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ABSTRACT 

Neuro-Dynamic Programming and Reinforcement Learning for Optimal Energy 
Management of a Series Hydraulic Hybrid Vehicle Considering Engine Transient 

Emissions  
 

by 
 

Rajit Johri 
 

Chair: Zoran S. Filipi 
 
 

Sequential decision problems under uncertainty are encountered in various fields 

such as optimal control and operations research. In this dissertation, a framework for 

solving policy optimization problems with multiple objectives and large design state 

space is developed based on Neuro-Dynamic Programming (NDP) and Reinforcement 

Learning (RL). The new algorithms are then used to create an intelligent supervisory 

controller for hybrid vehicle with an emphasis on bridging the gap between theoretical 

and applied work. Dynamic Programming (DP) is well suited for determining an optimal 

solution for constrained nonlinear model based systems. However, DP suffers from curse 

of dimensionality i.e. computational effort grows exponentially with state space. The new 

algorithms address this problem and enable practical application of DP to a much broader 

range of problems. 

The power management problem for a hybrid vehicle can be formulated as an 

infinite time horizon stochastic sequential decision-making problem. In the past, policy 

optimization has been applied successfully to design optimal supervisory controller for 

best fuel economy. Static emissions have been considered too but engine research has 

shown that transient operation can have significant impact on real-world emissions. 

Modeling transient emissions results in addition of more states. Therefore, the problem 

with multiple objectives i.e. minimize fuel consumption and transient particulate and 
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NOX emissions, becomes computationally intractable by conventional DP. Availability of 

predictive but fast emissions model is another challenge. 

In this dissertation, a self-learning approach to develop optimal power 

management with multiple objectives, e.g. to minimize fuel consumption and transient 

engine-out particulate matter and NOX emission, for a series hydraulic hybrid vehicle is 

proposed. The self-learning neural controller is based on the fundamental principles of 

NDP and RL. The other significant contribution is development of fast emission sensors, 

which are capable of predicting in real-time engine-out transient particulate and NOX 

emissions. 

The self-learning controller starts “naïve” i.e. with no knowledge on how to 

control the onboard power sources. The controller learns from its interactions with the 

environment and improves its performance over time. The controller tries to minimize 

multiple objectives and continues to evolve until a global solution is achieved. This novel 

approach enables real time implementation of controller for problems with large state 

space. 

Diesel engine combustion and emission formation is highly nonlinear and thus 

creates a challenge related to engine control with emission feedback. The emission 

models developed in this dissertation belong to the family of hierarchical models, namely 

“neuro-fuzzy model tree”. The approach is based on divide-and-conquer strategy i.e. to 

divide a complex problem into multiple simpler subproblems, which can then be 

identified using simpler class of models. Advanced experimental setup incorporating a 

medium duty diesel engine is used to generate training data. The engine is characterized 

using specifically design perturbation signal, and fast emission analyzers for particulate 

matter and NOX provide instantaneous engine-out emissions.  

Finally, the supervisory controller along with virtual emission sensors for 

particulate and NOX is implemented and evaluated using the Engine-In-the-Loop (EIL) 

setup. EIL is a unique facility to systematically evaluate control methodologies through 

concurrent running of real engine and a virtual hybrid powertrain. The EIL facility uses 

fast instruments and emission analyzers to investigate how critical in-vehicle transients 

affect engine and powertrain response. Given the nonlinear system dynamics, it is critical 

for considering real-world conditions and developing implementable strategies. 
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The series hydraulic hybrid vehicle with power management controller designed 

using stochastic dynamic programming (SDP) results in 65% improvement in fuel 

economy over conventional vehicle during federal urban driving schedule (FUDS). The 

NDP based controller results in additional 16% reduction in particulate and 38% 

reduction in NOX, with a 0.7% fuel economy penalty compared to SDP as a baseline. 
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Chapter 1  
 

INTRODUCTION  

1.1 Energy Crisis and Climate Change 

Dwindling oil reserves and ever increasing demand for energy has resulted in a push 

for alternate energy resources and efficient utilization of fossil resources. The world 

energy consumption is steadily increasing with estimated increase of 49% from 495 

quadrillion Btu in 2007 to 739 quadrillion Btu in 2035 [1] (Figure 1.1). Developing 

countries like China and India are driving the energy demand growth as these economics 

develop further, putting even more strain on natural resources (Figure 1.1 – Non-OECD 

countries). One of the biggest consumers of energy is the transportation sector. The 

economic activity and population are fueling the increased demand for energy in the 

transportation sector. Transportation sector accounts for 27% of the world energy 

consumption and will continue to grow by projected 1.3% per year from 2007 to 2035. 

The energy outlook of the US is not that different from the world with the transportation 

sector accounting similar 27% of energy consumption [2], Figure 1.2.  

Transportation sector rely almost exclusively on liquid petroleum fuels as the energy 

source due to their higher volumetric energy density and convenience of use. To reduce 

the dependence of US on imported fuel and dependence of transportation sector on fossil 

fuels, US Congress enacted Corporate Average Fuel Economy (CAFE) in 1975. The 

National Highway Traffic Safety Administration (NHTSA) oversees CAFE regulations 

and sets fuel economy standards for passenger cars and light trucks in US.  The CAFE 

standards, however, have changed very slightly in last two decades and have not kept 

pace with growth in transportation sector. To overhaul CAFE, Energy Independence and 

Security Act (EISA) was introduced and will result in fuel economy increase by 40% by 

2020.  
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The transportation sector can be further divided into air, marine, rail, light-duty and 

heavy-duty vehicles. It can be seen from Figure 1.3 that the projected increase in energy 

consumption in the future will be from the heavy-duty vehicles [3] and novel efficient 

technologies will be required to reduce the overall fossil fuel consumption and meet 

newer regulations. Until recently, the fuel economy of heavy-duty trucks was unregulated 

and left up to the market forces. This is set to change with the recent Presidential 

memorandum launching a joint Environmental Protection Agency (EPA) and NHTSA 

Figure 1.2: Energy flow, 2009 (Quadrillion BTU) [2]. 

 
Figure 1.1: World marketed energy consumption (quadrillion BTU) [1]. 
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effort to establish the fuel efficiency and greenhouse gas emissions standards for medium 

and heavy-duty vehicles beginning with model year 2014 [4]. 

 

Concurrent with implementation of increasingly stringent fuel economy regulations 

is the adoption of the emission standards. Transportation sector is the single biggest 

contributing factor to air pollution. To reduce the impact of transportation sector on air 

quality, tailpipe emission standards are becoming ever more stringent. EPA regulates 

emission standards in US and was founded in 1970 under the Clean Air Act to set 

statutory limits on emissions. The Clean Air Act Amendments of 1990 imposed two sets 

of standards, Tier 1 and Tier 2 for light-duty non-commercial vehicles. The Tier 1 

regulations were phased in progressively between 1994 and 1997 and, limited the 

allowable levels of unburnt hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides 

(NOX) and particulate matter (PM). The Tier 2 regulations were introduced in 2004 and 

phased in through 2009. In addition to the pollutants regulated by Tier 1, Tier 2 also 

defined limits on aldehydes and non-methane organic gases. The Tier 2 regulations were 

significantly stricter to Tier 1, decreasing the tail pipe emissions drastically as seen from 

Figure 1.4. Similar to US standards, other countries like Europe, Japan, and India have 

their own emission standards, which regulate the amount of harmful species in exhaust. 

In order for newer vehicles to meet these ever-tightening regulations, multi-pronged 

Figure 1.3: Projected increase of energy consumption in transportation sector [3]. 
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approach with newer carbon-neutral energy sources, better powertrain design and use of 

lighter materials for construction of vehicles will be required. 

 

1.2 Pathways to Better Fuel Economy and Low Emissions 

Development of modern vehicles is driven by the need to address the energy security 

and climate change with increased fuel economy, while simultaneously meeting strict 

exhaust emission regulations.  Vehicles in future will use renewable and clean source of 

energy but in near future, petroleum fuels will still power vehicles.  

Various engine based technologies like variable valve timing, cylinder deactivation, 

turbocharging etc. are being introduced to increase the efficiency of internal combustion 

engine and simultaneously decrease emissions. Fuel economy has a very strong 

dependency on vehicle mass and aerodynamic drag [5]. Significant breakthroughs in 

cost-effective lightweight materials and manufacturing processes have led to reduction in 

vehicle weight without compromising performance, cost and safety. Substituting 

lightweight, high-strength materials such as aluminum, magnesium, advanced high-

strength steels, and fiber-reinforced composites for mild steel in vehicle applications have 

 
Figure 1.4: EPA NOX and particulate matter regulation trends. 
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a positive impact on fuel economy and emissions. Application of computer-aided 

engineering (CAE) have ushered in newer cars with improved aerodynamics thereby 

further improving fuel economy. These efforts nonetheless have been effective but are 

not enough to meet stringent regulations. One solution to meet such intense challenges is 

through hybridization. Hybridization enables significant leaps in fuel economy 

improvements, Figure 1.5 by optimizing engine operation and additionally providing 

opportunity to recuperate kinetic energy during braking. 

 

Most of the industry efforts are presently devoted to passenger vehicle market. 

However, the light-duty and heavy-duty vehicles account for 23 percent [4] of the total 

greenhouse gas production from the transportation sector. Furthermore, based on 

projections for energy consumption (Figure 1.3), trucks’ consumption of petroleum fuel 

will continue to increase. Therefore, any proposed plan for addressing fuel economy and 

emission regulation need to include trucks as a part of the overall strategy.  

Addressing fuel economy and emissions for trucks has more profound impact on 

global energy crisis than passenger vehicles. Trucks spend a lot more time on road 

compared to the passenger vehicles and their annual fuel consumption per vehicle is very 

large. However, scope for improving fuel economy is very limited in trucks. They already 

Figure 1.5: Vertical leap in fuel economy improvement with hybridization [5]. 
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employ very efficient diesel engines.  Other methods like lightweight structures for truck 

body design are not usually considered to improve fuel economy as the payload dictates 

truck weight. There is also a limit to reducing aerodynamic losses in a truck. The only 

way to get vertical leap in fuel economy benefits is through hybridization. The large mass 

of trucks implies large amount of kinetic energy can be recuperated from regenerative 

braking. Many carmakers are already adding hybrid vehicles to their existing line-ups of 

conventional vehicle. To the contrary, the truck market is largely untapped and yet it 

offers a chance for huge impacts. 

1.2.1 Hybrid Powertrain 

Hybrid powertrains have an additional source of energy onboard the vehicle like 

battery, accumulator or ultra-capacitor and a secondary prime mover like electric 

motor/generator or hydraulic pump/motor. Efficient management of this secondary 

source of energy provides additional degree of freedom in operation of the engine, and 

the whole powertrain can be designed to improve fuel economy by the possibility of (i) 

downsizing the engine, (ii) recovering energy during braking event by regeneration, (iii) 

optimizing engine operation and, (iv) engine shutdowns.   

Hybrids can be classified either on the basis of powertrain architecture i.e. 

connection of primary and secondary source of power to wheel, Figure 1.6 or the 

secondary power source onboard vehicle.  

1.2.1.1 Classification based on energy source 

There are many different energy storage concepts being researched for hybrid 

application like electric (battery, ultra-capacitor), hydraulic, pneumatic and inertial 

(flywheel). Electric hybrids have received most of the attention due to their successful 

application in passenger vehicles (Toyota Prius, Honda Insight, and Chevrolet Volt). 

Hydraulic hybrids hold a key advantage for future truck powertrain design. Utilization of 

hydraulic propulsion and energy storage components can offer significant advantage. 

Previous work done by Filipi et al. [6], [7], [8] have shown hydraulics to be well suited 

for truck application due to their higher power density and higher energy conversion 

efficiency.  
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1.2.1.2 Classification based on powertrain configuration 

There are multiple hybrid powertrain configurations in literature based on the 

location of secondary power source and the underlying powertrain architecture. However, 

they all can be categorized under 3 broad classification, namely parallel, series and 

powersplit. 

 

Parallel hybrid is also known as mild hybrid or power assist hybrid due to small 

power capacity of secondary energy source. They can further be classified as post or pre 

transmission based on the location of pump/motor system. The secondary power source 

can only drive the vehicle for a very short distance and is primarily used for launch assist, 

optimizing engine transient operation and regenerative braking. The engine operating 

point optimization is limited due to mechanical coupling between wheels and engine 

through transmission. Parallel systems have an advantage that they can be retrofitted to 

existing vehicles. 

Figure 1.6: Hydraulic hybrid powertrain architectures. 
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Series hybrid is also known as full hybrid because all the propulsion is provided by 

the pump/motor. There exists no direct mechanical linkage between the engine and the 

wheels. Series hybrid provides greater flexibility in operating the engine, as vehicle states 

do not directly affect the engine. However, the soft connection between primary source of 

power i.e. engine and wheels means the mechanical energy at engine is always converted 

to electrical/hydraulic energy at generator/pump and then converted back to mechanical 

energy by motor. Thus, the overall efficiency of the system depends on the conversion 

efficiency of individual devices.  

Powersplit hybrid has the characteristics of both parallel and series systems. The 

power can be routed to the wheels from both the engine and the secondary power source.  

At heart of powersplit hybrids is a power split (planetary gear set) device. The overall 

nature of powertrain depends upon where pump, engine, motor and vehicle are connected 

to different nodes of powersplit device.  

1.2.2 Diesel Engine 

Diesel engines are proven and available technology that is inherently more efficient 

than their counterpart gasoline engines by 20-40%. Diesel engine lower fuel consumption 

is attributed to its overall lean combustion, low pumping loses and higher compression 

ratios. The diesel engine combustion process is heterogeneous in nature with parts of 

combustion taking place in oxygen deficit zone and other parts in oxygen rich zones. The 

complex process involved, such as turbulent mixing, three-dimensional heterogeneity 

coupled with presence of high localized temperatures and high in-cylinder pressures, 

leads to conditions that are favorable for formation of nitrogen oxides and particulate 

matter. To meet EPA norms, modern diesel engines employ many actuators like variable 

geometry turbochargers (VGT), exhaust gas recirculation (EGR) etc. along with exhaust 

aftertreatment systems.  This increases the complexity, cost and controls challenge for a 

modern diesel engine. However, emission aftertreatment is still a necessity. 

The aftertreatment technologies for diesel are costlier compared to gasoline engine. 

Some components need regeneration e.g. lean NOX trap and diesel particulate filter. This 

causes additional fuel economy penalty.  Novel methods are being researched but none 

holds promise in near future. Significant research is being undertaken to reduce the 
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engine-out emissions from the diesel engine. These efforts include in-cylinder 

combustion, use of alternate fuels, development of newer aftertreatment technologies, 

and the development of novel combustion modes. Typically these experimental and 

simulation studies are done at steady state conditions. These efforts undoubtedly are 

useful, but since engine operation is transient most of the time in actual real world 

driving, transient emission understanding is of great importance.  

Recently researchers [9], [10], [11], [12], [13] have evaluated the effect of transients 

on diesel engine emissions. Samulski and Jackson [9] showed particulate emissions from 

diesel engines are very sensitive to transient operation and reported an average increase 

of 47% over steady state. Rakopoulos et al. [13] used two-zone transient diesel engine 

thermodynamic model to study the effect of load and engine parameters on transient 

emissions and noted a significant increase in soot production with step change in load.  

Based on advanced experimentation for testing under highly dynamics conditions, 

Hagena et al. [10], [14] concluded that transient soot emissions can account for almost 

half of the total soot emission when engine is operated over a realistic driving schedule. 

Steady state map based models fail to capture the transient nature of emission when 

engine is operated transiently and underestimate soot production. This can be seen from 

Figure 1.7 as the integrated area under the transient trace is much higher compared to the 

quasi-steady state curve. The transient spike is higher and precedes the prediction by 

quasi-steady state.  

To explain the incapability of steady state models to predict transients correctly, we 

need to look closely into engine operation during transients. During change in engine 

load, the engine command changes nearly instantaneously and the fuel injected follows 

the demand. The intake manifold pressure lags due to turbocharger inertia and the delay 

in boost pressure results in lower in-cylinder air-to-fuel ratio, limiting the amount of fuel 

that can be burned. The engine ECU monitors the rise in intake manifold pressure and 

limits the fuel injection to prevent “smoke”, however the instantaneous air-fuel ratio can 

still display excursion below the steady state values. Other actuator dynamics such as 

EGR valve also play an important role in deviation of in-cylinder chemistry from steady 

state and transient emission formation. The residual dynamics have slower time scales 

and it takes time to purge the intake manifold after the EGR command is changed to 
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“zero”. Also, Filipi et al. [10] showed that step change of load results in increased 

exhaust backpressure to inlet manifold pressure thereby increasing the internal residual. 

The presence of residual helps in reduction of NOX but results in higher particulate matter 

production. The steady state emission model is a function of engine load and hence 

cannot capture the transient effects. 

 

The quasi-steady state predictions deviate considerably at the initiation of transient 

when conditions are irregular.  Transient conditions easily dominate the emission trends 

for a heavy-duty vehicle, particularly over an aggressive driving schedule like federal 

urban driving schedule (FUDS).  Consequently, dealing with transients needs to be part 

of the overall low-emissions strategy, as more than half of the particulate matter can be 

attributed to rapid increase in load. 

1.3 Research Objectives 

The flexibility enabled with hybridization creates chances for a synergistic approach, 

in which the hybrid supervisory control can be augmented to address both emissions and 

efficiency.  The reward will be a possibility to reduce engine-out emissions and thereby 

 
Figure 1.7: Quasi-steady state model prediction compared with measured particulate 

matter emissions [14]. 
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reducing the size and complexity of the aftertreatment system.  The overarching goal of 

this dissertation is to design an intelligent supervisory controller with consideration for 

multiple objectives like fuel economy and low transient in-vehicle exhaust and, realize 

cleaner vehicles with smaller or no aftertreatment systems.  

Dynamic Programming (DP) is an effective tool for stochastic problems with 

sequential decision-making. DP framework allows determination of optimal solution for 

constrained non-linear model based systems. This motivates the use of DP for calculating 

the optimal control policy for hybrid vehicle power management. However, DP 

framework suffers from well-known curse of dimensionality i.e. the computational and 

memory cost to solve problems grows exponentially with increase in the state space. This 

makes practical applicability of DP to real-life problems somewhat limited and puts an 

upper constraint on the type of problems that can be effectively tackled. A hybrid power 

management problem can only be solved with reduced order models. An inherent 

problem with including transient emission models in policy optimization is the resulting 

increase in state space. The combined problem in its entirety, policy optimization of a 

supervisory controller with transient emission objectives, is computationally intractable 

with present DP algorithms and computational power. Therein lies the requirement for 

the development of new generation of algorithms capable of breaking the curse of 

dimensionality in policy optimization. A large part of this dissertation is geared towards 

the development of new generation of algorithms capable of alleviating the curse of 

dimensionality in policy optimization. These algorithms will then be used to create a 

supervisory controller for hybrid vehicles with an emphasis on bridging the gap between 

theoretical and applied work.  

Transient emission formation is a highly nonlinear and complex process. The 

problem is compounded by the fact that NOX and particulate matter emission demonstrate 

a nonlinear change with change in engine operating conditions. Quasi steady state 

emission models do not capture the nonlinearities in emission formation and hence 

perform poorly in estimating transient emissions. Physics based models for exhaust gas 

concentration can predict transient emissions. These models take into account complex 

thermodynamical and chemical equations as well as side effects like swirl, tumble, 

quenching, and local temperatures. However, these models are not suitable for control 
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design as they are too complex and have large number of states, making them 

computationally slow. Stated controller development objective requires transient 

emission models, which are fast enough to be employed for control-oriented problems, 

and yet detailed enough to capture system dynamics accurately. Therein lies the 

requirement of transient emission models, which are fast yet can capture the emission 

dynamics accurately. 

Simulation based vehicle design has its own limitations. Vehicle level studies using 

state of art simulations can be done within the constraint of reasonable computational 

time frame. However, phenomenon like soot formation in diesel engine is prohibitively 

slow and require sophisticated computational fluid dynamics (CFD) and chemical 

kinetics models. In addition, CFD models cannot be used for vehicle level studies to 

assess vehicle performance and fuel consumption. To get a better insight and emission 

trends with very high confidence require actual engine with real actuators. Therefore, to 

assess and evaluate using performance of new control strategies with emission objectives, 

they will be evaluated in Engine-In-the-Loop (EIL) setup. EIL couples physical engine 

with virtual simulation models and allows realistic transient engine operation with 

advanced emission analyzers giving insight into real time emissions. Integration and 

simulation of such a test cell poses unique challenges and they will be addressed 

systematically to provide reliable methodology supported with real time control models 

and strategy.  

The above research goals can be summarized into four objectives: 

1. Develop novel numerical techniques capable of alleviating the curse of 

dimensionality in policy optimization. This will be accomplished by leveraging 

neuro-dynamic programming algorithm. 

2. Apply new algorithms for design of optimal supervisory control strategies with 

multiple objectives including transient emissions.  

3. Characterize transient emission formation in a diesel engine and develop virtual 

sensors to enable achieving objective 2. A neuro-fuzzy tree based models are 

developed which involves multiple models linked with a fuzzy framework. 

4. Demonstrate effectiveness of new strategies implemented on real hardware using 

Engine-In-the-Loop (EIL) and generate insight for model development. 
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In summary, this dissertation pushes the frontiers of dynamic programming and 

develops novel numerical techniques for design of optimal power management controller 

with multiple objectives. The dissertation also develops advanced transient emission 

virtual sensors suitable for optimization studies and on-board engine application. Finally, 

the influence of powertrain design and power management strategies on fuel economy 

and transient emissions is comprehensively and accurately characterized by combining 

real physical engine with advanced real-time models for powertrain in the EIL setup. The 

proposed algorithms are not limited to a particular hybrid configuration with above 

proposed objective. The objective function can be easily modified to include other 

objectives like battery health, drivability and thermal management. 

1.4 Literature Review 

Hybrid powertrain allows greater flexibility in controlling the engine and provides an 

opportunity for reducing engine-out emissions. An intelligent supervisory controller; 

designed with multiple objectives like fuel economy and low transient in-vehicle exhaust, 

can help in realizing cleaner vehicles with smaller or no aftertreatment systems. The 

problem requires addressing two key fundamental issues, optimal supervisory control and 

diesel emission modeling. The goal of this dissertation is to connect these two previously 

separate bodies of literature, Figure 1.8. 

 

 
Figure 1.8: Area of contribution of this dissertation. 
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1.4.1 Hybrid Power Management 

The supervisory control has a profound impact on hybrid vehicle system behavior 

and its ultimate benefits. Hybridization adds additional degree of freedom in controlling 

vehicle power generation unit. The power management affects both the transient 

performance and drivability of vehicle. The primary task is to maximize the fuel 

economy, while ensuring safe operation regardless of the driver demand and vehicle 

states.  The gains with the hybrid vehicle are expected from effective regenerative 

braking and optimization of engine operation. Since the duration of zero-power intervals 

can be significant, engine shutdowns are a third factor potentially contributing to the fuel 

savings.  However, the latter requires special measures to ensure continuous operation of 

accessories and safe vehicle operation [15]. 

The control of a hybrid vehicle is an instantaneous management of the power flow 

from engine and secondary power source. The objective, minimize fuel consumption and 

emissions, are global i.e. the quantity to be minimized is integral over the whole trip; 

however, the control actions are local in time. Furthermore, the control is subject to 

integral constraint, such as nominally maintain SOC and local constraints like driver 

demand and individual component limitations. The problem can be formulated 

mathematically as 
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where Pdes is desired power, Peng is engine power, Psec is power from secondary power 

source like hydraulic pump/motor or electrical generator/motor,  and SOC is state of 

charge of secondary storage unit like hydraulic accumulator or electrical battery. 
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Power management of hybrid vehicles has been researched extensively and there are 

many different strategies for controlling the engine and secondary power source. The 

strategies can be broadly classified into three categories: (i) heuristics based like rule-

based, (ii) instantaneous optimization like equivalent consumption minimization strategy, 

and (iii) global optimization like horizon optimization. 

Most of the power management strategies available in literature pertain to electric 

hybrids. With high power density and low energy density, power management in series 

hydraulic hybrid is very different from hybrid electric vehicles (HEV). Nevertheless, a 

brief summary of different power management strategies applied to HEV and HHV is 

presented next. 

Jalil et al. [16] and Caratozzolo et al. [17] introduced the rule based supervisory 

control strategies for HEV with thermostatic "on/off" type engine control. The premise of 

these strategies is to operate engine at the fuel-efficient “sweet spot”.  Liang et al. [18] 

proposed rule based strategy with predetermined engine power compensation function to 

maintain SOC at reasonable level. Barsali et al. [19], [20] proposed couple of strategies 

for series HEV with forecast algorithm for calculating average engine fuel consumption. 

The engine operation is thermostatic to sustain SOC at predetermined level. Wu et al. 

[21] showed the potential of hydraulic hybrid in passenger vehicle with a rule based 

controller. Subsequently, Kapellen et al. [22] showed significant fuel improvement with 

on/off strategy on heavy refuse truck. Kim et al. [8], [23] recently proposed a modulated 

control strategy for series hydraulic hybrid based on the insight gained from Engine-In-

the-Loop testing with thermostatic control. The engine power demand is estimated as the 

output of a high gain PI controller. The engine is ramped slowly to the desired power 

demand based on SOC deviation from a desired value. Tavares et al. [24] applied 

modulated strategy to powersplit hydraulic hybrid with a variable displacement engine. 

Strategies based on fuzzy logic [25], [26] and state machines [27] have also been 

proposed. 

Pisu et al [28], Paganelli et al. [29], [30] and Sciarretta et al. [31] treated power 

management problem as an instantaneous optimization problem. The proposed strategy, 

Equivalent Consumption Minimization Strategy (ECMS), is based on the concept of 

instantaneous equivalent fuel consumption. Given a driver power demand, the optimal 
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engine power is determined from pre-calculated semi-optimal instantaneous power split 

ratio based on minimization of equivalent fuel consumption. The idea of ECMS is to 

minimize the instantaneous cost function obtained from the sum of the fuel consumption 

and an equivalent fuel consumption related to the SOC variation. ECMS reduces the 

global optimization problem into an instantaneous optimization problem with a cost 

function dependent only on the system variables at that current time. ECMS can be 

viewed as a physical interpretation to instantaneous optimization problem using 

Pontryagin’s Minimum Principle [32], [33]. Recently Borhan et al. [34], [35] have also 

applied model predictive control for hybrid power management problem. 

Brahma et al. [36], Sciarretta et al. [37], Lin et al. [38], Liu et al. [39] and Wu et al. 

[6] applied dynamic programming to find optimal energy management strategy for HEV 

and HHV with various different architectures. Deterministic dynamic programming 

(DDP) enables significant improvements beyond what can be achieved with simple 

intuitive rules. However, the optimal benchmark obtained by the DDP process is not 

implementable and subsequent rule extraction sacrifices some of the fuel economy 

potential [7]. The Stochastic Dynamic Programming (SDP) eliminates the rule 

extractions step and allows direct development of an implementable control strategy for 

vehicle supervisory control. SDP is not based on a particular driving cycle (time signal), 

but rather the statistical characteristics of many driving cycles and hence it is non-cycle-

beating. Its application to parallel HEV was pioneered by Lin et al. [40], Tate et al. [41] 

and Liu et al. [42], and a first attempt at addressing the hydraulic configuration was 

pursued recently by Kim [8]. Johri et al. [43] applied SDP with naturalistic driving cycles 

for an ultra-high efficiency passenger vehicle with series hydraulic hybrid powertrain. 

Most of these works have focused on minimizing the fuel consumption with some 

researchers quantifying the impact of hybrids on emissions [44]. Recently researchers 

[40], [45], [46], [47], [48], [49] have developed control strategies with both fuel 

consumption and emissions as objective, however, the models used for emissions were 

fairly simple and steady state in nature. Minimizing fuel consumption along with 

transient emissions is still a challenge and is worth investigating further. The nature of 

the series hybrid system, with the engine decoupled from the wheels, allows significant 

freedom in designing the supervisory control strategy.  This also creates a special 
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challenge when it comes to application of advanced algorithms like DP. DP algorithms 

suffer from curse of dimensionality and obtaining solutions to problems with large degree 

of freedom is very numerically intensive. The problem of minimizing fuel consumption 

along with transient emissions for a series hydraulic hybrid will require novel numerical 

methods to address these dimensionality and computational challenges. 

1.4.2 Emission Modeling 

Accurately modeling particulate matter and NOX formation requires knowledge of 

in-cylinder conditions like exact local concentrations and local temperatures. The 

challenge in dynamical emission modeling consists in finding models that represent the 

highly nonlinear process of emission formation with sufficient accuracy, but are 

parameterized using data available for engine. Emission modeling can be broadly 

classified into two categories: (i) physics based and, (ii) data driven empirical models. 

Physics based models use chemical kinetics and fluid dynamics principles to model the 

underlying emission formation phenomenon whereas the empirical models are generally 

experimental data driven.  

Physics based models can further be classified based on single or multi-zone 

combustion model as well as zero-dimensional or multi-dimensional modeling for 

geometrical features. Simplest physics based models combine zero-dimensional models 

with phenomenological models for emissions. Phenomenological models for emission 

formation are usually semi-empirical, i.e. they relate emission formation in a way 

consistent with fundamental theory, but not necessarily derived from theory. Hiroyasu et 

al. [50] proposed a two-step phenomenological model for soot. The model described the 

net rate of change of the soot mass as the difference between soot formation and 

oxidation processes. Bayer and Foster [51] developed a crank angle zero-dimensional 

model for soot formation and oxidation based on the Hiroyasu model. Another variation 

of Hiroyasu model in literature is given by Khan et al. [52]. Ericson et al. [53], Andersson 

et al. [54] and Lyons et al. [55] have proposed NOX model for diesel engine with zero-

dimensional dynamics and Zeldovich mechanism. Recently Seykens et al. [56] developed 

a zero-dimensional model based on Bayer and Foster model for soot prediction and 

extended NO dynamics based NOX model. 
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Greater accuracy in predicting diesel combustion and emission can be obtained by 

employing quasi and multi-dimensional models. Pitsch et al. [57] developed a predictive 

model for 3-D calculations of diesel engine combustion. A flamelet model for non-

premixed combustion capable of describing autoignition, the following burnout of the 

partially premixed phase, and the transition to diffusive burning is derived. It included the 

description of soot and NOX formation based on detailed chemical reaction kinetics. 

