD. Therefore, it is assumed that the 

movement time is sufficiently small and ignorable. A potential drawback of using the 

steering response result for the brake reaction time is that the difference between the arm 

motion and leg motion may cause significant influence on the reaction time. The reaction 

time distribution for the lane change abort by the lognormal assumption is shown in 

Figure 6.1. 

 
Figure 6.1 Reaction time by a lognormal distribution. 
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The stopping distance was computed using the braking control of the SV which was 

estimated from hard braking events found in the field operational test database of a 

previous project for the Automotive Collision Avoidance Systems (ACAS) [84]. A total 

of 88 such events were used in the analysis; for each of the deceleration profiles a first 

order response was fitted. This was identified by three parameters, amplitude A, time 

delay offset td and rise time tr. Each parameter was assumed to follow a lognormal 

distribution. Details about developing the parameter distributions are available in 

Appendix F. Using the distributions of the braking parameters, simulations were run on 

MATLAB Simulink
®

 with a CarSim
®
 vehicle model for the speed range, [3, 40] m/s, 

with 1 m/s of intervals (i.e. 38 speeds in total). For each speed, 100 braking simulations 

were run for different model parameter values. Resulting distance traveled to reach rest 

was saved in a 38-by-100 array so that a stopping distance can be selected randomly from 

a row corresponding to the closest speed to the vehicle speed at the brake initiation. 

6.5 Event Sampling 

Each LTAP/OD event was created by pairing a free left turn event sampled from the 

batch simulation results prepared in Section 5.5 and a POV for which the initial position 

and speed were selected randomly. The POV speed was sampled from a normal 

distribution fitted to the distribution of the speed limit at crash sites found in the General 

Estimates System (GES) (Figure 6.2). Since a normal distribution is not bounded, certain 

limits needed to be imposed: if the sampled speed was slower than 15 mph ( 7.6 m/s) or 

faster than 65 mph ( 1.29 m/s), it was rejected and re-sampled. The GES data was 

queried with the following conditions: 1) left turn vehicle drivers coded “looked but did 

not see”, 2) no violations by other vehicles and 3) events not in interchange area. It is 

noted that a potential discrepancy between the actual POV speed and speed limit in the 

crash event was not considered since vehicle trajectory data is not available in the GES, 

so they are assumed to be the same instead. The initial POV position p0 was selected in a 

range [pc1, pc2] where pc1and pc2 corresponded to the PET threshold PET  which was 

estimated in Section 4.3.1, i.e. −1 s in the case when the SV crosses second and 2 s in the 

case when the SV crosses first to distinguish safe and unsafe events. The PET range of 

interest for the event sampling was made by adding a time margin PET  to PET  for each 
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case, i.e. [ PETPET  , PETPET  ]. Table 6.1 summarizes selected values for these 

parameters. The lower bound of the range where 10 cpp   became 431PET  s 

and the upper bound where 10 cpp   became 532PET  s. Each of the created 

events was labeled as either a safe, near-miss or crash event depending on the PET value 

as shown in the conceptual schematic in Figure 6.3. In order to create each LTAP/OD 

event, a free turn event and the initial conditions for the POV were sampled separately 

until the PET of the obtained event became within the target range. Otherwise, the 

candidate LTAP/OD was discarded and another pair of free turn event and POV were 

sampled including the speed sampling for the POV. This process was continued until 

1000 LTAP/OD events were created. Figure 6.4 shows a histogram of the PET of the 

LTAP/OD events, which is seen to be approximately uniformly distributed. 

 

 

 
Figure 6.2 Distribution of speed limit from GES crash events and normal distribution fit. 
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Figure 6.3 Schematic of the relationship between the range of the post encroachment time 

and the position the through vehicle when the left turn vehicle is at a conflict point. 

 

 

Table 6.1 Values for ∆PET and δPET. 

 SV crossing second SV crossing first 

ΔPET [s] −1 2 

δPET [s] 3 3 

PET [s] at bounds −4 5 

 

 

ΔPETΔPET

3. crash 4. near-miss2. near-miss 5. safe1. safe

ΔPET +δPETΔPET −δPET

(for p0 = pc1) (for p0 = pc2)

PET:
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Figure 6.4 Distribution of the post encroachment time of the virtual LTAP/OD events. 

 

6.6 Calculation of Conflict Metrics and Estimation of Event Safety 

The LB/TB was calculated for the LTAP/OD events prepared in Section 6.5. The method 

of LB/TB calculation was as described in Section 4.2 except for the Uref construction. 

Here, Uref was made by averaging speed curves of all the simulated events at each vehicle 

position, since the simulations were run at the same intersection and the number of events 

was sufficiently large to obtain a smooth curve. Figure 6.5 and Figure 6.6 shows typical 

results of the LB/TB analysis. By assuming that TB  and LB  coincide with PET  

corresponding to the respective crossing type of the SV (i.e. 1TB  s and 2LB  s), 

Figure 6.5 shows a buffer band made for an unsafe event which is a near-miss case with 

the SV crossing first as indicated by the PET specified by the triangle located between 

the horizontal lines at 0 and 2 s of the vertical coordinates. The buffer band correctly 

estimates the event as a near-miss case for the entire event, so a true-positive is expected 

at any instant. Figure 6.6 shows a false positive result for a safe event, since the buffer 
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band crosses the horizontal line at LB (= −1 s) predicting a near-miss case at any instant. 

