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CHAPTER 1   

Introduction 

 

 

Missing data is an important practical problem in many applications of statistics. 

We consider multivariate regression with missing data. Reviews of previous research on 

the topic include Little (1993), Ibrahim et al. (1999), Ibrahim et al. (2002), Ibrahim et al. 

(2005), and Chen et al. (2008). Three approaches are: 

(a) Complete-case analysis (CC), which discards the incomplete cases;  

(b) Ignorable likelihood (IL) methods, which base inferences on the observed likelihood 

given a model that does not include a distribution for the missing data mechanism; 

examples of IL methods include ignorable maximum likelihood (IML), Bayesian 

inferences, or multiple imputation based on the predictive distribution from a Bayesian 

model, as in SAS PROC MI (SAS 2010) or IVEware (Raghunathan et al. 2001);  

(c) Nonignorable modeling, which derives inference from the likelihood function based 

on a joint distribution of the variables and the missing data indicators (Little and Rubin 

2002, chapter 15).  

CC analysis is the default method in most software packages. Much of the 

statistical literature views CC with disfavor since it discards the incomplete cases. 
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However, CC has the advantage of yielding valid inference when the missingness of 

covariates does not depend on the outcome. This advantage of CC in regression analysis 

is usually overlooked.  

Ignorable likelihood methods have the advantage of retaining all the data, but 

assume that missing data are missing at random (MAR), in the sense that missingness 

does not depend on missing values (Rubin 1976, Little and Rubin 2002). IL methods are 

fully efficient for well-specified models and they are also easy to fit since software 

packages are widely available (IVEWARE, PROC MI in SAS). Simulation studies show 

that IL methods are quite robust in the sense that it performs reasonably well even when 

the MAR assumption is slightly violated (Little and Zhang, 2011). This is because the 

efficiency gain by using more cases outweighs the bias resulting from incorrectly 

ignoring the missing data mechanism.  

When the missingness of W is thought to depend on the missing value (MNAR), 

IL methods yield biased estimation. Nonignorable modeling methods, which jointly 

model the distribution of Y, W and Rw, were proposed (Lipsitz et al. 1999, Huang et al. 

2005). There are several disadvantages with nonignorable modeling: (1) the model is not 

easy to specify correctly and sensitive to model misspecification; (2) the parameters 

might be inestimable and therefore the model usually needs restrictions to be identifiable; 

(3) there are limited software programs available for nonignorable modeling. 

Other methods for handling missing covariates in regression include the indicator 

method and the stratification methods (Jones, 1996). In the missing-indicator method, an 

indicator of whether the covariate is missing is included in the regression model. The 

stratification methods divide the dataset into different strata for analysis. Both methods 
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avoid discarding the incomplete cases but might result in biased estimation of the 

regression coefficient and residual variance.  

In Chapter 2, we review complete-case analysis (CC) and ignorable likelihood 

method (IL), and propose a hybrid class, subsample ignorable likelihood (SSIL) methods, 

which applies an IL method to the subsample of observations that are complete on one set 

of variables, but possibly incomplete on other variables and the outcome. Conditions on 

the missing data mechanism are presented under which SSIL gives consistent estimates, 

but both complete-case analysis and IL methods are inconsistent. We illustrate properties 

of the methods by simulation, and apply the proposed method to data from National 

Health and Nutrition Examination Survey and a liver cancer study. Extensions to non-

likelihood analyses are also possible. 

In Chapter 3, we consider the regression of outcome Y on regressors W and Z with 

some values of W missing, when our main interest is the effect of Z on Y, controlling for 

W. Besides the CC, IL, and NIM methods we discussed above, another simple practical 

approach that has not received much theoretical attention is to drop the regressor 

variables containing missing values from the regression modeling (DV, for drop 

variables). DV does not lead to bias when either (a) the regression coefficient of W is 

zero or (b) W and Z are uncorrelated. We propose a pseudo-Bayesian approach for 

regression with missing covariates that compromises between the CC and DV estimates, 

exploiting information in the incomplete cases when the data supports DV assumptions. 

We illustrate favorable properties of the method by simulation, and apply the proposed 

method to a liver cancer study. Extensions of the method to more than one missing 

covariates and to generalized linear models are also discussed. 
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In Chapter 4, we study the effect of covariate missingness on the estimation of the 

regression and answer the question when it is necessary to model the missing data 

mechanism. We will study two aspects of covariate missingness on the estimation of 

regression: (1) nonignorability, which concerns mainly how IL methods perform under 

varying levels of nonignorability; (2) outcome dependency, which studies the relatedness 

of covariate missingness to the outcome on the estimation of regression. We compare 

different methods for regression with missing covariates using a series of simulation 

experiments.  We conclude the dissertation with a short discussion and future work in 

Chapter 5. 
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CHAPTER 2   

Subsample Ignorable Likelihood for Regression with Missing Data  

 

 

2.1  Introduction 

Missing data is an important practical problem in many applications of statistics. 

We consider multivariate regression with missing data. Reviews of previous research on 

the topic include Little (1993), Ibrahim et al. (1999), Ibrahim et al. (2002), Ibrahim et al. 

(2005), and Chen et al. (2008). Three approaches are: 

(a) Complete-case analysis (CC), which discards the incomplete cases;  

(b) Ignorable likelihood (IL) methods, which base inferences on the observed likelihood 

given a model that does not include a distribution for the missing data mechanism; 

examples of IL methods include ignorable maximum likelihood (IML), Bayesian 

inferences, or multiple imputation based on the predictive distribution from a Bayesian 

model, as in SAS PROC MI (SAS 2010) or IVEware (Raghunathan et al. 2001);  

(c) Nonignorable modeling, which derives inference from the likelihood function based 

on a joint distribution of the variables and the missing data indicators. This approach is 

less common in practice, because of the difficulty in specifying the model for missing 

data mechanism, sensitivity to misspecification of this distribution, problems with 
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identifying the parameters (Little and Rubin 2002, chapter 15), and lack of widely-

available software.  

IL methods have the advantage of retaining all the data, but assume the missing 

data are missing at random (MAR), in the sense that missingness of variables that contain 

missing values does not depend on the missing values, after conditioning on available 

data (Rubin 1976, Little and Rubin 2002). CC involves a loss of information, but has the 

advantage of yielding valid inferences when missingness depends on the missing 

covariates X's but not the response Y, a potentially nonignorable mechanism where IL 

methods are subject to bias. This advantage of CC is sometimes overlooked in 

comparisons of the methods. 

Can the information loss in CC analysis be mitigated, while retaining the useful 

property of allowing missingness to depend on the values of missing covariates? This 

article shows that the answer is yes, under particular assumptions about the missing data 

mechanism formalized in Section 2.4. The key idea is to divide the covariates into three 

sets – one set (say Z) fully observed, one set (say W) for which missingness is assumed to 

depend on W and other covariates but not on the outcomes Y, and a third set (say X), 

which together with Y are assumed MAR in the subsample of cases with W fully 

observed. The proposed method, subsample ignorable likelihood (SSIL), then applies an 

IL method to the subsample of cases with W observed. Particular forms discussed below 

are subsample ignorable maximum likelihood (SSIML), which applies IML to the 

subsample, and SSIMI, which applies an ignorable model to multiply-impute the missing 

values in the subsample. 
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Section 2.2 presents a motivating application based on data from the National 

Health and Nutrition Examination Survey (CDC 2004), where the regression of interest 

concerned the effect of income and education on blood pressure, adjusting for age, 

gender and body mass index (BMI). In this application, age and gender were fully 

observed, but the other variables had missing values; it was thought reasonable to assume 

missingness of education, BMI and the blood pressure measures was MAR, but 

missingness of income was thought likely to be dependent on income. Thus in this 

example, Z consists of age and gender, W consists of income, and X consists of education 

and BMI. The method consists of applying an IL method to the subset of cases with 

income observed. We formulate the problem in a way that encompasses multivariate 

regression and repeated measures analyses with missing data in outcomes and covariates. 

Section 2.3 reviews properties of CC and IL, and Section 2.4 presents properties 

of the proposed SSIL methods. In particular, conditions on the missing data mechanism 

are presented under which SSIL gives consistent estimates, but both IL and CC analyses 

are inconsistent. In other circumstances, IL is inconsistent and SSIL and CC are 

consistent, but SSIL is more efficient than CC since it uses more of the data. Section 2.5 

presents simulations that illustrate the properties of SSIL and alternative methods. In 

section 2.6 we apply the method to the motivating data from the National Health and 

Nutrition Examination Survey (NHANES) (CDC 2004). We conclude with some 

discussion in Section 2.7. 

 

2.2  The motivating problem 
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 The effect of socioeconomic status on blood pressure has been studied by many 

researchers (Gulliford et al. 2004, Colhoun et al. 1998, and etc). The results provide an 

important basis for public health interventions. The effect of socioeconomic status on 

blood pressure generally varies by geographical region and time as the risk factors in 

populations change (Mackenbach 1994).  The data set analyzed in this article is from the 

2003-2004 National Health and Nutrition Examination Survey (CDC 2004), a survey 

designed to assess the health and nutritional status of US adults and children. To study 

the effect of income and education on blood pressure, we extract the following data:  

(a) two outcome measures: systolic blood pressure (SBP) and diastolic blood pressure 

(DBP); 

(b) two socioeconomic status measures: household income (HHINC) and years of 

education (EDU, in years); 

(c) three other covariates: age (in years), gender, and body mass index (BMI, kg/m
2
).  

Regressions of SBP and DBP on the covariates are fitted to study the effect of 

socioeconomic status on blood pressure. 

Some of the variables have missing values -- see Table 2.1 for the proportion of 

missing values for each variable. CC analysis suffers from the loss of a large proportion 

of the cases. IL methods capture the partial information in the incomplete cases lost by 

CC analysis, but assume the missing values are MAR. It is reasonable to assume MAR 

for education, BMI, and the two blood pressure measures, but missingness of household 

income is thought more likely to be missing not at random (MNAR), since the probability 

of responding to income is thought likely to depend on the underlying value of income – 

often individuals with high or low values of income are considered less likely to respond 
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to income than others (David et al, 1986, Lillard et al. 1986, Yan et al. 2010). If these 

assumptions are correct, IL methods yield biased regression estimates. This motivates a 

new method which we call subsample ignorable likelihood (SSIL), which allows MAR 

assumptions for some variables (SBP, DBP, Education, BMI) and MNAR assumptions 

for others (Income), in a sense defined precisely in Section 2.4.  

Before considering SSIL, it is useful to review more precisely the assumptions 

underlying IL and CC methods. This is the topic of the next section. 

 

2.3  Complete-Case and Ignorable Likelihood Methods 

 In this section, we consider the data with the structure in Figure 2.1. Let 

{( , , ), 1,.. }i i iz w y i n  denote n independent observations on a (possibly multivariate) 

outcome variable Y and two sets of covariates, Z and W, where Z is fully observed and W, 

Y have missing values. Interest concerns the parameters  of the distribution of Y given 

(Z, W), say ( | , , )i i ip y z w . 

The rows of Figure 2.1 divide the cases into two patterns. Pattern 1 (i = 1,…,m) 

consists of complete cases, for which ( , , )i i iz w y  are fully observed. Pattern 2 consists of 

cases where at least one of the variables in iw , and possibly components of iy , are 

missing. The column 
( , )i iw yR  represents a vector of response indicators for ( , )i iw y , with 

entries 1 if a variable is observed and 0 if a variable is missing; 
iwR and 

iyR denotes the  
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Figure 2.1: General Missing Data Structure for Section 2.2 

Pattern Observation, i 
iz  iw  iy  

( , )i iw yR  

1 i  = 1,…,m √ √ √ 
( , )  (1,...,1)w yu  

2 i  = m +1,…,n √ x ? 
( , )w yu  

 

Key: √ denotes observed, x denotes at least one entry missing, ? denotes observed or missing 

 

response indicators for iw and iy  respectively. To describe missing data patterns for a set 

of variables (say v), it is convenient to write (1,...,1)vu  to denote a vector of 1‟s of the 

same length as the vector v, and vu  to denote a vector of 0‟s and 1‟s of the same length as 

v for which at least one entry is zero. Then, for the cases i in Figure 2.1, 
( , ) ( , )i iw y w yR u  

for the complete cases in Pattern 1 and
( , ) ( , )i iw y w yR u  for the incomplete cases in Pattern 2. 

The pattern of missing values will typically vary over these cases, but we do not need to 

distinguish them for the present discussion.  

IL inference requires a model for the distribution of W and Y given Z indexed by 

parameters , say ( , | , )i i ip w y z  -- the fully observed covariates can be treated as fixed 
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(Little & Rubin 2002, Section 11.4.) The ignorable likelihood is obtained by integrating 

the missing variables out of this joint distribution, and treating  as the argument of the 

resulting density. That is: 

 
ign obs, obs,

1

( ) const. ( , | , )
n

i i i

i

L p w y z , (2.1)  

where 
obs, obs,( , )i iw y  are the observed components of ( , )i iw y , respectively. For Bayesian 

inferences this likelihood is multiplied by a prior distribution for .  Inferences about the 

parameter ( )  of interest are obtained from inferences of  in the usual way. In 

particular, the ML estimate is ˆ ˆ( )  where ˆ  is the ML estimate of , and draws 

from the posterior distribution of  are  
( ) ( )( )d d

, where ( )d  is a draw from the 

posterior distribution of . Rubin's (1976) theory shows that a sufficient condition for 

valid inferences based on (1) is that the data are missing at random (MAR), that is: 

 
obs, obs,( , | , , , ) ( , | , , , ) 

i i i iw y i i i w y i i ip R R z w y p R R z w y , (2.2)  

where  are parameters for the missing data mechanism. If, in addition, the parameters 

 and  are distinct, inferences based on (2.1) are fully efficient; but MAR is the 

important condition in practice.  