Bazari [58] combined a nonlinear transient engine cycle software simulation with a 

versatile quasi 2-D multi-zone combustion-emission model in order to predict exhaust 

emissions under transient operating conditions. Jung and Assanis [59] developed a quasi-

dimensional, multi-zone, direct injection diesel combustion model and implemented in a 

full cycle simulation of a turbocharged engine. The combustion model accounts for 

transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot 

pollutant formation. Some of the other computational fluid dynamics (CFD) based 

models in literature are [60], [61], [62]. The CFD based models are suitable only for 

studying detailed in-cylinder cycle resolved phenomenon and are extremely 

computationally intensive. The calculation covers only the closed part of cycle and 

requires initial boundary conditions like cylinder pressures, temperature and density. This 

severely limits the applicability of these models for transient studies coupled with 

powertrain simulation over a driving schedule and makes them unsuitable for control 

development and optimization studies. 

Physics based models with CFD and chemical kinetics represents one end of 

modeling spectrum. On the other end lie the quasi steady state models. Quasi steady state 

models can be considered as simplest empirical models and have very small 

computational load. However, these models do not capture transients accurately and 

cannot be used for design studies involving transient engine behavior [10], [12], [63], 

[13]. Giakoumis et al. [64] suggested to correct for discrepancy between steady state 

model and actual results with a correction factor based on load increase.  A similar 

approach was applied by Shilling et al. [65] for NOX modeling. The detailed combustion 

model is used to extrapolate the sensitivities of the NOX emissions to the various engine 

inputs and store the results in maps as a function of the operating conditions. The real-

time model uses these maps for the computation of the NOX emissions.   
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Some researchers have proposed empirical models that capture emission dynamics 

based on certain engine parameters. Kirchen [66], [12] developed a mean value model for 

soot and showed the effectiveness with tip-in operations. The model included empirical 

correlations relating engine out emission with engine operating conditions. Brahma et al. 

[67] proposed a mean value model for NOX emissions. Warth et al. [68] combined 

various phenomenological models with genetic based algorithms for parameter 

estimation for steady state estimation of NO and soot. Brahma et al. [69] used a 

combined approach where multiple phenomenological models were linked with neural 

network and weights were trained to predict soot. A major drawback of the above 

proposed models is the required knowledge of in-cylinder pressures and available fuel 

mass as model inputs. This makes these models unsuitable for simulation studies over 

complete driving cycle. 

Other empirical methods include black box modeling using system identification 

techniques. Neural network based models have been developed in past to predict NOX 

and soot due to good universal function approximation capability of multi-layer 

perceptron. Ouladsine et al. [70] developed neural network based model for soot based on 

the opacimeter data. Opacimeter measures the percentage loss of light intensity between a 

light source and a receiver to calculate the opacity of the exhaust gas. Opacity of exhaust 

gases only captures a subset of the particulate matter i.e. the visible component of 

particulate matter i.e. “smoke”. Some of the NOX models with artificial neural network 

have been proposed by Krijnsen et al. [12], [71] Toth-Nagy et al. [72], and Wang et al. 

[73]. Wang et al. required in-cylinder pressures to calculate crank angle at 50% mass 

burnt fraction (CA50). Alberer et al. [74] and Re et al. [75] proposed a model for NOX 

and particulate matter based on structure identification and genetic algorithm. These 

models are designed using experimental data recorded over a section of driving schedule 

and hence are valid over small operating region of the engine. A dynamic programming 

based algorithm for selecting best engine operation to minimize transient emissions will 

rely on exploring the engine operating space and the models need to be valid over entire 

operating regime. 

Another common issue with all the above proposed empirical models is that they all 

require large number of inputs including the previous time histories. This poses a 
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significant challenge in control optimization using DP based framework. The DP treats 

time history as independent state of the model, which in turn exponentially increases 

computational time and memory required to solve the problem. In this dissertation, we 

are concerned with models that capture transient emissions with high accuracy and can be 

employed within DP framework. This will require novel modeling approach to develop 

transient emission models, which are computationally fast and valid over entire engine 

operating space. 

1.5 Technical Challenges 

Design of optimal power management controller for series hydraulic hybrid 

powertrain with fuel economy and transient emission objectives is particularly 

challenging for the following reasons: 

1. Optimal power management is a non-trivial problem that requires solution of an 

optimal control problem with multiple inputs, stochastic dynamics, nonlinear 

constraints, and multiple objectives. A fundamental framework is required.  

2. Dynamic programming framework suffers from “curse of dimensionality”. 

Inclusion of transient emission objective in power management controller design 

will result in considerable increase in number the system states. Innovative and 

newer class of algorithms is required to alleviate curse of dimensionality and 

obtain optimal solution. 

3. Diesel engine combustion and emission formation is extremely nonlinear and 

stochastical in nature. Development of fast control oriented transient emission 

models is a challenge. Novel methods are required to capture transient soot and 

NOX characteristics in a diesel engine.  

4. The input signals are stochastic, i.e. there is no a priori knowledge of driver power 

demand. Stochastic modeling and control techniques are required. 

5. Hydraulic hybrids have very small energy storage capacity and pose unique 

challenges while designing supervisory controller especially for series 

configuration. Optimizing the powertrain only for fuel consumption with no 

consideration for transients can lead to harsh engine operation.  
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6. Engine-In-the-Loop (EIL) techniques are required for evaluating the effect of 

different power management strategies on physical engine performance and 

transient engine-out emissions. Implementation and evaluation of controller with 

physical hardware require consideration for controller robustness, signal 

degradation and real system dynamics often ignored in simulation studies.  

1.6 Contributions 

This dissertation develops novel techniques to design optimal power management 

controller with multiple objectives for a series hydraulic hybrid vehicle with diesel 

engine. Nonetheless, the approach is fundamental and is applicable beyond series 

hydraulic hybrid powertrain. These techniques are applicable to other problems involving 

complex physical systems, stochastic dynamics, multiple design objectives and specially 

problems with very large state space. The proposed algorithms can be modified to 

address other hybrid powertrain configurations or include other objectives like battery 

health, drivability and thermal management. Another major contribution of this 

dissertation is in the modeling of transient diesel soot and NOX emissions. The models 

are derived from experimental data but the approach is generic and applicable to other 

engines. These models are capable of running concurrently with real engine as virtual 

sensors or integrating with dynamic programming based framework for optimization and 

control development studies. The research reported throughout this dissertation is based 

primarily of publications by the author [43], [24], [76], [77], [78], [79], [80], [81]. The 

main contributions of this dissertation in the field of optimal control for hybrids and 

emission modeling are: 

1.6.1 Neuro-Dynamic Programming 

A new formulation for developing supervisory controller for hybrid vehicles with 

multiple objectives like transient emissions and fuel consumption is introduced. The 

formulation is based on the concept of neuro-dynamic programming (NDP). This 

algorithm allows for near-optimal solution to problems with very large state-action space, 

which are computationally intractable with conventional techniques. 
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1. Numerical techniques to address very large state space – Mathematical techniques 

like functional approximation of cost-to-go function and incremental training 

using temporal difference learning are introduced for the first time in the context 

of designing hybrid power management controller. The algorithm is first 

demonstration of design of supervisory controller with 8 states and state-action 

space cardinality of 1013.  

2. Multi-objective power management – This power management formulation 

considers multiple objectives i.e. minimization of combined fuel consumption and 

transient emissions, for the first time.  

3. Self-Learning Controller – A novel neural network based controller is introduced 

which learns by interacting with the environment. 

1.6.2 Power Management via Stochastic Optimal Control 

The power management problem of series hydraulic hybrid powertrain is formulated 

and solved using stochastic dynamic programming (SDP). 

1. Model development – Two different powertrain models, namely control oriented 

and vehicle simulation models are developed for series hydraulic hybrid 

architecture. The models are augmented with high fidelity transient soot and NOX 

emission models. 

2. System conscious vs. engine centric approach – The SDP problem is formulated 

to produce state feedback of desired set point for both engine speed and torque i.e. 

the engine is not restricted to operate along the best BSFC line [43] unlike 

previous work where the sole controller output is engine power demand i.e. the 

engine is operated along best BSFC line [40], [8]. 

3. Numerical techniques – Multiple numerical techniques are introduced to reduce 

the computational time of SDP. 
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1.6.3 Engine-In-the-Loop Validation 

The power management controller is simulated along with virtual hybrid powertrain 

concurrently with real engine in the Engine-In-the-Loop (EIL) facility. This allows for 

realistic evaluation of proposed power management controllers. 

1. Integration issues and challenges – A systematic approach for transitioning from 

simulation to embedded controller for real world application is presented. The 

integration challenges, particularly issues related to causality and multi-rate 

controller are addressed. 

2. Transient emission – Fast transient emission analyzers are used to develop deep 

insight into engine system behavior and quantifying the emission reduction with 

new proposed controller. 

1.6.4 Transient Particulate Matter and NOX Emission Model  

Transient emission models for NOX and soot are developed. The models are capable 

of predicting transient NOX and soot emissions over complete range of engine operation 

with input parameters available from standard ECU and sensors.  

1. Neuro-fuzzy model tree – A hierarchical model with Gaussian validity functions 

and local neural networks for transient NOX and soot prediction is constructed 

using experimental data. The modeling techniques are motivated by the idea of 

divide and conquer the input-output space.  

2. Perturbation signal – A multi-Pseudo Random Signal (m-PRS) perturbation signal 

is designed specifically for characterizing the diesel engine. The test signal is 

designed to excite all the engine operating frequencies to ensure the training data 

obtained captures all the operating regimes of the engine, i.e. the data are “rich”. 

3. Regressor selection techniques – Two algorithms, namely Orthogonal Least 

Squares (OLS) and Automatic Relevance Determination (ARD), are introduced 

for automatic selection of regressors for local models.  

4. Real-time models – The transient models are implemented in real time and are 

validated by running concurrently with physical engine.  
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1.7 Dissertation Overview 

This dissertation is arranged into two major sections. The first section (Chapter 3 to 

Chapter 4) introduces the energy management problem in hybrid vehicles. The power 

management controller decisions or control actions influences the evolution of states in a 

hybrid vehicle. The decision made at any given time depends on the state of the system. 

The controller objective is to select a decision-making rule i.e. feedback policy, that 

optimizes a certain performance criterion. Chapter 3 applies classical dynamic 

programming to solve hybrid power management problem with single objective. 

However, the applicability of dynamic programming is limited if the underlying state 

space is very large. This includes power management problems with multiple objectives 

and complex system dynamics like emissions. Chapter 4 introduces a new class of 

algorithms, namely neuro-dynamic programming, to solve energy management problem. 

The algorithm advances the present knowledge in the field of optimal controller design. 

The new approach allows for considering multiple objective problems with detailed 

system dynamics. The methodology allows hybrid system to learn about its behavior 

through simulation, and to improve the controller performance through iterative 

reinforcement. The section concludes with experimental validation of proposed 

controllers with real engine. The second section (Chapter 5) focuses on transient diesel 

engine emission characterization and modeling. Novel techniques for characterizing 

engine tailpipe emissions are introduced, followed by an innovative approach to 

modeling complex nonlinear process. Detailed overview of each chapter is given next. 

Chapter 2 introduces the series hydraulic hybrid powertrain configuration. The 

chapter gives a detailed overview of vehicle simulation models as well as reduced 

dynamics control oriented models followed by brief introduction of Engine-In-the-Loop 

(EIL) facility. Merging of real and virtual worlds, by combining real physical engine with 

advanced real-time models for powertrain is an effective way of accurately and 

comprehensively characterizing the influence of powertrain design and power 

management strategies on fuel economy and transient emissions. Finally, to evaluate and 

assess the performance of different policy optimization based power management 

controllers, a baseline power management controller is introduced.  
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Chapter 3 introduces Stochastic Dynamic Programming (SDP) as a tool for policy 

optimization for hybrid vehicles. An infinite horizon discounted cost stochastic dynamic 

programming problem is setup using a set of naturalistic driving schedules. An additional 

degree of freedom is included in SDP analysis, with the engine power demand being split 

into two variables, namely engine torque and speed.  The optimal controller obtained 

using SDP is compared with baseline thermostatic controller. The results represent a 

significant departure from the conventional wisdom of operating the engine near its 

“sweet spot” and indicate what is preferred from the system standpoint.   

The classical dynamic programming based algorithms are constrained by the curse of 

dimensionality, i.e. exponential increase in computational effort with increase in system 

state space.  Chapter 4 proposes a novel approach capable of overcoming the curse of 

dimensionality and solving policy optimization for a system with very large design state 

space. A self-learning supervisory controller for hybrid vehicles based on the principles 

of neuro-dynamic programming is proposed. The controller learns and improves its 

performance over time by interacting with the environment. Initially the problem is setup 

with single objective of minimizing the fuel cost and solved using NDP, which is then 

compared with results from SDP to demonstrate the effectiveness of the proposed 

technique. The power management problem is then reformulated with additional 

objective of minimizing transient emissions. The NDP framework is extended with 

models from Chapter 5 to include transient NOX and soot emissions. Inclusion of the 

transient NOX and soot emission models results in introduction of five additional states 

and the problems’ state-action space becomes extremely large.  The NDP based self-

learning controller is designed with multiple objectives and the power management 

controller is evaluated using EIL. The resulting tradeoff between multiple objectives i.e. 

fuel consumption, NOX and soot is evaluated.  

Diesel engine combustion and emission formation is highly nonlinear and thus 

creates a challenge related to engine diagnostics and engine control with emission 

feedback. Chapter 5 presents a novel methodology to address the challenge and develop 

virtual sensing models for engine exhaust emission.  These models are capable of 

predicting transient emissions accurately and are computationally efficient for control and 

optimization studies. Chapter 5 describes development of neuro-fuzzy models for 
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prediction of transient soot and NOX emission from a diesel engine. The modeling 

techniques are motivated by the idea of divide and conquer the input-output space i.e. to 

divide a complex problem into multiple simpler sub problems, which then can be 

identified using simpler class of models. A specially designed training procedure and 

experimental tests are proposed to excite all the operating frequencies of the engine. The 

diesel engine is tested using integrated hardware and software tools for automated testing 

with high-speed data recording. The transient soot and NOX emission is recorded using 

fast emission analyzers. Chapter 5 then introduces two different input regressor selection 

techniques, Orthogonal Least Square (OLS) and Automatic Relevance Determination 

(ARD). The OLS is a linear subset selection technique and involves selecting orthogonal 

regressors, which result in maximum error reduction in output variance. ARD provides a 

Bayesian framework for ranking the inputs and thereby provides a systematic procedure 

for the selection of relevant inputs from all the input variables. The experimental data is 

finally used to construct three different transient emission models. The difference lies in 

the structure of local models, the validity function and regressor selection technique. 

Finally, the model is validated with transient emission recorded during EIL testing of 

engine coupled to virtual hybrid  

Chapter 6 summarizes the main results of this dissertation and proposes possible 

future research directions.  
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Chapter 2  
 

SERIES HYDRAULIC HYBRID VEHICLE 

2.1 Introduction 

Development of alternative powertrains is driven by the need to address the energy 

security and climate change with increased fuel economy. Hybridization provides a 

significant leap in fuel economy improvements. Hybrid vehicles use secondary storage of 

energy like battery, accumulator and a secondary source of power like electric 

motor/generator or hydraulic pump/motor. Efficient management of the secondary source 

of energy provides additional degree of freedom in operation of engine and the whole 

powertrain can be designed to improve fuel economy and lower emissions.  However, the 

vehicle system becomes more complicated and requires sophisticated control strategy to 

maximize the benefits. 

Hybrid system architecture is a key factor in maximizing the potential benefits from 

a hybrid vehicle. The parallel systems are easier to implement but are limited with 

regards to flexibility offered in controlling the engine. Previous work by Wu et al. [6] and 

Matheson et al. [82] showed the parallel hybrids are effective in regeneration, but the fuel 

economy advantages diminish for duty cycles with high speed cruising. In contrast, a 

series hybrid provides a full flexibility in operating the engine under any driving 

conditions. There is no direct coupling between the vehicle speed and engine speed, and 

engine can be operated to maximize fuel economy and minimize emissions. Hence, a 

series hybrid configuration is chosen for this dissertation as it allows exploring unique 

opportunities in operating engine. 

The vehicle considered in this dissertation is a medium-duty truck. Power flows 

through hybrid subsystems during launch and braking can be very high in a truck due to 

their large mass. Hydraulic hybrids store energy in hydraulic accumulator by 
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compressing nitrogen gas, as the hydraulic fluid itself is theoretically incompressible. 

Since there is practically no limit on how fast the gas is compressed, hydraulic 

accumulators can be used where the rate of change of energy is very high unlike batteries 

where energy storage depends on slow chemical reactions. This makes hydraulics well 

suited for truck applications as they can be used for aggressively recuperating braking 

energy and large power assist during launch. Figure 2.1 shows accumulator along with 

other energy storage devices on energy vs. power density plot [8]. It is evident from the 

Figure 2.1 that accumulators have over 100+ times more power density though they have 

very small energy density. In contrast, low energy density is a drawback compared to 

batteries as high rate of power can only be sustained for short time intervals. This is of 

critical importance for series hydraulic hybrid vehicle (S-HHV) analysis since the low 

storage capacity of the hydraulic accumulator creates a special challenge for controller 

development, very different from electric system and will require special consideration 

while designing power management controller. Increasing the size of accumulator results 

in bigger and heavier accumulator and may offset advantages with weight penalty and 

packaging constraints. 

 

 
Figure 2.1: Energy vs. power density for various energy storage systems. 
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Another advantage of hydraulic devices is their high efficiencies. Accumulators 

designed for mobile application have efficiency in the region of 98% [83] independent of 

charging rate whereas battery efficiency is a function of its charging rate. Williamson et 

al. [84] showed the average efficiency of about 90% during driving cycle simulations. 

The efficiency for hydraulic pump/motors can be as high as 95% with 90%+ efficiency 

over their most operating region for mobile application devices.  Also hydraulic 

pump/motors are more compact [85], Figure 2.2 and hence have smaller inertias resulting 

in faster bandwidth. Since there are multiple energy conversions in a series hybrid 

powertrain configuration, the overall efficiency of the powertrain is dependent on the 

conversion efficiency of individual devices making hydraulic a more suitable choice. 

 

Maximum power of hydraulic machinery is proportional to the potential difference 

of the pressure head at its port. With present accumulator technologies this is limited to 

maximum of 420 bar [85] but will go up as the technology for accumulator design 

progresses. Higher head pressures would result in even smaller hydraulic machinery for 

similar power requirement. One drawback of hydraulic machinery compared to electrical 

counterpart is their maximum speed limitations but it is still not serious enough to limit 

their application for mobile applications. 

 
Figure 2.2: Comparison of weight-to-power ratio of electric and hydro machinery [85]. 
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This chapter begins with a high-level overview of the S-HHV and the discussion of 

the modeling approach. Two sets of simulation models are developed, one for vehicle 

simulation studies and other for control development. This is followed by an overview of 

the Engine-In-the-Loop (EIL) setup at the University of Michigan and real-time models 

required for simulating virtual series hydraulic hybrid powertrain including the 

integration challenges in combining real engine and virtual models. Finally, a heuristic 

controller is developed to serve as baseline and fuel economy results for different drive 

schedules is presented. This controller will be used later in the dissertation to assess the 

performance of policy optimization based controllers.  

2.2 Vehicle 

A 4X4 military vehicle intended for on-road and off-road purpose is considered in 

this dissertation. The baseline vehicle specifications correspond to High Mobility 

Multipurpose Wheeled Vehicle (HMMWV). The vehicle is modeled to have series 

hydraulic hybrid powertrain, shown in Figure 2.3 with the design similar to that presented 

by Kim et al. [86] and Filipi et al. [23]. The engine is connected to pump to create a 

power generation subsystem capable of charging the accumulator. The motors propel the 

vehicle with hydraulic energy stored in accumulator. There is no mechanical linkage 

between engine and the wheels giving flexibility in operating the engine. The motors can 

be operated as pumps for regenerative braking. Table 2.1 gives the specification of the 

vehicle and powertrain.  

The vehicle is configured to have one drive motor per axle. Previous work on a 

series hydraulic hybrid [86] showed the advantage of this particular configuration over 

single motor design with transfer case for a 4X4 mid-size truck. It was also shown that 

sequential operation of two motor design can result in better fuel economy over 

simultaneous operation. The concept is to operate motors sequentially resulting in higher 

loads per motor and hence higher efficiency. Rear motor is used primarily for propulsion 

and front motor augments the torque in extreme cases. While braking, front motor is used 

primarily for regeneration. The choice between front and rear motor operation is based on 
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weight transfer during acceleration and braking. The results shown in the dissertation are 

obtained with the sequential operation of motors. 

 

 

Table 2.1: Series hydraulic hybrid specifications 

Engine Description 6.4L International V8 
Max. Power 261 kW @ 3000 RPM 
Max. Torque 881 Nm @ 2000 RPM 

Pump Design Axial Piston Variable Displacement
Size 300 cc/rev 
Max Power 700 kW @ 350 bar @ 4000 RPM 

Propulsion 
Motor 

Design Axial Piston Variable Displacement
Size 180 X 2 cc/rev 
Max Power 420 kW @ 350 bar @ 4000 RPM 

Accumulator Capacity  98 Liter (Max. Gas Volume) 
Max Pressure 350 bar 
Min Pressure 120 bar 

Vehicle Type HMMWV  
Weight 5112 kg 
Coefficient of Drag 0.7 
Frontal Area 3.58 m2 
Tire Radius 0.4412 m 
Final Drive Ratio 4.086 

Transmission Design 2 speed automatic 
1st Gear Ratio 3 : 1 
2nd Gear Ratio 1 : 1  

 
Figure 2.3: Series hydraulic hybrid configuration. 
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2.3 Vehicle Models 

The work presented in this dissertation uses two different dynamic models. The first 

model is a high fidelity model with vehicle and powertrain components modeled in 

Simulink, based on the vehicle/powertrain simulation platform developed at the 

University of Michigan [87]. The vehicle/powertrain simulation platform has been 

validated with vehicle test data from proving ground [87] and subsequently thoroughly 

updated to represent HMMWV [88]. The hydraulic components were added to the 

vehicle simulation in context of parallel [6] and series hybrid systems [86]. This 

vehicle/powertrain simulation platform is used for validation of supervisory controller. 

The second model is a control-oriented powertrain model with dynamics faster than 1 Hz 

ignored. The model has very few system states to keep computational cost low and is 

used for design of supervisory controller. This arrangement of two separate models, one 

for control design and another for validation allows for application of advanced 

mathematical techniques while keeping the problem feasible during controller design 

phase and providing accurate real-world results during validation phase. 

2.3.1 Vehicle Simulation Models 

2.3.1.1 Engine 

The engine model takes driver command and external load torque as input and 

calculates the engine speed and fuel consumption. The model includes an engine torque 

map, a fuel controller with speed governing functions and engine dynamics as shown in 

Figure 2.4. The engine torque, Te is calculated using a lookup table with fuel injected, mf 

and engine speed, ωe as inputs.  

  ,e e fT f m  (2.1) 

  1
e e p

e

T T dt
I

    (2.2) 

where Ie is engine inertia, ωe and Te are engine speed and torque respectively and Tp is the 

load torque from the hydraulic pump. A diesel engine fuel injector controller provides the 

mass of fuel injected to the lookup table based on throttle command and engine speed. A 
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turbo-lag is simulated by including time delay in injection with time constant calibrated 

based on data obtained from engine testing [7].  

 

The engine model is based on test results of 6.4L medium-duty turbocharged diesel 

engine at the University of Michigan. The engine specifications along with steady state 

BSFC map from 6.4L engine are given in Appendix A. 

2.3.1.2 Hydraulic pump/motor 

The hydraulic pump/motor (P/M) model is based on updated version of Wilson’s 

pump/motor theory [89]. The P/M is modeled as an axial piston variable displacement 

type with the torque and flow controlled by the displacement command. The theoretical 

flow and torque output is corrected based on the losses estimated using physics-based 

expressions.  The flow losses encompass the laminar, compressibility and turbulent 

leakage (or “slip”), and the torque losses comprise viscous, hydrodynamic and 

mechanical.  The loss expressions include constants that are calibrated using available 

experimental data [90], and after calibration the model is capable of capturing effects of 

all operating parameters [7] and [86].   

The ideal leak-free volumetric flow rate, Qi of oil from P/M is given by  

 iQ x D  (2.3) 

and ideal frictionless torque, Ti is given by 

 
Figure 2.4: Engine model. 
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 pDxTi   (2.4) 

where x is the displacement command, ω is the pump/motor angular velocity, D is the 

displacement of pump/motor, and Δp is the pressure difference across pump/motor.  

The actual and ideal volumetric flow determines the volumetric efficiency: 
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where Cs and Cst is the laminar and turbulent leakage coefficients respectively, and βo is 

the fluid bulk modulus. 
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Torque efficiency relates actual and ideal torque: 
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where Cv, Cf and Ch are viscous, frictional and hydrodynamic loss coefficients 

respectively. 

Figure 2.5 and Figure 2.6 show trends of P/M mechanical efficiencies and 

volumetric efficiencies with pressure, displacement and speed. The figures illustrate an 

important difference compared to electrical machines, namely an added dimension due to 

the pressure dependency.  The pressure difference across the machine will vary within a 

wide range during vehicle operation; hence, both the absolute level of peak torque and 

the efficiencies will vary with it.  This creates an additional challenge in controller 

development and requires care in assessing performance constraints. 
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Figure 2.6: Pump/Motor volumetric efficiency as a function of load (i.e. displacement 

factor), speed and pressure difference across the machine. 
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Figure 2.5: Pump/Motor mechanical efficiency as a function of load (i.e. displacement 

factor), speed and pressure difference across the machine. 
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2.3.1.3 Accumulator 

A hydro-pneumatic accumulator is used for energy storage in hydraulic hybrids. A 

positive fluid flow rate into the accumulator compresses the nitrogen gas stored in the 

bladder, thus storing energy. A low pressure reservoir is used in the system to prevent 

cavitation of hydraulic devices. The net head pressure on hydraulic devices is the 

difference between accumulator and reservoir pressure.  

 

Figure 2.7 shows a schematic of a bladder type accumulator with all its components. 

Bladder keeps the gas separate from the oil and hence gas inside accumulator can be 

treated as closed system. It is assumed that the accumulator gas exchanges work with 

hydraulic fluid and heat with both accumulator shell and elastomeric foam.   In order to 

correctly predict the accumulator dynamic performance and efficiency, a full 

thermodynamic model is used.  It is derived from considerations for energy conservation 

[89], [7], [91], [92], and includes the effects of heat transfer and the real gas properties. 
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where mg is mass of gas, mf is mass of foam, cf is foam specific heat, h is convection heat 

transfer coefficient, Aw is wall area and Tw is wall temperature 

Using expression for internal energy   
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Figure 2.7: Schematic of bladder type accumulator [90]. 
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in the energy balance equation results in 
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with thermal constant defined as 
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where mg is the mass of gas, cv is specific heat, h is the heat transfer coefficient and Aw is 

the area of the wall exposed to the gas. 

To account for real gas behavior, the Benedict-Webb-Rubin (BWR) state equation is 

used to correlate the gas temperature, pressure and specific volume: 
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where Pg, T and ν is gas pressure, temperature and specific volume respectively and, A0, 

B0, C0, a, b, c, α and γ are BWR gas constants. 

The efficiency of charging-discharging is a strong non-linear function of the thermal 

time-constant, therefore increasing the heat capacity (mgcv) and reducing the heat loss 

(hAw) is beneficial.  Addition of elastomeric foam has several advantages [91] [93] like 

(i) elastomeric foam insulates the gas and hence reduces temperature variations thereby 

increasing storage capacity, and (ii) gas pressure becomes a good indicator of state of 

charge (SOC) with constant temperature. This insight led to now a common practice of 

adding the elastomeric foam to the gas side in order to enhance the thermal capacity and 

elevate the conversion efficiencies to the mid-nineties. 

The SOC for a hydraulic device is defined as the ratio of instantaneous gas volume to 

accumulator gas capacity: 

 min

max min

V V
SOC

V V





 (2.16) 

In real application, pressure can be used as indicator of SOC, provided the 

temperature variations are kept low.  This is tied to the accumulator design, e.g. the 
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advanced carbon fiber accumulator with foam can minimize the temperature fluctuations 

significantly enough to satisfy this assumption.  The mass of gas is directly related to the 

pressure range for a given accumulator size. In this dissertation, the mass of gas is chosen 

to provide a precharge pressure of 12 MPa and a maximum pressure of 35 MPa. 

2.3.1.4 Transmission 

The transmission is modeled as a finite state machine with different gears being the 

different states of the system. A blending function is added to simulate inertia and torque 

phase during gearshift. Blending function provides a fast and accurate way of 

representing off-going and on-coming clutch. The vehicle is equipped with 2-speed 

gearbox between propulsion motor and final drive. The gear shifting logic based on 

motor speed and motor displacement command is shown in Figure 2.8. 

 

2.3.1.5 Vehicle 

The vehicle is a modeled as a point mass system. This is deemed sufficient for the 

fuel economy studies.  The model includes rolling resistance and aerodynamic drag. The 

vehicle model also contains a brake model, which acts as a coulombic friction device.  

The vehicle model equations are given below.  

 
Figure 2.8: Gearshift logic based on motor speed and motor displacement command. 
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 rollres f tireT m g R     (2.17) 

 2 30.5drag f d wh tireT A C R        (2.18) 

   min( sgn )brake vis wh wh stat brake whT R F x if          (2.19) 

   min min( sgn / )brake vis wh wh stat wh brake whT R F x if             (2.20) 

 ( ) /( )act drive drag rollres brake tirev T T T T m R dt       (2.21) 

where Tdrive, Tbrake, Tdrag and Trollres is drive torque, brake torque, drag torque and rolling 

resistance torque. μf is rolling friction coefficient, Cd is coefficient of drag, Af is frontal 

area, ρ is air density, g is gravitational constant, Rtire is the tire radius, m is the vehicle 

mass and ωwh is wheel velocity. The brake model is represented by equations (2.19) and 

(2.20) where Fstat is static friction, xbrake is the brake command from driver, Rvis is viscous 

friction coefficient and ωmin is the minimum wheel speed. 