The PET of this event is −1.8 s as shown in the figure in the case of the SV crossing 

second. The flat buffer bands in these examples indicate that Upred predicts future speed 

very well in the free left turn cases in which there are not large deviations between the 

actual speed and Uref. In addition, the accuracy of a safety estimation result depends on 

the location of the estimation. Figure 6.7 shows a buffer band for a near-miss event with a 

transition of safety estimation from safe to unsafe at 23s m at which the buffer band 

crosses TB  line.  

 

For each LTAP/OD event, various values for LB , TB  and Dw were tested using the 

obtained LB/TB result. The ranges of these parameters were: ]0,3[LB  s, ]4,1[TB  s 

and ]100,0[wD m. Uniform sampling intervals were chosen: 0.1 s for LB  and TB  

and 2.5 m for Dw. As a result, 39,401 combinations of test points were obtained. For each 

of these combinations, the one-thousand free turn events created by the Monte Carlo 

simulations were classified into true positive (TP), false positive (FP), true negative (TN), 

false negative (FN), successful braking (SB) or unsuccessful braking (UB) to count the 

numbers of occurrence of these cases. It is noted that SB and UB can occur only under a 

true positive condition, i.e. the probabilities of these become P(SB|TP) and P(UB|TP). 

Six arrays, each of which was three dimensional and initialized by zeros, were prepared 

for TP, FP, TN, FN, SB and UB cases. These arrays hold the frequencies of the cases for 

all combinations of the parameter values in the corresponding elements. For example, the 

first example shown in Figure 6.5 indicates a TP with 1LB  s and TB =2s at 

40wD m (or 40s m), so the corresponding element in the TP array is incremented 

by +1. After completing the arrays, the following equations were used to compute the 

probabilities, 

 

 )/()TP( nFNnTPnTPP         (6.1) 

)/()FP( nTNnFPnFPP         (6.2) 

and 
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)/()TP|SB( nUBnSBnSBP        (6.3) 

 

where nTP, nFN, nFP, nTN, nSB, and nUB are the numbers of corresponding detection 

types. The estimated probabilities were saved in separate 3D arrays and these provide the 

objective space for the optimization process in the next section. 

 

 
Figure 6.5 Unsafe event detected as unsafe (true positive). 
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Figure 6.6 Safe event detected as unsafe (false alarm). 

 
Figure 6.7 Unsafe event with variable safety estimation. 
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6.7 System Parameter Tuning by Pareto Optimality 

In order to find optimal system parameter values, *TB , *LB  and *wD , the following 

objective functions were considered:  TP)(1 Pf x ,  FP)(2 Pf x  and 

))TP|SB()(3 Pf x ) where  TWD,, LBTB x  is the decision vector. The aim is to 

simultaneously minimize these functions, i.e. to maximize the probability of true 

positives, minimized false positives and maximize the probability of safe braking in the 

case of a true positive warning. Therefore, a multiobjective optimization problem was 

formulated. Figure 6.8 shows and event tree for the various event outcomes.  

 

Safe eventUnsafe event

Correct detection

(True Positive)

Miss

(False Negative)

False alarm

(False Positive)

Correct rejection

(True Negative)

Successful Braking Unsuccessful Braking

1)TP( fP  )FN(P 2)FP( fP  )TN(P

  3TP|SB fP   TP|UBP

to be minimizedto be maximized

to be maximized

Warning Warning
No warning No warning

Enough

distance

Not enough

distance

 
Figure 6.8 Tree diagram of probabilities for event safety estimation. 

 

A general form of a multiobjective optimization problem can be written as  

 

 

0xg

0xh

xf
x




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,)(..

)(min

ts          (6.4) 

 

where x is a decision vector of design variables and f(x) is a vector of objective functions, 

fi(x)’s, and h(x) and g(x) are constraint functions [85]. A multiobjective optimization 
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problem may involve trade-offs between objectives, because improving the performance 

of an objective may deteriorate the others [86]. Such a trade-off was shown in Figure 1.3. 

One way to solve a multiobjective problem is using the weighted sum method in which a 

scalar function, which is a linear combination of the objective functions, 

 

 )()(min
1

xx
x





n

i

ii fwf        (6.5) 

 

is used. However, selecting suitable values for the weighting factor wi is not possible a 

priori [85-87]. Moreover, there would be infinitely many combinations of weights which 

give the same scalar number in equation (6.5) [87]. Therefore, the weights are often 

selected subjectively and the significance of the obtained design against the original 

design criteria may be obscure. On the other hand, the evolution strategy [86, 88, 89] uses 

the Pareto optimality to take into account the trade-offs directly. The Pareto optimal 

solutions comprise a set of all nondominated solutions. This set is called a Pareto set, in 

which any point is considered optimal in the Pareto optimal sense. In order to find Pareto 

optimal solutions, the concept of dominance plays a central role. A decision vector x  is 

said to strictly dominate another decision vector x  if and only if  

 

 iffiff iiii  ),()(),()( xxxx      (6.6) 

 

and x  is said to weakly dominate x  if and only if 

 

 iff ii  ),()( xx .        (6.7) 

 

These relationships are denoted x≺x  and x≼ x  in terms of the decision vectors, 

respectively. Then, the Pareto set SP can be described by 

 

 xx  :{PS ⊀ }, xxx  .       (6.8) 
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The evolution strategy employs a random search method by mutating a current decision 

vector in order to avoid an obtained solution from staying at a local minimum. A (μ+λ)-

ES is a commonly used evolution strategy, which selects the decision vector to be tested 

by mutating µ parents to create λ offspring and the µ best individuals among µ+λ 

individuals will be the next generation’s parents [88]. At each generation, a dominancy 

test is conducted to determine if there are any offspring to be included in the set of non-

dominated decision vectors. The candidate decision vector was added to the non-

dominant set which results in Sp if the negation of expression (6.6), i.e. 