CC analysis bases inferences for  on the complete observations in Pattern 1. In a 

likelihood context, the method bases inference on the conditional likelihood 

corresponding to the complete cases, namely: 

 cc ( , ) ( , )

1

( ) const. | , , ;
i i

m

i i i w y w y

i

L p y w z R u , (2.3)  
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The key condition under which inference based on cc ( )L  is valid is that the 

probability that an observation is complete does not depend on the outcomes, that is: 

 
( , ) ( , ) ( , ) ( , )| , , , ) | , , )  for all 

i i i iw y w y i i i w y w y i i ip R u z w y p R u z w y  (2.4) 

 

 

Figure 2.2: Missing Data Pattern of Example 2.1 

Pattern Observation, i 
iz  iw  iy  

( , )i iw yR  

1 i  = 1,…,m √ √ √ (1,1) 

2 i  = m +1,…,n √ x √ (0,1) 

 

Key: √ denotes observed, x denotes missing 

 

Note that this condition allows missingness to be MNAR, since missingness can 

depend on the values of W which are sometimes missing. CC analysis works in this case 

because Eq. (2.4) implies that  

( , ) ( , )| , , , | , ,
i ii i i w y w y i i ip y w z R u p y w z , 

so the regression based on the complete cases is the regression of interest for the whole 

sample. The likelihood for a fully specified model with parameters ( , )  can be written 

as 

obs obs ( , ) cc rest( , | , , , ) ( ) ( , )w yL Z W Y R L L , 
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and the component rest ( , )L  is discarded. ML estimates based on cc ( )L  are consistent 

and asymptotically normal, but are not necessarily fully efficient, since rest ( , )L  may 

contain information about the parameters of interest .  However, recovering this 

information requires a model for the missing data mechanism, which may be difficult to 

specify correctly, and which is not needed for CC analysis.  

 

Example 2.1. Missing data in a single covariate. Figure 2.2 displays a special case of 

Figure 2.1 where iw  and iy  are single variables, and the incomplete cases have iw  

missing (denoted x) but not iy . The MAR condition (2.2) becomes 

 
( , ) ( , )( (1,1) | , , , ) ( (1,1) | , , ) for all 

i i i iw y i i i w y i i ip R z w y p R z y w , (2.5)  

and (2.4) becomes 

 ( , ) ( , )( (1,1) | , , , ) ( (1,1) | , , ) for all 
i i i iw y i i i w y i i ip R z w y p R z w y . (2.6)  

The choice between IL or CC rests on whether (2.5) or (2.6) is a better assumption for the 

missing data mechanism, that is, on whether missingness of W is thought to depend on Y 

and Z (but not W) or on W and Z  (but not Y). Little and Wang (1996, Example 2) presents 

a normal pattern-mixture model where missingness is a function of i iw y , for which 

the ML estimates correspond to IL when 0  and CC when . An interesting 

feature of that example is that CC analysis is not just consistent but also fully efficient 

under (2.6).  

We note that CC analysis is viewed with disfavor in the missing data literature, 

because of the loss of information in the incomplete cases. Many simulation studies in the 

literature (e.g. Little 1979, Chen, Zeng and Ibrahim 2007) show superiority of IL over CC, 
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but are biased towards IL because they are based on MAR data. The above arguments 

also apply to repeated measures models where Y is multivariate and both Y and covariates 

contain missing values. In this setting, CC is still a superior alternative to IL if 

missingness depends on covariates, including those with missing values, but not on the 

repeated measures Y. We are not aware of this advantage of CC being considered in the 

repeated-measures setting, where attention has been focused on capturing the information 
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Figure 2.3: General Missing Data Structure for Section 2.3 

Pattern Observation, i 
iz  iw  ix  iy  

iwR  
( , )i ix yR  

1 i  = 1,…,m √ √ √ √ 
wu  

( , )x yu  

2 i  = m +1,…,m+r √ √ ? ? 
wu  

( , )x yu  

3 i  = m +r+1,…,n √ x ? ? 
wu  

( , )x yu  or 
( , )x yu   

 

Key: √ denotes observed, x denotes at least one entry missing, ? denotes observed or missing 

 

in the incomplete cases. 

2.4  Subsample Ignorable Likelihood Methods -- Theory 

We consider the missing data pattern in Figure 2.3, in which another set of 

incomplete covariates X is added. The observations are grouped into three patterns: 

Pattern 1 consists of the complete cases (
iw wR u , ( , ) ( , )i ix y x yR u ), Pattern 2 incomplete 

cases with W fully observed (
iw wR u , 

( , ) ( , )i ix y x yR u ), and Pattern 3 cases with W 

incomplete (
iw wR u ). Interest concerns the parameters  of the distribution of Y given 

(Z, W, X), say ( | , , , )i i i ip y z w x . We propose subsample IL (SSIL), which applies an IL 

method to the subsample of cases in Patterns 1 and 2 with both Z and W observed.  

The division of covariates into W and X for SSIL is determined by assumptions 

about the missing data mechanism. Specifically, the method is valid under the following 

two assumptions: 
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(a) Covariate missingness of W: the probability that W is fully observed depends only on 

the covariates and not Y, that is: 

| , , , , ) | , , , )  for all 
i iw w i i i i w w w i i i w ip R u z w x y p R u z w x y  (2.7) 

(b) Subsample MAR of X, Y: Missingness of X and Y is MAR within the subsample of 

cases for which W is fully observed, that is: 

 
( , )

( , ) obs, obs, mis, mis,

( | , , , , ; )

( | , , , , ; )   for all ,

i i i

i i i

x y i i i i w w xy w

x y i i i i w w xy w i i

p R z w x y R u

p R z w x y R u x y
 (2.8) 

 To establish the validity of SSIL under (2.7) and (2.8), we first consider the 

conditional likelihood for a set of parameters based on the joint distribution of 

( , ), , X YX Y R  given W and Z and 
iw wR u , that is, restricted to cases i with W fully 

observed: 

cc,w obs, obs, ( , )

1

( ) , , | , , ;
i i i

m r

i i x y i i w w

i

L p x y R w z R u , 

where ( , ) . By a direct application of Rubin's (1976) theory, under the subsample 

MAR condition (2.8), this likelihood factorizes as 

cc,w obs, obs, ( , ) obs, obs,

1 1

( ) , | , , ; | , , , , ;
i i i i

m r m r

i i i i w w x y i i i i w w

i i

L p x y w z R u p R w x y z R u , 

where the second component on the right side does not involve , and the first 

component on the right side, namely  

ign,w obs, obs,

1

( ) , | , , ;
i

m r

i i i i w w

i

L p x y w z R u , 
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is the likelihood for the subsample with iw  observed, ignoring the distribution of the 

missing data indicators 
( , )i ix yR . Thus inference about , the parameter of the distribution 

(X,Y) given (W, Z), based on 
ign,w ( )L  is valid. Now factorize 

, | , , ;

| , , , ; | , , ; .

i

i i

i i i i w w

i i i i w w i i i w w

p x y w z R u

p y x w z R u p x w z R u
 

By assumption (2.7), | , , , ; | , , ,
ii i i i w w i i i ip y x w z R u p y x w z , where ( )  is 

the parameter of the regression of interest, and the conditioning on the cases with W 

observed is removed. Thus, under assumptions (2.7) and (2.8), we can base inferences 

about  on 
ign,w ( )L , and then derive likelihood inferences about ( )  as in Section 

2.2.  

The missing data mechanism defined by conditions (2.7) and (2.8) is suitable in 

empirical studies where it is natural to assume covariate-dependent missingness for some 

covariates and subsample MAR missingness for others. For example, in the motivating 

example concerning the regression of blood pressure on socioeconomic variables in 

Section 2.2, Income may be covariate-dependent and the Education and BMI may be 

subsample MAR. In environmental health research, values of variables that are missing 

because they lie below the limit of detection (LOD) are MNAR. If missing values exist 

for other variables and can be assumed to be MAR, then SSIL on the subsample with 

measurements within the detection limit yields valid regression inference.  

Generally, SSIL methods are based on a partial likelihood (Cox 1972) with the 

component ign,w ( )L discarded from the analysis and hence involve a loss of efficiency
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Figure 2.4: Missing Data Structure for Example 2.2 

Pattern Observation, i 
iz  iw  ix  iy  

iwR  
ixR  

1 i  = 1,…,m √ √ √ √ 1 1 

2 i  = m +1,…,m+r √ √ x √ 1 0 

3 I  = m +r+1,…,n √ x √ √ 0 1 

 

Key: √ denotes observed, x denotes missing. 

 

relative to full likelihood methods. However, they are more efficient than CC analysis, 

and avoid the need to specify the form of the missing data mechanism beyond 

assumptions (2.7) and (2.8). 

Assumptions (2.7) and (2.8) differ from the assumptions under which IL and CC 

methods are valid. Specifically, IL inference assumes the data are MAR, that is: 

 
( , ) ( , ) obs, obs, obs,

mis, mis, mis,

( , | , , , , ) ( , | , , , , ) 

                                                                          for all , ,

i i i i i iw x y i i i i w x y i i i i

i i i

p R R z w x y p R R z w x y

w x y
 (2.9) 

This differs from conditions (2.7) and (2.8), where missingness of both iw  and ( , )i ix y  

can depend on missing components of iw . CC analysis yields valid inferences if the 

probability that an observation is complete does not depend on the outcomes, that is: 

 
( , ) ( , )

( , ) ( , )

, | , , , , )

, | , , , )   for all 

i i i

i i i

w w x y x y i i i i

w w x y x y i i i i

p R u R u z w x y

p R u R u z w x y
 (2.10) 
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This differs from the assumption (2.8) in that missingness of ( , )i ix y  in (2.8) can 

depend on the observed components of iy . If this is not the case, then CC yields valid 

inferences but is less efficient than SSIL, since SSIL uses the data in Pattern 2, which is 

discarded by CC. 

 

Example 2.2: a normal regression model with two incompletely observed covariates 

Figure 4 displays a special case of Figure 3, where W, X and Y (but not 

necessarily Z) are univariate, Z and Y  are fully observed, X is missing and W is observed 

in Pattern 2, and W is missing and X is observed in Pattern 3. Restating assumptions (2.7) 

and (2.8) in this special case yields: 

1| , , , , 1| , , ,  for all 
i iw i i i i w w i i i w ip R z w x y p R z w x y  (2.11) 

( 1| , , , , 1, ) ( 1| , , , 1, ) for all 
i i i ix i i i i w xy w x i i i w xy w ip R z w x y R p R z w y R x  (2.12) 

Under this mechanism, SSIL yields consistent estimates, but (a) CC analysis may 

yield inconsistent estimates since missingness of X may depend on the outcome Y, and (b) 

IL methods may yield inconsistent estimates, since missingness of W can depend on 

missing values of W (i.e. MNAR).  

 

2.5  Simulation Study 

As a numerical illustration of the theory in Section 2.4, we simulate data for the 

pattern of Example 2.2, under a variety of missing data mechanisms. For each of 1000 

replications, 1000 observations ( , , , )i i i iz w x y  , i = 1,…,1000 on Z, W, X and Y were 

generated as follows: 
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ind( , , ) ~ (0, ),i i iz w x N  

where ( , )N  denotes the normal distribution with mean  and covariance matrix 

1

1

1

, 

and  

ind| , , ~ (1 ,1)i i i i i i iy z w x N z w x . 

Missing values of W and X were then generated from the following two logistic models: 

( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( )

0

logit ( 0 | , , , )

logit ( 0 | 1, , , , )

i

i i

w w w w w

w i i i i z i w i x i y i

x x x x x

x w i i i i z i w i x i y i

P R z w x y z w x y

P R R z w x y z w x y
     

with ix fully observed when iw is missing. 

For the missing data generation schemes above, CC analysis is valid if both 
( )w

y and 

( )x

y are zero; IL is valid if ( )w

w
, ( )w

x
and ( )x

x
are zero; SSIL is valid if 

( )w

y and ( )x

x
are 

zero. Four missing data mechanisms were created using different sets of values for the 

regression coefficients such that, in mechanism (I) all three methods (CC, IL and SSIL) 

are consistent, while in mechanisms (II), (III) and (IV), just one of the three methods is 

valid. The simulation setup is summarized in Table 2.2.  

These missing data mechanisms all generate from 20% to 35% of values missing 

in W and X, respectively. Three values of the correlation of X and W, 0,  0.3 and 0.8,  

are chosen, to examine the impact of correlation between the covariates. 

Four specific versions of the methods are applied to estimate the regression 

coefficients: 
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(1) CC: Complete-case analysis, using ordinary least squares; 

(2) IML: ignorable ML  for the whole dataset; 

(3) SSIML: IML for the subsample with W observed; 

(4) BD: least squares estimates from the regression before deletion (BD), as a 

benchmark method.  

For each method, Table 2.3 summarizes the root mean squared errors (RMSEs) of 

estimates of all the regression coefficients, and Tables 2.4, 2.5 and 2.6 report respectively 

the empirical bias, RMSE and coverage probability of estimates of the individual 

regression coefficients. Results in bold type reflect situations where the method is 

consistent based on the theory of Section 2.4, and hence should do well. The results are 

based on 1000 repetitions in each simulation.  

In general, the simulation results are in line with theoretical expectations. Results 

for SSIML lie between those for CC and IML for mechanisms I, II and III, where one or 

both of CC and IML are consistent – both CC and IML in mechanism I, CC in 

mechanism II and IML in mechanism III. This finding reflects the fact that SSIML is a 

hybrid of CC and IML, sharing features of both methods. In mechanism IV, SSIML is 

consistent but CC and IML are inconsistent, and in this case SSIML has small empirical 

bias and generally performs best, except for some individual coefficients where the gain 

in efficiency of IML compensates for the bias of that method. We now describe results in 

a bit more detail. 

For mechanism I, all three methods yield consistent estimates, IML is best since it 

makes full use of the data, CC is the worst since it discards the most information, and 
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SSIML lies between CC and IML, since it retains some incomplete cases and drops 

others.  

For mechanism II, CC is valid and in general has the lowest RMSEs, while both 

IML and SSIML are biased, with SSIML having RMSEs lying between those of CC and 

IML. However, for ρ = 0.8, SSIML and IML yield comparable or even smaller RMSEs 

than CC for z and w , reflecting gains in efficiency that compensate for bias in these 

parameter estimates.  

For mechanism III, IML is the only valid method among the three, and is clearly 

the best method. Both CC and SSIML lead to biased estimates, as shown in Table 2.3, 

with SSIML being better than CC since it is incorporates features of IML as a method. 

In mechanism IV, SSIML is valid while CC and IML are biased. The RMSEs 

from SSIML are generally the smallest, except that IML yields a smaller RMSE than 

SSIML for w .  

In some of these situations, supporters of IML may note that it competes well 

with other methods, despite its theoretical inconsistency and the quite sizeable sample 

size. This suggests a degree of robustness for IML, which has the virtue of retaining all 

the data. 

 

2.6  Application to motivating example 

We now apply the proposed method to the NHANES (2003-2004) data presented 

in Section 2.2. Two blood pressure measurements: systolic blood pressure (SBP) and 

diastolic blood pressure (DBP), are regressed on household income (HHINC, in 

dollars/yr) and years of education (EDU, in years), adjusting for age (in years), gender 
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and body mass index (BMI, kg/m
2
). Household income data are categorical with 11 

categories in the NHANES, and we use the median of the corresponding category as a 

proxy to the true household income. Education is dichotomized to be high-school and 

above vs. less than high-school.   