2.3.1.6 Driver 

The vehicle simulation platform employs a cyber-driver for fair comparison between 

different architecture and power management studies. The driver is modeled as a 

proportional integral (PI) controller acting on the error between the actual vehicle 

velocity and the desired vehicle velocity defined by the selected driving schedule. 

 ( ) ( )p des act i des actK v v K v v dt      (2.22) 

where α is driver command, vdes and vact is the desired and actual velocity respectively, 

and Kp, Ki are PI controller gains. A 3-second preview is added to the driver model to 

represent actual driver with anticipation. 

2.3.2 Control Oriented Models 

2.3.2.1 Engine 

The engine dynamics is modeled as a quasi-steady map. The fuel consumption, mf  is 

modeled as a static function of engine speed, ωe and engine torque, Te. 

  ,f e em f T  (2.23) 
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2.3.2.2 Transient particulate matter and NOX emission 

The emission model is a neuro-fuzzy model tree and is capable of predicting 

transient diesel emissions. A brief description of the model is given in this section for 

completeness sake and detailed model can be found in Chapter 5. The model consists of 

multiple local neural networks which are locally valid and the contribution of each model 

is weighted according to their validity function,  . The validity function defines the 

region of influence of a particular local model and is a fuzzy framework with triangular 

membership functions. The neuro-fuzzy model tree based particulate matter and NOX 

transient emission models have small computation footprint and are well suited for DP 

framework. 
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where k is the time index, ݓഥ  is the set of neuron weights, ݑത is the set of input regressors, 

߱௘
௞ is current engine speed, ௘ܶ

௞ is current engine torque, ௜ܲ௠ ൌ ݂ሺ߱௘
௞, ௘ܶ

௞ሻ is steady state 

inlet manifold pressure, mf  is current mass of fuel injected, ݉௙ሶ  is the rate of change of 

fuel injection, ܲܯ௞ିଵ is the previous predicted particulate matter, ܱܰ௑ ൌ ݂ሺ߱௘
௞, ௘ܶ

௞ሻ is 

the steady state NOX and ܱܰ௑
௞ିଵ is the previous predicted NOX. 

2.3.2.3 Hydraulic accumulator 

The accumulator is modeled as a polytropic process to reduce the number of model 

states and computational cost. 

 n
gP v const  (2.26) 

where Pg is the gas pressure, v is the specific gas volume, n is the polytropic coefficient 

and const is the constant. The parameters n and c are tuned using high fidelity 

thermodynamics based accumulator model described in section 2.3.1.3. The discrete-time 

specific volume dynamics is given by  
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 1 ( )k k m pv v Q Q     (2.27) 

where Qm is the motor fluid flow and Qp is the pump fluid  flow. Qm and Qp are positive 

when the fluid flows into the accumulator and negative when it flows out of the 

accumulator. The SOC is defined similar to high fidelity thermodynamics based 

accumulator model. 

2.3.2.4 Hydraulic pump/motor 

The hydraulic pump/motor (P/M) is modeled based on updated version of Wilson’s 

P/M theory [89] and the governing equations are given in section 2.3.1.2. The control-

oriented model employs an inverted P/M dynamics. At any given instant, P/M torque and 

speed is known and is used to calculate the displacement command. The displacement 

command is then used to calculate pump/motor flow. For pumping mode 
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 (2.28) 

where Cv is the viscous loss coefficient, Cf  is the frictional loss coefficient, Ch is the 

hydrodynamic loss coefficient, and S and σ are dimensionless coefficients. The constants 

in the loss expressions are calibrated using experimental data [90]. The equation (2.28) 

can be rearranged to ܽݔଷ ൅ ݔܾ ൅ ܿ ൌ 0 and can be solved algebraically to calculate the 

roots.  
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The equation has two imaginary roots and one real root. The real solution is used for 

calculating the pump displacement and subsequently pump flow. Similarly, for motor 

mode 
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and  
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 (2.31) 

The real root of the above equation gives the motor displacement and can be used for 

calculating the motor flow. 

2.3.2.5 Transmission and differential 

The transmission is modeled as a discrete state system and the gear change takes 

place instantly with no dynamics. The output torque is obtained using following 

expression  

 t g mT GR T     (2.32) 

where GR is the transmission gear ratio, ηg is the gear efficiency (varies with gear) and Tm 

is the motor torque. The final propulsion torque after the differential is calculated using 

 d FD tT FD T    (2.33) 

where FD is the final drive ratio, ߟி஽ is the final drive efficiency and Td is the drive 

torque at wheels. 

2.3.2.6 Vehicle 

The vehicle is modeled as a point mass system and the wheel speed, ωwh is calculated 

using 

   1
2

1k k
wh wh wh r a tire

tire

T F F R t
mR

         (2.34) 

where ௪ܶ௛ ൌ ௗܶ െ ௕ܶ is the net wheel torque with Tb is the braking torque, Rtire is the 

dynamic tire radius, Fr and Fa is the rolling resistance and aerodynamic drag force, and m 

is the mass of the vehicle. t  is the sampling time. 
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2.4 Engine-In-the-Loop 

Development of modern propulsion concepts and validation of power management 

strategies invariably needs some degree of prototyping. Simulation tools are 

indispensable for prediction of system behavior under test scenario and evaluating 

different concepts and methodologies. Simulation tools also lend themselves to 

optimization framework and can be used for optimizing component size as well as 

control strategies. However, simulation based vehicle design tools have some limitations. 

A vehicle level simulation study over complete driving cycle is limited in fidelity by the 

computation time frame and complex phenomena like transient emission formation 

cannot be accurately predicted. Simulating soot formation is prohibitively slow as it 

involves coupling sophisticated computational fluid dynamic and chemical kinetic 

models. Therefore, the state-of-art simulation models are limited to predicting the fuel 

economy, vehicle performance and system dynamics. With advancement in technology, 

synergistic combination of physical and virtual prototypes has become possible and a 

closed loop interaction between physical and virtual components is possible with little 

loss of fidelity. This provides a powerful "middle ground" between virtual simulation and 

full physical prototyping. Having certain key components in physical allow application of 

sophisticated diagnostics like fast emission analyzers in case of engine-in-loop tests. 

Engine-in-the-Loop (EIL) is frequently used in industry for design and calibration of 

engine and powertrain controllers [94], [95] but it is being increasingly utilized to explore 

future powertrain configurations. Argonne National Labs developed and utilized HIL 

setup to investigate the tradeoff between fuel efficiency and NOX emissions [96]. Filipi et 

al. [97], [23] demonstrated the effectiveness of integrating virtual components with real 

engine for investigation of clean diesel technologies along with advanced propulsion 

concepts. Hagena et al. [11], [14] used the EIL facility to characterize the impact of 

transients on soot emissions. Simon et al. [98] further expanded the realm of HIL tests by 

distributing the physical and virtual systems across different cities and connecting the 

whole system over internet. 

Figure 2.9 gives the overview of the EIL facility at the University of Michigan. The 

EIL setup features a state-of-the-art engine (in the forefront, Figure 2.9) and a highly 

dynamic AC dynamometer (in the back, Figure 2.9) with the accompanying control 
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system. This setup is different from conventional hardware-in-the-loop systems that 

typically feature control unit in hardware integrated with virtual systems being controlled. 

This setup features a major piece of hardware integrated with virtual systems emulating 

realistic operating conditions. Using the virtual driveline/vehicle simulation enables rapid 

prototyping of different powertrain configurations and different power management 

strategies. The engine is fully instrumented and test cell is equipped with fast emission 

analyzers and high speed data acquisition systems. This allows for advanced diagnostics 

and generating insights for developing low-emission concepts.  

 

One of the key advantages of EIL is the rapid prototyping of the power management 

controller and real-world evaluation. However, the EIL setup is not limited to evaluating 

different concepts but is a tool to systematically investigate and generate insights into 

engine operation in a complex hybrid powertrain. Previous work done by Liu et al. [42] 

showed that EIL facility is a valuable tool in evaluating the real-life performance of the 

supervisory controller and demonstrated that a supervisory controller which performed 

well in their simulation failed to perform adequately with physical engine. Similarly 

based on the learning from EIL and performance of thermostatic controller, Filipi et al. 

[23] proposed a modulated controller that outperformed thermostatic controller with 

better fuel economy and lower engine-out emissions. 

 
Figure 2.9: Engine-In-the-Loop test cell. 
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2.4.1 Engine-In-the-Loop Setup Overview 

This section gives a brief overview of the EIL setup at the University of Michigan, 

Figure 2.10.  The Figure 2.10 shows the experimental block diagram. The engine is 

coupled with highly dynamic AC dynamometer emulating the load on the engine and is 

controlled via AVL PUMA Open system. The virtual systems are simulated on dSPACE 

real-time simulation platform. The dSPACE system exchanges system variables with 

AVL PUMA system and together they orchestrate the EIL test. The test cell is equipped 

with fast emission analyzers for particulate matter and NOX measurement, which 

communicates with the AVL system. Transient emissions along with other sensor signals 

and are recorded using high speed data acquisition system. The AVL uses an internal 

clock to sync the incoming data from different sensors and align them appropriately. The 

complete details and specifications of test cell equipment are given in Appendix A. 

 

To illustrate the communication flow in the EIL setup,  assume a scenario where a 

conventional vehicle is simulated over driving schedule. Based on the present demanded 

velocity, the virtual driver applies appropriate acceleration/deceleration command 

depending on the difference between the present and demanded vehicle velocity. This 

engine command is sent to AVL PUMA and is processed into corresponding voltage 

signal. This signal is then commanded to engine control unit (ECU) which then controls 

 
Figure 2.10: Engine-In-the-Loop test cell configuration. 
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different actuators and servo-level loops onboard engine to regulate injection timing, 

injection amount, VGT vane position and EGR valve position. The engine responds by 

producing torque which is then measured by the dynamometer. This torque value is then 

relayed back to dSPACE via AVL PUMA and the virtual model calculates the change in 

vehicle speed due to the supplied engine torque. The updated vehicle velocity is 

subsequently translated to engine speed, based on current transmission states and this 

speed setpoint is sent back to dynamometer through AVL PUMA and dSPACE. The 

updated vehicle velocity is also provided to the driver for subsequent adjustment of the 

pedal command. The EIL architecture is flexible to allow evaluation of different 

powertrain architectures, like conventional and hybrids. Previous work done at the 

University of Michigan [97], [23], [42] allowed leveraging the EIL setup for 

investigations of a variety of powertrain architectures. In the context of hybrids, the 

driver command is sent to supervisory controller which then calculates the appropriate 

commands for the engine and the other components.  

This dissertation focuses on the series hydraulic hybrid powertrain architecture. In 

this case, the dynamometer emulates the hydraulic pump. The real-time virtual 

powertrain models generate the desired speed/torque set points based on present system 

states and the supervisory controller outputs. The dSPACE gives the information to AVL 

PUMA which further relays the desired engine torque demand to engine and desired 

pump speed demand to dynamometer. This casualty and structure of signal commands is 

based on the previous work done by Kim et al. [8] and Filipi et al. [23]. An inverse model 

of engine, based on experiment, is used for translating the desired torque to nominal 

engine throttle command at any given engine speed. The desired engine speed is 

maintained by adjusting the load on the engine, i.e. by changing the dynamometer speed 

set point. The built-in dynamometer controller adjusts the load to achieve the desired 

speed set point. The response of dynamometer is close to real life hydraulic pump as the 

dynamometer uses model based dynamometer-inertia compensation to removes 70% of 

the inertia effect.  
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2.4.2 Real-Time Vehicle/Powertrain Models 

The accuracy of EIL simulations is dependent on the fidelity of the real-time models. 

The models should capture the effect of engine transients on the vehicle while running in 

real-time on dSPACE platform. The real-time models used in EIL are high fidelity 

models used for vehicle simulation (refer section 2.3.1) with the exception of engine and 

hydraulic pump. The engine is replaced with physical engine and the pump is simulated 

by dynamometer. Replacing the hydraulic pump with dynamometer creates an interesting 

challenge of calculating the fluid flow into virtual accumulator based on measurements of 

real variables on EIL setup. The torque and speed measured by the dynamometer needs to 

be translated into fluid flow and fluid flow cannot be calculated without the information 

about displacement factor of pump. To overcome this model, the EIL setup uses an 

inverted model of pump, similar to one used in control oriented model for design of 

supervisory controller (refer section 2.3.2).  

The cyber driver in EIL is augmented with driver preview for accurate tracking of 

speed profile and a lead compensator to compensate for communication lag in the EIL 

setup. The lead compensator is designed using loop shaping and details are available in 

work done by Filipi et al. [10]. 

2.4.3 EIL Integration Challenges 

Concurrent running of virtual powertrain/vehicle models and physical engine 

requires addressing integration issues. The initial main challenges faced during EIL setup 

are connection causality, signal and communication delays and virtual driver response. 

Filipi et al. [97] gave a detailed description of these issues and steps taken to mitigate 

these challenges. Filipi and Kim [23] first emulated the series hydraulic hybrid 

configuration in EIL. They addressed two additional integration issues namely, power-

generation control and calculation of fluid flow into the virtual accumulator based on 

measurements of real variables in EIL setup.  

Implementing the policy optimization based controllers developed in this dissertation 

required dealing with additional issues. One of the major issues required dealing with 

different simulation time step between virtual models, power management controller and 

feedback signals from sensors. The power management controller is designed to be 
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updated at 1 Hz. This is done to reduce the computational time during design (refer 

section 2.3.2). The 1 Hz captures the relevant system dynamics and is similar to other 

energy management controllers in literature [43], [40], [8], [99]. The real time 

powertrain/vehicle simulation models, on the other hand, are simulated at 104 Hz on the 

dSPACE platform. The virtual transient emission sensors (refer Chapter 5) run at 10 Hz. 

Finally, the dSPACE communicates with AVL PUMA Open system at 103 Hz.  

 

A multi-rate updating scheme is required to handle the different time steps involved. 

The power management controller controls the engine torque and 1 Hz update rate is 

slow and noticable by driver. To give more pedal responsiveness, the power management 

controller is updated at 2.5 Hz. The propulsion motors are updated at default rate of 103 

Hz to yield very fast pedal response. Figure 2.11 shows an overview of different update 

rates involved. The implementation of this multi-rate scheme is challenging. Care needs 

to be taken to maintain the data integrity during transfer between section of codes with 

different update rate.  

Another issue is the presence of noise in the measured signals. Any measured signal 

in real world is usually corrupted with high frequency noise and requires signal 

conditioning before it can be used for feedback. Power management controllers based on 

policy optimization require state feedback. Filtering different state signals through same 

low pass filter will experience different amount of phase shifts based on the instantaneous 

frequency of the signal. This will result in power management controller receiving 

Figure 2.11: Different sampling rates.  
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modified state information and the state feedback gains from the controller will not be 

optimal. Special care is taken while designing the controller to increase the robustness of 

the controller to noisy signal. Final implementation in the EIL setup did not use any 

signal conditioning.  

2.5 Supervisory Power Management  

The power management controller in a hybrid vehicle supervises the engine and 

additional auxiliary power to improve efficiency and performance. This dissertation 

proposes different optimal power management controllers designed with stochastic driver 

model and a choice of objective criterion(s). To quantify the benefits of advanced policy 

optimization algorithms for controller design, a baseline rule based controller is presented 

next, i.e. the thermostatic controller [100] for comparison. The thermostatic controller is 

an intuitive engine-centric approach and resembles a “bang-bang” control. The 

thermostatic strategy is designed around the conventional wisdom of operating engine at 

the “sweet spot”. The expectation is that running the engine at the most efficient point 

will be beneficial from the fuel economy standpoint. The next section briefly describes 

the thermostatic controller and gives the simulation results over different EPA driving 

schedules. 

2.5.1 Thermostatic Controller 

The thermostatic strategy is an engine-centric charging strategy designed around the 

SOC.  Driver command is sent directly to propulsion motors and ensures that vehicle 

follows the desired velocity profile.  The SOC is a sole variable used to control the 

engine.  

Figure 2.12 shows the basics of SOC based thermostatic control. When SOC is 

above a threshold value e.g 0.4, the engine power demand is 0. As the SOC falls below 

this threshold value, the engine is brought online and asked to charge the accumulator.  

The dead band is implemented to prevent frequent switching between engine on/off 

states. Therefore, engine continues re-charging until SOC crosses the upper limit, i.e. 

SOCthreshold + 0.15.  The engine idles if the SOC is above this upper limit. In the extreme 
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case of hard acceleration or hill climb, engine is operated at progressively higher power 

levels as the SOC keeps falling below the threshold.  The maximum engine power is 

requested before the SOC falls below the absolute minimum for a given system. 

 

An integral part of thermostatic controller design is the decision about engine 

operation during recharging, i.e. the threshold power (Pthreshold) and the combination of 

engine speed/torque for a given power demand.  The conventional wisdom suggests 

keeping the engine at the fuel efficient “sweet spot”.  The expectation is that running the 

engine at the most efficient point when charging the accumulator will be the best since 

the fuel energy conversion comes with small relative losses. This neglects the impact of 

pump efficiency.  In addition, this leads to relatively aggressive charging since the “sweet 

spot” is close to peak torque.  Keeping in mind a comparatively small accumulator 

storage capacity, the resulting system-level effects are short and frequent engine 

transients [100].  Very rapid engine accelerations consume energy, and engine trajectory 

passes through sub-optimal regions.  At the same time, short and frequent recharging 

increases the engine idling time in between and magnifies the resulting penalty. Previous 

work done by Kim et al. [100] showed that the best threshold power from the system 

efficiency standpoint is not the “sweet spot”. A systematic study involving parametric 

sweep of different threshold powers is done to determine the threshold power and is 

chosen to be 60 kW which is lower than the “sweet spot” as suggested by Kim et al. 

 
Figure 2.12 : Schematic illustrating the thermostatic power management concept. 
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[100]. The remaining issue is the impact of frequent engine ramp-ups on the exhaust 

emissions and this is exactly what this research aims to address. 

2.5.2 Simulation Results for Thermostatic Controller  

The series hydraulic hybrid with thermostatic controller is simulated over different 

EPA driving schedules. Figure 2.13 shows the system behavior over a section of federal 

urban driving schedule (FUDS). The thermostatic controller operates engine completely 

independent of vehicle power demand and engine operation is based on present SOC. The 

engine is switched on when SOC falls below 0.4 and is ramped to 60 kW of power. When 

SOC reaches 0.55, the engine returns to idling. During harsh acceleration, the engine 

power is progressively increased to maintain SOC from falling. During braking events, 

the motor is used to store braking energy in accumulator.  

 

 
Figure 2.13: Simulated series hybrid powertrain behavior with the thermostatic 

control: a) vehicle speed and SOC during first 350 sec of FUDS, b) engine power 
demand for Pthreshold = 60 kW, and c) propulsion motor power. 
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Figure 2.14 shows the engine visitation points for FUDS and indicates success in 

operating the engine along the best BSFC line.  While the most frequently visited region 

is not the true “sweet spot”, it is still in the zone of very low BSFC.  Obviously, the loss 

of engine BSFC is relatively small and thus far outweighed by the system-level benefits.  

The vehicle fuel economy over the FUDS is more than 14.7 mpg, Table 2.2, around 40% 

improvement in fuel economy over conventional vehicle.  The conventional vehicle is 

equipped with a 4-speed automatic gearbox and details can be found in [86] with the 

exception of the engine. The engine used by Kim et al. was a 6.0L medium-duty 

International with HEUI fuel injection system. The improvements predicted for highway 

driving cycle (HWFET) are not nearly as high as other driving cycles, but still tangible. 

This is due to lack of opportunities for regenerative braking. While this is certainly 

impressive, even the most careful parametric studies do not guarantee the optimum. The 

system-level effects are too complex for intuitive reasoning, hence the motivation for 

 
Figure 2.14 : Engine visitation points on the BSFC map, with a color scale 

indicating the relative amount of fuel consumed in a given zone during simulation 
over FUDS for thermostatic controller in S-HHV. 
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investigating the horizon-based policy optimization algorithm presented in the next 

chapter. 

 

Table 2.2: Fuel economy comparison for a conventional vehicle and S-HHV with 
thermostatic power management over EPA driving schedules 

  FUDS HWFET LA92 

4-Speed Conventional 
MPG 10.59 12.55 9.27 

% Improvement - - - 

S-HHV with 
thermostatic controller 

MPG 14.77 14.27 12.07 

% Improvement 39.4 % 13.7 % 30.2 % 
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Chapter 3  
 

OPTIMAL POWER MANAGEMENT FOR A HYBRID VEHICLE 

3.1 Introduction 

The supervisory power management controller’s main task is to orchestrate the 

engine and secondary power to meet the driver power demand. The supervisory 

controller has profound impact on system operation and the ultimate benefits of 

hybridization. Numerous strategies have been proposed for design of supervisory 

controller. These approaches can be categorized as heuristic, optimal and suboptimal. 

Heuristic strategies involve rule based [101], [16], [102] and fuzzy based [103], [25], [82] 

controllers which often rely on researchers’ knowledge about individual system 

efficiencies. These strategies are intuitive and easy to implement. However, heuristic 

strategies strongly depend on choice of thresholds and cannot capture complex system 

level effects.  

Optimal strategies aim to minimize an objective function, typically fuel 

consumption, over a given time horizon. Dynamic programming (DP) has been applied to 

numerically solve the optimization problem [6], [38], [39], [104], [37]. Optimal 

controllers, however, are inherently non-causal i.e. they require knowledge about the 

future driving conditions. This limits their practical applicability and requires rule 

extraction, which in turn sacrifices some of the fuel economy [7]. A suboptimal controller 

based on stochastic dynamic programming (SDP) eliminates the rule extractions step and 

allows direct development of an implementable control strategy for vehicle supervisory 

control. SDP is not dependent on a particular driving cycle but the statistical 

characteristics of many driving cycles and hence it is non-cycle-beating. It was 

previously applied to a parallel hybrid electric vehicle by Lin et al. [40] and Liu et al. 

[42], and a first attempt at addressing the series hydraulic configuration was pursued 
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recently by Kim [8] and Johri et al. [43]. The series hydraulic hybrid with its small 

energy storage creates difficult yet relevant problem for application of SDP. 

In this chapter, SDP based algorithm will be employed for design of power 

management for series hydraulic hybrid. The controller will optimize the given objective 

over an infinite horizon. The essential part of the supervisory policy in any hybrid is a 

decision about splitting the vehicle power demand between the engine and the alternative 

power source.  Previous implementation of SDP based controllers [40], [42], [8] for 

hybrid were designed with emphasis on system optimization i.e. SDP was used to solve 

for engine power demand and then this engine power demand was mapped to engine 

operating point based on best BSFC line. This approach though easier does not achieve 

the best possible results.  The work presented in this chapter applies SDP to both engine 

and system optimization i.e. the decision about the threshold engine power is split into 

two decisions, about the engine speed and torque. The hope is that the algorithm may 

uncover a possible hidden “reserve”.   

This chapter deals with the development of supervisory controller using SDP for a 

series hydraulic hybrid vehicle. An infinite horizon discounted future power management 

problem with fuel economy objective is formulated. SDP is then applied to solve for 

optimal state feedback controller. Finally, results from SDP strategy are presented and is 

compared with baseline thermostatic controller. The SDP based supervisory controller 

establishes baseline for evaluating the future power management controllers designed 

using neuro-dynamic programming. 

3.2 Stochastic Dynamic Programming 

3.2.1 Problem Formulation 

Given the vehicle, engine and powertrain configuration, an infinite horizon power 

management problem for a series hybrid vehicle can be formulated as 
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where x is the state vector, u is the control input vector, w is the disturbance vector, g is 

the instantaneous cost function and 0 < α < 1 is the discount factor. Discount factor 

implies cost incurred at present is more important than incurred in the future. This also 

ensures that the J is finite over an infinite horizon. 

3.2.2 Cost Function 

The minimization problem of combined transient particulate matter and NOX 

emissions with fuel consumption is a multi-objective optimal control problem. A single 

objective function can be defined by combining different objectives with weighting 

factor. The instantaneous cost function, g is function of states, control input and driver 

demand and is given by 

 2

( , ) ( , ) ( , )

( ) ( )

FC k k NOx x k k PM k k

ref ref

g w FC x u w NO x u w PM x u

SOC SOC SOC SOC

     

    
 (3.2) 

where FC is the normalized fuel consumption, NOX is the normalized transient NOX 

emission, PM is the normalized  transient particulate matter emission. The ݓி஼, ݓேை௫ 

and ݓ௉ெ are the normalized weighting parameter and ∑ሺݓி஼ ൅ ேை௫ݓ ൅ ௉ெሻݓ ൌ 1. The 

weights in equation (3.2) can be varied to create a set of optimal control policies and 

generate a pareto optimality set.  

The latter term in the above formulation penalizes the deviation of SOC below a 

threshold value. This penalty factor is different from the one used by Lin et al. [40] for 

HEV. In HEV, a penalty factor was added to the cost function to satisfy charge sustaining 

constraint and limit the operation of SOC within a narrow window due to battery health 

and operating considerations. Hydraulic accumulator does not suffer from similar 

constraints and SOC can vary over complete range. However, a lower bound on SOC is 

imposed to maintain vehicle drivability at all conditions. The above penalty function tries 
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to maintain low SOC reference value, e.g. 0.2 in this dissertation, to allow enough energy 

storage capacity for regeneration during braking.  

The addition of transient emission objectives increases the system states 

considerably and requires numerical techniques to deal with the curse of dimensionality 

associated with dynamic programming based algorithms. In this chapter, only the fuel 

consumption is minimized. The problem can be treated as a subset of equation (3.2) with 

weight ݓி஼ is set to 1 and weights ݓ௉ெ  and ݓேை௫set to 0. The complete problem with 

multi objective is solved in Chapter 4.  

3.2.3 Constraints 

The power management controller needs to satisfy certain bounds on states and 

control inputs. These bounds ensure that vehicle, engine and hydraulic devices do not 

operate in regimes, which are unfavorable from performance standpoint or are 

detrimental to health of these devices.  
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Lower engine speed is constrained between the maximum of minimum engine speed 

and minimum pump speed, and upper engine speed is constrained between minimum of 

maximum engine speed and maximum pump speed. Both engine and pump have same 

minimum speed of 0 and engine has lower maximum speed. However, the minimum 

engine speed is not set to 0 even though series architecture allows for shutting down 

engine during idling. The EIL facility does not have the capability of shutting down 

engine during experiments and to keep consistency between controllers evaluated in test 

cell and simulation, minimum engine speed is set to idling speed. Hence, the engine 
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speed is constrained by idling speed from bottom and maximum rated speed from top. 

The pump and engine are physically connected in series architecture, which enforces the 

speed of pump equal to engine speed. The motor speed is constrained to be proportional 

to vehicle speed.  

3.2.4 Driver Model 

The driver is modeled as a discrete Markov process and is used to generate future 

power demands, given present states. The driver acceleration and braking command is 

interpreted as power demand to be satisfied by the powertrain. The driver demand, Pdem is 

modeled as a stationary discrete-time stochastic process and a stationary Markov chain is 

used to generate driver demand, which is discretized as  

  1 2, ,..., pN
dem dem dem demP P P P  (3.4) 

The dynamics of driver power demand is assumed to be 

 , 1dem k kP w   (3.5) 

where the probability distribution of wk is assumed to be 
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 
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where pil,j represent the one-step transition probability, Np is the cardinality of driver 

power demand and Nω is the cardinality of ωwh vector.  

Using vehicle/powertrain model and the sampled driving cycles, sequence of 

observation (Pdem, ωwh) are calculated which are then mapped on to a sequence of 

quantized states. The transition probability is then calculated using maximum likelihood 

generator.  
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(3.7) 

where ݉௜௝,௟ is the number of times ௗܲ௘௠
௜  to ௗܲ௘௠

௝  transition occurs for given wheel speed, 

߱௪௛
௟  and ݉௜௟ ൌ ∑ ݉௜௝,௟

௡
௝ୀଵ  is the number of times that state i has occurred. The 

summation ∑ ௜௝,௟̂݌ ൌ 1௡
௟ୀଵ  should always be satisfied. 
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In this dissertation, naturalistic driving cycles (Figure 3.1), based on actual driving 

behavior of randomly selected drivers in South East Michigan [105], [106], are used for 

generating transition probability matrix, Figure 3.2. 

 

 

 
Figure 3.2: Transition probability of driver power demand for a particular wheel 

speed, ωv = 54 rad/s derived from naturalistic driving schedules. 
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Figure 3.1: Naturalistic driving cycles recorded during typical commutes in SE 

Michigan. 
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3.2.5 Stochastic Dynamic Programming Algorithms 

Stochastic Dynamic Programming (SDP) provides a framework to solve for optimal 

value function in equation (3.1) and from which an optimal policy can be derived. The 

Bellman’s equation or Hamiltonian-Jacobi-Bellman equation is a special consistency 

condition that the optimal value function has to satisfy.  

 ( ) min ( , , ) ( ) | , , , ,
u U

J i E g i u j J j i u i i j X 


       (3.8) 

where J* is the optimal value function or cost-to-go function, i is the present state, j is the 

subsequent state to i, g(.) is the cost incurred to go to state j from state i under control u, 

and E[·|i,u] is the expected cost with respect to j, given i and u. 

The goal of SDP algorithm is to numerically calculate the optimal cost-to-go 

function J*. The Bellman’s equation can be solved using classical dynamic programming 

techniques; value iteration and policy iteration algorithms.  

Value Iteration Algorithm is a principal method for calculating the optimal cost-to-

go vector J*. The algorithm starts with some initial J and iterates over following equation 

until Jk converges. 

  1

( )
( ) min ( , , ) ( ) | ,k k

u U i
J i g i u j E J j i u i


      (3.9) 

where k is the iteration number, and j is the next state subsequent to i. Generally, the 

value iteration algorithm takes infinite iterations to converge.  The value iteration method 

updates the estimate of cost-to-go vector for all states simultaneously. An alternative is to 

use Gauss Seidel iteration i.e. to update cost-to-go at one state at a time and incorporating 

this computation for calculation of cost-to-go for next subsequent states. 