 

 iffiff iiii  ),()(),()( xxxx ,     (6.9) 

 

is true. In this study, a single decision vector was evaluated at a time, so the procedure is 

similar to a (1+1)-ES in [86, 89]. However, since the saved objective vectors (Section 

6.6) could be mapped to the corresponding decision vectors easily and the number of 

members in the objective space is not significantly large (39,401 members), all decision 

vectors can be tested easily. Therefore, the random search part to find a candidate 

decision vector at each iteration (generation) as in the full structure of the evolution 

strategy was omitted. 

 

6.8 Results and Discussion 

Figure 6.9 shows the Pareto front, which is a subset of the objective space associated with 

the Pareto set, and the selected operating point is shown by the red circle. The following 

steps were taken to select this operating point. First,  TP|SBP  was required to achieve 

0.8, meaning that 80 % of braking attempts by responding to warning signals were 

successful braking to rest. (It is noted that 2 % of tolerance was allowed for each of the 

sides above and below 80 % in selecting such data points.) This created a “slice” of the 

Pareto front surface and a target ROC curve was obtained as shown by the red dots in 

Figure 6.9 and Figure 6.10. Then, the operating point was selected at 0.2 for )TP(P , and 

)FP(P  of approximately 0.89 was expected. Of course, the selection of the operating 

point is somewhat arbitrary and may vary depending on designers with different 
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requirements for the system. The corresponding decision vector is 

   m5.52,s2.1,s3.2,, **LB*TB  wD . *TB  and *LB  have the offsets of 3.0 s and 

2.0 s from the nominal values, 2PET   and −1 s, respectively. This means that these 

are conservative selections of the detection levels since both are in the outside of the 

unsafe region defined between the PET  values.  

 

 

 
Figure 6.9 Pareto front from the perspective view. 
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Figure 6.10 Pareto front from the top view. 

 

Although the designed system has shown good performance in detecting conflicts 

correctly with a small false warning rate and providing a sufficient distance to stop safely, 

these selections of the system parameters are not definite. Since the Pareto optimality is 

to search a set of optimal solutions each of which is non-dominated by the other solutions, 

selecting a particular solution for implementation may depend on other specific design 

criteria. For example, if the system is required to have a smaller false positive rate for 

driver comfort, the current operating point needs to be shifted to the left in Figure 6.10, 

sacrificing the true positive rate. On the other hand, if the same weight is applied to all 

the objectives, it may be selected at the point closest to the top left corner at (0, 1, 1) in 

Figure 6.9.  

 

The warning point, specified by wD , does not greatly affect the overall shape of the 

resulting ROC curve, as seen in Figure 6.10. If wD  is reduced, warnings occur closer to 

the intersection, and the prediction performance of the conflict metrics improve; hence 
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the ROC curve in Figure 6.10 shifts toward the top left corner at (0, 1). The penalty is of 

course that the warning is more often given too late for stop before the stop-bar. 

 

The methodology used to optimize the driver assistance system design in this study is 

very general. It particularly addresses situations where the rate of true positives, the rate 

of false positives, as well as the timing of interventions are all key aspects of the system 

performance. It is therefore very broadly applicable to driver assistance systems, not just 

LTAP/OD conflicts at intersections. It is based on a combination of general processes 

including the developments of a suitable predictive conflict metric, simulation model for 

Monte Carlo simulations, and design of an assistance system achieved by solving a 

multiobjective optimization problem. For the LTAP/OD scenario it can also be applied to 

alternative warning or control concepts, for example where the timing of the warning is 

varied according to the state of knowledge of the conflict risk and the severity of the 

possible outcomes.  
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Chapter 7 

Conclusions 

 

 

A methodology has been proposed for designing a driver assistance system, aimed at 

reducing the number of intersection crashes. The methodology is shown to be capable of 

balancing several desired outcomes: a high rate of true positive warnings, a low rate of 

false positive warnings, plus a high percentage of timely warnings leading to successful 

braking interventions by the driver. The analysis was conducted for free left turn 

scenarios in which the left turn vehicle is unaware of a conflicting vehicle traveling in the 

opposite direction. While the methodology is very general, it has been developed in detail 

for the left turn across path conflict type. To carry through the design and analysis, 

several new results have been established and several analysis tasks have been 

completed: 1) automated extraction of kinematic data relevant to intersection conflicts 

including simple but novel techniques for time synchronization and data fusion; 2) 

application of this data to determine and validate improved predictive conflict metrics, 

including the estimation of acceptable thresholds for gap acceptance; 3) development of a 

new driver control model for speed and lateral control, based on the concept of 

anticipated acceleration, including extensive validation of that model; and 4) formulating 

and demonstrating the methodology for objective design.  