Age and gender are fully observed, while household income, education, BMI and 

the two blood pressure measures are subject to missing data, with the percentages shown 

in Table 1. We assume covariate missingness for household income, given evidence that 

people with high or low income are more likely to fail to report it, and assume subsample 

MAR for other variables: (1) missingness of BMI and blood pressure measurements is 

likely missing completely at random due to missing visit; (2) with income observed, it is 

reasonable to assume MAR for education because income and education are correlated 

(Tolley and Olson, 1971). With these two plausible assumptions, SSIL on the subsample 

with household income observed yields consistent estimates of the regression, while IL 

on the whole sample may be biased. CC analysis is also valid since there is little evidence 

to believe that missingness of covariates depends on blood pressure; however, SSIL is 

preferred over CC since it uses more information in the incomplete cases than CC 

analysis. For simplicity, we ignore the design features (weighting and clustering, etc) of 

the NHANES study. For the SSIL method, we use IVEware to multiply impute missing 

values in the subsample with household income observed, and then use SAS software 

(SAS 2010) to perform the regression analyses and to combine results from individual 

imputed dataset. We denote this method SSIMI. For the IL method, we use IVEware to 

multiply impute the full sample, and use SAS software for regression analyses and 

combining the results. We denote this method IMI. The results of CC analysis, SSIMI 
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analysis and IMI are shown in Table 2.6. All three methods yield similar estimates of the 

effect of household income on blood pressure, statistically not significant for SBP but 

significant for DBP, with blood pressure increasing with income. There is a negative 

association between education and SBP and a positive association between education and 

DBP, regardless of method of analysis. For education, SSIMI and CC yield similar and 

stronger effects on the two blood pressure measures than IMI, implying possible bias in 

IMI given the above assumptions about the missing data mechanism. The larger sample 

of SSIMI over CC should result in a gain in efficiency for SSIMI in this situation, 

although CC and SSIMI have similar estimated standard errors for this particular sample.  

 

2.7  Discussion 

The idea behind SSIL, to apply an analysis that assumes MAR to a subsample of 

the data that is complete on a subset of the covariates, is both simple and powerful. SSIL 

analysis has the following strengths: (1) It is easy to implement, since existing software 

for doing MAR analyses is all that is required, and this software is now widely available 

for many common models; (2) It avoids discarding all incomplete cases, thus alleviating 

one of the drawbacks of CC analysis; (3) It applies to a broad class of univariate and 

multivariate regression models, including multivariate linear regression, generalized 

linear models (GLMs) and generalized linear mixed models (GLMMs); and (4) The 

method works for a class of missing data mechanisms, defined by (2.7) and (2.8), where 

both IL and CC methods fail to give consistent estimates. This extends the class of 

MNAR models that can be handled by a selective use of MAR methods, and allows 

combinations of MAR and MNAR mechanisms for different variables in the data set.  
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In another analysis which drops a subset of incomplete cases, Von Hippel (2007) 

applies an MAR multiple imputation analysis in the regression setting, where a univariate 

outcome Y  has missing values, and then applies the final regression analysis to the 

subsample of cases with Y observed, that is, dropping the cases with Y imputed. This 

strategy reduces the simulation error from multiple imputation, but it is applied within a 

univariate regression for a MAR model, and hence is much less general than SSIL, and 

does not generate a method that is consistent for a MNAR mechanism.  

The general theoretical rationale of SSIL is partial likelihood (Cox, 1972). This 

involves a potential loss of efficiency relative to full modeling, but it is much simpler, 

since the latter requires specifying the precise form of the missing data mechanism via a 

model for the missing data indicators, which is vulnerable to model misspecification. 

Also, existing software for full MNAR models is not widely available.  

An important topic is how much efficiency is lost by SSIL relative to full 

likelihood methods. SSIL involves minimal loss when the fraction of cases in the 

subsample with the MNAR subset W observed is relatively high, and hence the method is 

most beneficial relative to CC when the fraction of information in the pattern with W 

complete but other variables incomplete is relatively high. It can be shown by an 

extension of the arguments in Little and Wang (1996) that for the data in Example 2, the 

SSIL method is in fact full ML for a particular normal pattern-set mixture model (Little 

1993). This aspect of SSIL methods will be the subject of a future paper.  

The form of IL method in SSIL is left unspecified in this article where possible, 

for increased generality. As noted, options for IL include maximum likelihood (IML), 

multiple imputation using software like PROC MI or IVEware (Raghunathan et al. 2001), 
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and fully Bayes methods using software such as BUGS (Gilks et al. 1994). Mixing these 

methods is also advantageous in some settings.  

The idea of SSIL is presented here in the context of likelihood-based analyses, but 

it also applies to non-likelihood analyses that are valid under the MAR assumption. For 

example, for repeated-measures data, the IL method applied to the subsample could be 

replaced by a method such as weighted generalized estimating equations (WGEE), which 

is also valid under MAR, without affecting the validity of the method under the stated 

assumptions (2.7) and (2.8).  

From a practitioner's viewpoint, the main challenge in applying SSIL is deciding 

which covariates belong in the set W and which belong in the set X; that is, which 

covariates are used to create the subsample for the MAR analysis. The choice is guided 

by the basic assumptions (2.7) and (2.8), concerning which variables are considered 

covariate-dependent MNAR and which are considered subsample MAR. This is a 

substantive choice that requires an understanding about the missing data mechanism in 

the particular context. It is aided by learning more about the missing data mechanism, for 

example by recording reasons why particular values are missing. Although a challenge, 

we note that the same challenge is present in any missing data method, including CC, IL 

and WGEE. When faced with missing data, assumptions are inevitable, and they need to 

be as reasonable and well-considered as possible.  

In cases where a choice cannot be made, an alternative strategy is simply to see 

whether key results are robust to alternative methods. Thus, one might apply CC, IL and 

SSIL for subsamples judiciously chosen based on assumptions (2.7) and (2.8), to assess 
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sensitivity of key inferences to alternative assumptions about the missing-data 

mechanism.  
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Table 2.1: Percentages of Missing Data in NHANES
a
 2003-2004 

 Partition
b
 Variables 

Full Data 

Subset with 

HHINC
c
 

observed 

(n=9041) (n=5400) 

W HHINC
c
 (1k dollars/ yr) 40.27 0 

Z 

Age ( years) 0 0 

Gender 0 0 

X 

Education (years) 17.24 16.74 

BMI
c
 (kg/m

2
) 9.84 9.48 

Y 

SBP
c
 (mmHg) 25.02 24.5 

DBP
c
 (mmHg) 25.02 24.5 

 
a
:NHANES: National Health and Nutrition Examination Survey 

b
: Partition based on covariate missingness and subsample MAR 

c
: HHINC: household income; SBP: systolic blood pressure; DBP: 

diastolic blood pressure 
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Table 2.2: Missing data mechanisms generated in the simulations 

Mechanisms ( )

0

w  ( )w

z
 ( )w

w
 ( )w

x
 

( )w

y  ( )

0

x  ( )x

z
 ( )x

w
 ( )x

x
 

( )x

y  

I: All valid -1 1 0 0 0 -1 1 0 0 0 

II: CC valid -1 1 1 1 0 -1 1 1 1 0 

III: IML valid -2 1 0 0 1 -2 1 1 0 1 

IV: SSIML valid -1 1 1 1 0 -2 1 1 0 1 

 
Missing value of W and X are generated based on the following logistic models: 

( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( )

0

logit ( 0 | , , , )

logit ( 0 | 1, , , , )

i

i i

w w w w w

w i i i i z i w i x i y i

x x x x x

x w i i i i z i w i x i y i

P R z w x y z w x y

P R R z w x y z w x y

. 

In particular, for the four missing data mechanisms: 

I: Missingness of W = f(Z), Missingness of X = f(Z|W observed), all four methods are valid; 

II: Missingness of W = f(Z,W, X), Missingness of X = f(Z,W,X|W observed), only CC valid; 

III: Missingness of W = f(Z), Missingness of X = f(Z,W|W observed), only  IML valid; 

IV: Missingness of W= f(Z,W,Y), Missingness of X = f(Z,W,Y|W observed), only SSIML valid. 
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Table 2.3: Summary RMSEs*1000 of Estimated Regression Coefficients for Before 

Deletion (BD), Complete Cases (CC),  Ignorable Maximum Likelihood (IML) and 

Subsample Ignorable Maximum Likelihood (SSIML), under Four Missing Data  

Mechanisms 

 

  0  0.3 0.8 

  I II III IV I II III IV I II III IV 

BD 65 64 63 64 67 68 67 67 106 106 107 106 

CC 116 104 555 335 121 109 503 296 179 113 450 285 

IML 83 144 83 140 84 210 84 137 133 195 128 361 

SSIML 103 159 368 99 106 144 356 105 151 130 346 152 

 

*Four missing data mechanisms: 

I: Missingness of W = f(Z), Missingness of X = f(Z|W observed), all four methods are valid; 

II: Missingness of W = f(Z,W, X), Missingness of X = f(Z,W,X|W observed), only CC valid; 

III: Missingness of W = f(Z), Missingness of X = f(Z,W|W observed), only  IML valid; 

IV: Missingness of W= f(Z,W,Y), Missingness of X = f(Z,W,Y|W observed), only SSIML valid. 

RMSE estimates 
2

1000* r TRUEE , with r denoting the 
thr repetition.  

Bold values are for methods consistent for the mechanism generating the data 

 



 

 

 

3
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Table 2.4: Empirical Bias*1000 for Individual Regression Coefficients under Four Missing Data Mechanisms (1000 replications) 

0  

  Mechanism I Mechanism II Mechanism III Mechanism IV 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 1 -1 0 1 -1 0 0 -1 -2 0 1 -1 0 -1 0 -2 

CC 3 -1 -1 2 0 -1 2 -2 -454 -229 -154 -115 -259 -123 -123 -61 

IML 3 -1 1 1 204 63 41 73 -2 0 3 -1 99 31 7 44 

SSIML 4 0 -1 4 112 37 39 19 -290 -170 -83 -85 -19 -15 -14 -5 

0.3 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 0 -1 1 0 0 -1 2 0 -2 2 0 0 0 1 -1 3 

CC 1 0 0 2 2 1 1 0 -427 -182 -132 -91 -238 -95 -95 -42 

IML 0 0 2 2 168 47 26 58 -3 0 1 0 93 33 3 46 

SSIML 1 -1 0 5 97 30 31 14 -292 -145 -74 -74 -25 -14 -16 1 

0.8 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 1 0 1 -1 -2 2 -2 0 0 2 -3 1 0 -4 2 3 

CC 1 0 4 -4 0 4 -2 -1 -382 -135 -100 -67 -212 -74 -68 -27 

IML 2 -5 1 -4 89 35 20 44 2 2 -3 1 48 3 -2 40 

SSIML 0 -3 3 2 41 16 19 8 -279 -117 -62 -56 -19 -15 -10 8 
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Table 2.5: RMSE*1000 for Individual Regression Coefficients under Four Missing Data Mechanisms (1000 replications) 

0  

  Mechanism I Mechanism II Mechanism III Mechanism IV 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 32 33 32 32 32 32 32 32 32 30 32 32 32 33 31 32 
CC 57 57 54 63 57 49 50 52 457 234 171 125 265 134 133 78 
IML 40 41 42 42 209 75 58 84 45 40 39 41 108 51 40 60 
SSIML 50 52 50 53 124 59 61 53 294 175 95 96 54 50 48 45 

0.3 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 32 34 36 32 31 35 35 35 30 35 33 35 33 33 34 34 
CC 56 62 65 59 61 52 51 53 431 190 142 103 245 108 108 66 
IML 37 43 45 43 173 62 72 72 43 44 39 42 102 53 42 62 
SSIML 48 53 58 52 111 56 52 52 296 154 87 87 60 51 50 48 

0.8 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 31 59 59 58 31 59 60 57 32 59 59 59 31 58 58 59 
CC 53 99 99 99 62 53 55 56 387 160 129 104 222 111 109 88 
IML 39 72 73 75 158 54 74 67 38 69 74 68 118 285 135 130 
SSIML 47 81 85 83 97 53 47 50 284 141 99 96 56 80 81 83 
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Table 2.6: 95% Confidence Coverage for Individual Regression Coefficients under Four Missing Data Mechanisms (1000 replications) 

0  

  Mechanism I Mechanism II Mechanism III Mechanism IV 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 95.2 94.3 95.1 95.0 95.4 95.0 95.5 95.3 93.9 96.3 94.6 94.9 94.5 93.3 95.0 95.5 
CC 94.3 94.8 95.3 94.2 94.7 95.1 94.0 94.8 0 0.6 7.9 28.0 0.9 32.5 32.3 75.3 
IML 94.3 94.2 94.0 94.5 0.3 63.6 81.2 56.4 93.7 95.5 94.2 94.0 32.5 86.8 94.5 77.5 
SSIML 94.6 94.6 93.9 94.0 38.5 86.7 85.3 91.1 0 4.5 52.5 48.3 92.6 93.2 94.5 94.6 

0.3 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 95.0 95.0 94.1 95.0 95.7 95.1 95.2 94.1 95.7 93.7 95.6 94.8 94.5 95.5 94.7 95.8 
CC 95.2 95.2 94.0 96.0 93.9 94.8 94.4 95.4 0 8.1 25.6 52.3 2.9 56.7 57.5 85.4 
IML 94.1 94.1 94.0 95.8 1.8 79.0 90.1 70.9 94.9 94.2 95.6 93.2 38.9 86.7 94.9 78.1 
SSIML 94.5 94.5 93.6 96.5 53.3 90.1 89.7 93.7 0.1 20.0 65.9 64.0 91.9 94.6 94.2 94.3 

0.8 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 95.4 95.3 94.7 94.7 95.1 94.3 94.0 95.5 95.0 95.3 94.3 95.1 96.2 95.3 95.2 94.6 
CC 94.7 95.2 94.0 94.4 94.7 95.9 95.1 95.2 0.0 61.7 77.7 87.7 10.2 86.5 87.0 94.3 
IML 96.2 95.9 94.3 95.4 56.8 93.2 95.2 94.6 94.3 93.6 94.5 94.7 84.6 96.1 98.0 96.6 
SSIML 95.9 95.2 94.7 94.1 89.1 94.9 95.5 94.0 0.1 68.7 86.9 90.4 93.0 94.7 94.4 95.4 
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Table 2.7: Estimates of the Effect of Socieconomic Status on Blood Pressure (NHANES 

2003-2004) 
 

  Systolic Blood Pressure (SBP) 

  CC analysis IMI analysis SSIMI analysis 

  Est. s.e. p-value Est. s.e. p-value Est. s.e. p-value 

Intercept 87.80 1.16 <.0001 89.28 1.06 <.0001 87.53 1.35 <.0001 

HHINC* (100k dollars)     -0.84 0.97 0.3907 -0.84 1.11 0.4574 -0.88 0.94 0.3482 

EDU (years)      -2.30 0.57 <.0001 -2.06 0.44 <.0001 -2.38 0.55 <.0001 

AGE(years)     0.49 0.01 <.0001 0.50 0.01 <.0001 0.50 0.01 <.0001 

Female    3.31 0.48 <.0001 2.78 0.44 <.0001 3.15 0.46 <.0001 

BMI(kg/m2)       0.46 0.04 <.0001 0.41 0.03 <.0001 0.47 0.04 <.0001 

            

  Diastolic Blood Pressure (DBP) 

  CC analysis IMI analysis SSIMI analysis 

  Est. s.e. p-value Estimate s.e. p-value Est. s.e. p-value 

Intercept 45.46 1.06 <.0001 46.94 1.00 <.0001 45.46 1.19 <.0001 

HHINC (100k dollars)         2.97 0.89 0.0008 2.82 0.87 0.0026 2.83 0.97 0.0050 

EDU (years)      4.86 0.52 <.0001 4.06 0.43 <.0001 4.95 0.52 <.0001 

AGE(years)      0.12 0.01 <.0001 0.11 0.01 <.0001 0.11 0.01 <.0001 

Female    1.81 0.44 <.0001 1.83 0.36 <.0001 1.86 0.42 <.0001 

BMI(kg/m2)       0.43 0.04 <.0001 0.40 0.03 <.0001 0.44 0.04 <.0001 

*HHINC: household income, in dollars multiplied by 100,000. 
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CHAPTER 3   

A Pseudo Bayesian Shrinkage Approach to Regression with Missing 

Covariates 

 

ABSTRACT: We consider the regression of outcome Y on regressors W and Z with some 

values of W missing, when our main interest is the effect of Z on Y, controlling for W. 