Policy Iteration Algorithm is an alternative to value iteration algorithm, which is 

guaranteed to converge within finite steps. The algorithm starts with an initial stationary 

policy π0 and generates a sequence of updated policies π1, π2 … with every iteration. The 

policy iteration algorithm iterates between a policy evaluation step and a policy 

improvement step until the cost-to-go function converges to J*. In policy evaluation step, 

given a policy ߨ௞, ܬ௞ାଵ
గ  is calculated by solving linear set of equations 

 1( ) ( , ( ), ) ( ) | ,k kJ i g i i j E J j i u i         (3.10) 
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where k is the iteration number, and j is the next state subsequent to i given the control 

input u. The policy improvement step is evaluated next and updated policy πk+1 is 

calculated. 

 1 1
( )

( ) arg min ( , , ) ( ) | ,
i

k k
u U x

i g i u j E J j i u i  


        (3.11) 

where Jπ is the approximate cost function obtained from the policy evaluation step. 

For problems with large number of states, solving linear set of equations by either 

inversion or Gauss elimination method is very computational and time consuming. To 

alleviate this problem, the linear set of equations can be solved using value iteration. This 

modified algorithm is known as Hybrid Policy/Value Iteration Algorithm. This chapter 

employs hybrid policy/value iteration algorithm to derive optimal cost function and 

corresponding optimal control policy.  

3.2.6 Actor-Critic System 

An interesting interpretation of policy iteration method is to view the algorithm as an 

actor-critic system, Figure 3.3. The policy evaluation step is viewed as the work of critic, 

who evaluates the performance of current policy, i.e. given a proper policy π, the 

corresponding cost function Jπ(x) is calculated by iteratively updating the Bellman 

equation 

  1( ) ( , ( ), ) ( )i i i i j
k k

w
J x g x x w E J x i       (3.12) 

where k is the iteration number, and xj is the new state, i.e., xj=f(xi, π(xi),wi). The policy 

improvement step is viewed as the work of an actor, who takes into account the latest 

critique from critic and acts on the improved policy, i.e. based on present cost function 

௞ାଵܬ
గ  the improved policy ߨ௞ାଵ is found through the following equation 

  1 1
( )

( ) arg min ( , , ) ( )
i

i i i j
k k

wu U x

x g x u w E J x i  


      (3.13) 

where ܬ௞ାଵ
గ  is the approximate cost function obtained from the policy evaluation step.  
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The policy evaluation step is repeated with new policy to update the cost function. 

This iterative process is repeated, until Jπ converges within a selected tolerance level.  

The resulting control policy, Jπ is stationary i.e. does not change from one stage (time) to 

the next and can be implemented in controller as a time invariant state feedback law.  

3.2.7 Numerical Techniques to Reduce Computational Effort 

Dynamic programming based algorithms are computationally intensive. The 

computational cost and memory requirement grows exponentially with increase in 

number of states. This section gives a brief overview of steps taken to reduce the 

computational effort and make the complex problem numerically tractable. These efforts 

are not enough to solve the complete multi-objective problem with transient emissions 

and fuel consumption. A new algorithm will be proposed in Chapter 4 to deal with 

problems that are more complex. However, these techniques are still indispensable and 

will still be required with more efficient algorithm in Chapter 4. 

 Compiled code: The Matlab is an interpreted language with Just-in-Time (JIT) 

compiler for speeding up certain calculations. To further speedup calculations, 

custom codes written in C and C++ and compiled as MEX files are interfaced 

Figure 3.3: Interpretation of hybrid policy iteration as an actor-critic system. 
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with Matlab. This gave huge reduction in computation time. Specifically, sections 

of code that required multiple for-loops and are frequently called through SDP 

routine are coded in C++.  

 Profiler: Profiler is a handy tool, which allows calculating the amount of 

resources used by each function call and section of code. Profiler is used 

extensively to figure out bottlenecks in code and code is re-written in more 

efficient manner. 

 Error checking: The code is written with single purpose to solve the above 

problem and, sacrifices error checking and generalization features for speed. 

 BLAS/LAPACK routines: The C and C++ code is written to use 

BLAS/LAPACK math libraries. These libraries are platform specific and 

optimized for speed. 

 Cluster computer: The code is written with parallel structure to effectively use 

multiple computing nodes available through Center of Applied Computing at the 

University of Michigan.  

 Vectorization: The model equations are written with vector algebra. The code 

accepts vector of control inputs and gives vector of outputs, as opposed to using 

for-loops in Matlab. Matlab code is highly optimized to run faster with vector and 

matrix operations. All the user-defined functions in SDP algorithm are written 

with this capability in mind. 

 Preallocation: The memory space is preallocated to reduce computational 

overhead with memory initialization. Care is taken to prevent vector grow 

dynamically inside a for-loop. 

 Overhead reduction: Simulink is a popular tool for solving dynamical systems. 

However, Simulink has an overhead computational cost with every function call 

to Simulink from Matlab. Since the dynamical model is called multiple times 

during SDP, the entire model is coded in Matlab to reduce this overhead cost. 
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3.3 SDP with Fuel Economy Objective 

This section focuses on the design of optimal power management for a series 

hydraulic hybrid with only fuel economy as the objective. The problem is formulated to 

find optimal control law, which minimizes the fuel consumption over infinite horizon. 

The instantaneous cost function is given by 

 2( , ) ( ) ( )k k ref refg FC x u SOC SOC SOC SOC       (3.14) 

where FC is the fuel consumption at given state xk and control input uk. The instantaneous 

cost is based on the overall system efficiency.  The power generation unit includes engine 

and pump subsystem. The pump efficiency is a function of SOC and hence the overall 

system efficiency changes with SOC. This is a key difference between approach in this 

work and previous approaches. The latter term penalizes the SOC below a set value and 

is explained in section 3.2.2. 

The system is modeled with 3 states xk (with little abuse of notation, the disturbance 

vector wk is included in the state vector) and 2 control inputs uk. 
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Previous work on SDP based supervisory controller for hybrids treated engine power 

demand as the sole control decision [40], [8]. The engine is then asked to provide the 

power by operating along the best BSFC line. In this study, engine is not restricted to 

operate along the best BSFC line, since the insight from the previous thermostatic SOC 

study [100] clearly indicates that system-level gains may offset a small loss of BSFC.  

The intention is to provide an additional degree of freedom and allow the algorithm to 

discover the best way to run the power generation subsystem.  Hence, the controller 

produces desired set point for both engine speed and torque, based on given states of the 

vehicle; driver power demand, SOC and vehicle speed.  

The SDP results are captured in time invariant state feedback lookup tables, which 

can be directly implemented in the vehicle simulation platform. Figure 3.4 and Figure 3.5 
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show a set of representative lookup tables for desired engine speed and desired engine 

torque for a particular wheel speed. The set points guarantee optimal operation of the 

whole system, namely engine and pump, rather than just engine. This is a key distinction 

between this work and the previous attempt [8]. To differentiate between two approaches, 

this approach is referred to as system centric SDP while the previous work is referred to 

as engine centric SDP. 

 

 

 
Figure 3.5 : Optimal SDP engine torque policy (ωwh = 54 rad/s). 
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Figure 3.4 : Optimal SDP engine speed policy (ωwh = 54 rad/s). 

-150
-100

-50
0

50
100

150

0

0.5

1

500

1000

1500

2000

2500

3000

Driver Power Demand [kW]SOC [0-1]

E
ng

in
e 

S
pe

ed
 D

em
an

d
 [R

P
M

]



66 

 

3.3.1 Simulation Results for SDP Controller with Fuel Economy Objective 

Figure 3.6 and Figure 3.7 show the engine operation over FUDS driving cycle. It can 

be seen from Figure 3.6 that engine operation departs from the best BSFC line. The 

proposed system centric SDP policy operates the engine to maximize the system 

efficiency i.e. combined engine and pump efficiency rather than just the engine operation.  

 

It can be seen from Figure 3.7 that SDP based controller does a good job in 

maintaining low SOC throughout the driving cycle. The controller uses hydraulic power 

for vehicle propulsion at high SOC values (engine demand is zero, Figure 3.7b). As SOC 

drops, engine is ramped up and produces enough power to maintain the desired value, 0.2 

in this case. This allows maximum regeneration capability during braking events.  The 

engine operation resembles load-following mode, except the speeds are much lower than 

 
Figure 3.6: Engine visitation points on the BSFC map, with a color scale indicating 
the relative amount of fuel consumed in a given zone during simulation over FUDS 

for system centric SDP controller in S-HHV. The controller output is demanded 
engine speed and demanded engine torque. 
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in the case of a mechanical transmission, hence pushing the loads up into the high-

efficiency region. 

Table 3.1 shows the fuel economy of series hydraulic hybrid over different EPA 

driving schedules along with percent improvement over the conventional vehicle. It 

includes predictions obtained with SDP based supervisory controller designed with 

engine centric and with system centric strategies. The fuel economy of the S-HHV is 

much better than the baseline conventional with either control strategy. The advantage of 

the S-HHV over the highway cycle is smaller, but still tangible.   

 

Figure 3.7: Simulated series hybrid powertrain behavior with the system centric SDP 
control: a) vehicle speed and SOC during first 350 sec of FUDS, b) engine power, and c) 

propulsion motor power. 
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To highlight the better fuel economy with SDP based controllers, Table 3.1 includes 

the fuel economy results for thermostatic controller. The SDP controller is 20% more 

efficient by effectively managing the engine and hydraulics. The SDP strategy differs 

from the thermostatic in a very important way that would give it an edge in a practical 

application.  The engine operation is closer to load-following, but with higher load and 

lower speed operation than in the case of the vehicle with mechanical transmission. In 

other words, the transients are relatively mild, but related to vehicle performance.  This 

would result in a much better driver feel than occasional bursts of power experienced 

with the thermostatic controller.  In addition, the likelihood of demonstrating the same 

results with real hardware is higher in case of the SDP than thermostatic control.  

Previous work on engine-in-the-loop testing by Filipi et al. [23] has shown excellent 

agreement between predictions and experiments in case of milder engine operation, and 

tangible discrepancies in case of the bang-bang control.  The penalties associated with 

rapid transients (energy for acceleration, excursions of operating parameters) are 

obviously not fully captured with a system-level simulation.  This, together with the 

drivability considerations and easier management of the aftertreatment system makes the 

SDP a preferred option.  This would also be a very robust controller, since SDP produces 

directly implementable state-feedback lookup tables.  

 

Table 3.1: Fuel economy and % improvement for a S-HHV with different power 
management strategies compared to conventional vehicle as baseline over different 

EPA driving schedules 

  FUDS HWFET LA92 

S-HHV with 
thermostatic controller 

MPG 14.77 14.27 12.07 

% Improvement 39.4 % 13.7 % 30.2 % 

S-HHV with SDP based 
controller (engine 
centric) 

MPG 17 17.1 13.9 

% Improvement 60 % 36.2 % 49 % 

S-HHV with SDP based 
controller (system 
centric) 

MPG 17.47 17.4 14.2 

% Improvement 65 % 38.6 % 53.2 % 
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The proposed SDP controller combines the higher-level power management strategy 

with lower level control decision to divide demanded power from engine into demanded 

engine speed and demanded engine torque. The engine operation with proposed SDP 

controller is different from the SDP controller proposed by Lin et al. [40]. The SDP 

controller proposed by Lin et al. [40]  relied on the best BSFC trajectory to divide 

demanded power demand into demanded engine speed and demanded engine torque. 

Figure 3.8 shows the engine visitation points over FUDS for series hydraulic hybrid 

vehicle with engine centric SDP controller with demanded engine power output. 

Combining higher-level power management strategy for power demand from engine with 

lower level controller for calculating demanded engine speed and demanded engine 

torque results in additional 3-5 % gain in fuel economy (Table 3.1).  

 

 
Figure 3.8: Engine visitation points on the BSFC map, with a color scale indicating 
the relative amount of fuel consumed in a given zone during simulation over FUDS 

for engine centric SDP controller in S-HHV. The controller output is demanded 
engine power. 
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 The SDP algorithm presented in this chapter is an effective tool for generating 

optimized power management policy. However, the multi-objective problem of 

minimizing combined fuel consumption and transient emissions with cost function 

outlined in section 3.2.2, is computationally intractable with the proposed SDP algorithm. 

Even with the sophisticated numerical techniques outlined in section 3.2.7, the 

computational and memory requirements of such a problem far outweighs the resources 

available in a cluster computer. A new class of algorithms is required to tackle such a 

problem. 
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Chapter 4  
 

NEURO-DYNAMIC PROGRAMMING 

4.1 Introduction 

Problems of sequential decision making under uncertainty (stochastic control) are 

encountered in wide array of fields, like optimal control design, operations research, and 

machine learning. Dynamic Programming (DP) is an effective tool for such problems and 

allows determination of optimal solution using constrained nonlinear model based 

systems. In addition, it allows for inclusion of multiple objectives during policy 

optimization. Theoretically, the hybrid power management controller can be designed 

using DP with multiple objectives in consideration, like reduced transient emissions, 

reduced noise vibration harshness (NVH) along with the original fuel economy objective. 

A detailed modeling of multiple phenomena involves increase in system/plant states and 

the space spanned by the states grows exponentially. This in turn results in exponential 

growth in computational/memory resources required to calculate optimal solution. This is 

widely known as curse of dimensionality of dynamic programming. The curse of 

dimensionality is not only restricted to state space but can also arise from action and 

decision spaces [107]. Figure 4.1 shows the exponential rise in computational demand 

with increase in space spanned by states. Therefore, classical dynamic programming 

algorithms are only applicable to problems with few thousand state counts with the 

present computational resources and this effectively limits the number of states to around 

3 with discretization level of approximately 20 each. 

This chapter focuses on development of algorithm that produces near-optimal policy 

with reasonable amount of computational resources. The idea centers on evaluation and 

approximation of optimal cost-to-go function with neural networks. At the center of this 

approach is a self-learning neural network, which adapts over time to reflect the optimal 
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cost-to-go function. The approach is hence called Neuro-Dynamic Programming (NDP). 

Two critical ideas in NDP approach are 

1. Compact functional representation of cost-to-go. The main idea is to represent 

cost-to-go values with a functional representation. This reduces the amount of 

memory required to store cost-to-go values. If the cost-to-go values have 

underlying characteristic, the functional approximation can exploit the behavior 

and predict cost-to-go values for complete state space without being explicitly 

trained for each state. 

2. Recursive method for updating the cost-to-go functional approximation 

based on successive observation of state transition and associated cost. The 

other important concept of NDP is of recursively updating functional 

approximation. Sutton et al. [108] proposed temporal difference learning as a 

method for approximating long-term future cost as a function of present state. 

The algorithm improves the approximation of the long-term cost as more and 

more state transitions are observed in an incremental fashion. This approach 

reduces the computational burden of the DP algorithm.  

The proposed algorithm is a type of reinforcement learning (RL). RL is learning by 

an agent to accomplish a particular task through trial-and-error interactions with 

environment based on reinforcement signals from the environment [108]. Reinforcement 

learning is different from supervised learning which is widely used in many fields, such 

as artificial neural networks, and statistical pattern recognition. Supervised learning 

involves agent learning to perform a certain task after training from a knowledgeable 

supervisor. In supervised learning, the agent does not learn from its interaction with the 

environment. In contrast, a general RL model includes an agent (controller) that interacts 

with environment (system) over a sequence of discrete steps. The agent, based on the 

state of environment, selects and takes an action, u (controller output) according to a 

given policy, π and incurs an instantaneous cost, g. The goal of the agent is to minimize 

(maximize) the cost over time (objective function).  A policy’s value function gives the 

expected return if a given agent uses that policy.  
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The chapter primarily focuses on neuro-dynamic programming and temporal 

difference learning techniques and their application to solve power management problem 

in hybrid vehicles. The chapter begins with detailed description of NDP and the 

algorithm for designing power management controller. To validate the NDP and 

demonstrate the effectiveness of the algorithm to learn optimal policy, the power 

management problem defined in section 3.3 is solved using NDP. Next, the original multi 

objective problem with fuel economy and transient emission is reformulated. This 

problem has a very large state-action space and NDP is successfully applied to design a 

self-learning neural controller. Finally, the controller is evaluated over different EPA 

driving schedules and the simulation results are discussed. 

4.2 Neuro-Dynamic Programming 

Neuro-Dynamic Programming (NDP) is also known as Approximate Dynamic 

Programming (ADP) by many researchers.  The term “approximate” in ADP comes from 

the fact that the method centers on approximation of optimal cost-to-go function. In 

 
Figure 4.1: Curse of dimensionality associated with dynamic programming.  
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particular, the optimal cost-to-go function כܬሺ·ሻ is replaced with suitable approximation 

,·ሚሺܬ  ሻ where r is a vector of parameters. Hence, the representation can be considered asݎ

mapping of higher dimensional cost-to-go vector, ܬ א Թ௡
 using a lower dimensional 

parameter vector, ݎ א Թ௠ ሺ݉ ا ݊ሻ. 

 ( ) arg min ( , , ) ( , ) | ,
u

i E g i u j J j r i u     
  (4.1) 

The above equation is modified Bellman’s equation with J replaced by mapping 

:ሚܬ Թ௠ ՜ Թ௡. The methods for solving modified Bellman’s equation are mostly derived 

from policy iteration algorithm. The algorithm generates a sequence of policies, ߨ ൌ

ሼߨଵ, … ,  ௞ሽ with every iteration and the corresponding estimate of cost-to-go is calculatedߨ

using compact representation, ܬሚሺ·,  .ሻݎ

The function ܬሚ is called the scoring function and the value ܬሚሺ݆,  ሻ is called the scoreݎ

of state j [109]. In most problems, optimal cost-to-go is a highly complicated function of 

states. A compact representation by a scoring function attempts to breaks this complexity. 

However, an important issue is the selection of compact representation with a tradeoff 

between complexity and size. Some of the architectures in literature [109], [110], [111] 

are: 

1. Feature mapping: In a feature based compact representation, each component ܬప෩ 

of the scoring function, ܬሚ is a function of some feature vector, f(i) and parameter 

vector r but not an explicit function of state i 

  1( ) ( ), , ( )mf i f i f i   (4.2) 

where m is the cardinality of feature space. The features can be constructed 

heuristically or through optimization. 

o Lookup table: The feature space is represented by lookup table and the 

parameter vector, r contains one component for each possible feature 

vector. With effective feature extraction, many states can be associated 

with one feature vector. The feature space will be a smaller than total 

number of states.  In an extreme case, each feature vector corresponds to 

single state and there are as many parameters as states.  
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o Linear architecture: The scoring function is a linear combination of 

features and the cost approximation is given by 

 0
1

( , ) ( )
m

n n
n

J i r r r f i


   (4.3) 

where  0 1, , , mr r r r   is the parameter vector. The feature vector fn(i) can 

be considered the basis vector (though they do not need to form the basis 

of a vector space in strict sense). 

2. Multilayer perceptron neural network: A neural network is a universal 

function approximator and has been shown capable of fitting any nonlinear 

function to an arbitrary degree of precision [112]. This makes neural network an 

excellent choice for scoring function. The score of a state, ( , )J j r  is represented 

by a multilayer perceptron network with the layer weights being the parameter 

vector. The feature extraction mapping can either be absent or explicitly included.  

This dissertation uses neural networks for approximating the cost-to-go function. 

Neural networks have been used successfully in many fields like pattern recognition, 

virtual sensing and nonlinear system identification. The neural network, in traditional 

sense, is trained by minimizing the error between input-output mapping and the desired 

nonlinear function in least square sense. The training is normally performed by using a 

training data set comprising of input-output combination, i.e. {i, F(i)} which is 

representative of mapping F to be approximated.  

However, in contrast to supervised learning of neural network, there is no data pair 

of input-output combination for the scoring function to be approximated in NDP. A least 

square optimization with pair {i, J*(i)} to approximate J  is not possible as the optimal 

cost-to-go value J*(i) for a given state i is unknown. The only possibility is to simulate 

for the cost-to-go estimate, J(i) for a given policy (suboptimal usually) and to iteratively 

improve the policy based on simulation outcome. The target for the neural network 

training changes with every iteration as the simulation finds a better cost-to-go estimate, 

J(i). This creates computational difficulties that do not arise in traditional neural network 

applications. The network needs to be trained incrementally under stochastic environment 
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and a non-stationary target. In addition, the network is trained in a feedback fashion 

where the output of network from previous instance is used to calculate the training target 

for the current step. These challenges are systematically handled in this chapter with 

novel numerical techniques. 

4.2.1 Policy Evaluation with Monte Carlo 

Consider a stochastic shortest path problem with termination state cost 0. Let us 

perform Monte Carlo simulations with each simulation ending with termination state 0. 

Consider g(i,j) be the instantaneous cost incurred with transition from state i to state j 

under policy π. Also consider for mth time a give state i0 is encountered and let {i0, i1, … , 

iN} be the remainder of the state trajectory and c(i,m) be the cumulative cost up to 

terminal state 0, i.e.  

 0 0 1 1( , ) ( , ) ( , )N Nc i m g i i g i i    (4.4) 

We assume that the different simulated trajectories are statistically independent and 

each trajectory is generated using Markov process determined by policy π. The cost-to-

go, Jπ is then given by 

  ( ) ( , )J i E c i m i    (4.5) 

The estimate of Jπ can be calculated by  

 
1

1
( ) ( , )

N

m

J i c i m i
N





   (4.6) 

or iteratively by using the update formula 

  ( ) : ( ) ( , ) ( )mJ i J i c i m J i    (4.7) 

where γm = 1/m is the step size.  

At the end of simulation run, the estimate of J(ik) can be updated by using the 

subtrajectory {ik, ik+1, … , iN} with initial state ik embedded inside the original trajectory. 

  1 1 2 1( ) : ( ) ( , ) ( , ) ( , ) ( ) 0, , 1k k k k k k k N N kJ i J i g i i g i i g i i J i k N              (4.8) 

where γk is the step size and can change between iterations.  

The policy iteration with Monte Carlo algorithm can be modified for approximate 

policy iteration that combines Monte Carlo simulations and functional approximations. 
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Consider a functional approximation ܬሚሺ·,  ሻ of cost-to-go Jπ for a stationary policy π. Theݎ

,·ሚሺܬ  ሻ can be calculated by solving the least squares optimization problemݎ

  
( ) 2

1

1
min ( , ) ( , )

2

M i

r
i S i S m

f J i r c i m
  

     (4.9) 

where S is the set of representative states and for each ݅ א ܵ, there are M(i) samples of the 

cost c(i,·). The r is the parameter vector to be determined. The above least square 

problem can be solved iteratively using incremental gradient method. By differentiating f  

 

 
( )

1

( )

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

M i

m

M i

m

f J i r J i r c i m

J i r J i r c i m





   

 
   

 





 

 
 (4.10) 

The incremental gradient method will result in following update formula evaluated 

over all states i S  

 
( )

1

: ( , ) ( , ) ( , )
M i

k
m

r r J i r J i r c i m


 
    

 
   (4.11) 

Now consider a series of simulated sequence 1{ , , }ni i i   of states generated by 

Monte Carlo simulation. At a typical iteration, the system is at state ik and a control 

ku U  based on current policy π is applied. The next state ik+1 is generated by simulating 

transition probability ( )
ki jp u . The incremental update is then given by 

 
1 1

1
0

: ( , ) ( , ) ( , , )
N N

k k m m m
k m k

r r J i r J i r g i u i
 


 

     
 

    (4.12) 

The above update formula only considers some of the terms in the sum of squares in 

equation (4.9), namely, the cost samples c(ik,·) associated with the states ik visited by the 

trajectory under consideration. The incremental update of the parameter vector r is 

carried out once the trajectory has been simulated. The parameter vector r is updated 

incrementally, with each iteration corresponding to a new simulated trajectory. For faster 

convergence extended Kalman filter can be used at the expense of more computation. A 

drawback with the above approach is that the update of the parameter vector r needs to 
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wait for the end of simulated trajectory. This drawback is mitigated with temporal 

difference learning, described in next section. 

4.2.2 Temporal Difference (TD) Methods 

Temporal Difference (TD) learning method [108] is a reinforcement learning method 

with great intuitive appeal and has received considerable interest by robotics and machine 

learning community. The major breakthrough in implementation of TD methods came 

with TD-Gammon program that learned to play Backgammon at grandmaster level [113].  

The TD methods have since then become a powerful choice for Markovian environments 

like game playing. 

Define temporal difference dk by 

 1 1( , , ) ( , ) ( , )k k k k k kd g i u i J i r J i r      (4.13) 

The temporal difference dk represents the difference between the estimate  

 1 1( , , ) ( , )k k k kg i u i J i r    (4.14) 

of cost-to-go based on simulated outcome of the current stage and the current estimate 

,ሚሺ݅௞ܬ  ሻ. The temporal difference provides an indication about how far our presentݎ

estimate of ܬሚሺ·, ,·ሚሺܬ ሻ is from the optimal value. For Bellman equation to hold andݎ ሻݎ ൎ

 = the TD error should be zero. Therefore, for a given control policy, π, the equation dk ,כܬ

0 can be solved for (., )J r  in least square sense.   

The iteration in equation (4.12) then becomes 

 
1 1

0

: ( , )
N N

k k
k m k

r r J i r d
 

 

     (4.15) 

The parameter vector r can be updated as soon as dk becomes available rather than 

waiting for the end of simulated trajectory. The update equation then can be implemented 

online and is given by  

 0

: ( , ) 0, , 1
k

k m
m

r r d J i r k N


      
 (4.16) 

The online implementation of above update formula requires calculation of gradient 

,ሚሺ݅௠ܬߘ  ሻ at each step, at the current value of r. This is extremely cumbersome andݎ
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increases the computation overhead of the update formula. A practical alternative is to 

calculate the gradient ܬߘሚሺ݅௠,  ሻ as soon as ik is generated with the present value of r andݎ

use that value of the gradient in subsequent updates, even though value of r is changing at 

every step.  

The temporal difference is family of algorithms and can be generalized from TD(1) 

to TD(λ), where λ is a parameter in [0,1]. Detailed discussion is given by Bertsekas et al. 

[109] and Sutton et al. [108]. The offline version of TD(λ) is given by 

 
1 1

0

: ( , )
N N

k m
k k

k m k

r r J i r d 
 



 

     (4.17) 

and the corresponding online version of update formula is given by 

 
0

: ( , ) 0, , 1
k

k m
k m

m

r r d J i r k N  



        (4.18) 

4.2.2.1 Discounted infinite horizon problems 

For a discounted problem, the temporal difference is defined by 

 1 1( , , ) ( , ) ( , )k k k k k kd g i u i J i r J i r      (4.19) 

and the online update rule following transition from state ik to ik+1 is  

 
0

: ( ) ( , ) 0, , 1
k

k m
k m

m

r r d J i r k N  



        (4.20) 

For infinite horizon problems, there is no terminal state and the trajectory may never 

terminate. A few changes are incorporated in the algorithm to address these issues. First, 

the step size diminishes as the algorithm progresses for convergence. Second, the 

algorithm is frequently reinitialized and restarted if some of the important states of the 

Markov chain are transient (e.g. a fixed initial state is never revisited). Without 

reinitialization, there will be very little training of these states and the approximation of 

the cost-to-go will be very poor. 
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4.2.2.2 Algorithm for training functional approximation 

The NDP algorithm calculates the functional representation of optimal cost-to-go 

based on random samples. The estimation problem can be stated as optimizing the 

expectation of a function  

   min
r R

F r


  (4.21) 

where typically F is the mean square error (MSE). In the context of cost-to-go function, 

the optimal parameter vector r can be obtained by using the following equation. 

 
   

2
21 1ˆ ˆarg min ( ) min ( )

2 2

m

i i
r R r R

i

r J J r J J r
 

       (4.22) 

where ܬመ is the estimate of כܬ at present instance and ܬሚሺݎሻ is the functional representation 

of cost-to-go. The above problem can be solved using stochastic gradient methods. Some 

of the algorithms used in this dissertation are reviewed briefly in Appendix B. The least 

square problem in equation (4.9) is solved using all the incremental gradient methods 

described in Appendix B. Extended Kalman Filter (EKF) gave the fastest convergence 

rate with very small additional computational overhead of all the methods listed in 

Appendix B. Hence, EKF is used in this dissertation to train critic and actor neural 

networks.  

4.2.2.3 Step size 

The step size, γ plays an important role in the performance of incremental gradient 

algorithms employed in this dissertation to train actor and critic networks.  The direction 

of incremental gradient method differs from the gradient direction by an error 

proportional to the step size. To ensure convergence in stochastic gradient algorithms 

following rules must be met [107], [109]. 
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The second condition is required to guarantee that step size is not too small and the 

algorithm stalls prematurely. It ensures that steps are large enough to overcome any 

initial conditions or random fluctuations. The last condition guarantees that the step size 

diminishes with iteration and eventually become small enough to assure convergence. 

The step size selection is even more important for neuro-dynamic programming due 

to the moving target value ܬሚሺݎሻ, which at the start of the algorithm can be very far from 

optimal J*. In TD(λ) algorithm, the cost-to-go, J of being in particular state is estimated 

from a sequence of random observations, ܬመ. The estimated cost depends on the 

approximation of cost-to-go function, ܬሚሺ·,  ሻ which itself is non-stationary and steadilyݎ

increasing.  The step size needs to strike a balance between minimizing error (small step 

size) and responding to non-stationary data (large step size). Appendix C gives some of 

the step size recipes used in this dissertation. Bias adjusted Kalman filter (BAKF) and 

Sompolinsky-Barkai-Seung (SBS) step size rules gave satisfactory performance and are 

employed for calculating step size.  

4.2.3 Actor-Critic System 

An interesting and intuitive way to describe the NDP algorithm, similar to policy 

iteration algorithm presented in Chapter 3, is to view it as an actor-critic system [109], 

[108]. The general schematic of the NDP is shown in Figure 4.2. 

The NDP structure in Figure 4.2 includes two networks; actor and critic. The critic 

network is trained to estimate the optimal cost-to-go function. The actor network is 

trained to produce optimal control inputs, which are greedy with respect to cost-to-go 

function. The objective is to optimize the desired performance by learning to choose 

appropriate control actions through interaction with environment. During the learning 

process, the critic criticizes the actor’s actions and the actor incorporates the latest 

evaluation by critic for next control action. The critic learns about whatever the policy is 

being followed by actor and critiques it. The critique (reinforcement signal) drives the 

learning of both the actor and the critic networks. 
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The controllers are “naïve” at the starting of the algorithm. Both the actor and the 

critic networks are initialized with random weights. Based on present system states, the 

actor network produces control action and the system moves to a newer state. The critic 

evaluates the new state and calculates the reinforcement signal to tune the parameters in 

actor as well as critic network. With time, the actor learns to produce “favorable” control 

actions. 