 

An important aspect of the contribution has been the comprehensive application of 

quantitative and predictive methods coupled with the use of naturalistic data, in a 

research area previously dominated by empirical studies with recruited test subjects. The 

specific achievements are summarized in more detail as follows. 

 

1) Accurate SV trajectories were reconstructed by multiple use of Kalman filtering 

including a “constant speed” Kalman filter and angular measurement fusion using 
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yaw rate from the yaw rate sensor to remove noise in the heading angle of the SV 

at low speed. The reconstruction of trajectories of POVs was achieved by using 

the kinematic filters to associate target points, which were detected only relatively 

to the SV. The quality of the trajectories was not as good as the SV trajectories 

since the observation of the POVs was made relative to the SVs. It was improved 

by automatically correcting latency time differences between the relevant sensors 

and reasonable results for the conflict analysis were obtained. 

 

2) The conflict analyses for intersection left turns were conducted by computing the 

post encroachment time (PET) of each left turn from the naturalistic driving data. 

Qualitatively, the resulting PET distributions showed realistic human driver 

behavior, i.e. they tend to take a shorter gap time in the case of the SV crossing 

second than in the case of crossing first (Figure 4.3). Quantitatively, the obtained 

gap acceptance thresholds were found to be similar between Michigan and 

California drivers [9] increasing the confidence over the generality of the results 

for U.S. drivers. For each event, the observed PET was predicted by the leading 

buffer or trailing buffer (LB/TB) in which the predicted speed profile is based on 

a computed reference speed profile. The LB/TB provided more realistic 

predictions than conventional conflict metrics which use a constant speed 

assumption (e.g. TTC and GT). 

 

3) The driver model for free left turn scenarios was developed including both the 

longitudinal and lateral controls. The longitudinal model is based on the 

anticipated acceleration reference (AAR) and the lateral control is based on 

preview tracking. Monte Carlo simulation results showed a highly-correlated 

turning behavior between the model and real-world drivers as shown by the 

similar time histories of the kinematic variables. The model faithfully reproduces 

the measured speed characteristics of human drivers, and involves a switching of 

AARs between the stopping and turning targets. Additionally, the driving data 

analysis has revealed that there is uniformity of maximum lateral acceleration in a 

turn, even as geometry and speeds vary; this is in contrast to driving in curved 
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road segments where there is a “reciprocal relationship” of maximum lateral 

acceleration decreasing with speed. 

 

4) The design methodology for intersection assistance system was performed for free 

left turn scenarios. It involved: 1) event sampling using the Monte Carlo 

simulation results; 2) conflict estimation; and 3) parameter optimization based on 

Pareto optimality. The obtained parameters are predicted to achieve 89 % true-

positive rate, 20 % false-positive rate, and 80 % rate of successful braking under 

true-positive conditions. Therefore, for the free left turn cases, the designed model 

is expected to detect conflicts at a high accuracy with a significantly smaller false 

positive rate. 

 

The multiple use of Kalman filtering to reconstruct trajectories was found to be simple 

and effective; given the prevalence of GPS in navigation fields and the ability of the 

Kalman filters to remove extraneous noise from such signals, the method should find 

wider application. Due to the limited field of view of the forward radars, the POV 

trajectories obtained from the only forward radar data were extrapolated, and satisfactory 

results were obtained in the conflict analyses in LTAP/OD cases. However, the accuracy 

of conflict estimation partly depends on the duration of the detection time of a POV, so 

use of a vehicle-based system to capture POV motions might be less effective for other 

intersection path-crossing scenarios [2] where the detection time may be shorter. 

 

Since the PET results show that the human driver accepts a shorter time separation in the 

SV crossing second case than in the crossing second case, it may be implied that their 

natures are different. In the crossing first case, the SV driver has to judge if the available 

gap is sufficient to provide an enough distance between the SV and POV in the future 

vehicle configuration when the SV is leaving the encroachment zone. On the other hand, 

in the crossing second case the left turn maneuver becomes simple for the SV driver to 

control with feedback; and once the POV has passed, no prediction of the future situation 

is necessary, the potential for a crash having been removed. 

 



 

120 

It is essential to select a suitable vehicle configuration and associated conflict point when 

the LB/TB is calculated. In this study, two configurations were considered for the cases 

of the SV crossing first and second (Section 1.2). These provide the smallest distances 

between the SV and POV in the respective cases. The crossing first case is the only 

conflict of significance if there is only one POV. On the other hand, the crossing second 

case needs to be considered if multiple POVs exist since an available gap between POVs 

needs to be evaluated for a safe left turn. Buffer bands can be used to visualize the 

available gap for each pair of POVs, and the accuracy of the LB/TB can be confirmed by 

the degree of their distortions. Moreover, this idea can be applied directly to other path-

crossing type scenarios once target vehicle configurations and corresponding conflict 

points are available.  

 

An accurate prediction of the SV speed is crucial in calculating the conflict metrics. The 

asymptotic convergence (curve fitting) method was used in this study to find the 

predicted speed profile; this proved satisfactory for free left turn cases, one reason being 

the relatively small deviation of the vehicle speed from the reference speed profile. 