Three common approaches to regression with missing covariates are (a) complete-case 

analysis (CC), which discards the incomplete cases, and (b) ignorable likelihood methods, 

which base inference on the likelihood based on the observed data, assuming the missing 

data are missing at random (Rubin, 1976), and (c) nonignorable modeling, which posits a 

joint distribution of the variables and missing data indicators. Another simple practical 

approach that has not received much theoretical attention is to drop the regressor 

variables containing missing values from the regression modeling (DV, for drop 

variables). DV does not lead to bias when either (a) the regression coefficient of W is 

zero or (b) W and Z are uncorrelated. We propose a pseudo-Bayesian approach for 

regression with missing covariates that compromises between the CC and DV estimates, 

exploiting information in the incomplete cases when the data support DV assumptions. 

We illustrate favorable properties of the method by simulation, and apply the proposed 
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method to a liver cancer study. Extension of the method to more than one missing 

covariates is also discussed. 

Some key words: Complete-case analysis, drop variables analysis, Gibbs sampling, 

nonignorable modeling, shrinkage, variable selection. 
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3.1  Introduction 

We consider multivariate regression with missing covariates, with data displayed 

in Figure 3.1. There is a set of outcomes Y and two sets of regressor variables Z and W, 

with Z and Y fully observed and W with missing values. Here we assume W is a single 

variable, though generalization to multivariate W is possible and discussed later. We 

denote by ( , , )i i iz w y  the values of (Z, W, Y) for observation i, and by 
iwR  the indicator 

for whether W is observed or missing. Our main interest concerns one or more of the 

coefficients of the regression of the regression of Y on Z, adjusting for W. The incomplete 

cases have very little information for the coefficient of W (Little, 1992), and since our 

focus is on exploiting information in the incomplete cases, we assume that this coefficient 

is not the main parameter of interest. This kind of data structure is common in health-

related studies. For example, in a behavioral intervention trial, the treatment assignment 

variable is always observed, while other variables may be missing. In a study of the effect 

of lead exposure on academic scores, blood lead level is always observed but 

socioeconomic variables such as Income might have missing values. 

Reviews of regression with missing data include Little (1993), Ibrahim et al. (1999), 

Ibrahim et al. (2002), Ibrahim et al. (2005), Chen et al. (2008). Three common 

approaches are:  

(a) Complete-case analysis (CC), which discards the incomplete cases; 

(b) Ignorable likelihood methods (IL), which base inference on the observed 

likelihood given a model for the distribution of Y and W given Z that does not 

include a distribution for the missing data mechanism; examples of IL methods 
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include ignorable maximum likelihood, and multiple imputation based on draws 

from the Bayesian predictive distribution; 

(c) Nonignorable modeling (NIM), which derives inference from the likelihood 

function based on a joint distribution of the variables and the missing data 

indicators. Examples include generalized Tobit (Type II) model (Heckman 1976, 

Amemiya 1984) and pattern-mixture models (Little 1993, 1994, Little and Wang, 

1996).  

IL methods are valid under well-specified models when the missing data are missing 

at random, which in this context means that missingness of W can depend on Z and Y but 

not on W. We focus here on situations where missingness of W is thought to depend on 

the value of W, so that IL methods are biased. One possibility is to apply an NIM method, 

but such methods are vulnerable to misspecification of the missing data mechanism, and 

suffer from problems with identifying the parameters (see e.g. Little and Rubin, 2002, 

chapter 15). Also software for these methods is not widely available.  

A simple alternative is to apply CC in this setting. This has the advantage of yielding 

valid inferences when missingness of W depends on the covariates (Z, W) but not on the 

outcomes Y (Little and Rubin 2002, Example 3.3).  On the other hand, it discards 

information in the incomplete cases, which might be substantial if the fraction of cases 

with W missing is high.  

Another simple approach, which has received less theoretical attention but we suspect 

is common in practice, is to simply drop the incomplete variable from the analysis (DV), 

and estimate the regression of Y on Z using all the cases. It is well known from regression 

theory with complete data that omitting a covariate yields valid inferences when: (1) The 
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omitted covariate has no effect on the outcome; or (2) the missing covariate is not 

associated with the fully-observed regressors. If neither of these conditions holds, then 

DV leads to biased estimates. If the above effects are nonzero but small, DV is still an 

attractive method, since it may be worth accepting a small amount of bias in the 

regression estimates in order to retain the information in the incomplete cases.   

A pragmatic two-step approach is to apply CC first, and then switch to DV if the 

coefficient of W in the CC analysis is small, for example if it has a non-significant P-

Value. This can be viewed as a simple case of variable selection with missing data, which 

is considered more generally in Rubin (1976a).  However, this is an “all or nothing” 

approach, and in general basing inferences on a preliminary statistical test is known to be 

problematic. This article proposes a Bayesian data-driven compromise between CC and 

DV, based on a prior distribution that assigns some weight to both analyses.   

The rest of the article is organized as follows. Section 3.2 presents a motivating 

example using data from two Eastern Cooperative Oncology Group clinical trials. Section 

3.3 reviews properties of CC and DV, in a slightly more general regression setting. In 

Section 3.4, we propose a pseudo-Bayesian shrinkage method for regression with missing 

covariates, which compromises between CC and DV analysis, assigning more weight to  

DV when the assumptions of that analysis are empirically justified, and more weight to  

CC when they are not. Section 3.5 presents some simulations that demonstrate attractive  

properties of the proposed method, and in section 3.6 we apply the proposed method to a 

liver cancer data set. Extensions to more than one missing regressors are discussed in 

Section 3.7.  
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3.2  The motivating example: a liver cancer study 

To motivate our methodology, we consider data of 191 patients from Eastern 

Cooperative Oncology Group clinical trials EST 2282 (Falkson et al., 1990) and EST 

1286 (Falkson et al., 1995).  This dataset has been widely used to illustrate different 

methods for handling incomplete covariates in regression analysis or generalized linear 

models (Ibrahim et al. 1999, Huang et al. 2005, Chen et al. 2007, Das et al. 2010).  

We are primarily interested in the patient‟s status as he/she enters the trials. In 

particular, we are interested in how the number of the cancerous liver nodes (CNTs) is 

predicted by four baseline characteristics: 

(1) body mass index (BMI, in kg/m
2
); 

(2) age (in years); 

(3) jaundice (yes, no): the yellowish staining of the skin and the whites of the eye; 

(4) time since diagnosis of the disease (TSD, in weeks). 

The effects of BMI, age, and jaundice are of more interest to a physician because these 

could be potential risk factors for liver cancer, but TSD is an important covariate that 

needs to be adjusted for.  

Like many other empirical studies, this dataset contains missing values. TSD is 

missing for 17 patients (8.9%) while other variables are fully observed. CC analysis 

suffers from inefficiency and potential bias if the missingness of TSD depends on the 

outcome. DV analysis uses all cases but makes a strong assumption that exclusion of 

TSD does not bias the estimates of the other regression coefficients. IL makes use of the 

partial information in the incomplete case but assumes the missing data are missing at 
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random (MAR; Rubin 1976b, Little and Rubin 2002). We propose a pseudo-Bayesian 

approach for this problem, which compromises between the CC and DV estimates.  

Before describing the pseudo-Bayesian approach, we first review more precisely 

the assumptions underlying the CC and DV methods.  

 

3.3  Complete case and drop variable analyses 

 In this section, we consider the data with the structure in Figure 3.2. Let 

{( , , ), 1,.. }i i iz w y i n  denote n independent observations on a (possibly multivariate) 

outcome variable Y and two sets of covariates, Z and W, where Z, Y are fully observed 

and W has missing values. Interest concerns the parameters  of the distribution of Y 

given (Z, W), say ( | , , )i i ip y z w . 

The rows of Figure 3.2 divide the cases into two patterns. Pattern 1 (i = 1,…,m) 

consists of complete cases, for which ( , , )i i iz w y  are fully observed. Pattern 2 consists of 

cases where at least one of the variables in iw is missing. The column 
iwR  represents a 

vector of response indicators for iw , with entries 1 if a variable is observed and 0 if a 

variable is missing. For the complete cases, (1,...,1)
iw wR u , a vector of ones of the 

same length as iw , indicating that all the entries in iw  are observed. For the incomplete 

cases in Pattern 2, we write wu , defined to mean that some entries in 
iwR  are 0 and others 

are 1. The pattern of missing values will typically vary over the individual rows in Pattern 

2, but we do not need to distinguish them for the present discussion.  
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Our main interest is the effect of Z on Y, adjusting for W. CC analysis bases 

inferences for  on the complete observations in Pattern 1. In a likelihood setting, the 

method bases inference on the conditional likelihood corresponding to the complete cases, 

namely: 

 
cc

1

( ) const. | , , ;
i

m

i i i w w

i

L p y w z R u , (3.1)  

The key condition under which inference based on cc ( )L  is valid is that the 

probability that an observation is complete does not depend on the outcomes, that is: 

 | , , , ) | , , )  for all 
i iw w i i i w w i i ip R u z w y p R u z w y  (3.2) 

Note that this condition is missing not at random (MNAR), since missingness 

depends on the values of W which are sometimes missing. CC analysis works in this case 

because Eq. (2) implies that  

| , , , | , ,
ii i i w w i i ip y w z R u p y w z , 

so the regression based on the complete cases is the regression of interest, for the whole 

sample. Technically, inference based on (1) can be considered a partial likelihood method 

(Little and Zhang, 2011). The likelihood for a fully specified model with parameters 

( , )  can be written as  

obs obs cc rest( , | , , , ) ( ) ( , )wL Z W Y R L L , 

and the component rest ( , )L  is discarded. ML estimates based on cc ( )L  are consistent 

and asymptotically normal, but are not necessarily fully efficient, since rest ( , )L  may 

contain information about the parameters of interest .  However, recovering this 
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information requires a model for the missing data mechanism, which may be difficult to 

specify correctly, and which is not needed for CC analysis.  

Instead of dropping the incomplete cases, DV analysis removes the incomplete 

variable from the regression model, as would be sensible if w , the regression coefficient 

of W,  were equal to zero. Writing ,w z , the method bases inference on the 

following likelihood: 

            
DV

1

( ) const. | , (0,..,0);
n

z i i w z

i

L p y z ,                              (3.3) 

 When W has no effect on the outcome Y, DV analysis is better than CC, not only 

because it removes inefficiency induced by estimating the coefficient of W, but also by 

retaining the incomplete cases.  The DV analysis also yields valid inferences for the 

regression coefficient of Z even if (0,..,0)w  when W and Z are not associated. This 

fact will be exploited in the proposed method, which we now describe. 

 

3.4  Pseudo-Bayesian Shrinkage Method for Regression with Missing Covariates 

3.4.1 Motivation 

 In this section, we consider the data structure in Figure 3.1, where the missing 

covariate W is univariate and the fully observed Z could be multivariate. We are 

interested in the regression of Y on Z, controlling for W, and assume the normal linear 

regression model: 

2 2

0| , , , , ~ ; ,  1,..., .T

i i i w z i w i zy w z N w z i n  
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  The CC analysis is valid when the missingness of W does not depend on the 

outcome Y, after conditioning on Z and W. DV analysis is valid if either of the following 

two conditions is met: 

(I) 0w ;  

(II). *cov( , ) 0,wz W Z where Z* is a linear combination of individual components of 

Z, with the weights being the corresponding estimated regression coefficients in the 

regression of Y on W and Z.  

This suggests assigning w  a prior distribution that assigns positive probability to 

0, since this will recover information in the incomplete cases when the posterior 

probability that 0w  is high. This kind of prior has been proposed for Bayesian 

variable selection problems. One example is the „spike and slab‟ mixture prior, which 

puts a probability mass on 0w (Mitchell and Beauchamp 1988). Another example is 

using a mixture of two normal distributions with zero mean and different variances, a 

formulation proposed by George and McCulloch (1993). In this article, we model 

w using mixture of a point mass at 0w  
and a normal distribution with zero mean and 

large variance. 

3.4.2 Modeling 

Introducing a latent variable ( 0 or 1)J , we represent the mixture distribution by 

                   
2| ~ 0 1 0,w wJ J J N                                       (3.4) 

with 0  representing a point mass at 0, and  

                        0Pr 0 1 Pr 1J J                                                (3.5) 
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When 0J , 2~ 0,w wN , and when 1J , 0w . We set 2

w
large so that if 0J , 

w  has a flat prior as in a standard least squares analysis. To incorporate (3.4) in the full 

prior distribution, we use a multivariate normal prior 

                                         
| ~ 0, J JJ N D D

                                                   
(3.6) 

with 

                                         
1, , ,J w zD diag a

                                                    
(3.7) 

with 1a if 0J  and 0a if 1J .  

We use the inverse gamma conjugate prior for the residual variance 2 , 

                                       
2 | ~ / 2, / 2J J JJ IG .                                            (3.8) 

The choices of J and J reflects the statistician‟s prior belief about the residual variances 

for whether the covariate W is included in the model or not. In the absence of such prior 

information, we choose J and J small so that the analyses are mainly based on the 

likelihood.  