The critic network is implemented as a standard multilayer feedforward neural 

network. The input to critic is the states of system and the output is the approximate cost-

to-go function ܬሚ. The network is trained by backpropogating the TD error signal and the 

weights, r of the critic network are updated using equation (4.20). The actor network is 

similar to the critic network. The actor network is required because it would require a lot 

of computation and memory to compute improved policy, ߨത, given in equation (4.1) 

online. The algorithm computes ߨതሺ݅ሻ only at a set መܵ of sample states and generates an 

 
Figure 4.2: Schematic diagram illustrating neuro-dynamic programming as an actor-

critic system. 
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approximation architecture ߨ෤ሺ·,  ሻ where v is a vector of tunable parameters. The neuralݒ

network is trained by minimizing the least square problem 

 
2

ˆ

min ( , ) ( )
v

i S

i v i 


   (4.24) 

4.2.4 Policy Update 

A standard actor-critic method evaluates the associated cost-to-go ܬగ using TD(λ) for 

a fixed policy π and then performs the policy update. In other words, the actor controls 

the system using policy π while the critic observes the consequences and computes ܬగ. 

The approximation ܬሚሺ·, గܬ ሻ ofݎ
 is constructed in least square sense. For a standard 

algorithm, the policy π is kept constant for a long time till the critic’s computations 

converge to ܬగ. This new converged value of ܬగ is then used by critic to calculate a new 

policy. The new policy ߨത is then calculated which is greedy with respect to ܬሚሺ·,  ሻ. Thisݎ

may not be suitable for problems with large state space as evaluating over all state 

combinations would mean long computational time between policy update.  

Alternatively, the policy π can be updated more frequently with new policy ߨത without 

waiting for policy evaluation algorithm to converge ܬగ, i.e. there is more frequent 

communication between actor and critic. This is known as asynchronous policy 

iteration. An extreme possibility is to replace policy π with new policy ߨത subsequent to 

every state transition, i.e. new control uk is calculated after every iteration 

  
( )

arg min ( , , ) ( , )
k

k k k
u U i

u g i u j E J j r


    
  (4.25) 

where α is the discount factor, rk is the current parameter vector and j is the possible next 

states. The actor carries out new policy after every simulated transition. This class of 

algorithm is known as optimistic policy iteration. The convergence behavior of this 

algorithm is quite complex and not fully understood [109]. However, optimistic policy 

iteration with TD(λ) update is one of the most effective NDP methods and is used in this 

dissertation. 
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4.2.5 Exploration vs. Exploitation 

Classical SDP algorithms require evaluating cost-to-go function at every state. This 

is known as exploration of state space and is only possible for problems with small state 

space. It is computationally impossible to evaluate cost-to-go function at every state for a 

problem with very large or infinite state space. On the other hand, exploitation involves 

utilizing the present information about cost-to-go function and making decisions that are 

greedy with respect to present cost-to-go function approximation. An exploitation 

strategy is good from computation consideration for problems with large state space. 

However, the algorithm with pure exploitation strategy is susceptible to being stuck in 

local optimum because of the poor estimate of certain states. 

The strategy used in this dissertation is a mix of exploration and exploitation 

strategies and is known as ε-greedy strategy [108]. The algorithm chooses a greedy 

policy i.e. exploitation strategy for most of the times but reverts to exploration strategy 

with small probability ε and select action at random, independently of cost-to-go 

function. An advantage of such a strategy is that on limit, as number of iteration 

increases, every control action will be sampled infinitely and the control policy π will 

converge to optimal π*. Sutton et al. [108] showed the effectiveness of ε-greedy strategy 

compared to greedy policy.  

4.2.6 Neuro-Dynamic Programming Algorithm 

Consider a series of simulated sequence ݅ ൌ ሼ݅ଵ, … , ݅௡ሽ of states generated by Monte 

Carlo simulation. At a typical iteration, the system is at state ik and a control ݑ௞ א ܷ 
based on the current policy π is applied. The next state ik+1 is generated by simulating 

transition probability ݌௜ೖ௝ሺݑሻ. 

The parameter vector is then updated by running a TD(λ) update [109] (refer section 

4.2.2) 

  1
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( ) ( , )
k

k m
k k k k m m

m

r r d J i r  




     (4.26) 

where k is the iteration number, γ is the step size, λ is the TD parameter, α is the discount 

factor, dk is the temporal difference and gradient ܬ׏ሚሺ݅,  ሻ is the vector of partialݎ
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derivatives with respect to parameter vector r. The equation (4.26) is an incremental 

gradient update. The step size γ is updated using Bias Adjusted Kalman Filter (BAKF) 

described in Appendix C. 

Define eligibility vector, zk 
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    (4.27) 

The TD update is then written as 

 1k k k k kr r d z    (4.28) 

where zk is updated by 

 1 1 1( , )k k k kz z J i r      (4.29)  

The critic neural network update is accelerated by including nonlinear learning rates 

and the update equation (4.26) becomes 
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     (4.30) 

Direct computing of the matrix H-1 is very computationally costly. Kalman theory is 

efficiently applied for calculating the inverse of the Hessian (refer Appendix B). 

4.3 Power Management Problem with Multiple Objectives 

The power management problem explored in this section is similar to the problem 

defined in Chapter 3. The problem is redefined for completeness. Given the vehicle, 

engine and powertrain configuration, this section examines the infinite horizon power 

management problem, which can be formulated as 
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where x is the state vector, u is the control input, w is the disturbance vector, g is the 

instantaneous cost function and 0<α<1 is the discount factor.  
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The next two sections apply NDP to solve the above problem with a different 

objective function. First, the problem with fuel economy objective is addressed and the 

results are compared with SDP to validate the effectiveness of NDP. Next, the problem 

with multiple objectives i.e. to minimize transient emissions along with fuel economy is 

solved using NDP. This problem is computationally intractable with classical SDP 

methods because it involves a state-action space of 1013 and shows the strength of NDP.  

4.4 NDP with Fuel Economy Objective 

The system is modeled with 3 states xk (with little abuse of notation, the disturbance 

vector wk is included in the state vector) and 2 control inputs uk. 

 k wh

dem
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x
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where k is the time index, SOC is the present state of charge, ߱௪௛ is the present wheel 

speed, ௗܲ௘௠ is the driver power demand, ߱௘
ௗ௘௠ is the desired engine speed and ௘ܶ

ௗ௘௠ is 

the desired engine torque. 

The cost function is given by 

 
2( , ) ( ) ( )k k ref refg FC x u SOC SOC SOC SOC       (4.34) 

where FC is the fuel consumption by engine. 

The state space spanned by the problem is not large and is computationally tractable 

with classical SDP [43]. This provides an opportunity to compare the result obtained with 

NDP to the strategy previously generated using SDP (refer Chapter 3). This effectively 

allows validating the new approach before embarking on studies of larger problems with 

larger state space.  

The self-learning controller has three neural networks, one critic and two actor 

networks, which are trained simultaneously by interacting with the environment. All 

three neural networks are multilayer perceptron networks with hyperbolic tangent as the 

activation function. The networks take three inputs, namely the state vector and have one 
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hidden layer with 30 neurons. The output of critic network is the approximate value of 

cost-to-go and the two actor networks output desired engine speed and desired engine 

torque. 

The networks are initialized with random weights i.e. they start naïve. The networks 

are trained incrementally using TD signal and learn to control the hybrid powertrain as 

the algorithm progresses. The algorithm performs Monte Carlo simulations to generate 

sample trajectories. At any given state, the actor network is evaluated and the control 

input is applied to the system. The algorithm calculates the temporal difference and 

updates the critic network using equation (4.26). The system moves to newer states based 

on the applied input. The actor network is then updated to produce control actions which 

are ε-greedy [108] (refer section 4.2.5) with respect to latest cost-to-go function 

approximation. The algorithm chooses a greedy policy based on the present knowledge of 

cost-to-go function most of the times but reverts to exploration strategy with small 

probability ε. The algorithm steps are repeated until the cost-to-go function 

approximation converges. The control action chosen by algorithm and the states visited 

depend on approximation of cost-to-go function, which in turn depends on states visited 

thus far by algorithm. This can lead to algorithm being stuck in the local optima where 

poor approximation of cost-to-go function for certain states can prevent algorithm from 

visiting those states. To overcome this problem, the algorithm is frequently restarted from 

random states.  

4.4.1 Simulation Results for NDP Controller with Fuel Economy Objective 

In this section, simulation results for hybrid powertrain with self-learning neural 

controller over EPA driving cycles are presented. Figure 4.3 gives the block diagram 

implementation of self-learning controller with 3 inputs. The results are compared against 

the system centric SDP based controller presented in Chapter 3. 
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Figure 4.4 shows time plot for SOC, engine power and motor power for NDP based 

controller over a section of FUDS. It can be seen from the Figure 4.4 that the NDP based 

controller learns how to actively manage two power sources, namely engine and 

hydraulics, and is able to follow driving cycle. In addition, the controller does a good job 

in maintaining low SOC throughout the driving cycle (Figure 4.4a). This allows 

maximum energy to be recuperated during braking event. The NDP controller learns to 

use hydraulic energy at launch when SOC is high (engine power demand is zero).  As 

SOC drops, engine is ramped up and produces enough power to maintain the desired 

value, 0.2 in this case. The NDP based controller operates the engine in a milder fashion 

by slowly ramping up the engine power (Figure 4.4b) and significantly reducing 

fluctuations of SOC (Figure 4.4a). It appears that the engine is almost in a “load 

following” mode but without sharp changes of load or high frequency fluctuations. At the 

same time the algorithm selects the best combination of engine speed and torque to 

produce desired power as discussed in the next paragraph. Overall, NDP identifies the 

best strategy from the system point of view rather than engine-centric approach. 

 
Figure 4.3: Schematic representation of self-learning neural controller with 3 inputs 

along with a S-HHV. 
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Figure 4.5 shows the engine operating points superimposed on the BSFC map. The 

color scale indicates the amount of fuel consumed by the engine at a given operating 

region during FUDS. The NDP controller operates the engine over a wider region. It can 

be seen that the NDP based controller intelligently controls engine in the low BSFC 

regions for any power level without any prior information about the best BSFC trajectory. 

However, the engine operation deviates slightly from best BSFC line. This is attributed to 

the fact that controller is trying to maximize the system efficiency i.e. combined engine 

and pump subsystem efficiency rather than engine efficiency alone.  

 
Figure 4.4: Simulated series hybrid powertrain behavior with the NDP controller  with 

3 inputs and designed with fuel economy consideration: a) vehicle speed and SOC 
during first 350 sec of FUDS, b) engine power, and c) propulsion motor power. 
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Table 4.1 gives the results of series hydraulic hybrid with SDP and NDP based 

controllers over different driving schedules. The engine operation and management of 

SOC by NDP based controller is very similar to SDP based controller and hence, the fuel 

economy benefits are very similar. This effectively validates the NDP approach to design 

Table 4.1: Fuel economy (mpg) comparison for a S-HHV with system centric  SDP 
control and NDP control with 3 inputs, both designed with fuel economy objective 

over different driving schedules 

 FUDS HWFET LA92 

S-HHV with SDP 
controller 

17.47 17.4 14.2 

S-HHV with NDP 
controller 

17.84 17.47 14.14 

 

Figure 4.5: Engine visitation points on the BSFC map, with a color scale indicating 
the relative amount of fuel consumed in a given zone during simulation over FUDS 

for self-learning neural controller with 3 inputs in S-HHV. 
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optimal power management controllers.  This is a favorable outcome providing evidence 

of NDP’s ability to learn and discover best modes of operation.  

4.5 NDP with Transient Emission and Fuel Economy Objective 

This section examines the infinite horizon power management problem with multiple 

objectives. The power management tries to minimize the weighted sum of transient 

emission and fuel consumption. This problem is motivated in section 3.2.1. The 

instantaneous cost is given by 

 
2

( , ) ( , ) ( , )

( ) ( )

FC k k NOx x k k PM k k

ref ref

g w FC x u w NO x u w PM x u

SOC SOC SOC SOC

     

    
 (4.35) 

where FC is the normalized fuel consumption, NOX is the normalized transient NOX 

emission, PM is the normalized  transient particulate matter emission. The ݓி஼, ݓேை௫ 

and ݓ௉ெ are the normalized weighting parameter and ∑ሺݓி஼ ൅ ேை௫ݓ ൅ ௉ெሻݓ ൌ 1.  

The state vector x and control vector u is given by 
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where k is the time index, SOC is the state of charge, ߱௪௛ is the wheel speed, ߱௘ is the 

engine speed, ݉௙ is the mass of fuel injected, Pim is the inlet manifold pressure, ܰ ௫ܱ
௞ିଵ is 

the previous predicted NOX and ܲܯ௞ିଵ is the previous predicted particulate matter, Pdem 

is the driver power demand, ߱௘
ௗ௘௠ is the desired engine speed and ௘ܶ

ௗ௘௠ is the desired 

engine torque. The additional augmented states compared to states required for section 

4.4 is due to transient emission model (refer section 2.3.2.2).  
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The addition of extra states results in additional state constraints along with the ones 

given in section 3.2.3. 
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The problem formulated above with each state and control input discretized with 

cardinality of 25 has approximately 1013 state-action pairs. A state-action space of this 

size is computationally intractable with conventional policy iteration algorithm. In 

addition, even if the problem could be solved, it will require vast amounts of memory to 

store every action value for every combination of states. NDP provides an approach to 

suboptimally solve the above problem by approximating the optimal cost-to-go function 

with a functional approximation. 

The self-learning controller, much like the controller in section 4.4, has three neural 

networks, one critic network and two actor networks which are trained using TD(λ) 

approach, Figure 4.2. The training of the self-learning controller is similar to supervisory 

controller in section 4.4.  

The critic and actor neural networks are multilayer feedforward perceptron network 

with one hidden layer. The input and hidden layers have hyperbolic tan-sigmoid 

activation function whereas output layer has linear activation function. The inputs to all 

the networks are the states of the system, equation (4.36) i.e. each network have 8 inputs. 

The networks are trained incrementally by backpropogating the temporal difference and 

the weights are updated using equation (4.26). The critic network estimates of the cost-to-

go value whereas the outputs of the actor controllers are optimal demanded engine speed 

and demanded engine torque. This implementation is referred to as NDP based controller 

with 8 inputs in this dissertation. 

Implementation of above controller in real world will require feedback of transient 

NOX and soot emissions. To avoid virtual soot and NOX emission sensors during 

implementation of the controller in either simulation or real vehicle, another approach is 

explored. Instead of training critic and actor neural networks with complete state vector,  

the three states, namely previous NOX, previous PM and inlet manifold pressure are 
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excluded from the inputs to the critic and actor network. The networks are trained with 

only remaining 5 inputs. This can be viewed as contraction mapping and has an effect of 

averaging out the effect of these 3 states. This implementation requires only 5 inputs to 

the power management controller and does not require a feedback of transient soot and 

NOX emission during real world implementation. This eliminates the need for concurrent 

running of transient soot and NOX virtual sensors with the power management controller. 

This implementation is referred to as NDP based controller with 5 inputs in this 

dissertation. The NDP framework still uses a transient emission model for calculating the 

objective function during Monte Carlo simulations for training self-learning controller 

and the algorithm internally keeps track of 8 plant states. The algorithm ignores the 

aforementioned 3 states while training actor and critic neural networks. 

Figure 4.6 shows the implementation of NDP controller with 5 inputs i.e. with no 

feedback from virtual emission sensor, and Figure 4.7 shows the implementation of NDP 

controller with 8 inputs i.e. the neural controller requires feedback from transient 

emission sensors. 

 

 
Figure 4.6: Schematic representation of self-learning neural controller with 5 inputs 

along with a S-HHV. 
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4.5.1 Simulation Results for NDP Controller with Multiple Objectives 

The performance of self-learning controller and its true impact on transient engine 

emissions require validating it in the Engine-In-the-Loop (EIL) facility. EIL facility at the 

University of Michigan is described in section 2.4. The EIL facility allows for concurrent 

running of real engine with virtual drivetrain/vehicle models in real time. EIL facilitates 

in studying effects of different powertrain/power management strategies on engine 

operation. EIL facility is equipped with fast emission analyzers and allows for 

quantifying transient engine-out emissions. However, before the self-learning controller 

can be evaluated in EIL facility, its performance is evaluated using the high fidelity 

simulation platform. This step is required to perform sanity check on the controller and 

prevent any undesirable operation in the test cell. An ill-performing controller can 

damage the EIL facility. The engine-out transient emissions in simulation are calculated 

using transient particulate matter and NOX models, which will be discussed in Chapter 5.  

Three different self-learning neural network controllers are generated using NDP 

algorithm. The first controller is designed with fuel economy objective (refer section 4.4). 

The other two controllers have multiple objectives of fuel consumption and transient 

 
Figure 4.7: Schematic representation of self-learning neural controller with 8 inputs 

along with a S-HHV. 
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engine emissions. These two controllers differ in the required number of inputs to the 

controller with one requiring 5 inputs and other requiring 8 inputs (refer section 4.5). The 

two NDP controllers with multiple objectives are designed with weights ݓி஼ ൌ 0.7, 

ேை௫ݓ ൌ 0.1 and ݓ௉ெ ൌ 0.2. The selection of weights are random and are to show the 

ability of algorithm to not only learn to manage two power sources but to do by 

minimizing weighted sum of fuel consumption and transient emissions. The purpose of 

this dissertation is not to create pareto optimality front and show the tradeoff between 

fuel economy and emission with different choice of objective function weights. The 

algorithm presented in this dissertation is proposed to solve problems that are very large 

and computationally intractable. Though the proposed NDP algorithm implementation 

allows for numerically solving a problem with very large state space, it still is not fast 

enough for creation of pareto optimality front. The computational load to generate one 

single controller is around 5 days on a desktop computer. The biggest bottleneck is the 

poor implementation of neural network routines in Matlab and can be accelerated by 

using C. In addition, the algorithm can be designed to use cluster and parallel computing 

to further reduce computational time. 

All three controllers are simulated over different EPA driving schedules and the fuel 

economy results are reported in Table 4.2. The engine operation over FUDS with the self-

learning controller with emission and fuel economy objectives can be seen from Figure 

4.8. Figure 4.8a and Figure 4.8b show the engine visitation points on the BSFC map with 

5 input and 8 input self-learning controllers respectively. The color scale indicates the 

amount of fuel consumed by the engine at different operating points. The self-learning 

controllers with multi objective move the engine operation away from the best BSFC line 

in contrast to self-learning controller with only fuel economy objective, Figure 4.5. The 

engine operates at higher speeds and lower loads. This results in lower NOX emissions. 
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Figure 4.8: Engine visitation points on the BSFC map, with a color scale indicating 
the relative amount of fuel consumed in a given zone during simulation over FUDS 

for self-learning neural controller with: (a) 5 inputs, and (b) 8 inputs in S-HHV. 
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The self-learning controller with 5 inputs operate engine slightly differently 

compared to self-learning controller with 8 inputs (Figure 4.9). To explain this, consider 

the engine and powertrain is operating at a given operating point and the next engine 

speed and torque demand is to be calculated by the two self-learning controllers with 

emission objectives. The self-learning controller with 5 inputs calculates these demands 

 
Figure 4.9: Comparison of simulated series hybrid powertrain behavior with two 

different NDP controllers, both designed with fuel economy and transient emission 
consideration: a) vehicle speed and SOC during first 350 sec of FUDS, b) engine 

power, c) engine speed, and d) engine torque. 
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based on vehicle speed, state of charge, engine speed, mass of fuel injected and power 

demand from driver. The controller estimates present engine operating point and 

calculates the next engine operating point to minimize engine transients to reduce 

emissions and fuel consumption. The self-learning controller with 8 inputs uses three 

additional inputs, namely engine inlet manifold pressure, previous NOX and previous soot 

to calculate the estimate for present engine operating point. This estimate is more 

accurate compared to NDP controller with 5 inputs’ estimate and hence the controller is 

able to calculate more accurately the desired engine speed and desired engine torque. 

Figure 4.10 and Figure 4.11 shows the normalized cumulative engine-out NOX and 

soot emissions for different controllers. By systematically evaluating the system behavior 

NDP controllers with transient emission objective manages significant reduction of NOX 

emission with minimal fuel economy penalty. The simulation engine model with 

injection dynamics is capable of predicting fuel economy with reasonable degree of 

confidence. The engine simulation, however, does not accurately model the nonlinear 

dynamics of a real diesel engine. The soot formation is highly correlated to transient 

engine dynamics and nonlinear actuator response making it difficult to evaluate the soot 

emissions results using simulation. The next section simulates a virtual hybrid 

concurrently with a real engine in the EIL facility and provides a better estimate of 

engine transients and reduction in emissions. 

 

Table 4.2: Fuel economy (mpg) comparison for a S-HHV with NDP control with 3, 5 
and 8 inputs over different driving schedules. The former is designed with fuel 
economy objective and latter two are designed with fuel economy and transient 

emission objective 

 FUDS HWFET LA92 

NDP controller with 3 inputs 17.84 17.47 14.14 

NDP controller with 5 inputs 16.86 16.92 13.56 

NDP controller with 8 inputs 17.01 17.02 13.60 
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4.6 Engine-In-the-Loop Results 

To assess the performance of the NDP based controllers in real world application, 

the NDP based controllers are evaluated using EIL over FUDS. The previous work done 

 
Figure 4.11: Comparison of cumulative normalized particulate matter emissions from 

a S-HHV over different driving schedules with three different NDP based power 
management strategies. 
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Figure 4.10: Comparison of cumulative normalized NOX emissions from a S-HHV 
over different driving schedules with three different NDP based power management 

strategies. 
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by Liu et al. [42] showed that EIL facility is a valuable tool in evaluating the real-life 

performance of the supervisory controller and demonstrated that a supervisory controller 

which performed well in simulation failed to perform adequately with physical engine. 

The NDP based controllers not only needs to successfully orchestrate and manage the 

two energy sources but need to do by minimizing weighted sum of fuel consumption and 

transient emissions. The controllers are compared against the baseline SDP based 

controller and judged on the basis of fuel consumption as well as transient particulate 

matter and NOX emissions. The SDP based controller is system centric controller (refer 

section 3.3) with sole objective to improve fuel economy. 

Work done by other researchers using simulation platforms often rely on 

assumptions like simplified system response and noise free signal for feedback. While 

these assumptions make problem easier and are generally appropriate for simulation, the 

real world system performance can deviate significantly due to nonlinear and unmodeled 

system dynamics. The measured signals from sensors are often corrupted by noise. This 

severely undermines the applicability of these works in real world and robustness of 

controller in presence of noise. The application of EIL and evaluation of the proposed 

controller strategies in the experimental facility sets this work apart. The effectiveness of 

the proposed self-learning neural controller is demonstrated by their performance with 

actual engine in a real world environment. The operation of controllers in noisy 

environment demonstrates their robustness. 

Two different self-learning neural network controller are generated using NDP 

algorithm with 5 and 8 inputs respectively with weights, ݓி஼ ൌ ேை௫ݓ ,0.7 ൌ 0.1 and 

௉ெݓ ൌ 0.2. The selection of weights is random and is to show the ability of algorithm to 

minimize a multi-objective problem. 

4.6.1 NDP Controller with 5 Inputs 

Figure 4.12 shows the EIL implementation of NDP controller with 5 inputs. The 

controller resides on the dSPACE real-time platform and interacts with the engine 

through AVL PUMA. The virtual vehicle along with NDP controller is simulated over 

FUDS. 
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The NDP controller successfully learns to drive the vehicle by coordinating the 

physical engine and virtual hybrid powertrain. The hydraulics is used intelligently to 

minimize the harsh transient acceleration of the engine. To quantify the differences in 

engine operation with NDP and SDP based controllers, Figure 4.13 shows the engine 

operating points over BSFC map. The color scale indicates the amount of fuel consumed 

in each region during FUDS. The plot also shows the best BSFC line. It can be seen that 

the engine operation for NDP based controller deviates from the best BSFC line to reduce 

NOX. The engine would have operated near the best BSFC line if the engine efficiency is 

the sole objective, as is the case with SDP based controller. Figure 4.14 shows the 

comparison of NOX from NDP and SDP based controllers for a section of FUDS. The 

NOX peaks from NDP based controller are considerably smaller and this result in 29.3% 

improvement of NOX over SDP based controller in EIL during FUDS. 

 
Figure 4.12: Schematic representation of EIL setup for the series hydraulic hybrid 

powertrain with self-learning neural controller with 5 inputs. 
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Figure 4.13: Engine visitation points on the BSFC map, with a color scale indicating 
the relative amount of fuel consumed in a given zone during EIL test over FUDS: a) 

system centric SDP controller designed with fuel economy considerations, and b) 
NDP controller with 5 inputs designed with fuel economy and transient emission 

consideration. 
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Figure 4.15: Instantaneous particulate concentration measurements during the EIL test 

of S-HHV over section of FUDS with SDP and NDP based controllers. 
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Figure 4.14: Instantaneous NOX measurements during the EIL test of S-HHV over 

section of FUDS with SDP and NDP based controllers. 
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Figure 4.15 shows the time trace of particulate matter for SDP and NDP based 

controllers over a section of FUDS with the NDP based controller resulting in lower 

transient particulate matter spikes. Cumulatively for first two hills of FUDS, NDP based 

controller results in 10% reduction in particulate matter over SDP based controller. To 

explain the reasoning for reduction in transient soot spikes, one needs to consider the fuel 

injected per stroke for these two controllers, Figure 4.16. It can be seen that the fuel 

injection ramps up and down slowly for NDP based controller to reduce transient spikes 

of emission. This is in agreement with finding by Hagena et al. [11]  that a step change in 

fueling results in large spike in transient emissions and can be significantly reduced if 

fueling change occurs gradually. The effect is particularly strong when a step change is 

initiated from idle [11].  The NDP strategy successfully avoids this, e.g. the engine is not 

brought down to idle at ~35 sec, and the ramp-up rate is milder.  

 

By systematically evaluating the system behavior, the NDP controller manages such 

significant emission reduction with minimal fuel economy penalty. The S-HHV fuel 

economy with NDP based controller is 16.2 mpg, only 3% lower than the result obtained 

using SDP with fuel economy being sole objective. It should be noted that conventional 

 
Figure 4.16: Instantaneous fuel injection measurements during the EIL test of S-HHV 

over section of FUDS with SDP and NDP based controllers.  
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vehicle fuel economy is 10.2 mpg over FUDS, and both NDP and SDP based controllers 

give around 60% fuel economy improvement. 

4.6.2 NDP Controller with 8 Inputs 

 

Figure 4.17 shows the EIL implementation of NDP controller with 8 inputs. The 

implementation is similar to the NDP controller with 5 inputs. The self-learning 

controller resides on the dSPACE real-time platform along with the virtual soot and NOX 

emission sensors. A neuro-fuzzy model tree with orthogonal least square based transient 

virtual emission sensors is used in this section. The details about the structure and their 

design are given in section 5.5.2.1. The controller and emission sensors interact with the 

engine through AVL PUMA. Figure 4.18 shows the behavior of NDP controller with 8 

inputs along with NDP controller with 5 inputs over a section of FUDS. The engine 

operation with NDP controller with 8 inputs deviates very slightly from that of NDP 

controller with 5 inputs. This difference in engine operation is due to additional 

 
Figure 4.17: Schematic representation of EIL setup for the series hydraulic hybrid 
powertrain with self-learning neural controller with 8 inputs and virtual transient 

emission sensors. 
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information available to controller in terms of intake manifold pressure, previous 

estimated soot and NOX from virtual sensors. Figure 4.19 shows the engine operating 

points over BSFC map with the color scale indicating the amount of fuel consumed in 

each region during FUDS. The modified engine operation results in further reduction in 

NOX, Figure 4.20 and almost similar soot, Figure 4.21 with even better fuel economy. 

 

 
Figure 4.18: EIL results of series hybrid powertrain behavior with two different NDP 

controllers, both designed with fuel economy and transient emission consideration 
over section of FUDS: a) vehicle speed and SOC, b) engine speed, and c) engine 

torque. 
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Figure 4.20: Instantaneous NOX measurements during the EIL test of S-HHV over 

section of FUDS with two different NDP based controllers. 
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Figure 4.19: Engine visitation points on the BSFC map, with a color scale indicating 
the relative amount of fuel consumed in a given zone during EIL test over FUDS for 

self-learning neural controller with 8 inputs in S-HHV. 
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Overall, the NDP controller with 8 inputs manages to further reduce soot and NOX 

emissions compared to SDP controller and almost recovers the fuel economy penalty 

associated with NDP controller with 5 inputs. Table 4.3 summarizes the percentage 

change in fuel economy along with cumulative emissions of particulate matter and NOX 

with NDP based controllers over SDP based controller. 

 

Table 4.3: Comparison of fuel economy and cumulative particulate matter and NOX 
emissions for a S-HHV with two different NDP controllers and SDP controller during 

EIL test over FUDS  

 Fuel Economy 
(mpg) 

Particulate 
Matter* 

NOX 

SDP controller 16.7 - - 

NDP controller with 5 inputs 16.2  (- 3.0 %) - 10 % - 29.3 % 

NDP controller with 8 inputs 16.6 (- 0.7 %) - 16 % - 38.5 % 

* Only first two hills of FUDS 

 
Figure 4.21: Instantaneous particulate concentration measurements during the EIL test 

of S-HHV over section of FUDS with two different NDP based controllers. 
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Chapter 5  
 

MODELING TRANSIENT EMISSIONS 

5.1 Introduction 

The energy security and climate change concerns provide strong impetus for research 

of efficient engine concepts.  In light of the stringent CAFE regulations, diesel engines 

are becoming an attractive option. However, diesel engines are facing challenges in 

meeting emission regulations owing to the nature of diesel combustion. Heavy-duty 

diesels are facing particularly hard challenges regarding emissions regulations. Transient 

diesel engine emissions of particulates and NOX are very complex phenomena owing to 

the nature of diesel combustion. Desire to maximize the efficiency and power density, 

while addressing the emissions challenge too, leads to increased complexity with many 

actuators like variable geometry turbochargers (VGT), exhaust gas recirculation (EGR) 

and variable valve timing (VVT). Aftertreatment is necessary to bring the tailpipe 

emissions down to compliance levels. However, the burden is equally shared by the in-

cylinder clean combustion strategies, advanced catalyst and diesel particulate filters since 

size and cost of aftertreatment is an issue.  