However, in other cases where the SV speed drops to near zero as the driver waits for a 

suitable gap, the initial speed differences are larger and the error between actual and 

predicted speed profiles is also expected to be larger. 

 

The speed control model based on AAR represents a novel approach to understanding the 

human driving strategy. Here the visual preview information is presumed to be associated 

with simple kinematic estimates that can be used to control speed. Another novel aspect 

of the model is that multiple references can be used simultaneously, with speed control 

options relating to stopping and turning. It is worth clarifying that, while the model is 

applied to simulations in which the SV will definitely make the turn, it is derived from 

situations where braking to rest and turning are both considered feasible. For turning, the 

transition from the approach stage to turn stage is mirrored by a switch from longitudinal 

AAR to AAR based on lateral acceleration. It was found that AAR is controlled within a 

small range, even while the actual longitudinal acceleration from the driving data shows 

quite large fluctuations. The model explains how this happens, with a number of layers in 
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the control mechanism; this result speaks strongly against naively screening driving data 

for patterns that reveal driver control actions. It also emphasizes the need for 

computational modeling techniques that represent the coupled system of driver-vehicle-

environment; otherwise it is impossible to understand the complex dynamic interactions. 

 

The methodology used for the assistance system design has demonstrated a 

comprehensive procedure including data analyses, modeling, and simulation. In addition, 

it is based on a quite general approach and could be applied to a wider class of 

intersection safety systems. For example, warnings might also be given to the POV driver, 

or the timing of the SV warning might be considered flexible (e.g. earlier warnings given 

in cases with high conflict probability).  

 

There is a clear difference between the assistance system considered in this study for 

intersection left turns and other types of safety system (e.g. lane departure warning 

system). In the former case, it is impossible (at least currently) to determine if the SV 

driver is aware of an existing potential conflict since the driver’s natural behavior during 

the approach stage and the most likely collision avoidance maneuver is the same, i.e. 

braking. On the other hand, it is natural to assume that the driver is unaware of a potential 

conflict in the latter case, in which unusual driving behavior is involved (i.e. lane 

departure). Then, the assistance system for intersection left turns can annoy the driver 

with a true positive warning signal if he or she actually intends to stop. Therefore, it may 

be preferable to investigate alternative human-machine interface concepts, ones that can 

support a driver’s decision to stop rather than warn against a possible turning conflict. 

 

The work presented in this dissertation shows how systematic modeling, analysis, and 

optimization can be employed to design a safety system that operates in a complex real-

world environment. Of course the resulting system would need to be tested further with 

human subjects and appropriate human-machine interfaces, especially to determine the 

appropriate constraints placed on the Pareto-optimal solutions.  
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One limitation in the research presented is the lack of detail in defining the precise 

functionality and hardware design of the candidate intersection safety system. This 

should be the subject of future research, as would be the following: 

 

1) A larger LTAP/OD event set, obtained from naturalistic driving data, will be 

helpful to improve the classification of left turn behavior by driver types such as 

age and gender. 

 

2) The quality of the POV trajectories is lower than the SV trajectories due to limited 

radar field of view, and the fact that the kinematics of the POV is measured 

relative to the SV. This can be improved if site-based data is fused with vehicle-

based data. 

 

3) An improved reference velocity profile Upred may reduce the offset between the 

LB/TB and PET especially for non-free left turns, in which buffer bands tend to 

be more distorted than in free left turns. As a result, the trade-off between true 

positives and false positives can be mitigated. One way to achieve this may be to 

include factors for individual driving styles, as well as factors for traffic 

conditions obtained from site-based monitoring. 

 

4) Although the SV driver’s cognitive process, i.e. perception, recognition and 

decision, were omitted in free left turns, determining the driver’s decision state 

becomes important in order to improve the system so that it can be applied to the 

other types of the LTAP/OD conflicts such as misjudgment of gap or POV speed 

as mentioned in Section 1.1. The decision making may also be affected by other 

factors such as a phase transition of the traffic signal [90]. 

 

5) Additional research is needed to establish and confirm the relationship between 

speed profiles and intersection geometry. It is expected that left turn drivers turn 

at a faster speed as the curvature of the turning trajectory becomes smaller, but the 

analysis in Section 4.6 did not show such a relationship. Further use of the driver 
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model, validated with expanded data sets for free left turns at multiple 

intersections, would be the preferred approach. 

 

6) As mentioned in Section 5.6, the AAR model may be expanded to improve 

understanding of speed selection in general curve driving. It would be particularly 

interesting to investigate further the difference between curve driving and 

intersection left turn situations. For example, it might help to understand what 

kind of information and strategies human drivers use to turn the vehicle by 

comparing the two situations, curve driving involving the reciprocal relationship 

as mentioned in Section 5.6 and intersection turns showing constant lateral 

acceleration. 
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Appendix A 

RDCW Instrumentations 

 

 

A.1 Overall system 

The project for the Road Departure Crash Warning (RDCW) system was intended to 

develop two main functions: lateral drift warning (LDW) and curve speed warning 

(CSW). Test instruments were prepared with eleven Nissan Altima 3.5SE sedans (model 

year 2003) (Figure A.1). Figure A.2 shows the RDCW system with architecture installed 

in the above vehicles.  