3.4.3 A pragmatic choice of 0  

As we can see from section 3.4.1, one condition for DV analysis to be valid is that the 

correlation coefficient wz  
between W and Z* is zero. This indicates that: (1) if we 

believe that 0wz , then we can put a high prior probability on Pr 1J , and (2) on 

the other hand, if wz is large, we are more inclined to include W and use the complete-

case analysis. So from a pragmatic perspective, it is advantageous to choose 0  as an 
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increasing function of wz . We found the following choice to work well in simulation 

studies: 

                                          0 .wz wzf                                           (3.9) 

To propagate the variation in posterior estimation of z , we recommend using draws of 

wz  
based on Bayesian predictive distribution based on model W and Z* as a bivariate 

normal distribution using the complete-cases likelihood 

                                     1

, , | ,
m

wz wz i i wz wz

i

L f w z                                (3.10) 

3.4.4 Estimation 

We obtain draws of the parameters from the posterior distribution using the following 

Gibbs-like sampler. Let  

1, ,
T

T

w z
, 

1 1

2 2

1    

1       
,

     ....

1       

T

T

CC

T

m m

w z

w z
X

w z

1

2

1

1   
,

  ....

1   

T

T

DV

T

n

z

z
X

z

1

2
,

...
CC

m

Y

Y
Y

Y

1

2
.

...
DV

n

Y

Y
Y

Y
 

Also, let DV,LS
ˆ

 
be the least square estimate based on DV analysis, and CC,LS

ˆ be the least 

square estimate based on complete-case analysis. Accordingly, the estimated residual 

variances for DV and CC analysis are denoted as DV,LS
ˆ and CC,LS

ˆ . 

The chain is initialized at a starting value 
0 0 0, , .J  A reasonable starting value for 0J is 

0, which is a complete-case scenario, and therefore the corresponding starting values for 

0 0, are CC,LS
ˆ  and CC,LS

ˆ .First, ,k k
can be sampled in the following way: 

(1) If 1 0,kJ  
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1 1

2
1

0 CC CC CC,LSCC, CC,

ˆ, , ~ , ,k k

T
T

k k k k k T

w z J J
N A X X A            (3.11) 

where 1 1 1

1
2

1 1 1

CC CCCC, k k k

k T

J J J
A X X D D  and 1 1 11, , ;w zJ

D diag  

and 2( )k is obtained by sampling from 

1 11

2

CC CC2( ) 2( ) 1~ | , , .
2 2

k kk

k

J Jk k k k J
Y Xn

f J IG

            

(3.12)

 

 

(2) If 1 1,kJ  

0 ,0,
T

T
k k k

z
 with  

       
1 1

2
1

0 DV DV DV,LS, DV,

ˆ, ~ , ,k k

T
T

k k k T

z DV J J
N A X X A                      (3.13) 

where 1 1 1

1
2

1 1 1

DV DVDV, k k k

k T

J J J
A X X D D and 1 11  zJ

D diag ; 

and 2( )k is obtained by sampling from 

1 1

1

2

DV DV 0

2( ) 2( ) 1

,

~ | , , .
2 2

k k

k

T
T

k

z J J
k k k k J

Y X
n

f J IG

     

(3.14) 

Next, k

zw
is sampled based on the posterior covariance matrix of the bivariate normal 

distribution formed by Z* and W (using the complete-cases). 

The final step is to sample 
kJ , which is Bernoulli with probability 

                      
Pr 1| , , ,k k j k

zs

r
J

r s                                                    
(3.15) 
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with | 1 1k k k

zwr f J and | 0 .k k k

zws f J  

Note that, when 
1 0,kJ the conditional distribution of ,k k

are based on the complete-

case likelihood, which is a partial likelihood. Since partial likelihood is not very 

principled from a strict Bayesian perspective, we label the method “pseudo-Bayes”. We 

demonstrate in simulations in the next section that it leads to inferences with good 

frequentist properties. 

3.4.5 Posterior probability that 0J , 1  

The posterior probability of 1J , 1 , namely, the posterior probability of  including the 

incomplete variable W in the regression model and using complete case analysis, is an 

important indicator in the modeling. A small 1  tends to put more weight on DV, whereas 

a large 1  puts more weight on CC. 

 

3.5 Simulation studies 

In this section we describe simulations that illustrate the properties of the pseudo- 

Bayesian approach in Section 3.4.  

We simulate 1 2, ,
i

w z z  from normal distribution with mean 0, and covariance matrix 

1

1 ,

1
 

for 1,2,...,100.i  Y is related to Z and W by the linear model 

1 21 ,i i i i iy aw z z
 

2~ 0,2.5
iid

i N . 
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Let 
iwM denote the missing data indicator for .iw  Missing values in W are generated 

based on the following five missing data mechanisms: 

(I) MCAR: 
1 2Pr 1| , , , 0.25;

iw i i i iM w z z y  

(II) MNAR: 
1 2Pr 1| , , , expit 1 ;

iw i i i i iM w z z y w  

(III) MAR:
1 2 1 2Pr 1| , , , expit 1 ;

iw i i i i i iM w z z y z z  

(IV) MNAR2:
1 2 1 2Pr 1| , , , expit 1 ;

iw i i i i i i iM w z z y w z z  

 (V) MAR2: 
1 2Pr 1| , , , expit 2 .

iw i i i i iM w z z y y  

where expit is inverse logit function, expit exp / 1 exp .  Each missing data 

generation scheme results in about 25% of the values of W being missing. 

We simulate data for three different correlation coefficients ( =0, 0.3, 0.8) and 

two regression coefficients for W ( a  = 0, 1), yielding 30 scenarios. 

Five methods are applied to estimate the regression coefficients:  

(1) BD: estimates from the regression before deletion (BD), as a benchmark method.  

(2) IL: ignorable maximum likelihood method assuming MAR; 

(3) CC: Complete-case analysis; 

(4) DV: dropping the missing covariate W; 

(5) PB: pseudo-Bayesian shrinkage method between CC and DV; 

We report the ratios of RMSEs of IL, CC, DV and PB to the RMSE of BD, 

confidence coverage probabilities and empirical bias z-score (which is calculated using 

empirical bias/empirical standard error of the mean)  of the estimated regression 
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coefficients from each method, in Tables 3.1, 3.2 and 3.3. Results are based on 1000 

repetitions for each simulation condition. Table 3.1 also reports the posterior probabilities 

of including W.  

We focus on the regression coefficients of z1 and z2. CC is consistent for the first 

four missing data mechanisms since missingness does not depend on the outcome, but 

biased for the fifth missing data mechanism since missingness of W is dependent on the 

outcome. There is some loss of information since the incomplete cases are dropped from 

the analysis.  IL is consistent and efficient for missing data mechanism I, III and V since 

all are missing at random. DV is valid when a =0 or 0 , and in these cases the 

pseudo-Bayesian (PB) estimates are close to DV; when a 0 and 0 , PB yields a 

compromise between CC and DV, with the posterior probability assigned to CC estimates 

increasing as a  and/or move away from 0. The method yields small RMSEs and good 

confidence coverage compared to CC and DV in almost all scenarios. As expected, IL 

performs well for the missing at random mechanisms I, III and IV but exhibits some bias 

when the data are not missing at random. 

 

3.6. Application to a liver cancer study 

We now apply the proposed method to the liver cancer data presented in Section 3.2. We 

regress the baseline number of cancerous liver nodes (CNTs) on four baseline 

charactistics: body mass index (BMI), age in year, associated jaundice (yes, no) and time 

since diagnosis of the disease (TSD, in weeks). To be consistent with Chen, Zeng, and 

Ibrahim (2007), we use the same transformation as they did. Square root transformations 

are used on CNTs and TSD to achieve approximate normality. The new continuous 



 

51 

 

explanatory variables BMI, Age and TSD are then formed by dividing the original 

variables by 50, 70, and 18 respectively, to bound the covariates on the interval of (0, 1). 

In Chen, Zeng and Ibrahim (2007), TSD is assumed to be missing at random. However, it 

is likely that TSD is not MAR since patients with longer TSD are less likely to recall the 

date of diagnosis of liver cancer, which means missingness of TSD depends on TSD 

itself. 

 The Pearson correlation between TSD and BMI, Age, Jaundice are -.020, .013, 

and .009 respectively. The correlation between TSD and the linear combination of BMI, 

Age, and Jaundice weighted by the regression coefficients using complete cases is -.002. 

Table 3.4 shows the results of applying the pseudo-Bayesian shrinkage method, 

CC and DV. We run 10000 iterations and obtain draws of the posterior estimates of the 

regression coefficients. The posterior probability of including TSD is 0.0153, indicating 

that the pseudo Bayesian method favors dropping TSD from the regression and using full 

sample. This is not surprising, since the correlation between TSD and other covariates is 

small, and the effect of TSD on the outcome CNTs is also small. 

  For easier comparison, we calculate a pseudo p-value based on t-distribution. The 

degree of freedom is calculated using the following formula: 

                                            df = n * (1 - 1
ˆ ) – k – 1

ˆ
                                        (3.16)

 

where n is the full sample size, k is number of all regressors, and 1
ˆ is the estimated 

posterior probability of including the missing regressor. 

As we can see from Table 3.4, both complete-case analysis and pseudo-Bayesian 

method show that Age and Jaundice are related to the number of cancerous liver nodes, 
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while BMI and TSD are not significant. However, the pseudo-Bayesian method yields 

smaller standard error for the regression estimate, so the effect of Age and Jaundice are 

stronger than complete case analysis. Since the posterior probability of keeping TSD in 

the modeling is very small ( 1
ˆ 0.0153 ), the pseudo Bayesian method is very similar to 

the regression without TSD.  

 

3.7. Discussion 

We have described a pseudo-Bayesian shrinkage method for regression analysis 

with a missing covariate, which is a compromise between complete-case analysis and the 

analysis that drops the missing covariate. The method recovers information in the 

incomplete cases by assigning the regression coefficient of the incomplete variable a 

“slab and spike” prior with positive prior probability of being zero.  A Gibbs-like 

iterative sampling algorithm is used to implement the method; convergence is fast.  

The method is appropriate when missingness of the missing covariate depends on 

the covariates but not the outcome. This mechanism is potentially missing not at random, 

and an attraction of the proposed method is that it handles such cases without having to 

model the specific form of the missing data mechanism. The method also works when the 

missing data mechanism for the covariate is MAR but independent of the outcome. 

However in general ignorable likelihood methods are preferable in that case, since they 

are asymptotically efficient.  

Our method can be generalized to the situation when iw  is a vector with 

dimension d, with components missing on possibly different sets of cases. We assume 
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that the missingness of W is independent of the outcome. We assign to each component 

of W an independent mixture distribution prior as in Section 3.4.2. In this case, 

1
,...,

dw z w z  
represents the d correlation coefficients between W and Z*, and draws of the 

indicators 1,..., dJ J
 
for whether the corresponding coefficients are zero are sampled in the 

estimation step. We suggest sampling 1,..., dJ J in a random order to get fast convergence 

of the chain. For the jth component of W, 
CC, jY is defined to be the vector of outcomes 

corresponding to complete-case analysis, while 
DV, jY is defined to be the vector of 

outcomes corresponding to the complete cases when 
jW is dropped from the regression. 

CC, jX ,
DV, jX , CC,

ˆ
j and DV,

ˆ
j are defined in a similar fashion.  

The proposed method could be combined with existing multiple imputation 

methods to handle more general problems where Z is also incomplete. In particular, when 

missingness of covariates W is MNAR but does not depend on the outcome, and 

missingness of Z is MAR, the method could also be applied by assigning similar mixture 

priors to the regression coefficients of W, while using multiple imputation via chained 

equations (Raghunathan et al., 2001; IVEware, 2011; MICE, 2011) to impute missing 

values of Z.  

There is a potential loss of efficiency of the pseudo-Bayesian approach compared 

to full modeling of the data and missing-data mechanism. However, the proposed method 

avoids specifying a model for the missing data indicators, which is vulnerable to model 

misspecification. Future work will examine this trade-off in more detail. 
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Figure 3.1 Missing Data Structure in Section 3.1 

Pattern Observation, i 
iz  iw  iy  

iwR  

1 i  = 1,…,m √ √ √ 1 

2 i  = m +1,…,n √ x √ 0 

 

Key: √ denotes observed, x denotes missing 

 

 

 

 

Figure 3.2 Data Structure for Section 3.3 

Pattern Observation, i 
iz  iw  iy  

iwR  

1 i  = 1,…,m √ √ √  (1,...,1)wu  

2 i  = m +1,…,n √ ? √ 
wu  

 

Key: √ denotes observed, ? denotes missing at least one entry
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Table 3.1: RMSE Ratios for Individual Regression Coefficients under Five Missing Data Mechanisms (1000 replications) 