Advanced approaches such as model based predictive control, closed loop 

combustion control and development of advanced supervisory strategies for hybrid 

propulsion systems will be essential for coping with new regulations and complex 

hardware. In all cases, model-based soot and NOX virtual sensors can provide real-time 

predictions and enable strategies that require feedback of emissions under transient 

operating conditions.  

Virtual sensors have gained recent importance in many fields of technology like 

aerospace and medical science [114]. Virtual sensors are useful in cases where direct 

measurement of signal is not possible and model based estimators are used for predicting 
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the state [115]. They have been used as backup sensors to provide failsafe mode 

operation. Finally, they have found applications where the original sensor is either too 

expensive or impractical to be actually deployed. Present day, soot and NOX sensors fall 

into this category. Developing sophisticated real sensor for particulate matter and NOX is 

challenging and is active an area of research.  

Present day emission models generally fall into two categories, at the extreme end of 

the spectrum when it comes to complexity and computational speed: (i) lookup table 

based steady state models, and (ii) computational fluid dynamics (CFD) with chemical 

kinetics based models. CFD and chemical kinetics based models can capture transient 

effects but are very complex and computationally slow. This makes them impractical to 

be used with optimization routines and as virtual sensors with physical engine. Steady 

state map based models fail to capture the transient nature of emission when engine is 

operated transiently and underestimate soot production [10], [12]. The transient spike is 

higher and precedes the prediction by quasi-steady state. Therein lies the impetus for 

transient emission models, fast enough to be employed for control-oriented problems or 

as virtual real-time sensors, and yet detailed enough to capture system dynamics 

accurately.   

The emission (particulate matter and NOX) formation in diesel engine is highly 

nonlinear and displays complex dynamic behavior with change in operating condition. 

The problem becomes even more challenging if one considers stochastical nature of 

combustion. To design a unified model capable of capturing all the nonlinearities, 

particularly under highly dynamic operating conditions and valid for entire engine 

operating range will invariably have complex structure and very high order. In addition, 

training such model will pose numerical challenges. This is especially true for particulate 

matter emission and explains the reason for lack of progress in modeling transient 

particulate matter emission for diesel engines. 

This chapter discusses the development of models for transient emissions of 

particulate matter and NOX for medium duty diesel engine capable of predicting over a 

wide-range of operating conditions. The model is intended to run on a microprocessor in 

real-time and predict instantaneous engine-out particulate and NOX emissions using 

signals from the ECU and low-cost physical sensors. An approach with multiple local 
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models is proposed. The models belong to hierarchical class of models, specifically 

neuro-fuzzy model tree. The underlying principle is a divide-and-conquer strategy, 

whereby, the engine operating space is subdivided into multiple smaller subspaces and 

individual submodels are used for identification. Hence, the complex problem is 

subdivided into multiple simpler problems, which are then identified using simpler 

models. The neuro-fuzzy model tree based emission sensor is capable of learning 

complex, nonlinear and multidimensional dimension association between inputs and 

outputs. The neuro-fuzzy model has parallel structure with respect to local models and 

thus can be efficiently implemented in hardware. Emission models developed in this 

study are driven by experimental data and are specific to a particular diesel engine but the 

methodology developed is universal and can be applied to any other engine. 

The chapter begins with a brief background on combustion and emission formation 

in diesel engine. Next, the chapter discusses the methodology for design of experiment 

and importance of design of perturbation signal for system identification of nonlinear 

plants. A perturbation signal is designed specifically for characterizing the dynamic 

engine operation and resulting emissions. Next, the chapter describes the neuro-fuzzy 

modeling approach and the training algorithm. The training algorithm is augmented with 

input regressor selection techniques like orthogonal least squares and automatic relevance 

determination. This prevents local models to be trained to inconsequential inputs and 

improves the overall model performance. The neuro-fuzzy modeling technique is then 

used to develop two different classes of virtual sensors. One specific for real-time 

implementation with physical engine, and the other for dynamic programming framework 

with extremely fast computation, very small number of states and inputs available only 

from engine simulation model. Finally, the architecture of virtual sensors along with 

validation results is presented.  

5.2 Diesel Combustion and Emission Background 

Diesel combustion is a very complex process. Optical studies combined with 

analyses of engine cylinder pressure data have led to the widely accepted 

phenomenological understanding proposed by Dec [116]. After injection, the fuel 
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evaporates and mixes with air, and owing to very high temperatures, autoignites after a 

delay (ignition delay). The fuel/air mixture prepared during the ignition delay period 

burns rapidly and this is referred to as premixed phase of burning. Following the 

premixed combustion, the fuel injection continues through the mixing-controlled burn 

phase. The liquid core of injected fuel persists and the fuel droplets downstream of the 

liquid core are evaporated, facilitated by turbulent air entrainment. This results in 

formation of relatively uniform, high equivalence ratio (fuel/air of 2-4) zone, extending 

ahead and around the liquid fuel core. A standing premixed flame forms at the boundary 

of this gaseous fuel/air zone, and owing to excessive rich conditions, produces polycyclic 

aromatic hydrocarbons (PAH - soot precursor) and solid particles. The soot particles are 

initially small but grow in size and concentration as they move towards the head vortex. 

The particle accumulation process continues in the head-vortex zone surrounded by a thin 

diffusion flame. The outer edge of diffusion flame is surrounded by OH radicals and 

oxygen molecules, which oxidize particles that reach outer boundary. The high 

temperature and presence of oxygen is highly conducive for NOX production. The NOX 

production continues even after end of injection due to latter part of diffusion burning and 

more oxygen available due to further mixing.  

Even though the fundamentals of the emission formation process remain same with 

transient operation of engine, it makes modeling them even more complex due to 

constantly changing combustion environment and engine subsystem interactions. 

Fluctuations in charge composition, stochastic nature of turbulence, mixing and 

combustion makes the interaction of species in engine cylinder inconsistent. 

Instantaneous composition in the cylinder and flow field goes through dramatic 

excursions from the steady state values after a rapid change of engine command. Thus, 

steady state emission models cannot capture these effects and are incapable of predicting 

transient emissions [117]. In summary, multiple aspects of the very complex phenomena 

in the combustion chamber have to be understood, and experimental insights are 

necessary to support virtual sensor development. 

Next subsection briefly describes the NOX and soot formation. The detailed chemical 

process behind the formation of these species is beyond the scope of this work.  
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5.2.1 NOX Emissions Formation 

NO and NO2 are generally grouped together as NOX emissions with NO being the 

more dominant species. The principal source of NO is the oxidation of atmospheric 

nitrogen with presence of nitrogen in fuel further adds to NO formation. The mechanism 

of NO formation is given by extended Zeldovich mechanism.  

 2O N NO N    (5.1) 

 2N O NO O    (5.2) 

 N OH NO H    (5.3) 

NO2 can be 10 to 30% of the total exhaust oxides of nitrogen in diesel engines [118], 

[119]. Plausible explanation is the conversion of NO formed in the flame zone via 

 2 2NO HO NO OH    (5.4) 

Subsequently, conversion of this NO2 to NO occurs via 

 2 2NO O NO O     (5.5) 

unless NO2 formed in the flame is quenched by mixing with cooler fluid. This explains 

the reason for highest NO2/NO ratio occurring at light loads in diesel when cooler regions 

are more predominant. Due to the nature of diesel combustion, the local temperature 

variation throughout the cylinder leads to heterogeneous spatial and temporal NOX 

formation. Studies have shown that NOX is primarily formed in the diffusion flame 

surrounding the spray head vortex. Increase in oxygen concentration levels and thereby 

increase in adiabatic flame temperatures leads to increase in NOX formation. Addition of 

dilutants like EGR and nitrogen reduces peak flame temperatures and helps in reducing 

NOX emissions. The critical time for NO formation is when the burned gas temperatures 

are highest i.e. start of combustion when the burned gases are compressed further and 

shortly after the peak pressures are reached in the cylinder. The decreasing temperature 

due to expansion and mixing of high temperature gases with air or cooler burned gases 

eventually freezes NO chemistry. A chemical kinetics based model would still be 

impossible to use with system level studies due to the need for instant local temperature 

and pressure. 
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5.2.2 Particulate Matter and Soot Emissions Formation 

Diesel particulates consist principally of combustion generated carbanaceous 

materials (soot) on which some organic compounds (soluble organic fraction, SOF) have 

been absorbed [118]. Most particulate formation is due to incomplete combustion of fuel 

and engine oil. The characteristics of diesel combustion - high gas temperatures and 

pressures, complex fuel composition, high turbulent mixing and three-dimensional 

geometry make it difficult to interpret soot formation. Haynes et al. [120] summarized the 

soot formation in two stages. Firstly, particle formation, the condensed phase material 

arises from the oxidation or pyrolysis. This phase is known as nucleation mode. The 

products mainly consist of unsaturated hydrocarbons and polycyclic aromatic 

hydrocarbons (PAH) formed during mixing-controlled burn. In second stage, particle 

growth occurs, which include surface growth where bulk of solid phase material is 

generated by attachment of gas-phase species to the surface of particles, coagulation and 

aggregation where particles collide and coalesce. This phase is known as agglomeration 

mode. Figure 5.1 shows the stages in formation of soot in diesel engine [121].  

The particulate matter encompasses both soot and soluble organic fraction, the terms 

particulate matter and soot are interchangeably used in this work. 

 

 
Figure 5.1: Schematic illustrating the process leading to soot formation in a diesel 

engine. 
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5.3 System Identification 

Modeling and identification of nonlinear dynamic systems is a challenging task. 

Nonlinear models do not share many properties and require iterative approach to identify 

not only model parameters but also the type of model itself. Figure 5.2 shows a system 

identification flowchart followed in this chapter for design of transient emission models.  

 

One of the most crucial tasks in system identification of black box model is the 

design of appropriate perturbation signals for excitation and gathering data. This step is 

even more important for nonlinear systems than linear systems owing to the inherent 

complexity of the model. Independently of the chosen model architecture and structure, 

 
Figure 5.2: System identification flowchart for black-box modeling. 
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the quality of system identification signal determines an upper bound on the accuracy that 

can be best achieved by the given model.  

Two aspects are very important in selecting test signals for process identification, 

signal waveform and its power spectrum or frequency content. In order to have data with 

high signal-to-noise ratio (SNR), the test signal should have high signal power. Due to 

constraints on signal amplitudes, a small amplitude is desirable for a given signal power. 

This property can be expressed in terms of crest factor, Cr. A good signal should have 

small crest factor. Binary signal have the smallest crest factor possible, 1. For a signal 

u(t) with 0 mean, its crest factor as defined by Ljung [122] is  
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Ljung [122] showed that model error distribution in the frequency domain is affected 

by the spectrum of the test signal. Also, in order to guarantee that the estimation 

algorithms have unique solutions, the test signals need to be persistent. A discrete-time 

signal u(t) is said to persistently exciting of order n if the following limit exists 
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and the matrix  
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 (5.8) 

is nonsingular. Therefore, test signal needs to be designed carefully. 

For a linear model, a binary random signal suffices, but it is not suitable for 

nonlinear system identification because it is not persistently exciting in amplitude. The 

selection of perturbation signal for nonlinear system identification requires more careful 

consideration. A multi-level Pseudo Random Signal (m-PRS) or Amplitude Modulated 

PRBS (APRBS) is applied in this work for nonlinear system identification. m-PRS 

signals are periodic, deterministic, persistently exciting and have autocorrelation function 
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similar to white noise. These characteristics make m-PRS signal well suited for this type 

of work.  

 

Modern diesel engine is highly complex system with nonlinear responses to action of 

multiple actuators. Furthermore, the diesel engine emission formation is a highly 

nonlinear process owing to complex in-cylinder mixing and chemistry. To create a 

transient diesel engine emission model valid over entire operating region, the test signal 

should excite the entire engine operating frequencies. This will ensure the training data 

are “rich”. Using a priori information about engine and preliminary tests like step and 

stair case excitation, information about bandwidth of system dynamics, dominant settling 

time, etc. is obtained [122], [123], [123]. Figure 5.3 shows results from the step and 

 
Figure 5.3: Preliminary step and staircase tests performed at different engine speeds to 

characterize the engine. 
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staircase test at different engine speeds. This information is used to create desired 

perturbation signal i.e. the signal with appropriate frequency range, switching time and 

amplitude level specific for this work. The switching time for signal is short enough to 

prevent capturing predominantly steady state data, but long enough to allow engine 

transients to fully develop before the next instance of signal is sent.  

5.3.1 Multilevel Pseudo Random Signal 

Theory behind generation of m-PRS signals is well developed [124], [125]. m-PRS 

are generated using q-level shift registers where q is the number of levels and is prime or 

power of prime, i.e. q = 2, 3, 4, 5, 7, 8, 9, 11, 13, ... (Godfrey [124]). The basis of 

generation of these m-PRS signals lies in finite field theory [124]. A Galois field, defined 

by q, guides the creation of pseudo-random sequence, xr. The length of sequence {xr} is 

qn - 1, where n is an integer. The sequence is generated by shift register, Figure 5.4, with 

feedback to the first stage consisting of the modulo q sum of the outputs of the other 

stages multiplied by coefficients c1, ... , cn which are also integers 0, 1, ..., (q-1). 

 

The feedback configuration corresponds to a primitive polynomial, modulo q. 

Consider a primitive polynomial, modulo q, 

 
1

1 1 0
n n

n na x a x a x a
     (5.9) 

 
Figure 5.4: Schematic illustrating the q-level shift register configuration for generating 

m-sequence pseudo random signal. 
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then the corresponding characteristic equation in delays, D, introduced by shift register 

 
1

1 1 0 0,n n
n na D a D a D a modulo q

      (5.10) 

For Figure 5.4, the logic connections to the first stage is  

 
1

0 1 1 ,n n
n na X a DX a D X a D X modulo q
      (5.11) 

where a0 = 1 and the remaining coefficients a1, ... , an are integer values in range 0 to q-1.  

Applying modulo q subtraction, 

 
1

1 1 ,n n
n nX c DX c D X c D X modulo q
     (5.12) 

where ܿ௥ ൌ ሺݍ െ ܽ௥ሻ, ݎ ൌ 1, 2, … , ݊ 

The sequence, {xi}, generated from above equation is then mapped into pseudo-

random sequence {ui} of real numbers according to equation 

 ( )i iu u x i   (5.13) 

The pseudo-random sequence {ui} is converted by a zero-order-hold into the 

stepwise continuous pseudo-random signal u(t), according to equation 

 ( ) ( 1)iu t u i t t i t       (5.14) 

The clock interval Δt determines the temporal nature of the pseudo random signal 

u(t).  

Test signal chosen for transient engine emission identification models is an 11-level 

m-PRS signal. Advantage of using a deterministic signal is that it can be applied to the 

system multiple times and any corrupted data can be easily discarded. A Galois field 

(GF), defined by 11 elements and a primitive polynomial  

 
2 3( ) 1 4f x x x    (5.15) 

is used to create the 11-level sequence which is then mapped to 0-100 based on following 

mapping.  
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 (5.16) 

where g is the primitive element, given by g = cn and modulo q arithmetic is applied. 
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Figure 5.5 shows the 100 sec period of input signal generated in Simulink, Figure 

5.6. The signal has a mean of 49.85 and crest factor of 1.59.  

 

 

 
Figure 5.6: Illustration of Simulink implementation of m-PRS generator. 

 
Figure 5.5: A section of m-level pseudo random signal. 
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The 11-step m-PRS signal created earlier is applied to engine as throttle (fueling) 

command. The signal is further scaled between maximum and minimum throttle 

command possible to the engine for a given speed. Figure 5.7 and Figure 5.8 shows the 

 
Figure 5.8: Speed signal applied to engine for generating training data for system 

identification. 
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Figure 5.7: Throttle signal applied to engine for generating training data for system 

identification. 
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engine throttle and engine speed signal applied to engine. Figure 5.9 shows the engine 

operating points on 2-D engine operating space spanned by engine speed and engine 

torque. Similar plots can be plotted with different axis like engine boost and EGR valve 

opening. It can be seen from Figure 5.9 that the whole engine operating space is 

completely covered and the training data obtained is “rich”.  

 

 

5.3.2 Selection of Input Regressor 

A three-step process is employed in this dissertation for selection of input regressor 

set. First, a set of potential input signals is generated based on the knowledge of diesel 

engine combustion and emission formation like engine speed and fuel injection. Hagena’s 

[14], [11] work gives an insight into potentially relevant signals for predicting transient 

emissions. Hagena et al. [11] showed that transient NOX spikes are primarily dependent 

on lag between increased fueling and boost combined with EGR starvation while the 

 
Figure 5.9: Engine visitation points on the speed vs. torque map during system 

identification test. 
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particulate transients are initiated by step change in fueling commands. The latter are 

highly dependent on rate of change in fueling command. Important inclusions based on 

Hagena’s work are the rate of change of fuel injection and post injection.  

The above set of input variables are further shortlisted based on ease of availability 

of signal. The ease of availability means the signal should be readily available either 

through onboard engine sensors or from ECU.  Residual content in the fresh charge 

cannot be easily measured onboard engine and hence is not included in the set of input 

signals. However, EGR valve is actuated by ECU and the percentage opening of that 

valve is available. Hence, this signal is considered instead.  

Finally, the available input signals are cross-correlated with soot and NOX emissions. 

Cross-correlation is a sliding inner product of two signals and gives the measure of 

similarity of two signals with one signal time-shifted.  

 
1

1
( ) ( ) ( )

N

xy
k

corr k x k y k
N








   (5.17) 

where x(k) is one of the selected input variable, y(k) is the emission with time instant k 

and κ is the time shift or “lag” between two signals.  

The signals with high correlation are included in the input data set. Figure 5.10 gives 

few such example of cross-correlation of emission species with input regressors. Cross-

correlation of soot and NOX emission with various individual variables also shows that 

emission formation is not only a function of present information but depends on the time 

history as well. Therefore, time shifted input signals are also considered as separate 

inputs.  
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5.3.3 Training Data 

The specially designed perturbation signal (section 5.3.1) is applied to the engine and 

the engine response along with the engine-out emissions is sampled at 10 Hz. The 

training data set is then generated from the recorded data using the input regressor 

selection procedure described in section 5.3.2. Figure 5.11 shows a section of training 

data set with some of the input regressors, and engine-out soot and NOX emissions.  

Figure 5.10: Cross-correlation of NOx and soot emissions with different potential 
input regressors. 
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5.3.4 Validation Data 

The engine-out emissions are stochastic in nature and are affected by environmental 

condition like air humidity, fuel properties, and ambient air temperature. To assess the 

 
Figure 5.11: Section of training data set used for creating NOX and soot emission virtual 

sensors. 
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robustness of the emission models for different ambient conditions, the model is 

validated against multiple sets of data. The validation data is recorded at different days 

and different operating conditions to capture wide range of variability seen by production 

engine. The engine is operated with virtual series hydraulic hybrid powertrain over 

different driving schedules and with different power management strategies in the EIL 

setup. The engine operation along with engine-out emissions is recorded and used for 

validation. Figure 5.12 shows one such validation data set recorded over section of 

FUDS. The emission models are not “aware” of these data sets during training. 

 

 
Figure 5.12: Section of one particular validation data set used for validating the NOX 

and soot emission virtual sensors. 
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5.4 Neuro-Fuzzy Model Tree 

The neuro-fuzzy models belong to hierarchical class of models and are also known 

as Takagi-Sugeno fuzzy models. The approach to modeling is based on divide-and-

conquer strategy i.e. to divide a complex problem into multiple simpler subproblems, 

which then can be identified using simpler class of models like linear, polynomial or 

neural networks. Each local model is then identified independently. The challenge lies in 

the devising the correct division strategy for the original complex problem, selection of 

local model structure and training strategy for local models. 

The concept of multiple models to represent physical system has been independently 

developed in many fields like artificial intelligence and statistics with different names 

like operating regime based models [126], [127], [128] and piecewise local models [129]. 

Different local modeling approaches can be categorized based on the manner in which 

they combine different models. The nested structure of the model combined with 

automatic selection of relevant regressor makes the model developed in this work 

different from previous approaches. Neuro-fuzzy models developed in this work have 

soft partitioning strategies but other strategies involving hard switching between local 

models based on finite state automata or probabilistic approach do exist. 

 Neural-fuzzy models can be considered as an extension of radial basis function 

networks (RBF neural networks). The output weights of RBF are replaced with a local 

function of the inputs. Hence, the validity functions are weighted with their 

corresponding local models [130].  
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Figure 5.13 shows a representation of local neuro-fuzzy model with M local models 

and n inputs. Each submodel has its own local model with associated validity function, 

which determine the regions of input space where that particular model is active. Each 

local model is allowed to have its own unique structure different from other local models. 

The output of local neuro-fuzzy model is given by 

 
 

1

ˆ , ( )
M

i
i

y f w u u


   (5.18) 

i.e. the output of model is the weighted sum of all local sub models. In above equation, M 

is the number of local models and � is the validity function. Output of kth submodel is 

given by 

  ˆ ,ky f w u  (5.19) 

where w and u represents weight and input vector for kth local model. The validity 

functions are normally normalized Gaussian functions 

 
Figure 5.13: Network structure of a static neuro-fuzzy model with M local models and 

n inputs [130]. 
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where,  
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with center coordinates cij and dimension individual standard deviation σij [130]. The 

validity functions are normalized and add up to one. This is a required property to ensure 

the contribution of all the local models add up to 100%. 

 1

( ) 1
M

i
i

u


   (5.22) 

The neuro-fuzzy models can be used to model nonlinear transient processes by 

extending it with the concept of external dynamics model. External dynamics model 

consists of two parts [130]: a nonlinear static approximator and an external dynamic 

filter. Figure 5.14 shows a generic example of external dynamics model [130]. In 

principle any model architecture can be chosen for approximator f(.). The approximator 

should be able to cope with relatively high dimensional of mapping. The dynamic filter is 

generally chosen as the simple time delay, q-1. Neuro-fuzzy models serve as a nonlinear 

static approximate, while a time delay feedback of output behave as a dynamic filter, 

Figure 5.15. In other words, recurrent neuro-fuzzy model tree architecture is adopted to 

predict transient systems. The neuro-fuzzy model tree in Figure 5.15 has M local models, 

each with an associated validity function that determines the region of validity. 

 

 
Figure 5.14: External dynamics approach: the model is separated into static 

approximator and an external filter bank. 
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5.4.1 Neuro-Fuzzy Training Algorithm 

The algorithm for training local linear neuro-fuzzy model is based on algorithm 

proposed by Nelles [130] for Local Linear Model Tree (LOLIMOT). The algorithm 

consists of two loops. The outer loop optimizes the rule premise structure i.e. the 

partitioning of input space, which is defined by center and standard deviation of the 

validity function. The inner loop then finds the optimal structure for local model and 

estimates weight of the local model parameters. 

The algorithm partitions the input space into hyperractangles and trains a local model 

for every hyperranctagle space. The center of each hyperractangle holds the validity 

function with standard deviation based on the boundary of this space. The size of 

hyperrectangle can vary thus allowing certain validity functions to have large standard 

 
Figure 5.15: Network structure of a dynamic neuro-fuzzy model with M local models 

and n inputs with k tapped-delay output feedback. 
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deviation i.e. large area of influence and some with very small standard deviation i.e. 

extremely local influence area. The local model tree grows with iteration where the worst 

performing local model space i.e. model with maximum local error, equation (5.23) is 

divided further into two smaller regions with their corresponding local models. The new 

cut dimension for hyperrectangle is chosen by evaluating cuts in all the possible 

directions and selecting the one that gives the maximum global improvement. 

 
  2

1

ˆ( ) ( ) ( )
N

i i
j

J u j y j y j


    (5.23) 

i.e. the local error, Ji is the sum squared error for all data, N weighted by the validity 

function. 

 

Figure 5.16 illustrates the algorithm in action. The inner loop estimates the optimal 

weights for the local model i.e. parameter optimization for rule consequents. The 

estimation can be carried out either globally or locally. Global estimation requires 

calculating weights for all the local models together and hence takes into consideration 

influence of overlapping validity function. It is more computationally intensive as the 

weights are refreshed for every model with addition of newer local model. In contrast, 

 
Figure 5.16: Operation of LOLIMOT structure search algorithm for a two-dimensional 

input space [130]. 



132 

 

local estimation optimizes the rule consequent parameters separately, neglecting the 

interaction of other local models. The local model estimation approaches global 

estimation with validity function standard deviation, σ → 0, i.e. no interaction between 

local models. With σ increasing i.e. interaction between local models grow, the model 

error increases. Different algorithms can be employed to calculate the optimal weights of 

the local model. Choice of training algorithm is driven by the structure of local models 

like weighted least square for local polynomial models and backpropagation algorithm 

for optimizing the network weights in a multilayer perceptron network. 

5.4.2 Local Models 

The neuro-fuzzy framework allows for integration of different type of local models. 

The models can range from basic linear models to complex high order models. The 

choice of model depends on a priori system knowledge. However, in general, complex 

models do not have any advantage over simpler models as they are against the philosophy 

of the neuro-fuzzy modeling of dividing the complex problem into multiple simpler 

problems. In addition, neuro-fuzzy model training is computationally intensive and 

training algorithms with lower computational cost are preferred.  In this dissertation, two 

different types of local models are used namely linear regression models and neural 

networks. 

5.4.2.1 Linear regression models 

A linear regression model can be represented mathematically as 

 0 1 1 1( ) ( )n n ny c c x c x        (5.24) 

where y is the observed output , u = {x1, … , xn} are the input regressors, ε is independent 

Gaussian noise, {c0, … ,cn} is the regression coefficients and φ1, … , φn may be the 

nonlinear functions.  

The model is “linear” in relation to how the regression coefficients {c0, … ,cn}  

appear in the regression model and not with inputs. For a given training sets of inputs and 

outputs in the form {u1,y1}, {u2,y2} ... {un,yn} where u is the inputs and y is the target , the 

objective is to minimize the sum of squared errors 
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

     (5.25) 

where ˆiy is the linear regression model response, Y is the vector of sampled outputs, X is 

the matrix of input regressors and c is the vector of coefficients to be determined.  

The numerical solution to the above least square minimization problem is given by 

 
1( )T Tc X X X Y  (5.26) 

The above equation requires numerically calculating inverse, which is 

computationally intensive. In this dissertation, built-in Matlab routines are used to 

calculate coefficient matrix efficiently. 

5.4.2.2 Neural networks 

A neural network is a universal function approximator and has been shown capable 

of fitting any nonlinear function ˆ ( )y f u  to an arbitrary degree of precision [112]. A 

recurrent neural network can be represented mathematically as 
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( )
pM

i ij j j
i j

f u w w u 
 

 
  

 
   (5.27) 

where σ (x) is any continuous and monotonically increasing function with σ (x) → 1 as x 

→ ∞ and σ (x) → 0 as x → -∞. A suitable activation function is log-sigmoid or tan-

sigmoid.  Equation (5.27) is the describing equation for a feedforward artificial neural 

network (ANN) with p inputs, a hidden layer comprised of M nodes with sigmoidal 

transfer functions, and a linear output node (implementing a summation of its inputs) for 

each k. Nodes in successive layers are exhaustively interconnected, and there are no 

intralayer links. The θ are nodal biases, treated as adjustable parameters like the weights. 

Multilayer perceptron network is trained using supervised training with training sets 

of inputs and outputs in the form {u1,y1}, {u2,y2} ... {un,yn} where u is the inputs and y is 

the target and 

 ( )i i iy f u    (5.28) 

where ε is independent Gaussian noise. 

The objective is generally to minimize the sum of squared errors 
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where ˆiy is the neural network response. 

The goals of the neural network are to produce small error for the training set, avoid 

overfitting and to respond properly to new unseen inputs, i.e. generalize well. A common 

approach is to add a regularizing term based on the weights of the neural network. The 

new objective function could then be written as 

 ( ) D WF w E E    (5.30) 

where α and β are hyperparamters and 

 21

2W i
i

E w   (5.31) 

with w is the weight vector. 

The main problem with implementing regularization is setting correct values for 

hyperparameters α and β. MacKay [131], [132] applied Baye's formulation to neural 

network training and network regularization. This provides a systematic way of finding 

optimal hyperparameters. In a Bayesian neural network learning framework, the weights 

of the network are considered random variables and are characterized by joint probability 

distribution. Using Baye’s rule 
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



 (5.32) 

where D is the observed data, w is the weights of neural network model H. 

Assuming a Gaussian prior, it can be seen that maximizing only likelihood estimate, 

p(D|w,β,H)  is equivalent to minimizing least square error problem, ED and minimizing 

F(w) is equivalent of maximizing posterior probability, p(w|D,α,β,H) . Baye's rule can be 

applied to optimize the hyperparameters α and β in the objective function. 

5.4.3 Regressor and Structure Selection 

An important aspect of black box model training is the selection of input regressors. 

The regressors should capture the process characteristics and nonlinearities. Considering 



135 

 

irrelevant input regressors can hurt the model performance, as any conventional training 

algorithm will not set the coefficients of these irrelevant inputs to zero. However, 

selecting the best subset of inputs from a given set of n inputs for a given model is a non-

trivial problem. The problem is equivalent of evaluating all combinatorial possibilities i.e. 

2n-1 input subsets, [133]. With large n, this quickly becomes infeasible. This dissertation 

presents two approaches for selecting the most relevant input regressors, namely 

Orthogonal Least Squares and Automatic Relevance Determination.  

5.4.3.1 Orthogonal least squares 

Orthogonal Least Squares (OLS) is a linear subset selection technique. Chen et al. 