 

 
Figure A.1 Vehicle fleet. (Reproduced from [53]) 

 

Table A.1 shows the primary and supporting sensors in the LDW and CSW. Among these, 

the GPS, yaw rate sensor and accelerometer in the data acquisition system (DAS) were 

used to reconstruct SV trajectories. For POVs, necessary information about their motion 

was given by the forward radars. In addition, video clips by the CCD camera were 

accessed to confirm manually if the reconstructed trajectories were reasonable. Note that 

there were two GPSs installed in the vehicles. One with differential corrections was 
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installed in the DAS and the other was in the CSW. For the SV trajectory reconstruction, 

the former GPS was adopted. 

 

 
Figure A.2 Schematic diagram of the RDCW system architecture. (Reproduced from [53]) 

 

Table A.1 Key sensors used by the LDW and CSW systems. (Reproduced from [53]) 

Sensor LDW system sensors CSW system 

Primary Supporting Primary Supporting 

Forward CCD camera X   X 

GPS  X X  

Digital map  X X  

Digital map look-aside database  X   

Vehicle speed X X X  

Yaw rate gyro  X X  

Driver brake switch  X   

Driver turn signal switch  X  X 

Forward-looking radars  X   

Side-looking radars  X   

The CCD camera was installed inside the cabin on the front windshield. The forward 

radars and the side radars were mounted inside the front bumper as shown in Figure A.3.  
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Figure A.3 Physical installation of the forward and side radars. (Reproduced from [53]) 

 

It is important to confirm that the field operational test data contains naturalistic driver 

behaviors at left turns at intersections without warnings by the LDW or CSW. The LDW 

suppresses warning requests in particular situations; 

 

1) The vehicle speed is 11.1 m/s or has been 1.11  m/s within the last 5 s, 

2) The vehicle has completed a lane change within the last 2 s, 

3) The lateral speed has exceeded 1m/s within the last 2 s, 

4) A turn signal has been on within the last 5 s, 

5) The brake pedal has been pressed within the last 5 s and 

6) The curve radius is 250  m. 

 

Also, the CSW suppresses warning requests in the following cases; 

 

1) The vehicle speed is below 8 m/s and 

2) The vehicle deceleration is less than the requested deceleration. 

 

The CSW determines the vehicle position and a predicted path using digital map 

information. Given a predicted path, it provides a warning to slow down the vehicle 
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speed if an excessive vehicle speed is anticipated by comparing it with a threshold for the 

lateral speed. 

 

With those conditions, there were no events detected with warnings from the LDW. On 

the other hand, there were 5 events with warnings from the CSW by 2 drivers at 2 

intersections during left turns. Excluding these 5 events, it can be said that the driver 

behavior on left turns in the field operational test data is assumed to be naturalistic. 

A.2 Specifications of instruments 

Specifications of the instruments relevant to the left turn analyses are shown in the tables 

below. 

Table A.2 Accelerometer. 

Input range ±2 g 

Zero g drift ±30 mV 

Sensitivity 1 V/g 

Noise RMS 1 mg 

Bandwidth DC -50 Hz 

Data sampling rate 20 Hz 

 

Table A.3 CCD camera. 

Color Monochrome 

Horizontal FOV 40±4 deg 

Vertical FOV 30±3 deg 

Data sampling rate 10 Hz 

 

Table A.4 Forward radars. 

Range (moving objects) 120±1 m 

Range (stationary objects) 60±1 m 

Range rate ±48.88±0.17 m/s 

Horizontal FOV 8±0.6 deg from 40 to 100 m 

Vertical FOV 3 deg 

Frequency 77 GHz 

Data sampling rate 20 Hz 

 

Table A.5 GPS. 

Position error (horizontal direction) Significantly less than 1m at 2σ (95 %) and close to 1m at 

3 σ (99 %) 

Position error (vertical direction) 2 to 2.5 times greater than horizontal error 
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Table A.6 Yaw rate transducer. 

Sensitivity (-30 to 80 ºC) 25.00±2.5 mV/deg/sec 

Sensitivity drift (-30 to 80 ºC) ±5 % 

Dynamic range ±60 deg/s 

Linearity (at -50 [deg/s]) ±0.5 % 

Linearity (at -60 [deg/s]) ±5 % 

Frequency response at 7 [Hz] -7.0 dB (minimum) and -2.0 dB (maximum) 

Cross axis sensitivity ±5.0 % 

Data sampling rate 10 Hz 
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Appendix B 

Transformation of Geographical Coordinates into Cartesian Coordinates 

 

 

The GPS coordinates given in the geographical coordinates   ,  can be transformed 

into the Cartesian coordinates as follows. 

 

A point on the earth’s surface, P, is denoted as, 

 

  resphericalP R er          (B.1) 

 

by using the spherical coordinate system. Re is the radius of the earth and er is a unit 

vector which can be rewritten by a set of unit vectors of the XYZ global (fixed) coordinate 

system as, 
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     (B.2) 

 

Thus, the point, P, can be given in the XYZ global coordinate system by, 
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Then, a rotation matrix to rotate the global axes about the Z axis by    2/  followed 

by another rotation about the X axis by     is given by, 
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Therefore, 

 

   
XYZPZYXP rRr 

'''
.        (B.5) 

 

The resulted orientation becomes the one shown in Figure B.1(b).  