ρ a 
MD 
Mechanism 

    β0   βw   βz1   βz2 

1
ˆ    IL CC DV PB   IL CC DV PB   IL CC DV PB   IL CC DV PB 

0 

0 

MCAR 0.040   1.00 1.14 0.99 0.99   1.15 1.14 0.00 0.06   1.00 1.17 1.00 0.99   1.00 1.19 0.99 0.98 

MNAR 0.042   1.06 1.25 1.00 1.00   1.29 1.26 0.00 0.08   1.01 1.19 1.00 0.99   1.01 1.22 1.00 0.99 

MAR 0.043   1.02 1.31 1.00 0.99   1.25 1.22 0.00 0.07   1.01 1.31 0.99 0.98   1.01 1.31 0.99 0.99 

MNAR2 0.063   1.09 1.36 0.99 1.00   1.40 1.37 0.00 0.13   1.03 1.35 1.00 0.99   1.04 1.36 1.00 1.00 

MAR2 0.044   1.04 5.12 0.99 1.01   1.60 1.02 0.00 0.06   1.03 1.77 1.00 0.98   1.01 1.75 0.99 0.98 

1 

MCAR 0.126   1.03 1.19 1.07 1.06   1.13 1.17 3.85 3.32   1.04 1.19 1.08 1.07   1.02 1.17 1.08 1.05 

MNAR 0.124   1.42 1.22 1.07 1.08   1.26 1.26 3.80 3.32   1.04 1.25 1.06 1.04   1.04 1.24 1.05 1.03 

MAR 0.127   1.05 1.29 1.06 1.06   1.20 1.23 3.90 3.38   1.05 1.34 1.06 1.05   1.03 1.31 1.06 1.04 

MNAR2 0.167   1.47 1.40 1.07 1.07   1.31 1.33 3.84 3.21   1.16 1.41 1.07 1.06   1.14 1.33 1.06 1.05 

MAR2 0.092   1.13 5.36 1.07 1.15   1.52 1.76 4.02 3.75   1.07 1.81 1.09 1.07   1.07 1.64 1.05 1.03 

0.3 

0 

MCAR 0.139   1.00 1.14 1.00 1.00   1.22 1.20 0.00 0.23   1.02 1.17 0.97 0.97   1.02 1.13 0.98 0.96 

MNAR 0.132   1.05 1.24 0.99 1.00   1.32 1.30 0.00 0.23   1.02 1.24 0.97 0.98   1.02 1.22 0.96 0.96 

MAR 0.120   1.01 1.37 1.00 1.00   1.25 1.22 0.00 0.21   1.02 1.33 0.97 0.98   1.02 1.28 0.96 0.96 

MNAR2 0.074   1.08 1.47 1.00 0.99   1.33 1.30 0.00 0.14   0.99 1.35 0.95 0.95   1.00 1.30 0.96 0.96 

MAR2 0.127   1.03 4.92 1.00 1.23   1.65 1.08 0.00 0.19   1.03 1.64 0.97 0.95   1.05 1.54 0.96 0.93 

1 

MCAR 0.340   1.03 1.17 1.06 1.04   1.14 1.15 3.46 2.36   1.02 1.15 1.34 1.13   1.04 1.19 1.32 1.12 

MNAR 0.277   1.35 1.24 1.06 1.04   1.32 1.34 3.65 2.69   1.06 1.26 1.36 1.19   1.05 1.24 1.26 1.13 

MAR 0.276   1.05 1.33 1.06 1.06   1.25 1.28 3.72 2.74   1.05 1.27 1.39 1.20   1.08 1.33 1.29 1.16 

MNAR2 0.174   1.40 1.48 1.05 1.10   1.32 1.33 3.59 2.99   1.09 1.33 1.38 1.24   1.08 1.32 1.29 1.17 

MAR2 0.169   1.09 5.34 1.03 1.41   1.44 1.60 3.78 3.32   1.09 1.61 1.33 1.09   1.11 1.70 1.37 1.12 

0.8 

0 

MCAR 0.598   1.00 1.16 0.99 1.06   1.18 1.17 0.00 0.77   1.04 1.18 0.90 1.00   1.03 1.17 0.88 0.99 

MNAR 0.572   1.04 1.28 1.00 1.11   1.27 1.24 0.00 0.80   1.02 1.19 0.87 0.98   1.08 1.28 0.89 1.03 

MAR 0.530   1.02 1.52 1.00 1.10   1.31 1.28 0.00 0.77   1.07 1.27 0.89 1.00   1.07 1.25 0.90 0.99 

MNAR2 0.475   1.02 1.56 1.00 1.13   1.34 1.31 0.00 0.74   1.05 1.26 0.89 0.96   1.06 1.30 0.90 0.98 

MAR2 0.555   1.04 5.30 1.00 3.05   1.66 1.12 0.00 0.72   1.15 1.19 0.88 0.91   1.16 1.29 0.90 0.98 

1 

MCAR 0.714   1.02 1.17 1.02 1.10   1.20 1.18 2.14 1.18   1.05 1.20 1.30 1.10   1.05 1.17 1.34 1.09 

MNAR 0.675   1.07 1.23 1.02 1.14   1.26 1.25 2.13 1.24   1.06 1.24 1.34 1.13   1.06 1.21 1.29 1.10 

MAR 0.643   1.04 1.41 1.00 1.19   1.29 1.28 2.13 1.28   1.09 1.30 1.36 1.15   1.07 1.27 1.25 1.11 

MNAR2 0.578   1.12 1.62 1.02 1.23   1.35 1.33 2.10 1.34   1.07 1.30 1.26 1.11   1.10 1.39 1.37 1.20 

MAR2 0.592   1.06 5.32 1.01 3.22   1.48 1.24 1.99 1.37   1.16 1.28 1.24 0.98   1.17 1.31 1.34 1.00 
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Table 3.2: 95% Confidence Coverage for Individual Regression Coefficients under Five Missing Data Mechanisms  

ρ a MD 
Mechanism 

β0   βw   βz1   βz2 

BD IL CC DV PB   BD IL CC DV PB   BD IL CC DV PB   BD IL CC DV PB 

0 

0 

MCAR 94.0 93.9 95.1 94.1 94.3   93.8 94.0 95.1 100.0 100.0   94.2 94.5 94.7 93.4 94.9   93.2 93.2 92.7 93.4 93.9 

MNAR 95.3 95.4 95.0 95.6 95.6   94.2 93.9 94.7 100.0 100.0   93.2 93.0 94.4 93.5 93.5   93.2 93.7 93.4 93.5 94.5 

MAR 92.9 93.8 94.6 93.4 93.7   95.1 94.8 95.8 100.0 100.0   94.1 94.0 94.0 93.7 95.4   93.3 93.6 94.6 93.7 94.5 

MNAR2 93.8 93.8 93.6 94.4 94.1   94.7 93.1 93.4 100 100   94.7 94.1 94.2 95.3 95.7   95.2 94.0 94.7 95.3 95.4 

MAR2 94.6 95.3 0.4 94.6 89.8   94.9 92.1 94.5 100.0 100.0   95.7 95.5 74.6 94.9 96.2   94.8 95.4 73.0 94.9 95.6 

1 

MCAR 94.6 94.8 95.5 95.5 92.9   94.0 94.1 94.4 0.0 65.9   95.5 93.5 94.6 94.9 95.9   94.8 94.8 95.0 93.7 94.9 

MNAR 94.9 86.3 95.5 95.5 95.4   94.8 94.6 94.7 0.0 61.3   94.3 94.1 94.2 94.9 95.9   95.2 94.4 94.0 95.7 96.2 

MAR 93.8 94.3 94.2 94.7 94.7   93.8 94.5 94.2 0.0 62.0   94.5 95.3 94.4 95.0 96.8   95.8 95.2 93.3 95.5 96.8 

MNAR2 96.2 87.3 94.5 95.3 95.0   94.6 93.5 94.1 0.0 68   95.1 92.9 93.9 96.1 97.1   96.0 93.6 94.4 96.0 97.1 

MAR2 95.7 95.7 0.3 95.4 59.9   95.7 93.4 76.6 0.0 26.4   96.0 95.7 76.2 94.4 96.1   94.7 94.3 77.7 95.8 97.1 

0.3 

0 

MCAR 93.7 92.9 93.5 93.6 93.6   95.3 93.2 94.1 100.0 100.0   94.7 94.1 94.7 94.9 95.1   95.3 94.9 95.6 94.9 95.8 

MNAR 93.9 93.8 93.5 94.2 94.1   95.0 94.5 95.1 100.0 100.0   95.5 95.3 95.3 95.4 96.3   95.4 93.9 94.4 95.4 96.2 

MAR 94.4 93.6 93.6 94.5 94.0   95.2 94.1 94.2 100.0 100.0   93.4 94.4 94.1 94.6 95.4   93.9 94.6 94.8 94.6 95.4 

MNAR2 94.9 95.9 95.8 95.1 95.3   93.1 93.2 93.3 100.0 100   93.6 93.8 92.7 94.2 95.2   95.1 94.5 95.0 94.2 95.8 

MAR2 93.5 94.5 0.2 93.6 87.7   94.3 91.4 93.8 100.0 100.0   94.8 95.7 77.1 93.7 96.3   93.1 93.1 77.8 93.7 96.4 

1 

MCAR 95.3 94.8 95.0 95.5 96.7   94.2 93.0 94.0 0.0 85.3   95.0 93.8 94.3 85.0 95.1   95.0 94.5 95.1 88.1 95.6 

MNAR 93.8 86.4 94.8 94.2 94.3   94.4 94.3 95.0 0.0 81.5   95.4 94.4 95.6 86.1 94.7   94.3 92.9 93.7 87.8 94.8 

MAR 94.3 93.4 94.2 94.7 95.4   95.4 94.0 94.4 0.0 83.2   94.8 95.1 95.4 85.8 95.6   94.4 93.5 93.8 86.8 95.2 

MNAR2 93.5 86.1 92.5 94.3 94.2   95.3 94.1 94.3 0.0 69   95.0 93.6 94.0 83.6 93.1   94.7 93.9 94.9 87.6 94.4 

MAR2 94.9 95.5 0.5 95.7 58.1   95.6 95.0 82.8 0.0 43.3   95.4 94.7 81.1 87.0 98.6   95.0 95.4 80.2 87.6 98.4 

0.8 

0 

MCAR 93.7 94.5 93.9 93.7 94.0   95.3 94.7 95.3 100.0 100.0   94.8 95.2 94.7 94.4 96.1   94.2 94.4 94.4 94.4 96.6 

MNAR 94.3 94.3 93.1 94.1 93.3   93.0 92.3 92.6 100.0 100.0   94.3 94.6 94.3 95.2 96.4   95.0 95.9 94.2 95.2 96.8 

MAR 96.2 96.5 94.7 95.7 95.0   95.4 94.6 95.2 100.0 100.0   94.9 93.9 94.2 94.5 96.9   95.4 95.6 95.8 94.5 98.1 

MNAR2 94.1 94.3 93.1 93.9 93.3   94.5 94.3 94.7 100.0 100   95.4 95.5 95.0 95.4 97.8   95.3 94.5 95.3 95.4 98.0 

MAR2 94.3 96.0 0.8 94.9 77.3   94.3 92.3 93.5 100.0 100.0   93.8 94.2 90.6 93.6 97.2   93.9 94.0 88.5 93.6 96.9 

1 

MCAR 95.7 96.4 95.5 95.2 95.5   94.6 95.6 94.6 0.0 95.1   94.5 95.8 93.8 82.4 95.9   94.0 95.0 93.9 81.2 95.1 

MNAR 94.9 94.0 95.1 94.3 94.6   95.6 94.6 96.0 0.0 95.6   95.5 95.4 93.3 81.0 96.1   93.9 94.2 94.0 83.0 96.6 

MAR 95.2 96.2 94.6 95.3 94.8   94.9 93.5 94.5 0.0 94.4   94.2 92.7 93.3 79.3 94.8   94.4 94.0 93.0 82.4 95.9 

MNAR2 96.4 94.6 94.9 95.5 95.1   94.6 92.6 94.0 0.0 92   94.1 94.8 95.3 83.3 97.5   95.2 94.9 93.4 81.2 95.7 

MAR2 95.1 94.6 1.6 95.3 57.1   93.4 93.2 89.4 0.0 85.2   94.0 93.1 88.2 82.5 98.5   94.8 94.3 91.8 82.0 98.6 
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Table 3.3: Bias (Z-score) for Individual Regression Coefficients under Five Missing Data Mechanisms (1000 replications) 

ρ a 
MD 
Mechanism 

β0   βw   βz1   βz2 

IL CC DV PB   IL CC DV PB   IL CC DV PB   IL CC DV PB 

0 

0 

MCAR 0.00 -0.01 0.00 -0.02   0.04 0.04 - 0.04   0.01 0.00 0.01 -0.03   0.01 0.00 0.02 -0.02 

MNAR 0.07 0.07 0.08 0.04   -0.05 -0.05 - -0.03   0.04 0.03 0.03 0.00   0.02 -0.01 0.02 -0.02 

MAR 0.04 0.03 0.03 0.04   -0.03 -0.03 - -0.02   0.00 -0.01 0.00 -0.05   0.00 0.02 -0.01 -0.05 

MNAR2 0.04 0.00 0.02 0.02   0.02 0.02 - 0.01   0.04 0.02 0.04 0.00   -0.01 -0.03 -0.02 -0.06 

MAR2 -0.10 -4.85 0.04 -0.25   0.00 -0.01 - -0.01   -0.04 -1.25 -0.01 -0.11   -0.08 -1.31 -0.05 -0.15 

1 

MCAR 0.02 0.05 0.02 0.03   0.05 0.03 - -4.69   -0.06 -0.06 -0.07 -0.10   0.08 0.08 0.05 0.01 

MNAR 0.92 0.06 0.07 0.03   0.08 -0.01 - -5.47   -0.01 -0.01 -0.01 -0.06   0.05 0.05 0.04 0.01 

MAR 0.01 0.01 -0.01 0.01   0.02 -0.05 - -4.97   0.01 0.01 0.00 -0.04   -0.02 0.00 -0.04 -0.08 

MNAR2 0.86 -0.04 -0.04 -0.02   0.09 0.00 - -3.67   0.39 -0.01 0.02 0.00   0.36 -0.05 -0.02 -0.04 

MAR2 -0.07 -4.86 0.03 -0.41   0.02 -1.19 - -11.01   -0.08 -1.22 -0.07 -0.21   -0.02 -1.17 -0.02 -0.16 

0.3 

0 

MCAR -0.04 -0.03 -0.04 0.00   -0.03 -0.04 - -0.01   0.02 0.05 0.01 -0.01   0.03 0.01 0.02 -0.01 

MNAR 0.00 0.02 -0.01 -0.02   0.03 0.03 - 0.03   -0.07 -0.08 -0.06 -0.09   -0.02 -0.01 -0.01 -0.05 

MAR -0.04 -0.05 -0.04 -0.04   -0.01 0.00 - 0.02   0.01 -0.03 0.00 -0.03   -0.03 -0.02 -0.03 -0.07 

MNAR2 0.05 0.05 0.06 -0.01   0.00 0.00 - 0.00   0.03 0.03 0.03 0.01   -0.01 -0.03 -0.01 -0.04 

MAR2 -0.19 -4.69 -0.06 -0.68   -0.04 -0.04 - -0.04   -0.06 -1.15 -0.05 -0.25   0.02 -1.09 0.05 -0.14 

1 

MCAR 0.04 0.04 0.03 0.00   0.07 0.04 - -2.00   0.02 0.04 0.84 0.50   -0.06 -0.06 0.80 0.41 

MNAR 0.76 0.05 0.05 -0.02   0.05 -0.01 - -2.32   0.11 0.01 0.84 0.52   0.02 -0.03 0.75 0.44 

MAR 0.01 -0.02 0.01 -0.01   0.07 0.04 - -2.24   0.06 0.04 0.88 0.56   -0.07 -0.03 0.77 0.44 

MNAR2 0.82 0.02 0.03 0.05   0.04 -0.03 - -3.51   0.38 0.08 0.89 0.68   0.31 -0.03 0.75 0.57 

MAR2 -0.08 -4.64 -0.01 -0.72   0.03 -1.05 - -6.19   -0.05 -1.05 0.82 0.47   -0.01 -1.06 0.86 0.48 

0.8 

0 

MCAR 0.00 0.00 0.00 -0.02   -0.01 -0.01 - 0.03   0.00 -0.01 -0.01 -0.03   0.02 0.02 0.01 0.00 

MNAR -0.01 0.00 0.00 0.02   -0.02 -0.02 - 0.01   -0.01 -0.01 -0.03 -0.04   0.02 0.02 0.01 0.00 

MAR 0.03 0.04 0.03 0.01   -0.02 -0.02 - 0.02   -0.01 -0.03 -0.03 -0.05   0.01 0.04 0.00 0.00 

MNAR2 0.01 0.02 0.03 -0.07   -0.06 -0.06 - -0.03   0.01 0.01 -0.01 -0.02   0.08 0.08 0.05 0.05 

MAR2 -0.17 -4.46 -0.04 -2.81   -0.04 -0.04 - -0.02   0.03 -0.61 0.02 -0.41   0.01 -0.63 0.01 -0.43 

1 

MCAR 0.00 0.00 0.00 -0.04   0.05 0.03 - -0.45   -0.04 -0.01 0.95 0.17   0.04 0.04 1.07 0.25 

MNAR 0.29 0.01 0.00 0.03   0.06 0.04 - -0.47   0.03 0.01 1.04 0.23   -0.01 -0.04 0.98 0.18 

MAR 0.03 0.00 0.03 0.04   0.03 0.00 - -0.57   0.03 0.04 1.02 0.28   -0.05 -0.04 0.97 0.19 

MNAR2 0.31 0.03 -0.02 0.01   0.03 0.00 - -0.65   0.00 -0.04 1.02 0.25   0.10 0.05 1.11 0.33 

MAR2 -0.13 -4.29 -0.02 -2.64   -0.04 -0.58 - -1.34   -0.04 -0.55 0.96 -0.05   0.03 -0.50 1.07 0.02 
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Table 3.4: Estimation of Liver Cancer Data 