[134] gave a detailed overview of algorithm and its application for nonlinear system 

identification. The OLS method involves the transformation of the set of input regressors 

xi into set of orthogonal basis vectors and then calculating the individual contribution to 

the desired output variance from each basis vector.  

 y X e   (5.33) 

where തܺ is the regression matrix, ߠҧis the parameter vector and e is the error. The 

regression matrix is decomposed into തܺ ൌ തܸ ഥܹ  with ഥܹ  being the triangular matrix and തܸ  

being the matrix with orthogonal columns. The space spanned by set of orthogonal basis 

vectors vi is the same as space spanned by the set of xi. The model then can be rewritten 

as 

 y Vg e   (5.34) 

with ݃ ൌ ഥܹ  ҧ which can be derived by any orthogonalization method like Gram-Schmidtߠ

or Householder transformations. The output variance is then be given by 

 2

1

i

n
T T T

i i
i

y y g v v e e


   (5.35) 

The output variance due to regressor vi is given by term ݃௜
ଶݒ௜

 ௜ݒ்
in the equation 

(5.35). A regressor is important if this term is large or in other words, the error reduction 

ratio provides a criterion for subset selection. 
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Utilizing the conventional Gram-Schmidt orthogonalization, the OLS subset 

selection procedure can be summarized as follows.  

In the first step, for i =1,… ,n compute 
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The regressor associated with largest error reduction ratio is selected 
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Define projection operator 
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At the kth step (k = 2, … , nr), for i=1,…,n and i  i1, … , ik-1 compute 
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The regressor associated with largest error reduction ratio is selected 
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The algorithm proceeds with transformation of original regressors into 

orthogonalized basis vectors. Then, the regressor with maximum error reduction ratio is 

selected. The remaining regressors are transformed into new vectors by subtracting the 
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linear combination of all previously selected regressors and re-orthogonalization. The 

idea is for every new piece of data, the actual information content or innovation is 

calculated, where innovation = new data – prediction of the new data based on the 

existing data. The innovation is 0 if the new incoming data can be regenerated based on 

present information. The innovations are mutually uncorrelated (orthogonal in case of 

vectors). The whole algorithm is repeated until desired number of regressors, nr have 

been obtained or the unexplained error fall below a given threshold. 

The standard OLS algorithm computational demand grows with increase in potential 

regressors and size of data set. Chen et al. [135] noted that the standard OLS algorithm 

spends a lot of computation in calculating vector inner products and substantial saving 

can be achieved by updating the scalar inner product. The OLS algorithm implemented 

for input structure selection in this dissertation is derived from Chen et al. [135] to greatly 

reduce computational effort. 

The OLS routines for local subset selection are modified in this dissertation, to 

include the weighting of data in local neuro-fuzzy models. 

 X Q X  (5.48) 

 y Q y  (5.49) 

where Q is a diagonal weighting matrix. The weighting matrix is given by equation 

(5.68).  

5.4.3.2 Automatic relevance determination 

Automatic Relevance Determination (ARD) provides a Bayesian framework for 

ranking the inputs and thereby provides a systematic procedure for the selection of 

relevant inputs from all the input variables. The ARD model introduces a weight decay 

hyperparameter for each input [136], [133]. The idea is that the inputs then can eventually 

be ranked based on their hyperparameters. Inputs with higher priority will be used for 

training model and all irrelevant inputs will be ignored. 

For a multilayer perceptron network, separate hyperparameters αk are defined for 

each input. Along with input hyperparameters, two additional hyperparamaters are 

considered, one for hidden and output layer weights and another one for bias in all the 
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layers (input, hidden and output), Figure 5.17. All weights of subclass are assumed to be 

distributed with Gaussian prior with 0 mean and 1/ αk variance. The evidence framework 

is then applied to optimize all the hyperparameters, αk. The new training objective with 

input relevance is then given by 

 ( )( ) D k W k
k

F w E E    (5.50) 

where 2
( )

1

2

km

W k i
i

E w   and mk is the number of weights in weight class k. 

 

Let p({wi}|{αk},H) be the prior probability distribution of a given neural network 

model, H. This refers to the information about the weight vector, w, prior to any 

observation made on the network and typically, is a flat distribution i.e. all the weight 

values are priori equiprobable. When the data D is observed, the prior distribution of 

weight vector, w is adjusted to a posterior distribution according to Baye's rule 

 
Figure 5.17: Overview of hyperparameters introduced by automatic relevance 

determination technique for input regressor selection. 
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where p(D|{wi},β,H) is the likelihood function, which is the probability of data occurring 

given network, H and weight vector, w. p(D|{αk},β,H) is called evidence and plays a role 

of normalizing constant. Hence, the posterior density of the weight vector, w 

parameterizing the network, H is proportional to the product of likelihood function and 

prior, i.e. 

 *posterior likelihood prior  (5.52) 

Assuming prior distribution of weights to be Gaussian with 0 mean and 1/αk variance 

[132] 
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and noise in the training data set also to be Gaussian with 0 mean and 1/β variance 
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By substituting these probabilities in equation (5.51) 
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It can be seen that maximizing only likelihood estimate, p(D|{wi},β,H)  is equivalent 

to minimizing least square error problem, ED and minimizing F(w) is equivalent of 

maximizing posterior probability, p({wi}|D,{αk},β,H) . However, solving for maximum a 

posteriori estimate (MAP) requires knowledge of hyperparameters {αk} and β. Baye's rule 

is applied to optimize the hyperparameters {αk} and β in the objective function. 
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Assuming uniform prior density p({αk},β|H) for the hyperparameters {αk} and β, the 

posterior is maximized by maximizing the likelihood function, p(D| {αk},β,H). Note the 

likelihood function is same as the normalizing constant in equation (5.51). Therefore 

solving for p(D| {αk},β,H) 
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(5.57) 

The denominator is known from previous equations and the only unknown is 

ZF({αk},β). The objective function F(w) has quadratic shape in a small area surrounding 

minimum point. Applying Taylor series expansion around the minimum point of 
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posterior density wMP and equating the gradient of posterior density function, 

p({wi}|D,{αk},β,H)  at wMP to zero [137], ZF is given by 

        
1/ 2

1/ 2
2 det exp ( )

N MP
F k MPZ H F w


   (5.58) 

where ܪ௞
ெ௉ ൌ ஽ܧଶ׏ߚ ൅ ∑ ௐሺ௞ሻ௞ܧଶ׏௞ߙ  is the hessian matrix of objective function, F(w). 

The optimal values of hyperparameters {αk} and β is calculated by taking derivative 

of log of p(D|{αk},β,H) w.r.t. {αk} and β and setting it to zero [137]. 
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where γk is the number of well determined parameters for weight class k with ߛ௞ ൌ ௞ܰ െ

௞ߙ2
ெ௉ݎݐሺܪ௞

ெ௉ሻିଵ. Nk is the number of weights in weight class k and trace is taken over 

only those parameters.  

The most relevant inputs have small {αk}, since {αk} is inversely proportional to 

variance of corresponding Gaussian prior. Hence, large number of potential inputs can be 

included while training and only the most relevant will be considered automatically 

without the degrading effects [133]. 

5.5 Neuro-Fuzzy Tree based Emission Models 

Figure 5.18 shows the universal model with one model spanning the whole input 

space. As mentioned before, the drawback with this approach is that one unified model 

has to capture all the process nonlinearities. This leads to challenges in picking the 

appropriate model structure and training algorithm. Figure 5.19 summarizes the neuro-

fuzzy model with regressor selection strategy. The neuro-fuzzy model tree algorithm 

divides the input space based on rule premise, z. The algorithm is able to extract variables 

in rule premise vector z, which have a significant nonlinear influence on the process 

output and create partition rules. It subsequently trains the local model valid for a specific 

input region. The regressor selection algorithm helps in structure selection of local 

models by pruning the input variables. Each local model can have different set of input 
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variables. The premise vector, z need not be similar to consequent vector, x. The validity 

function (premises) depends on z and local models (consequents) depend on x. 

 

 

In this dissertation, two different types of transient emission models are developed 

using the concepts of neuro-fuzzy model tree and regressor selection techniques 

presented in previous sections. 

1. Neuro-fuzzy model tree for dynamic programming framework 

2. Neuro-fuzzy model tree based real-time virtual sensors 

 
Figure 5.19: A neuro-fuzzy model with different rule premise and consequent inputs. 

 
Figure 5.18: A global model spanning the whole input space.  



143 

 

5.5.1 Neuro-Fuzzy Model Tree for Dynamic Programming Framework 

The transient emission models developed in this section are designed specifically to 

be used with dynamic programming framework for supervisory controller design for 

hybrid vehicles. The transient emission model is designed with three considerations. 

Firstly, the transient emission models for particulate matter and NOX are to be employed 

in DP framework for solving power management problem. The DP suffers from curse of 

dimensionality i.e. exponential increase in memory and computational cost with increase 

in state space spanned by problem. This effectively puts a constraint on the number of 

states of the problem being solved with DP. Therefore, the transient emission models 

needs to have a minimum number of states. Secondly, the transient emission model needs 

to be computationally efficient to prevent any significant increase in computational 

burden. Finally, the input regressors to the transient emission models are limited to the 

signals available during DP calculations. A simplified engine model with no actuator 

dynamics is used in the DP framework and only a very small set of engine signals are 

available as input to emission model. 

A separate model for predicting transient particulate matter and transient NOX is 

developed. The transient NOX and soot emission models can be mathematically 

represented as 
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where k is the time index, ݓഥ  is the set of neuron weights, ݑത is the set of input 

regressors,߱௘
௞ is current engine speed, ߬௘

௞ is current engine torque, ௜ܲ௠ ൌ ݂ሺ߱௘
௞, ߬௘

௞ሻ is 

steady state inlet manifold pressure, mf  is current mass of fuel injected, ݉௙ሶ  is the rate of 

change of fuel injection, ܱܰݔ௦௦ ൌ ݂ሺ߱௘
௞, ߬௘

௞ሻ is the steady state NOX,  ܲܯ෢ ௞ିଵ is the 

previous predicted particulate matter and  ܱܰݔ෣ ௞ିଵis the previous predicted NOX. The 
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inputs are based on the signals available during DP simulation from the engine model. 

Different combinatorial sets of inputs are tried and the final selection is based on input set 

with best performance with least number of regressors. 

 

To reduce the computational effort, the operating regimes of local model and the 

input space partitioning of the model is not carried out using neuro-fuzzy model tree 

training algorithm described in section 5.4.1. Instead, the input space is divided based on 

engine operating speed into 15 regions and a separate recurrent neural network is trained 

for each operating region. This choice of input space division is based on the experiment 

carried out to characterize the engine described in section 5.3. Figure 5.20 shows the 

partitioning along the engine speed dimension for the models. Triangular membership 

function, Figure 5.21 are used as validity function. This different choice of membership 

function compared to typical Gaussian membership function is to reduce the 

computational cost of calculating the membership function values. Each color in Figure 

5.21 represents a separate validity function and defines the validity of different 

submodels based on engine operating speed. 

 
Figure 5.20: Input space partitioning in the neuro-fuzzy model for dynamic 

programming framework. Input space partitioning along speed dimension is shown 
with respect to engine torque and inlet manifold pressure. 
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Figure 5.22 shows the overview representation of a layer recurrent neural network 

used in this model. Each local neural network has 6 inputs i.e. all the inputs to neuro-

fuzzy model are available to all the local neural networks. Each input is preprocessed and 

normalized between -1 to 1 and is fed to separate input layer with 5 neurons and tan-

 
Figure 5.22: Local neural network model in the neuro-fuzzy model tree for dynamic 

programming framework. 

 
Figure 5.21: Triangular membership function in the neuro-fuzzy model tree for 

dynamic programming framework. 
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sigmoid activation function. The feedback from output is also considered as different 

input. The first set of layers then feed to a hidden layer, which has 30 neurons and tan-

sigmoid activation function. The output layer also uses a tan-sigmoid activation function 

rather than usual linear function to prevent extrapolation and outputs going out of bounds. 

Bayesian regularization backpropogation is used for training the neural network 

[131], [138], [130], [139]. 
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 (5.62) 

where H is the approximate hessian and J is the Jacobian matrix of first derivatives of 

network error with respect to weight and bias, g is the gradient. The addition of μ to the 

approximation of hessian, H prevents inversion of poorly conditioned JTJ. For small 

values of μ, the algorithm approaches Gauss Newton algorithm, while for large values of 

μ it approaches the steepest descent method. The mean squared error with regularization 

performance function is used as cost function. 
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where N is number of training data, n is the number of weights and γ is the performance 

ratio. The performance ratio is optimally calculated using Bayesian approach and 

prevents the neural network from overfitting [131], [140].  

Training a neural network with output feedback requires dynamic backpropagation 

algorithm, which is very slow. Since the true output is available during the training of the 

network, a series-parallel architecture [139] is created. The true output is used during 

training instead of feeding back the estimated output, as shown in Figure 5.23. This has 

two advantages [139]. First, the input to the feedforward network is more accurate and 

second, the resulting network has a purely feedforward architecture and static 

backpropagation can be used for training, which is faster. 
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Figure 5.24 and Figure 5.25 show the model prediction along with steady state model 

predictions and the test cell measurement of particulate matter and NOX respectively 

using fast emission analyzers. It can be seen that neuro-fuzzy models predict particulate 

matter transients more accurately compared to the steady state models with little 

overprediction. Figure 5.26 gives the relative error in predicting transient particulate 

matter emission using neuro-fuzzy model and steady state model for different validation 

data sets. The neuro-fuzzy model is within 20% of cumulative soot recorded by fast 

analyzers compared to 50% error in steady state model. The neuro-fuzzy model for NOX 

has smaller cumulative error of about 10% compared to 20% error in steady state model 

prediction, Figure 5.27. 

 
Figure 5.23: Parallel vs Series-Parallel architecture for training NARX models. 
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Figure 5.25: Neuro-fuzzy based model predictions along with measured data using fast 

analyzers and quasi-steady state model predictions for transient NOX for a particular 
validation data set.  
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Figure 5.24: Neuro-fuzzy based model predictions along with measured data using fast 
analyzers and quasi-steady state model predictions for transient particulate matter for a 

particular validation data set.  
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Figure 5.27: Comparison of cumulative NOX prediction by neuro-fuzzy tree based 
transient emission models for dynamic programming framework and steady state 

models for different validation data set 

 
Figure 5.26: Comparison of cumulative particulate matter prediction by neuro-fuzzy 

tree based transient emission models for dynamic programming framework and steady 
state models for different validation data set. 
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5.5.2 Neuro-Fuzzy Model Tree based Real-Time Virtual Sensors 

The neuro-fuzzy model for transient emission developed in previous section is 

designed specifically to be employed in dynamic programming framework. The model is 

constrained to have minimum number of input regressors and choice of regressors is 

limited. In this section, two different transient emission models are designed to be used as 

virtual sensors along with physical engine in real world operation. The neuro-fuzzy 

model tree algorithm and the experimental data generated above are used for creating 

these models. These models, unlike previous model are not limited to number of input 

regressors and have a larger set of input regressors available. They have access to all the 

signals available from sensors onboard engine and ECU. However, the models should be 

capable of running in real time on an embedded controller along with real engine.  These 

two models employ a more generalized concept of neuro-fuzzy tree. Although the neuro-

fuzzy model tree is a hierarchical structure, the generated models are “flat” in the sense 

that they are non-hierarchical. A natural extension of the neuro-fuzzy model tree is a two 

level hierarchical structure. The local models for the top-level neuro-fuzzy model are also 

a neuro-fuzzy model tree. The second tier neuro-fuzzy model trees in turn have “flat” 

submodels. Figure 5.28 depicts the high-level representation of such a hierarchical model.  

 

 
Figure 5.28: Hierarchical model structure of neuro-fuzzy model tree based virtual 

emission sensors. 
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The overall model output is calculated by summing the contributions of every local 

model at leaf nodes, weighted with their validity function values. The validity functions 

pass their contribution to the next higher node (parent). 
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  (5.64) 

where, ji is the validity function of leaf node local models and ( , )ji jiy f w u are the 

individual outputs of local submodels. 

The problem of developing transient emission models based on the experimental data 

generated in section 5.3.3 lends itself to the above hierarchical structure. The root node 

denotes the whole input space. The root node is partitioned by engine speed into 15 first 

level models. The choice of this partition is logical based on the training signal used to 

generate training data shown in Figure 5.8. The Figure 5.29 show the soft partition of first 

level models based on Gaussian validity functions. The first level models are further 

partitioned into multiple local models (leaf nodes) using the neuro-fuzzy algorithm. 

 

The leaf nodes are partitioned in a 4-D hyperspace. The rule premise space is 

spanned by mass of fuel injected, boost, EGR valve angle and post fuel injection, 

 
Figure 5.29: Soft model partition of first level models based on engine speed using 

Gaussian validity functions. 
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whereas the rule consequent space includes engine speed, fuel injected per cylinder, boost 

pressure, EGR valve angle, rate of change of fuel injection, post fuel injection, their 

previous time histories and previous emission output. Table 5.1 and Table 5.2 give the 

list of included time histories for each signal. The delay for time history is calculated 

using cross correlation of input variable with emission output (section 5.3.2).  

 

 

Each input is preprocessed and normalized between 0 and 1 before training. The 

normalization has the benefit of making the learning more numerically stable. The output 

is then anti-normalized to recover values in original range. 

A multitude of different emission models can be developed based on the above 

framework with different local models and different regressor selection techniques. Two 

such different models are developed in next section. 

5.5.2.1 Neuro-fuzzy model tree with orthogonal least squares 

The local submodel at leaf nodes is polynomial in structure. The local submodel can 

be represented as 

 0 1 1 1 1ˆ ˆ( ) ( ) ( ) ( 1)n n n ny k w w u w u w y k          (5.65) 

Table 5.2: Time delay in input signals considered for NOX model 

Input Signal Time History (sec) 
Speed (RPM) 0 
Fuel Injected (mg/str) 0, 0.1, 0.2, 0.3, 0.4 
Boost (bar) 0 
Angle of EGR Valve (θ) 0, 0.1 
Post Fuel Injection (mg/str) 0 
Rate of Fuel Injection 0 

Table 5.1: Time delay in input signals considered for soot model 

Input Signal Time History (sec) 
Speed (RPM) 0 
Fuel Injected (mg/str) 0, 0.1, 0.2, 0.3, 0.4, 0.5 
Boost (bar) 0 
Angle of EGR Valve (θ) 0, 0.1, 0.2 
Post Fuel Injection (mg/str) 0, 0.4, 0.5 
Rate of Fuel Injection 0, 0.1, 0.2, 0.3, 0.4, 0.5 
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where u = [u1, …, un] is the set of input regressors. In order to introduce nonlinearity in 

input space, the second order multiplication of input data set is also used. Though the 

formulation now includes nonlinearities, the structure of submodel is still linear. 

The leaf nodes and input space partitioning is carried out using neuro-fuzzy model 

tree training algorithm described in section 5.4.1. Each first level model is trained 

separately. The training is stopped if the number of local submodels reaches 20 or the 

sum square error falls below 0.01. Figure 5.30 shows a representative input space 

partitioning at leaf nodes with respect to two different division directions for soot model. 

 

The local model is calculated to minimize the weighted least square error between 

the input and output samples. The solution is given by 

   1T T
i ji ji ji ji jiw X Q X X Q Y


  (5.66) 

where iw  is the weight vector of local model i and this estimate has to be computed 

successively for all local models i = 1, … , M. The Xji is the input regression matrix and 

Qji is the diagonal weighting matrix given by 

 

1

1

1

1 (1) (1) (0) (1)

1 (2) (2) (1) (2)

1 ( ) ( ) ( 1) ( )

ni

ni
ji

ni

u u y u

u u y u
X

u N u N y N u N

   
   
    
   
      





     



 (5.67) 

Figure 5.30: Input space partitioning for a representative first level neuro-fuzzy model 
for soot. Hyperplane divisions along two different input regressors are shown. 
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where N is the number of data samples, ( )u i  is the input regressor set with cardinality n 

chosen by OLS, j  is the validity function of first level model  j, ji is the validity 

function of leaf node local model i.  

The training algorithm for neuro-fuzzy model tree is augmented with the OLS 

algorithm for automatic selection of input structure for leaf node local models from the 

available input vector. The number of regressors selected by OLS is tunable and is 20 for 

NOX and 40 for soot model. The OLS had another termination criterion based on 

unexplained error with 10-2 as the limit. To keep computational cost low, both the weight 

estimation for models and input selection using OLS are done locally. The OLS 

algorithm is nested in the inner loop of neuro-fuzzy model tree algorithm and executed 

before optimization of local model weights. The relevant time lag for some input signals 

change with engine speed due to transport delay of emission specimen from engine 

exhaust manifold to fast emission analyzers. OLS is capable of figuring out the lag time 

automatically and includes only the relevant time delayed signals. This helps in keeping 

the number of input regressors small, making the model more efficient and robust. 

The NOX and soot emission model are trained using the data generated in section 

5.3.3. The virtual sensors are then coded in C++ and implemented in Simulink as S-

function. The Simulink based emission model is then cross-compiled and cross-linked for 

dSpace real-time platform to run in real-time with engine as virtual sensor. The virtual 

sensor interfaces with PUMA Open and receives engine speed, engine boost, in-cylinder 

injected fuel, EGR valve angle and post fuel injection at 10Hz and predicts instantaneous 

NOX and soot emission. The transient emission models are then validated against set of 

validation data (section 5.3.4). Figure 5.31 and Figure 5.32 shows the instantaneous 

predicted and measured particulate matter and NOX emissions respectively along with 

steady state model predictions for one validation data set. The predicted emissions show a 

good match with soot and NOX measurements from fast analyzers. The model prediction 

over transient engine operation is far superior to steady state model predictions for soot 



155 

 

emissions, as seen in Figure 5.31. The ability of the virtual sensor to capture frequent 

transient spikes of soot emission is particularly relevant since steady-state model 

significantly underpredicts concentrations during dynamic engine operation.  

The error in predicting cumulative particulate matter and NOX by the neuro-fuzzy 

models for different data set is shown in Figure 5.33 and Figure 5.34 respectively along 

with steady state model errors. Looking at the cumulative emissions, the steady state 

model underpredicts soot consistently by around 50%. The proposed emission virtual 

sensor provides an order of magnitude improvement, since the soot predictions are only 

at max 10% higher compared to measurements. 

To explain the deficiencies of steady state models to predict transients correctly, we 

need to look closely into engine operation during transients. Consider the time interval 

around 35 sec. The engine command changes nearly instantaneously and the fuel injected 

follows the demand. The intake manifold pressure lags due to turbocharger inertia and the 

delay in boost pressure results in lower in-cylinder air-to-fuel ratio. The EGR command 

also changes to zero, however, residual gas dynamics have slower time scales and it takes 

time to purge the intake manifold. In addition, step change of load results in increased 

exhaust backpressure to inlet manifold pressure thereby increasing the internal residual 

[10], [11]. The presence of residual helps in reduction of NOX but results in higher soot 

production. The combined effect of high instantaneous values of Fuel/Air ratio at the 

onset of the load transient [10], [11] and increased residual lead to sharp spikes of 

particulate concentration. The steady state emission model is only function of engine load 

and hence, cannot capture the transient effects. The transient model, on the other hand, 

can capture the effect of turbocharger inertia and EGR valve actuator dynamics on in-

cylinder constituents, thereby giving superior predictions of resulting emissions. 
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Figure 5.32: Neuro-fuzzy based model with OLS predictions along with measured 

data using fast analyzers and quasi-steady state model predictions for transient NOX 
emission for a particluar validation data set. 
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Figure 5.31: Neuro-fuzzy based model with OLS predictions along with measured 

data using fast analyzers and quasi-steady state model predictions for transient 
particulate matter emission for a particular validation data set. 
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Figure 5.34: Comparison of cumulative NOX prediction by neuro-fuzzy tree based 

transient emission models with OLS and steady state models for different validation 
data set. 

 
Figure 5.33: Comparison of cumulative particulate matter prediction by neuro-fuzzy 
tree based transient emission model with OLS and steady state models for different 

validation data set. 
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5.5.2.2 Neuro-fuzzy model tree with automatic relevance determination 

The leaf node submodels are multi-layer perceptron neural networks and can be 

represented as 

 1 1 1ˆ ˆ( ) ( , ( 1), , ( ), , ( 1), , ( ), ( 1))n n ny k f w u k u k d u k u k d y k         (5.69) 

where w is the weight parameter, u = [u1, …, un] is the inputs with maximum delay for 

each input obtained from cross correlation with output, d = [d1, … , dn] respectively.  

 

Each first level neuro-fuzzy model is further divided into several submodels using 

the local neuro-fuzzy training algorithm described in section 5.4.1. Each first level model 

is trained separately. The training is stopped if the number of local models reaches 20 or 

the sum square error falls below 0.01. Figure 5.35 shows a representative input space 

partitioning at leaf nodes with respect to 2 different division directions for NOX model. 

Each hyperplane in Figure 5.35 represents input space modeled by a different local neural 

network.  

The local neural network weights are trained using backpropogation with the 

objective function given by equation (5.50) and the update rule is given by 

 1
1 ( )T T

k kw w J J I J e  
     (5.70) 

where γ is the step size, w  is the weight vector, J is the Jacobian of error with respect to 

weights, e is the error and μ is the term added to deal with singularity of JTJ.  

 
Figure 5.35: Input space partitioning for a representative first level neuro-fuzzy model 

for NOX. Hyperplane divisions along two different input regressors are shown. 
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The input regressor selection for local models is based on three step procedure 

described section 5.3.2. A serious drawback with this approach i.e. relying solely on 

correlation for regressor selection is that correlating finite random signal will always 

show random correlation between input and output. This can lead to inclusion of 

irrelevant inputs for training of local neural network. A conventional neural network will 

not set the coefficients of these junk inputs to zero, thereby hurting the performance of 

the local model. However, models trained with ARD algorithm are capable of rejecting 

the junk inputs. The ARD is performed for optimization of every local neural network 

weights. The ARD ensures considering only relevant inputs and prevents the local 

models from overfitting.  

The training is carried using the training data (section 5.3.3) and subsequently 

validated using validation data (section 5.3.4). Figure 5.36 and Figure 5.37 shows the 

validation results of the neuro-fuzzy based virtual sensors for particulate matter and NOX 

respectively for one validation data. It can be seen from the results the neuro-fuzzy based 

models do a good prediction of transient particulate matter and NOX emissions compared 

to the steady state models. This improvement in predictiveness is particularly strong in 

the case of transient soot emissions as shown in the Figure 5.36. The steady state (static) 

model is incapable of predicting spikes of every particulate concentration occurring at the 

initiation of rapid increase of load. The neuro-fuzzy model tree accurately predicts the 

timing and duration of spikes and slightly over predicts the magnitude of the peaks. 

These features make it very well suited for the system level analysis and control 

development. Finally, Figure 5.38 and Figure 5.39 give the error in cumulative prediction 

of particulate and NOX for the proposed neuro-fuzzy model with ARD along with steady 

state models for 3 different data sets.  
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Figure 5.37: Neuro-fuzzy based model with ARD predictions along with measured 
data using fast analyzers and quasi-steady state model predictions for transient NOX 

emission for a particular validation data set. 
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Figure 5.36: Neuro-fuzzy based model with ARD predictions along with measured 

data using fast analyzers and quasi-steady state model predictions for transient 
particulate matter emission for a particular validation data set. 
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Figure 5.39: Comparison of cumulative NOX prediction by neuro-fuzzy tree based 

transient emission models with ARD and steady state models for different validation 
data set. 

 
Figure 5.38: Comparison of cumulative particulate matter prediction by neuro-fuzzy 
tree based transient emission models with ARD and steady state models for different 

validation data set. 
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Chapter 6  
 

CONCLUSIONS 

6.1 Summary 

This dissertation provides a systematic framework for designing optimal power 

management controller for hybrid vehicles with multiple objectives. In particular, we 

apply the technique to minimize transient emissions along with fuel consumption in 

series hydraulic hybrid vehicle. The two key fundamental contributions of this work lies 

in the field of newer algorithms based on dynamic programming framework for problems 

with large state space, and advanced transient diesel emission models for soot and NOX. 

The contributions of this work spans the full range of development process from 

theoretical analysis to model based controller development to implementation on 

hardware and real world testing. 

The Chapter 2 introduced the mathematical models of vehicle and powertrain for 

development and validation of optimal controllers for hybrid vehicles. Two different 

categories of the models are developed. First, a high fidelity physics based models are 

developed for vehicle simulation and evaluation of different power management 

strategies. Second, control-oriented models are developed to be employed within 

dynamic programming framework. The control-oriented models ignore system dynamics 

faster than 1 Hz and are computationally very fast. The chapter also introduces the 

Engine-In-the-Loop (EIL) facility at the University of Michigan. The EIL allows for 

concurrent running of the real diesel engine connected with virtual powertrain/vehicle 

and measure real-time transient emissions using fast analyzers. Finally, a baseline 

thermostatic controller is developed. The controller is rule-based design with engine 

power demand based of present SOC. The controller thresholds are tuned using 
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parametric study similar to previous work done by Filipi et al. [23]. A 40% fuel economy 

is reported over FUDS compared to conventional vehicle. 

The Chapter 3 investigates optimal power management for a series hydraulic hybrid 

vehicle. A Markov chain model for driver demand dynamics is developed with the 

transition probability matrix based on statistical sampling of naturalistic driving 

schedules.  The power management problem with fuel economy objective is formulated 

as an infinite horizon discounted future problem and solved via stochastic dynamic 

programming techniques. The analysis includes additional degree of freedom compared 

to the traditional approach, as the engine power demand is split into two variables, 

namely engine torque and speed.  The algorithm moved engine torque/speed points away 

from the best BSFC line to maximize the combined engine-pump power generation 

subsystem efficiency.  This is a valuable lesson, indicating what is preferred from the 

system standpoint.  The engine operation resembles load-following mode, except the 

speeds are much lower than in the case of a mechanical transmission, hence pushing the 

loads up into the high-efficiency region.  The performance of supervisory controller is 

compared with baseline thermostatic controller and an improvement of 17% in fuel 

economy is reported. The system centric SDP controller also showed an additional 3-4% 

improvement over engine centric SDP controller. 

The Chapter 4 introduces the concept of neuro-dynamic programming (NDP). NDP 

is an extension of dynamic programming framework designed to alleviate the curse of 

dimensionality. The idea centers on evaluation and approximation of optimal cost-to-go 

function. Two key aspects of the NDP approach are: 

1. Cost-to-go approximation with functional representation: The cost-to-go is 

approximated using neural networks. This reduces the memory requirement as 

only the parameter vector needs to be stored in comparison to complete cost-to-go 

vector.  

2. Incremental learning of cost-to-go: The learning of the cost-to-go function is 

performed in an incremental fashion using temporal difference algorithm.  