 

For the reconstruction of the SV trajectory, the rotation matrix needs to be defined only 

once for each left turn by a datum position specified by,  00 ,  , such as the intersection 

node or initial SV coordinates in a left turn event, and this matrix can be used for the 

other positions too since the vehicle motion is considered approximately planar. 

Therefore, the transformation of SV coordinates from the XYZ global coordinate system 

to the ZYX   local coordinate system is described by, 

 

   
XYZSVZYXSV rRr 0'''

        (B.6) 

 

where 
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The radius of the earth used here is defined as 6,371,000 m. Although the value is 

approximate because of the non-spherical shape of the earth, the distance between a final 

position of the SV in a typical left turn event obtained by using the semimajor axis and 

another obtained by using the semiminor axis is about 15 cm. Therefore, this deviation is 

negligible in the conflict metric analysis. 
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Figure B.1 Coordinate systems used in the coordinate transformation. (a) three dimensional 

view and (b) top view of the designated coordinate orientation for the planar motion. 
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Appendix C 

Equations for X-Y Kalman Filter 

 

 

The Kalman filters used in the trajectory reconstruction share common characteristics as 

mentioned in Chapter 3, that is, the Wiener process acceleration model, varying time step 

and backward sweep before forward sweep. First, the Wiener process acceleration model 

[70], which assumes that the time derivative of the acceleration (jerk) is a zero mean 

white noise, is described by the following equations; 
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and kk ttkT  1)(  for one time step to indicate varying time steps.  
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The measurement equation is defined as 

 

    wkk Cxy         (C.3) 

 

where 
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The covariance matrices Q and R for the process noise, v, and measurement noise are 

given by  

 

     Tv kkk GGQ
2

         (C.5) 

 

and 

 

T
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where 
2

v  and 
2

w  are the standard deviations of v and w respectively. The state 

prediction and measurement prediction are represented by 
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and the updated state estimate is given by 

 

          kkkkkkkk |1ˆ11|1ˆ1|1ˆ  yyWxx    (C.8) 

 

where W is the filter gain that is found by 
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1

 TTT kkkkkkkk CCPRCQAPAW   (C.9) 

 

The state covariance matrix P is described as 
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           (C.10) 

 

Since appropriate initial conditions must be given for the Kalman filter (forward sweep), 

another Kalman filter is swept from the last point of the SV path (backward sweep) to 

find suitable initial conditions for the forward Kalman filter. The combination of these 

Kalman filters can increase the overall accuracy of the estimates of the SV motion. The 

system equations for the backward Kalman filter are described similarly to the forward 

Kalman filter as follows, 

 

      vkkk GxAx   111       (C.11) 

 

with the same measurement equation as for the forward Kalman filter, 

 

    wkk Cxy .        (C.20) 
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Appendix D 

Trajectories of Vehicle Corners 

 

 

In order to calculate the conflict metrics, the size of the vehicles must be considered. 

Thus, the trajectories of the corner points of the vehicles were constructed by using 

 YX ˆ,ˆ , 
~

 and the geometry of the vehicle body. According to Figure D.1, the position 

vectors of the corner points are given by 
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Instead of applying the Kalman filter to each corner trajectory, the first and second time 

derivatives are computed to find the velocity and acceleration by using the trajectory of 

O . The velocity vectors can be represented as 
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Figure D.1 Geometry of the subject vehicle and coordinate system for the corner 

trajectories from the top view. 

 

The acceleration vectors are 
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It is needed to find analytical expressions for 
~

 and 
~

 in the above equations. This can 

be achieved by using the constraint on the center of the rear wheels by assuming that they 

are connected by a rigid shaft. Since they are velocity-constrained (non-holonomic), the 

constraint equation can be found from the differential of the position vector. The position 

vector of the point P is 
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and thus, after the coordinate transformation from the global coordinate system to the 

local coordinate system, the differential of this vector is written by 
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The rear wheels are constrained in the lateral direction by assuming the tire slip is 

negligible, so the second term of the last equation becomes zero. Consequently, 
~

 and 


~

 are given by 
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Appendix E 

Control Gain Tuning 

 

 

E.1 Longitudinal Control 

The longitudinal and lateral control gains are selected by a simple analysis using the 

linear control theory to achieve a desired phase margin. Figure E.1 shows the block 

diagram of the inner feedback loop in the longitudinal control. It is noted that the 

saturation integrator which limits the rate of the pedals is replaced with a regular 

integrator for simplicity without loss of generality for normal driving.  
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Figure E.1 Inner feedback loop of the longitudinal control. 

 

The open-loop transfer function of this system in the frequency domain is  
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and its amplitude ratio and phase angle are 
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   1
.. tan jG lo        (E.3) 

 

respectively. Since the gain crossover frequency xcg K.. , equation (E.3) becomes 
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The required phase angle to achieve a desired phase margin is then 

 

 



 180..

..




 cg

jG lo       (E.5) 

 

where   is phase margin in degrees. Combining equations (E.4) and (E.5), we get 
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For  65  and 2.0 s, 18.2xK s
-1

 is selected. 

 

E.2 Lateral Control 

The lateral control contains the gain, Ky and non-dimensional sensitivity factor rK  of the 

yaw angle error to the yaw rate error as shown in equations (5.8) and (5.9). Also, the 

preview time Tp which affects the tracking performance is included. The procedure of 

adjusting these parameters is explained in the following.  