 

  IL* CC DV PB 

  Est. S.E. p value Est. S.E. p value Est. S.E. p value Est. S.E. p value 

Intercept 2.606 0.378 <.0001 2.601 0.401 <.0001 2.545 0.369 <.0001 2.503 0.370 <.0001 

BMI     -0.016 0.633 0.9800 -0.158 0.658 0.8107 -0.0004 0.632 0.9995 0.038 0.630 0.9520 

Age    -0.783 0.293 0.0082 -0.706 0.314 0.0260 -0.788 0.292 0.0077 -0.762 0.292 0.0099 

Jaundice  0.255 0.123 0.0388 0.236 0.131 0.0744 0.256 0.122 0.0377 0.259 0.123 0.0363 

      -0.394 0.512 0.4429 0.013 0.558 0.9816 0 NA NA 0.001 0.562 0.9940 

 

* IL: ignorable maximum likelihood; CC: complete-case analysis; DV: dropping variable TSD ; PB: pseudo-Bayesian analysis.
  

TSD
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CHAPTER 4   

To model or not to model the missing data mechanism in regression 

with missing covariates 

 

Abstract: We consider regression with missing covariates. Common methods include: (1) 

Complete-case analysis (CC), which discards the incomplete cases; (2) Ignorable 

likelihood methods (IL), which base inference on the observed likelihood given a model 

for the variables, without modeling the missing data mechanism; (3) Nonignorable 

modeling (NIM), which bases inference on the joint distribution of variables and the 

missing data indicators. CC and IL methods do not model the missing data mechanism 

while NIM models the joint distribution of variables and the missing data indicators. In 

this paper, we study the question of when it is necessary to model the missing data 

mechanism. We will study two aspects of covariate missingness on the estimation of 

regression: (1) nonignorability, which concerns mainly how IL methods perform under 

varying levels of association between missingness and the missing covariates; (2) 

outcome dependency, which studies the relatedness of covariate missingness to the 

outcome on the estimation of regression. We compare different methods for regression 

with missing covariates using a series of simulation experiments.  



 

60 

 

Some key words: Complete-case analysis, Ignorable likelihood, nonignorable modeling, 

outcome dependency
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4.1  Introduction 

We consider multivariate regression with missing covariates, with data displayed 

in Figure 4.1. There is a set of outcomes Y and two sets of regressor variables Z and W, 

with Z and Y fully observed and W with missing values. Here we assume W is a single 

variable, though generalization to multivariate W is possible. We denote by ( , , )i i iz w y  the 

values of (Z, W, Y) for observation i, and by 
iwR  the indicator for whether W is observed 

or missing. Among of the many reviews of regression with missing covariates are Little 

(1993), Ibrahim et al. (1999), Ibrahim et al. (2005) and Chen et al. (2008).  Common 

methods include: (1) Complete-case analysis (CC), which discards the incomplete cases; 

(2) Ignorable likelihood methods (IL), which base inference on the observed likelihood 

given a model for the distribution of Y and W given Z, without modeling the missing data 

mechanism; (3) Nonignorable modeling (NIM), which bases inference on the joint 

distribution of variables and the missing data indicators.  

The central problem of this paper is whether to model the missing data 

mechanism or not in regression with missing covariates. Among the three methods above, 

CC and IL methods avoid modeling the missing data mechanism, while NIM specifies 

the joint distribution of the Y, W and the missing data indicator Rw.  

CC analysis is the default method in most software packages. Much of the 

statistical literature views CC with disfavor since it discards the incomplete cases. 

However, CC has the advantage of yielding valid inference when the missingness of 

covariates does not depend on the outcome. This advantage of CC in regression analysis 

is usually overlooked.  



 

62 

 

Ignorable likelihood methods have the advantage of retaining all the data, but 

assume that missing data are missing at random (MAR), in the sense that missingness 

does not depend on missing values (Rubin 1976, Little and Rubin 2002) which in our 

setting means the missingness of covariates does not depend on the underlying missing 

values of the covariates. IL methods are fully efficient for well-specified models and they 

are also easy to implement since software packages are widely available (e.g., 

IVEWARE, PROC MI in SAS). Simulation studies show that IL methods are quite robust 

in the sense that it performs reasonably well even when the MAR assumption is slightly 

violated (Little and Zhang, 2011). This is because the efficiency gain by using more cases 

can compensate for the bias resulting from incorrectly ignoring the missing data 

mechanism.  

When the missingness of W is thought to depend on W, IL methods yield biased 

estimation. Nonignorable modeling methods, which jointly model the distribution of Y, W 

and Rw, have been proposed (Lipsitz et al. 1999, Huang et al. 2005). There are several 

disadvantages with nonignorable modeling: (1) the model is not easy to specify correctly 

and sensitive to model misspecification; (2) the model is generally weakly identified 

without restrictions on the parameters; (3) there are limited software programs available 

for nonignorable modeling. 

There exist methods for nonignorable missing covariates in regression that do not 

model the missing data mechanism. Little and Zhang (2011a) propose subsample 

ignorable likelihood methods (SSIL), which apply IL methods to a subsample and yield 

valid inference of the regression, for an assumed class of missing data mechanisms. 

Zhang and Little (2011b) propose a pseudo Bayesian shrinkage approach for regression, 
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which results in efficient estimation of certain regression coefficients of interest. Both of 

these methods entail some loss of information. 

In this paper, we study the effect of covariate missingness on the estimation of the 

regression and consider when it is necessary to model the missing data mechanism. We 

will study two aspects of covariate missingness on the estimation of regression: (1) 

nonignorability, which concerns mainly on how IL methods perform under varying levels 

of nonignorability; (2) outcome dependency, which studies the relatedness of covariate 

missingness to the outcome on the estimation of regression. To jointly model the 

distribution of  ( , , )
ii i wy w R , we use a Bayesian probit selection model, which will be 

described in section 4.3. In section 4.4, we evaluate both nonignorability and outcome 

dependency of covariate missingness on the estimation of regression by a series of 

simulated experiments. In section 4.5, we apply different methods to a liver cancer study. 

We show by example in section 4.6 that the subsample ignorable likelihood method is 

actually fully efficient for some special cases. 

 

4.2  The effect of covariate missingness on regression 

In this section, we consider a special case of Figure 4.1, where both Y and W are 

univariate.  Suppose the missingness of W depends on  

                                       * TW aY bW c Z d                                               (4.1) 

where a ,b and d are known scalars and c is a known vector of the same length as  iz .  

Nonignorability: b in Eqs. (4.1) can be viewed as a coefficient of nonignorability. 

When 0b , ignorable likelihood methods are fully efficient. As b moves away from 0, 
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the ignorability assumption is violated. IL methods performs reasonably well under slight 

deviation from ignorability but yields poor estimate of the regression if b is too far away 

from 0. 

Outcome dependency: a in Eqs. (4.1) measures how the missingness of W 

depends on the outcome Y. Outcome dependency is important in regression with missing 

covariates, since complete-case analysis gives consistent estimate of the regression if 

0a . This fact has been explored in Chapter 2 for developing the subsample ignorable 

likelihood method. In general, there is some loss of information, but we provide an 

example in section 4.6 in which the subsample ignorable likelihood method is the same 

as maximum likelihood and thus is fully efficient. 

 

4.3  A Bayesian selection model for regression with missing covariates 

We consider the same data structure as in Figure 4.1, where Y and W are 

univariate. The selection model factorizes the joint distribution of ( , , )
ii i wy w R as  

       , , | ; , | , ; | ; | , , ;
i ii i w i i i i i i w i i if y w R z f y w z f w z f R y w z     (4.2) 

We model | , , ;
iw i i if R y w z using the probit selection model 

                   0 | , , ;
i

T

w i i iprobit R y w z aY bW c Z d .                                      (4.3) 

It is well known that the model is over identified and needs restrictions to be 

estimable, in a frequentist setting. One possible restriction is to set the coefficient a  to be 

0. In a Bayesian setting, all parameters can be estimated without restriction, but the 

estimation might be very poor in the sense that the MCMC chain has a convergence 
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problem and the parameters are estimated with large variance (Preget and Waelbroeck, 

2006, Freedman and Sekhon, 2010). In this paper, we use a Bayesian model with 

restriction that a  is always 0, and use noninformative prior for all parameters. 

 Beside the identifiability issue in eq. (4.3), there is also potential instability in 

estimating the parameters (Little 1985). This results in very poor convergence of the 

Markov chains. We use the accelerated Gibbs sampler in Omori (2007) to speed up the 

convergence. 

 

4.4  Simulation 

In this section, we evaluate the effect of nonignorability and outcome dependency 

of covariate missingness on the regression with missing covariates.  

We simulate 

1 2 ind( , , ) ~ (0, ),i i iw z z N  

where ( , )N  denotes the normal distribution with mean  and covariance matrix 

1

1

1

, 

for  i = 1,…,100. Y is related to 1 2, ,i i iw z z by the linear model 

1 2 ind 1 2| , , ~ (1 ,1)i i i i i i iy w z z N w z z . 

Missing values of W were then generated based on the following probit model: 

1 2 1 2probit ( 0 | , , , ) 1
iw i i i i i i i iP R w z z y bw ay z z  

with iz fully observed when iw is missing. 
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We vary a and b to assess the effect of nonignorability and outcome dependency of 

covariate missingness and look at the following two sets of simulation: 

(I). Ignorable and varying outcome dependency: 0, 0,0.25,0.5,1,2,4,8b a . 

(II). No outcome dependency and varying nonignorability: 0, 0,0.25,0.5,1,2,4,8a b . 

We simulate data for correlation coefficient 0 and 0.7.  Four methods are 

applied to estimate the regression coefficients 0 1 2, , ,w z z :  

(1) BD: estimates from the regression before deletion (BD), as a benchmark method.  

(2) CC: Complete-case analysis; 

(3) IL: ignorable maximum likelihood method assuming MAR; 

(4) NIM: nonignorable modeling described in section 4.3. 

We report the RMSEs, confidence coverage and empirical bias of the estimated 

regression coefficients from each method. Results are based on 1000 repetitions for each 

combination of a and b . 

CC analysis gives valid estimate of the regression if the missingness does not 

depend on the outcome, i.e., 0a . IL gives valid and efficient estimate of the regression 

if the missing data mechanism is MAR, i.e., 0b .  

As we can see from Figure 4.3, 4.4, and 4.5, CC analysis breaks down quickly as 

a moves away from 0, leading to biased estimate of all regression coefficients. IL is valid 

and gives the smallest RMSEs among CC, IL, and NIM. The NIM method yields good 

estimate for the intercept and the regression coefficient of Z, but biased estimate for the 

regression coefficient of W, since NIM model restricts the coefficient of y in the probit 

model to be zero and therefore is incorrectly specified. 
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In the second set of simulations, CC is a valid method since the missingness does 

not depend on the outcome. The IL method yields poor estimate of the regression as 

b moves away from 0. When b is less than 1, IL performs reasonably well for all 

regression coefficients.  

In both sets of simulations, we see an advantage of using the NIM method over 

the CC method. In the first set of simulations when CC is biased, the NIM is clearly 

better. CC analysis is unbiased in the second set of simulations; however, there is big 

efficiency gain of the NIM method over CC analysis because it uses the full sample.  

 

4.5 Application: A liver cancer study 

We apply the nonignorable modeling method to the liver cancer dataset in 

CHAPTER 3. The dataset contains 191 patients from Eastern Cooperative Oncology 

Group clinical trials EST 2282 (Falkson et al., 1990) and EST 1286 (Falkson et al., 1995). 

We are interested in how the number of the cancerous liver nodes (CNTs) is predicted by 

four baseline characteristics: 

(1) body mass index (BMI, in kg/m
2
); 

(2) age (in years); 

(3) jaundice (yes, no): the yellowish staining of the skin and the whites of the eye; 

(4) time since diagnosis of the disease (TSD, in weeks). 

Like many other empirical studies, this dataset contains missing values. TSD is 

missing for 17 patients (8.9%) while other variables are fully observed. CC analysis 

suffers from inefficiency and potential bias if the missingness of TSD depends on the 

outcome. IL makes use of the partial information in the incomplete case but assumes the 
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missing data are missing at random (MAR; Rubin 1976b, Little and Rubin 2002). NIM 

jointly models the variables and missing data mechanism, but restricts the coefficient of 

the outcome CNTs in the selection model to zero, for identifiability purpose. We also 

apply another version of NIM, which does not restrict the coefficient of the outcome to be 

zero in modeling the missing data mechanism (NIM-Y). NIM-Y is not identified in a 

frequestist setting, but parameters can be estimated using posterior simulation in a 

Bayesian setting. NIM-Y has the virtue of correctly specifying the model if missingness 

does depend on the outcome. 

For the liver cancer example, NIM indicates that longer TSD is associated with 

missingness though the estimate is not significant. NIM-Y shows that missingness can be 

predicted by the outcome CNTs (with an estimate of 0.44 and 95% C.I. (0.10, 0.83)), 

implying that CC analysis might lead to biased estimate. The coefficients of TSD in the 

selection part of NIM and NIM-Y are estimated with large variance because the 

information about the unobserved TSD is scarce. 