The significance of NDP approach lies in the fact that, in contrast to deterministic 

dynamic programming or stochastic dynamic programming, the computational effort and 
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memory resources in case of NDP increases linearly with parameters in functional 

representation rather than exponentially with state space. This makes the approach 

scalable to more complex problems with larger state-action space. 

A self-learning neural network based power management controller is designed for 

series hydraulic hybrid. The vehicle power management problem is formulated as a 

Markov decision process and solved using NDP techniques. To validate the NDP 

approach, first a single objective problem with only fuel consumption consideration is 

solved. The controller not only learned to manage the two power sources, namely engine 

and hydraulic energy stored in accumulator but learned to do so efficiently. The NDP 

based controller is compared against a baseline SDP controller. The fuel economy and 

system operation by both the controllers i.e. NDP and SDP are very similar and this 

effectively validates the NDP based approach for design of supervisory controllers. Next, 

the power management problem is augmented with transient emission model and newer 

power management problem is formulated with multiple objectives i.e. minimization of 

fuel consumption, and transient NOX and soot emission. The NDP controller successfully 

solved the problem with a state-action space of 1013, which is computationally intractable 

with classical SDP. The NDP controller is simulated over different EPA driving 

schedules and results were reported. 

To assess the real world potential of NDP controllers, the performance of different 

power management controllers over FUDS is evaluated using the EIL facility. The 

controller and virtual hybrid powertrain is simulated on dSPACE real-time platform. EIL 

results showed that self-learning neural controller is able to successfully orchestrate the 

power in a series hydraulic hybrid to meet performance objectives while significantly 

reducing particulate matter and NOX emissions and preserving most of the fuel economy 

gain attainable with optimized SDP policy. EIL results also demonstrate the robustness of 

the self-learning neural controllers’ performance in real world environment and ability to 

perform exceedingly well in the presence of sensor noise or virtual sensors. 

The Chapter 5 proposed modeling neuro-fuzzy based transient emission models for 

particulate matter and NOX in diesel engine. They accurately capture the transient 

dynamics of soot and NOX emissions unlike steady state models. In particular, the new 

model is able to capture extreme spikes of soot emissions occurring at the onset of rapid 
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load increases. The model is intended to run on a microprocessor in real-time and predict 

engine-out soot and NOX emissions using signals from the ECU and low-cost physical 

sensors. The key aspects of this modeling work are: 

1. Modeling relies on dividing the input space into smaller subspaces and fitting 

local models.  

2. Recurrent architecture of the model allows for capturing transient characteristics. 

3. Selection technique, orthogonal least squares is applied for selecting the structure 

of local model inputs.  

4. Multi-level pseudo random perturbation signal is designed specifically for 

characterizing the diesel engine transients. 

5. Virtual sensors are fast and capable of running in real-time along with the real 

engine. 

In particular, three different transient emission models were proposed. The first 

model is designed to be employed with optimal control design framework. The model 

traded complexity and accuracy for very fast computation. The model have heuristic 

division of design space and pre-selection of local model structure. Each local model is a 

recurrent neural network and connected by triangular membership function. The second 

transient emission model has two-level hierarchical structure with polynomial local 

submodels and employs orthogonal least squares selection technique for selecting the 

structure of local submodel inputs. The model employs neuro-fuzzy model tree training 

algorithm for automatic division of input space and selection of local submodel. Gaussian 

validity functions are chosen for determining influence region of each local submodel. 

The model combines orthogonal least square selection technique for selecting the 

relevant input regressors for each local model. Finally, the third model also has two-level 

hierarchical model with local multilayer perceptron network and also employs neuro-

fuzzy model tree training algorithm for input space partitioning. A selection technique 

based on Baye’s framework for automatic relevance determination is applied for 

shortlisting the relevant inputs. All the three type of models are coded in C for 

performance. The training and validation data is obtained from the experimental setup at 

the University of Michigan for transient testing of a medium duty diesel engine-in-the-
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loop with virtual vehicle. Comparison of the predictions with transient measurements 

demonstrates good agreement. The models accurately capture the transient dynamics of 

soot and NOX emissions, and predict the extreme spikes of soot with change in load 

unlike steady state models. 

In summary, the dissertation advances the knowledge in the field of optimal control 

design for developing advanced power management controllers with very large state 

space. The controller effectively manages multiple objectives of fuel consumption and 

transient NOX and soot emissions, another first in the area of power management. The 

dissertation also advances the knowledge in the development of transient emission virtual 

sensors for control studies and onboard vehicular application.  

6.2 General Comment 

Throughout this dissertation, the design of optimal controller with multiple 

objectives has been emphasized. The work is novel and different from previous work 

done in the field of power management controller for hybrids in sense that it incorporates 

transient emission objectives. Nevertheless, the main contribution of this work lies in the 

innovative neuro-dynamic programming algorithm for stochastic optimization and its 

viable applicability to alleviate the curse of dimensionality associated with dynamic 

programming based algorithms.  

Dynamic programming is an effective tool for solving Markov decision problems i.e. 

problems of sequential decision making under uncertainty (stochastic control). Dynamic 

programming can be applied to find optimal solutions using constrained non-linear model 

based systems. However, as mentioned before, dynamic programming based algorithms 

have to deal with curse of dimensionality. A detailed modeling of multiple phenomena 

invariably involves increase in system/plant states and the space spanned by the states 

grows exponentially. This makes the application of dynamic programming to practical 

real-world problems somewhat limited. Neuro-dynamic programming combines the 

strengths of classical dynamic programming with innovative techniques like 

reinforcement learning, temporal difference learning and cost-to-go functional 

approximation. This allows more complex real-world problems to be optimally solved. 
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6.3 Summary of Contributions 

The contributions of this dissertation are summarized below: 

1. A self-learning power management controller is introduced which learns by 

interacting with the environment. The power management controller successfully 

learns to minimize combined weighted objective of fuel consumption and 

transient engine emissions.  

2. The neuro-dynamic programming is successfully applied for the first time in 

context of designing power management controller for hybrids with multiple 

objectives. The algorithm is the first demonstration of application of policy 

optimization based power management controller with 8 states and state-action 

space cardinality of 1013. Mathematical techniques like functional approximation 

of cost-to-go function and incremental training using temporal difference learning 

are introduced for the first time in the context of designing hybrid power 

management controller. 

3. Transient emission models for soot and NOX are developed. These transient 

models are implemented in real time and are validated by running concurrently 

with physical engine. The models are based on neuro-fuzzy model tree with the 

modeling technique motivated by the idea of divide and conquer of the input-

output space. The models are capable of predicting transient soot and NOX 

emissions over complete range of engine operation with input parameters 

available from standard ECU and sensors. 

4. The proposed power management controller is simulated along with virtual hybrid 

powertrain concurrently with real engine in the EIL facility for realistic evaluation 

in real-life conditions. A systematic approach for transitioning from simulation to 

embedded controller for real world application is presented. 

5. Two different powertrain models, namely control oriented and vehicle simulation 

models are developed for series hydraulic hybrid architecture.  

6. A power management controller with fuel economy objective is solved using 

SDP. The problem is formulated to produce state feedback of desired set point for 

both engine speed and torque i.e. the engine is not restricted to operate along the 
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best BSFC line unlike previous works where the sole controller output is engine 

power demand i.e. the engine is operated along best BSFC line. 

7. A multi-Pseudo Random Signal (m-PRS) perturbation signal is designed 

specifically for characterizing the diesel engine. The test signal is designed to 

excite all the engine operating frequencies to ensure the training data obtained 

captures all the operating regimes of the engine 

8. Multiple numerical techniques are introduced to reduce the computational time of 

policy optimization techniques. 

9. Fast transient emission analyzers are used to develop deep insight into engine 

system behavior and quantifying the emission reduction with new proposed 

controller. 

6.4 Perspective on Future Work 

The dissertation proposes a new approach to design supervisory controller for hybrid 

vehicles. The proposed algorithm scales well with increase in state-action space and 

framework allows for integrating multiple objectives. Nonetheless, there exists several 

opportunities to advance the work presented here. From the application standpoint, the 

algorithms can be applied to different hybrid architecture or with different cost 

objectives. From theoretical perspective, the algorithms can be augmented to solve other 

problems. Some of these future works is presented next. 

6.4.1 Application to Other Optimal Power Management Problems 

The proposed neuro-dynamic programming technique can be applied for designing 

optimal control for hybrid vehicles with other objectives like battery health [141], [142], 

drivability [143], [144] and thermal management [145]. Previous work has relied on 

model order reduction techniques to allow integration of these models within dynamic 

programming framework. Another common approach is to discretize continuous state 

variables coarsely to reduce space spanned by states. Since the NDP algorithm scales 

well with increase in state space, advanced models can be included without exponential 

increase in computational resources. For example, the HEV problem formulated by 
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Moura et al. [142] can be expanded to include full electrochemistry model or the hybrid 

model can be augmented with thermal models to include thermal effects in power 

management controller design. 

6.4.2 Adaptive Markov Model for Driver 

The NDP algorithm presented in this dissertation relies on an underlying Markov 

chain model for drive cycle. The transition probabilities are calculated a priori by 

statistically analyzing the naturalistic driving schedules. The underlying Markov driver 

model can be adapted to learn driver behavior based on real-time observations similar to 

work done by Bichi et al. [146]. The NDP algorithm is incremental in nature and can be 

modified to learn the optimal power management strategy on-board vehicle with 

modified Markov model. This will result in adaptive self-learning power management 

strategies that adapts to vehicle driving schedule and driver driving behavior.  

6.4.3 Powertrain-In-the-Loop 

The proposed power management strategies are demonstrated using the EIL setup. 

EIL facility provides a systematic evaluation of engine transients and engine-out 

emissions. However, the effects of system level interaction of powertrain components 

with engine are limited to dynamical effects modeled in virtual real-time models. The 

setup is presently being upgraded to Powertrain-in-the-Loop (PIL) facility with physical 

pump connected to engine and hydraulic motor connected to dynamometer [80]. The PIL 

facility will allow in-depth analysis of the effect of component level dynamics on engine 

performance i.e. fuel consumption and transient emissions. The findings from PIL can 

then be used to improve and re-calibrate the simulation models to better capture transient 

behavior and increase fidelity of optimal power management techniques. 

Figure 6.1 shows a picture of the hardware included in the H-PIL setup at the 

University of Michigan. The power generation subsystem comprises the V8 diesel engine 

and the hydraulic pump, shown in the forefront. The propulsion subsystem includes a 

hydraulic traction motor coupled with a dynamometer, which simulates the vehicle 

inertia. There is no physical connection between the power generation subsystem and 

propulsion subsystem except for the hydraulic fluid. 
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6.4.4 Different Approximate Dynamic Programming Algorithms 

The dissertation proposes temporal difference learning based algorithm for 

incremental upgrade of cost-to-go functional. Other machine learning techniques by 

Sutton [108] like SARSA and Q-learning can also be explored.  

6.4.5 Different Approximation Architectures 

The cost functional in this dissertation is approximated using neural networks. 

Though neural networks are universal approximators and lend them beautifully to the 

problem, training them requires large computational resources and sophisticated 

numerical techniques. Specifically, when neural network is trained incrementally and the 

training is feedback in nature i.e. the output of neural network is also used to train the 

network. Simpler functional approximations [109], [108] like polynomials, splines, 

wavelets, coarse coding, tile coding and Kanerva coding can be used instead for 

functional approximation. These approximating functions are particularly useful where 

the cost-to-go function does not have very complex shape or prior information about 

cost-to-go function is available. 

 
Figure 6.1: Hydraulic hybrid powertrain-in-the-loop setup. 
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6.4.6 Adaptive Grid 

The state variables in this dissertation are discretized with uniform spacing. In [147] 

the concept of adaptive grid generation is introduced. The idea is to use a coarse grid to 

solve the problem. The solution of this controller is used as starting point for next 

problem with finer grid. This process is repeated until the solution for the desired grid 

resolution is obtained. This idea with one-dimensional grid was demonstrated in [147] 

with problem solved using linear programming. This idea can be extended to neuro-

dynamic programming algorithm outlined in this dissertation. 

6.4.7 Emission Models 

The emission models developed in this dissertation are capable of being employed 

either in control optimization studies or running along with physical engine as a virtual 

sensor. The transient model-based NOX and soot virtual sensors can provide real-time 

predictions and can be used in engine-oriented strategies that require feedback of 

emissions under transient operating conditions.  

6.4.8 Pareto Optimality Sets 

It is straight forward with the proposed NDP approach to generate pareto optimality 

sets by sweeping through different weighting matrix in the objective function. The goal 

of the dissertation is to develop new power management techniques to alleviate the curse 

of dimensionality in dynamic programming framework. The code is not suitable for 

generating optimal front, as the time required to solve each NDP problem is large with 

present algorithm. The algorithm uses Matlab based implementation of neural network, 

which is suboptimal. If goal is to generate pareto optimality set, the design process can be 

significantly improved by using more efficient C implementation of neural networks. 
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APPENDIX A  
 

TEST CELL SPECIFICATION 

A.1 Engine  

A 6.4 L V-8 direct-injection diesel engine manufactured by the Navistar Ltd. is used 

for this work. Engine specifications are given in Table A.1. The engine is intended for a 

variety of medium duty truck applications covering the range between Classes IIB and 

VII.  The engine is a modern, state-of-art and incorporates advanced technologies to 

provide high power density while meeting 2007 emissions standards. The engine 

incorporates common rail direct injection (CRDI) system, which permits precise control 

of fuel injection timing, pressure, quantity, and number of injections. In order to meet 

NOX regulations, engine uses exhaust gas recirculation (EGR) circuit to introduce cooled 

exhaust gases into the intake manifold.  EGR flow rate is controlled through modulation 

of the EGR valve. The dual stage variable geometry turbocharger (VGT) is used to 

enhance engine performance, as it reduces boost lag and allows control of the intake 

manifold pressure. Figure A.1 gives the engine brake specific fuel consumption map used 

in this dissertation. The BSFC map was generated at the University of Michigan. 

 

 

Table A.1: Diesel engine specifications 

Engine Type DI 4-Stroke Diesel Engine 
Configuration V-8, Cam-in-Crankcase, 90° 
Bore x Stroke  98 mm x 105 mm 
Displacement  6.4L 
Rated Power 261 kW @ 3000 RPM 
Rated Torque  881 Nm @ 2000 RPM 
Compression Ratio 16.7 : 1 
Valve Lifters Push Rod-Activated Rocker Arm 
Aspiration Variable Geometry Dual stage Turbocharger / Intercooler 
Fuel Delivery System Common Rail Direct Injection (CRDI) 
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A.2 Dynamometer 

The engine is coupled to a 330 kW AVL ELIN series 100 APA Asynchronous 

Dynamometer.  This dynamometer is especially suited to perform transient testing with a 

5 ms torque response time and a -100% to +100% torque reversal time of 10 ms. AVL 

PUMA Open system orchestrates engine operation in the test cell, and provides 

monitoring and control of test cell functions.  The AVL PUMA interfaces and 

communicates with dSPACE real-time system. This facilitates concurrent running of 

engine with virtual driveline and vehicle systems. The engine is fully instrumented with 

both 10 Hz time-based measurements of pressures, temperatures and flow rates at various 

locations in the system, and 0.1 crank-angle resolved in-cylinder pressure traces.  

ETAS INCA software is used for interfacing with the engine’s Powertrain Control 

Module (PCM). INCA allows full control over injection parameters, EGR valve and VGT 

vane settings. The setup allows synchronized data recording between INCA and PUMA 

Open system. 

 
Figure A.1: International 6.4L V8 BSFC map with best BSFC line shown in green. 
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A.3 dSPACE 

The dSPACE real-time platform is a modular system with flexible processor and I/O 

board arrangement. The dSPACE system simulates virtual components in real-time, 

communicates with the engine and the dynamometer via a test cell controller, and finally 

supervises and coordinates operation of the hybrid powertrain. The DS1006 simulates the 

virtual models in real-time, and coordinate the communications between the I/O boards. 

The custom AVL board interfaces the dSPACE control box with the PUMA Open system 

and allows two-way communication between dSPACE and AVL PUMA. The dSPACE 

electronics specifications are given in Table A.2. 

 

A.4 Emissions measurement 

A.4.1 Fast NOX Analyzer 

A CLD 500 Fast NOX analyzer is used for accurate temporal measurement of NOX. It 

consists of a chemiluminescent detector with a 90%10% response time of less than 3 

ms for NO, and less than 10 ms for NOX. The detectors in remote sample heads are 

positioned very close to the sample point in the engine and use vacuum to convey the 

sample gas to the detectors through narrow heated capillaries. 

Table A.2: dSPACE electronic system specifications 

Item Description 

PX10 
Power supply, motherboard, optical network card and electronics 
casing. 

DS1006 
2.2 GHz processor board, with 256 MB DDR SDRAM, 128 MB 
SDR SDRAM and 2 MB flash memory. 

AVL interface 
2 link interfaces, 10 frequency inputs and 10 frequency outputs or up 
to 20 digital inputs and 20 digital outputs. 

DS2202 

I/O hardware with 16 differential A/D channels, 20 D/A channels, 38 
digital inputs, 24 PWM measurement inputs, 16 digital outputs, 9 
PWM outputs, 2 CAN channels, 2 serial interface and 2 CAN 
interface. 

DS4302 
4 independent CAN channels, 50 MHz processor, 128K 32-bit 
SRAM, 512K 8-bit flash memory 
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The Fast NOX analyzer provides NOX concentration in parts per million (ppm).  This 

can be subsequently converted to mass flow of NOX with the equation 

  fuelair
exhaust

NOxNOx
NOx mm

MW

MWppm
m  

10000
 (A.1) 

where MWNOx is molecular weight of NOX, MWexhaust is molecular weight of exhaust, and 

( fuelair mm   ) is the total mass flow rate of exhaust. The total mass flow rate is measured 

using AVL Combustion Emissions Bench (CEB-II). 

A.4.2 Fast Particulate Differential Mobility Spectrometer 

Temporally resolved particulate concentrations are obtained using a differential 

mobility spectrometer (DMS) 500.  This instrument measures the number of particles and 

their spectral weighting in the 5 nm to 1000 nm size range with a time response of 200 

ms. The DMS provides aerosol size spectral data by using a corona discharge to place a 

prescribed charge on each particle.  The charged particles are then carried along a 

classifier column by a sheath of clean air, as shown in Figure A.2.  Within the column, 

particles are subjected to a radial electric field from a central electrode, which repels 

them towards the periphery.  Particles with lower aerodynamic drag-to-charge ratio will 

deflect more quickly and are attracted towards electrode rings closer to the beginning of 

the classifier column, and vice versa.   

 

As the particles land on the grounded rings, they give up their charge and these 

outputs from the electrometers are processed in real time to provide spectral data and 

other desired parameters.  Typical spectral data from the DMS 500 are shown in Figure 

 
Figure A.2: DMS 500 Classifier Column – from [151]. 

 Sample Flow 
Sheath Flow

High Voltage Electrode

Grounded Electrode Rings 
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A.3 where the x-axis is particle diameter (DP) in nanometers and the y-axis is the spectral 

density with a unit of dN/dlog DP/cc.  Thus, the area under the curve represents the 

number of particles per cubic centimeter of sample. 

 

To obtain total particle mass, the data is grouped into particle diameter bins.  The 

density of the particles within each bin is assumed to be constant and then the mass of 

particles in each bin is determined by [148]: 

 3 2.34Particle Mass = 6.95 10 Number of ParticlesPD    (A.2) 

In this equation, the non-spherical nature of particle shapes is accounted for by the 

diameter (Dp) exponent smaller than three.  The leading coefficient acts as a “pseudo-

density” for the particles in that bin; its magnitude is affected by particle constituents and 

also the unit changes that occur with the non-integer particle diameter exponent.  After 

the particle mass is calculated for each bin, the total mass is found by summing the 

masses in each bin and dividing it by the number of bins per decade.   

 3Total Mass [kg/m ]Bins

Mass

Bins Decade

 
 
 


 (A.3) 

This summation is used as an approximation that accounts for integration over a 

logarithmic scale. 

 
Figure A.3: Sample particulate spectral density curve. 
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APPENDIX B  
 

TRAINING ALGORITHMS 

The training of neural network is an optimization problem where the goal is to find 

the optimum set of parameters of an approximating architecture that provide best fit 

between input/output pairs. The estimation problem can be stated as optimizing the 

expectation of a function  

   min
r R

F r


  (B.1) 

where typically F is the mean square error (MSE).  

The challenges arise when approximating a DP cost-to-go function using sample pair 

൫݅,  መ generated using Monteܬ መ൯ of states i and corresponding noisy cost-to-go estimateܬ

Carlo simulation. In the context of cost-to-go function, the optimal parameter vector r can 

be obtained using following equation. 

 
   

2
21 1ˆ ˆarg min ( ) min ( )

2 2

m

i i
r R r R

i

r J J r J J r
 

       (B.2) 

where ܬመ is the estimate of *J  at present instance and ܬሚሺݎሻ is the present representation of 

cost-to-go functional.  

The Monte Carlo based algorithm described in Chapter 4 generates the sample pair 

൫݅,  መ൯  incrementally, one at a time. Batch training algorithms, owing to the nature of theܬ

problem, i.e. iterative generation of sample pair and extremely large size of state space, 

cannot be employed for optimizing the parameter vector. The optimization problem needs 

to be solved using iterative algorithms. Next section gives a brief overview of different 

iterative algorithms adapted for training cost-to-go function in this work. 
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B.1 Steepest Descent 

The stochastic gradient descent method is given by 

 1 ( )n n nr r F r     (B.3) 

where γ > 0 is the step size. Substituting for F 

  1
ˆ( ) ( )n n nr r J r J J r       (B.4) 

B.2 Gauss-Newton Method 

Given rn, the Gauss-Newton iteration is based on linearizing F around rn to obtain 

the function 

 ( , ) ( ) ( ) ( )T
n n n nF r r F r F r r r    (B.5) 

And then minimizing the norm of the linearized function F  

 

 

2

1

2

1
arg min ( , )

2
1

arg min ( ) 2( ) ( ) ( ) ( ) ( ) ( ) ( )
2

n n

T T T
n n n n n n n n

r F r r

F r r r F r F r r r F r F r r r

 

        



(B.6) 

The above quadratic minimization leads to 

   1

1 ( ) ( ) ( ) ( )T
n n n n n n nr r F r F r F r F r



         (B.7) 

where γ is the step-size.  Substituting for F 

    1

1
ˆ( ) ( ) ( ) ( )T

n n nr r J r J r J r J J r


           (B.8) 

B.3 Levenberg-Marquardt Method 

The Gauss-Newton method can be modified to ensure steady descent, and to deal 

with singular matrix ሺܬ׏ሚሺݎሻ ·  ሻ்ሻ and to enhance convergence when matrix is nearݎሚሺܬ׏

singular). The Gauss-Newton method is modified with inclusion of μI where μ is a small 

positive multiplier and I is the identity matrix. 

    1

1
ˆ( ) ( ) ( ) ( )T

n n nr r J r J r I J r J J r 


            (B.9) 
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B.4 Extended Kalman Filter (EKF) 

The extended Kalman filter can be employed for parameter estimation by 

augmenting the system states with unknown parameters. If Kalman filter is to be 

employed only for estimation, the system can be considered stationary with no system 

dynamics. The augmented states and system equation is then given by 

 ˆ
x

x
r

 
  
 

 (B.10) 
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  
 

 (B.11) 

where yn is the output of the system at observation time n and, nonlinear functions f(·) and 

h(·) are defined below. The vn is zero mean white Gaussian noise with covariance R. 
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n n
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r

h x F r
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 



 (B.12) 

Using preceding model and observations, the estimate of the system states can be 

updated as follows 

 

 1 1 1 1

1

1 1 1 1 1

1 1 1

( , ) ( )n n n n n n

T T
n n n n n n

n n n n n

x f x u K y h x

K P H H P H R

P P K H P

   



    

  

  

   
 

  

 (B.13) 

where Kn is the Kalman gain matrix, yn-1 is desired output, Hn is the gradient matrix 

obtained by linearizing the h(·), and Pn is the matrix representing the uncertainty in the 

estimates of the states of the system. 

 
ˆ

ˆ( ) ( )
ˆ

n

n n
x x

H h x F r
x 


  
 

 (B.14) 

Substituting for F, the EKF update can be written as 

  1 ( ) ( )n n n n n nr r K F r F r      (B.15) 

and, 
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APPENDIX C  
 

STEP SIZE RECIPES 

The step size plays an important role in convergence of stochastic iterative 

algorithm. The parameter vector r in stochastic environment cannot converge to limit 

vector r*. In the best circumstances, r will reach neighborhood of a solution r* and will 

move randomly in that neighborhood. The size of neighborhood can be controlled and 

can be made smaller by using smaller  but convergence to r* cannot be obtained until  

is positive constant. If on the other hand,  is allowed to decrease to 0, the possibility of 

parameter vector converging to r* exists. However, if the  decreases too quickly, the 

algorithm will never succeed in converging to r*. One of the challenges in Monte Carlo 

methods discussed in this dissertation is finding the appropriate step size . A standard 

technique in deterministic problems is to find the value of  so that r gives the smallest 

objective function value (among all possible values of ). This is not difficult for a 

deterministic problem. For a stochastic problem, it means calculating the objective 

function, which involves computing an expectation. For the Monte Carlo based methods 

discussed in this dissertation, this is computationally intractable making it impossible to 

find optimal step size. This section provides a brief literature survey of different step size 

recipes, followed by the step size recipes used in this work (Chapter 4). A more detailed 

survey of step sizes can be found in [107]. 

C.1 Deterministic Step Size Rules 

Deterministic step size rules depend only on the iteration number. The step sizes are 

based on simple update rule and are generally heuristic in nature. 
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C.1.1 Constant 

A constant step size rule (Figure C.1) is given by 

 
1 If   1

otherwisen

n





 


 (C.1) 

where ߛҧ is a constant less than 1. Constant step sizes are easy to implement and do not 

require any knowledgeable guess about the rate of convergence of optimization 

algorithm. However, a constant step size will not result in convergence to r* under 

stochastic environment. 

C.1.2 Annealed 

The step size is proportional to the iteration number, Figure C.1. 

 
1

n n
   (C.2) 

Annealed step size rule is arguably the most popular rule but a major drawback with 

the annealed step size is that it drops to 0 very quickly. This results in convergence issues 

and can result in apparent convergence even when solution is far from optimal. 

C.1.3 Harmonic 

A generalization of the annealed step size rule is the generalized harmonic sequence, 

Figure C.1, given by 

 
1n

a

a n
 

 
 (C.3) 

where a is the constant. For a > 1, the harmonic rule provides larger step sizes than 

annealed rule. Increasing a slows down the rate at which the step size drops to 0. 

C.1.4 Polynomial 

An extension of harmonic step size rule (Figure C.1) is 

 
1

n n   (C.4) 
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where β  (0.5, 1]. A smaller value of β slows the rate of step size decline improving the 

response of algorithm in presence of initial transient conditions. 

C.1.5 Search-then-Converge 

The Search-then-converge step size rule (Figure C.1) is a variation of harmonic step 

size rule and is given by 

 0n

b
a

a
b

a n
a


 

  
 

   
 

 (C.5) 

where a, b and β are different tunable parameters and depending on the choice of these 

parameters, basic harmonic and polynomial step size rules can be generated. The 

algorithm provides a period of high step size for search and then step size decreases for 

convergence. The degree of delayed learning is controlled by parameter b. The exponent 

β has the effect of increasing step size in later iterations. By controlling β, a slow descent 

i.e. increased learning period can be obtained. Figure C.1 shows different step size rules 

compared to each other. 

 

 
Figure C.1: Different step size rules. 
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C.2 Stochastic Step Size Rules 

Stochastic step size rules adapts with the data and change step size depending on the 

trajectory of the algorithm. Stochastic step size tries to keep the step size large when the 

parameter being estimated is changing quickly. The stochastic rules offer freedom to 

have different step size for different parameters based on the individual convergence rate. 

C.2.1 Sompolinsky-Barkai-Seung 

The Sompolinsky-Barkai-Seung (SBS) algorithm for step size calculation [149] is 

given by 

   1 1 1 1( , ) *n n n n na b f r F            (C.6) 

where γ is the step size, a and b are positive constants, r is the parameter vector, ݂ሺ·,  ሻ isݎ

a differentiable loss function defined by ݂ሺ·, ሻݎ ൌ ∑ ቀכܬ െ ,·ሚሺܬ ሻቁݎ
ଶ
, and כܨ ൌ

min௥ ॱሾ݂ሺ·,  .ሻሿ is minimal loss function ݎ

The idea is that when the error is large, the step size γ takes a large value, ߛ௡ ൎ

ܾሺ݂ሺ·, ௡ሻݎ െ  ሻ. When the error is small, i.e. the estimator is close to optimal value, αכܨ

approaches 0 automatically as ߛ௡ ൌ ௡ିଵߛ െ ௡ିଵߛܽ
ଶ . 

C.2.2 Bias Adjusted Kalman Filter 

Powell [150], [107] derived an optimal step size rule, called Bias Adjusted Kalman 

Filter (BAKF), for estimating parameter from sequence of independent observations ߠ෠௡
 

with unknown mean ߠ௡
 and variance ߪଶ. The optimal step size is a solution to 

  
1

2

10 1
min ( )

n

n n
n

  


 

    
 (C.7) 

i.e. γn-1 minimizes the unconditional expectation of the error between ߠҧ௡ with true 

meanߠ௡. The solution is given explicitly by formula 

 
2

1 1 2 1 2
1

(1 ) ( )n n n


     

 
 (C.8) 

where λ is computed recursively using 
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and ߚ௡ିଵ ൌ ௡ߠ െ ॱሾߠҧ௡ିଵሿ , i.e. bias in smoothed estimate from previous iteration. The 

bias itself is computed recursively as it is also unknown.  

 
Figure C.2 shows the comparison between step size using BAKF and annealed 

algorithm. It can be see that with annealing the step size falls to a very small value within 

small number of iterations and hence will not respond to the non-stationary nature of 

cost-to-go data. On the other hand, BAKF tries to regulate the step size based on the cost-

to-go data. 

 

 
Figure C.2: Comparison between Bias Adjusted Kalman filter and annealed step size 

rules. 
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