 

First, Ky is considered. Since the yaw rate is inputted to the controller block, it is 

necessary to include the lateral dynamics of the vehicle, for which the bicycle model is 

chosen in this analysis. The regular integrator is substituted for the saturating integrator in 

the original block diagram as in Section E.1. The block diagram used for tuning Ky and 
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rK  is shown in Figure E.2. The open loop transfer function for the inner loop is used for 

tuning Ky and that for the outer loop is for tuning rK . 
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Figure E.2 Block diagram of lateral control. 

 

The bicycle model is given by the following equations 
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Table E.1 shows descriptions of the variables and parameters. These numbers were taken 

from the CarSim
®
 vehicle used for the Monte Carlo simulations. 
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Table E.1 Variables and parameters in Equation (E.8). 

Name Description Value 

  Body slip angle (variable) rad 

r Yaw rate (variable) rad/s 

  Steer angle (variable) rad 

fC  Front cornering stiffness (both tires) 7000 N 

rC  Rear cornering stiffness (both tires) 5000 N 

La Distance between the front axle and vehicle mass center 0.962 m 

Lb Distance between the rear axle and vehicle mass center 1.795 m 

m Vehicle mass 1567 kg 

0U  Vehicle speed 10 m/s 

zI  Yaw moment of inertia 2535 kgm
2 

 

The open loop transfer function is given by 
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The frequency response of equation (E.9) is shown for 75.0yK . The desired phase 

margin is set to  30  in order to avoid slow response. This phase margin might be 

small, but the system will be stabilized by the outer loop which is associated with the yaw 

angle error part in equation (5.9). This is explained in the later part of this section. In the 

simulation model for the batch simulations including the CarSim vehicle model, the 

lateral input is given to the steering wheel instead of the front wheel, so Ky is modified by 

multiplying the steering ratio (1:16), i.e. 121675.0 sw
yK . 
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Figure E.3 Frequency response for tuning Ky. 

 

Next, the second control parameter rK  is considered. In practice, ξ is tuned instead of 

rK  for convenience as explained in the following. Extracting the yaw angle error 

contribution to the reference yaw rate, 
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Since UdTp   and a constant value is assumed for Tp, dUKr  is defined and thus 
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The open loop transfer function for the outer loop is  
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In order to avoid a slow response, 59.0  is adopted and a 65 degree of phase margin is 

achieved using equation (E.12) as shown in Figure E.4. The transport delay is 

approximated by )2.01(1 j . 

 
Figure E.4 Frequency response for tuning ξ. 

 

Finally, the preview time Tp is adjusted by minimizing the root mean square error of the 

lateral deviation during a left turn. Tp was tested for the range [0.4, 3.4] s with 0.2 s 

intervals. The Ky and ξ values selected above and a constant vehicle speed (U=6 m/s) 

were used. In addition, the same desired left turn path and driver parameters were used 

for all Tp values. As can be seen in the figure below, 6.1pT s shows the best tracking 

performance and thus 94.0 Pr TK  . 
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Figure E.5 Root mean square error in the lateral deviation vs. preview time.  
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Appendix F 

Identification of Hard Braking Events 

 

 

The braking response of each hard braking event in the field operational test for the 

Automotive Collision Avoidance Systems (ACAS) was approximated by the following 

first-order response, 
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where A is the deceleration amplitude, td is the time delay in the beginning region of the 

braking period and η is the time constant of the first-order response. Before curve fitting, 

the acceleration curve of raw data was shifted so that the amplitude at the brake initiation 

and time are both zero. Figure F.1 shows an example of the original acceleration curve 

after the preliminary treatment and a fitted curve obtained. Figure F.2 shows histograms 

of the three parameters (A, td and η) for the 88 events. 

 

The histograms of the random variables which are the natural logarithms ln(.)X  of 

3.3A , dt  and η and results of normal distribution fitting are shown in Figure F.3. 

The first two variables were derived from the original model parameters, since Aln  and 

dtln  did not show normal distributions by themselves alone. The mean values of 3.3A , 

dt  and η are 0.27, 0.32 and −0.19 respectively and the covariance matrix for their 

natural logarithms, )3.3ln( A , )ln( dt  and ln  is  
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Then, a correlated set of these variables  TdtA  ln),ln(),3.3ln( y  is given by 

 

 μσxy           (F.3) 

 

where σ is a square root of C,  Txxx 321 ,,x  in which  1,0~ Nxi , (i =1,2 and 3) and μ  

is a column vector with the mean values. Finally, a resulting y  can be easily converted to 

obtain the original parameters, A, td and η. Figure F.4 shows the generated sets of the 

parameter distributions which are similar to the distributions in Figure F.2. 

 

In addition, σ can be easily calculated by first diagonalizing C 
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where U is the matrix of the eigenvectors, D is the diagonal matrix with the eigenvalues 

and Ds is the square root of D with its elements being the square roots of the elements of 

D. Then, 
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and thus 
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which is, in the current problem, found as 
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Figure F.1 Braking response and fitted curve. 
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Figure F.2 Distributions of the braking model parameters. 

 

 
Figure F.3 Distributions of ln(|A|-3.3), ln(td+τ) and lnτ. 
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Figure F.4 Distributions of generated parameter values.  
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