Table 4.1 shows the regression coefficients as well as the 95% C.I.s (confidence 

intervals or credible intervals). CC has a larger regression coefficient estimate of Age and 

smaller estimate of Jaundice. This is not surprising since NIM-Y shows that missingness 

depends on the outcome, and therefore CC analysis leads to biased estimate of the 

regression. IL gives a smaller estimate of TSD compared to the other three methods, 

which might be explained by the positive (though not significant) association between 

missingness and TSD.  

4.6  A Normal Regression Model where SSIML is ML 
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The subsample ignorable likelihood method in CHAPTER 2 can be viewed as 

complete-case analysis on a certain set of variables. Generally, there is some loss of 

information. However in some special cases, the proposed method is full maximum 

likelihood and hence fully efficient. We give an example, an extension of Example 2 in 

Little and Wang (1996). 

Consider the special case of Figure 2.3 shown in Figure 4.2, where W, X and Y 

(but not necessarily Z) are univariate, Z and Y  are fully observed, X is missing and W is 

observed in Pattern 2, and W is missing and X is observed in Pattern 3. Restating 

assumptions (2.11) and (2.12) in this special case yields: 

1| , , , , 1| , , ,  for all 
i iw i i i i w w i i i w ip R z w x y p R z w x y  (4.4) 

 ( 1| , , , , 1, ) ( 1| , , , 1, ) for all 
i i i ix i i i i w xy w x i i i w xy w ip R z w x y R p R z w y R x  (4.5) 

We model the joint distribution of W, X, Y, XR  and WR  given Z as follows: 

( )

( , , , , | , , , )

( , , | , , ) ( | , ) ( | , , , , , ),

i i

i i i i

i i i w x i w x w

j

i i i w i w i w x w i i i i x w

p w x y R R z

p w x y R j z p R z p R R y w x z
 

where the three sets of parameters ( , , )w x w  are distinct, 
( )( , , | , , )

i

j

i i i i ww x y z R j  

are assumed to have a trivariate normal distribution with mean ( ) ( )

0

j j

z iz  and 

covariance matrix ( )j , and 
(0) (1)( , )  where ( ) ( ) ( ) ( )

0 , , , 0,1j j j j

z j . The 

models for ,
i iw xR R  are left arbitrary, subject to the distinctness of parameters. The 

observed likelihood for this model is 
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obs

1 0

(1) (1)

1 1, 0

(1)

1, 0

( , , ) 1| , 0 | ,

, , | , 1, , | , 1,

, , | , 1, 0 | , , , 1,

, | ,

i i

w wi i

i i

w x w xi i i i

i i i

w xi i

w x w w i w w i w

R R

i i i i w i i i w

R R R R

i i i w x i i i w x w

R R

i i i

L P R z P R z

P w x y z R P w y z R

P w x y z R P R y w z R dx

P x y z R (0)

0, 1

0,
i

w xi i

w

R R

 

Under the subsample MAR condition (4.5), the third line factorizes, yielding 

(1) (0)

obs 1 2 3 4( , , ) ( ) ( ) ( ) ( ),w x w w x wL L L L L  where: 

1

1 0

(1) (1) (1)

2

1 1, 0

(1)

1, 0

(0)

3

( ) 1| , 0 | , ,

( ) , , | , 1, , | , 1,

                             , , | , 1, ,

( ) ,

i i

w wi i

i i

w x w xi i i i

i

w xi i

w w i w w i w

R R

i i i i w i i i w

R R R R

i i i w

R R

i i

L P R z P R z

L P w x y z R P w y z R

P w x y z R

L P x y (0)

0, 1

4

1, 0

| , 0, ,

( ) 0 | , , , 1, .

i

w xi i

i i

w xi i

i w

R R

x w x i i i w x w

R R

z R

L P R y w z R

 

Subsample ignorable ML (SSIML) maximizes, 2L , yielding ML estimates of (1) , the 

parameters of the distribution of , ,W X Y  given Z for cases with W observed. Write 

(0) (0) (0)( , )XY Z W XYZ
, where (0)

XY Z
 are the parameters of the distribution of ,X Y  given Z 

and (0)

W XYZ
 are the parameters of the regression of W on , ,X Y Z , both for cases with W 

missing. Maximizing 3L  yields ML estimates of (0)

XY Z
, but the remaining components 

(0)

W XYZ
 do not appear in the likelihood. However, they are just identified by assumption 

(4.4), which implies that (0) (1)

Y WXZ Y WXZ , the parameters of the regression of interest. 
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This identification by parameter restrictions extends the analysis of Little and Wang 

(1996) to this more complex pattern. 

It follows that the SSIML estimate of  obtained from estimating  (1) (1)ˆ  to 

maximize 2L , and setting (1)ˆ ˆ( ) , is ML for this model, subject to one caveat: the 

resulting ML estimates of (0)  must lie in the parameter space, and in particular the 

covariance matrix must be positive definite, a condition that is not guaranteed by the 

transformation (Little and Wang 1996). If they do not, SSIML is still consistent but not 

the same as ML. Bayesian inference based on 2L  with a prior distribution for the 

parameters is not the same as fully Bayesian inference, since draws of the posterior 

distribution of (0)  need to be restricted to lie in their parameter space.  

 The key to this argument is the fact that the number of unidentified parameters in 

(1)

W XYZ
 equals the number of restrictions in (0) (1)

Y WXZ Y WXZ
, yielding a (1-1) 

transformation between the two parameter sets. This generalizes to cases where W and Y 

are normal with the same dimension, but not to cases where W and Y have different 

dimension.  

 

4.7  Conclusion 

This paper looks at two aspects of covariate missingness in regression analysis: (1) 

nonignorability, which concerns whether the missingness depends on the underlying 

missing values; (2) outcome dependency, which relates the missingness to the outcome.  

We use a series of simulation to study the effect of nonignorability and outcome 

dependency on CC analysis and IL analysis for handling missing covariates in regression 
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analysis. When the missingness is ignorable, IL method yields efficient estimate of the 

regression. IL method is robust to slight violation of ignorability, in the sense that it gives 

estimate with small RMSEs compared to CC analysis.  Simulation shows that CC 

analysis breaks down rapidly if the covariate missingness depends on the outcome.  

In this paper, we show the results of different methods for multiple linear 

regression with one incomplete covariate. The analysis can be generalized to multiple 

linear regression with more covariates missing; also similar analysis can be done for 

generalized linear models and survival analysis.  

It is important to note that neither of nonignorability and outcome dependency are 

testable from the data, and therefore the nonignorable modeling (NIM) considered in this 

paper cannot be viewed as a test of nonignorability or outcome dependency. Different 

forms of nonignorable models can be used as a sensitivity analysis in real data analysis, 

for example, pattern mixture model (Little and Wang 1996) and the two selection models 

described in this paper. 
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Figure 4.1 Missing Data Structure in Section 4.1 

Pattern Observation, i 
iz  iw  iy  

iwR  

1 i  = 1,…,m √ √ √ 1 

2 i  = m +1,…,n √ x √ 0 

 

Key: √ denotes observed, x denotes missing 

 

 

Figure 4.2 Missing Data Structure for Section 4.5 

Pattern Observation, i 
iz  iw  ix  iy  

iwR  
ixR  

1 i  = 1,…,m √ √ √ √ 1 1 

2 i  = m +1,…,m+r √ √ x √ 1 0 

3 I  = m +r+1,…,n √ x √ √ 0 1 

 

Key: √ denotes observed, x denotes missing. 
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Figure 4.3 : RMSE: Ignorable – outcome dependency varies (ρ=0) 
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Figure 4.4 : Coverage: Ignorable – outcome dependency varies(ρ=0) 
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Figure 4.5 : Bias: Ignorable – outcome dependency varies(ρ=0) 
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Figure 4.6 : RMSE: No outcome dependency – Nonignorability varies(ρ=0) 
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Figure 4.7 : Coverage: No outcome dependency – Nonignorability varies(ρ=0) 
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Figure 4.8 : Bias: No outcome dependency – Nonignorability varies (ρ=0) 
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Figure 4.9: RMSE: Ignorable-outcome dependency varies (ρ=0.7) 
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Figure 4.10: Coverage: Ignorable – outcome dependency varies(ρ=0.7) 
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Figure 4.11: Bias: Ignorable – outcome dependency varies(ρ=0.7) 
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Figure 4.12: RMSE: No outcome dependency – Nonignorability varies(ρ=0.7) 
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Figure 4.13: Coverage: No outcome dependency – Nonignorability varies(ρ=0.7) 
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Figure 4.14: Bias: No outcome dependency – Nonignorability varies (ρ=0.7) 
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Table 4.1: Estimation of Liver Cancer Data 

 IL* CC NIM^ NIM-Yǂ  

 Est. 95% C.I. Est. 95% C.I. Est. 95% C.I. Est. 95% C.I. 

Intercept 2.606 (1.865, 3.347) 2.601 (1.815, 3.387) 2.538 (1.750, 3.317) 2.544 (1.753, 3.328) 

BMI -.016 (-1.257, 1.225) -.158 (-1.448, 1.132) -.004 (-1.408, 1.331) -.011 (-1.328, 1.377) 

Age -.783 (-1.357, -.209) -.706 (-1.321, -.091) -.784 (-1.398, -0.160) -.785 (-1.385, -.186) 

Jaundice .255 (.014, .496) .236 (-.021, .493) .255 (-.006, .506) .252 (-.006, .508) 

 
-.394 (-1.398, .610) .013 (-1.081, 1.107) .046 (-1.085, 1.146) .055 (-1.063, 1.210) 

 

* IL: ignorable maximum likelihood; CC: complete-case analysis; NIM: dropping nonignorable modeling with restrition;  NIM-Y: nonignorable modeling with no restriction.
 

^: Coefficient and 95% C.I. in the NIM selection model: Intercept: 1.22 (-0.54, 3.05); BMI: 0.40 (-2.19, 3.34); Age: -0.52 (-1.75, 0.69) Jaundice: 0.28 (-0.21, 0.77); TSD: 1.97 (-4.65, 8.31). 

ǂ : Coefficient and 95% C.I. in the NIM-Y selection model: Intercept: 0.38 (-1.54, 2.34); BMI: 0.14 (-2.50, 3.10); Age: -0.11 (-1.44, 1.15); Jaundice: 0.18 (-0.35, 0.70); TSD: 0.97 (-5.78, 

7.46); CNTs: 0.44 (0.10, 0.83). 
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CHAPTER 5   

|Conclusions and Future Work 

 

We consider regression with missing covariates in this dissertation. When the 

missing data mechanism is missing at random, the ignorable likelihood method is the 

most efficient method. When the missing data mechanism is missing not at random, IL 

methods are biased. One possibility is to apply a nonignorable modeling method, but 

such methods are vulnerable to misspecification of the missing data mechanism, and 

suffer from problems with identifying the parameters. In Chapter 2 and Chapter 3, we 

propose two methods that do not model the missing data mechanism, the subsample 

ignorable likelihood method (SSIL) and the pseudo-Bayesian Shrinkage method (PB), 

both of which yield estimate with nice properties under certain circumstances. In Chapter 

4, we use a series of simulated experiments to evaluate the effect of nonignorability and 

outcome dependency of covariate missingness on two common methods: the complete-

case analysis (CC) and the IL method. 

In Chapter 2, we propose the subsample ignorable likelihood (SSIL) method, 

which applies an IL method to the subsample of observations that are complete on one set 

of variables, but possibly incomplete on others. We give the conditions on the missing 

data mechanism under which SSIL gives consistent estimates, but both complete-case 

analysis and IL methods are inconsistent. The general theoretical rationale of SSIL is 

partial likelihood (Cox, 1972). This involves a potential loss of efficiency relative to full 

modeling, but we show in Chapter 4 an example in which SSIL is fully efficient. 
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We present the SSIL method in a likelihood setting but it is also applies to non-

likelihood analyses that are valid under the MAR assumption. For example, for repeated-

measures data, the IL method applied to the subsample could be replaced by a method 

such as weighted generalized estimating equations (WGEE), which is also valid under 

MAR, without affecting the validity of the method under the stated assumptions (2.7) and 

(2.8).  

It is worthwhile to apply the subsample method to the proportional hazards model 

(PHReg) with missing covariates. Both the PHReg and the subsample method are partial 

likelihood, and it is interesting to see how a new method that combines these two works. 

We will also apply the subsample ignorable likelihood method to longitudinal 

surveys, in which for the subsample that are complete in previous surveys, missingness of 

subsequent survey items may be assumed to depend on the observed data, like the 

subsample MAR assumption in Chapter 2. The subsample MAR assumption is less 

stringent than the MAR assumption, and therefore the subsample ignorable likelihood 

method maybe a preferred method than the multiple imputation (MI) method, which 

assumes MAR. 

In Chapter 3, we propose a pseudo-Bayesian shrinkage method for regression 

analysis with a missing covariate, which is a compromise between complete-case analysis 

and the analysis that drops the missing covariate. The method recovers information in the 

incomplete cases by assigning the regression coefficient of the incomplete variable a 

mixture prior of a normal distribution and a point mass at zero.   
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In future work, we will extend the pseudo-Bayesian shrinkage method to more 

than one missing covariate, and other parametric regression models, like generalized 

linear models and survival analysis.  

The proposed method could be combined with existing multiple imputation 

methods to handle more general problems where Z is also incomplete. In particular, when 

missingness of covariates W is MNAR but does not depend on the outcome, and 

missingness of Z is MAR, the method could also be applied by assigning similar mixture 

priors to the regression coefficients of W, while using multiple imputation via chained 

equations (Raghunathan et al., 2001; IVEware, 2011; MICE, 2011) to impute missing 

values of Z.  

In Chapter 4, we study two aspects of covariates missingness, the nonignorability 

and outcome dependency. We compare different methods under varied levels of 

nonignorability and outcome dependency using a series of simulated experiments. 

Simulation shows that CC analysis performs poorly even under slight violation of 

outcome dependency. IL method is most efficient when the missing data mechanism is 

ignorable and is also robust to slight violation of ignorability. For future work, it is 

interesting to extend the analysis to multiple regression with more than one covariate 

missing and other parametric models with missing covariates. 

We generate the missing data based on probit selection models and use the correct 

model to model the missing data mechanism. It is interesting to see how the selection 

model performs when the selection model is not specified correctly. For future work, we 

will look at different violations of an additive probit model, for example, generating the 
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missing data indicator from a heavy-tailed distribution or including a nonlinear or 

interaction term in the missing data generation scheme.  
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