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Abstract

An efficient, high-speed quadruped robot is useful in applications spanning the service and

entertainment industries. The military is also keenly interested in this platform as legged,

robotic convoys for soldier support are becoming technically viable and a battlefield ne-

cessity with skirmishes in rough, unstructured terrain, inaccessible to wheels and tracks.

Legs have the advantage in this domain and motivates the investigation of this mobility

mechanism.

The research presented here quantitatively analyzes a multi-body dynamics quadrupedal

model with an articulated spine to evaluate the effects of speed and stride frequency on the

energy requirements of the system. The planar articulated model consists of six planar,

rigid bodies with a single joint in the middle of the torso. All joints are frictionless and

mass is equally distributed in the limbs and torso. A model with the mid-torso joint re-

moved, denoted as the rigid model, is used as a baseline comparison. Impulsive forces and

torques are used to instantaneously reset the velocities atthe phase transitions, allowing for

ballistic trajectories during flight phases. Active torques at the haunch and shoulder joints

are used during the stance phases to increase the model robustness. Simulations were con-

ducted over effective high-speed gaits from 6.0 - 9.0 m/s. Stride frequencies were varied

for both models. An evolutionary algorithm was employed to find plausible gaits based on

biologically realistic constraints and bounds. The objective function for the optimization

was cost of transport.

Results show a decreasing cost of transport as speed increases for the articulated model

with an optimal stride frequency of 3 s−1 and an increasing cost of transport with increas-

ing speed for the rigid model at an optimal stride frequency of 1.4 s−1, with a crossover in

the cost of transport between the two models occurring at 7.0m/s. The rigid model favors

low speeds and stride frequencies at the cost of a large impulsive vertical force, driving the

system through a long, gathered flight phase used to cover thelong distances at the low

stride frequencies. The articulated model prefers higher speeds and stride frequencies at

the cost of a large impulsive torque in the back joint, akin tothe contraction of abdomen

muscles, preventing the collapse of the back. Thus, it is demonstrated that the inclusion

xiii



of back articulation enables a more energetically efficienthigh-speed gait than a rigid back

system, as seen in biological systems. Detailed analysis isprovided to identify the mechan-

ics associated with the optimal gaits of both the rigid and the articulated systems to support

this claim.
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Chapter 1

Introduction

1.1 Goals in Brief

Theprimary contribution of this research is to qualitatively analyze amulti-body dynam-

ics quadrupedal system with an articulated torso, focusingon the influence of the spine

articulation on speed and energy requirements compared to arigid-backed model. Asec-

ondarycontribution of this research is developing tools with which to analyze a multi-body,

articulated system with metrics providing meaningful system insight.

To achieve these goals, two models were developed. Both models are composed of pla-

nar, rigid bodies connected by frictionless, revolute joints. Each rigid body has an equally

distributed mass. To simplify the system dynamics, a ‘virtual’ leg is created by joining a

pair of legs into a single body. The front and rear legs are combined into one leg with a joint

connecting two equal length limbs. In conjunction with thissimplification, a symmetric

approximation of the high-speed gallop gait is employed in the form of the bound.

The baseline model has a rigid torso, connecting the front and rear leg pairs. The model

described is well studied at low speeds (less than 10 bodylengths/s), with little work done

at speeds greater than 10 bodylengths/s. Speed is a desirable performance characteristic,

typically sacrificed due to high energetic costs. However, biology shows that it is possible

to have a fastand efficient system (64). Motivated by animals such as the the cheetah and

greyhound, a second model was built. The model shares all of the same characteristics as

the rigid model but includes a single node of articulation inthe middle of the torso, allow-

ing sagittal plane motion. Using an appropriately constrained optimization, the hypothesis

is that with an articulating spine, better foot placement options should be able to reduce the

system’s energetic requirements in comparison to a model with a rigid spine running under

similar conditions.
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1.2 Motivation

As robots continue to play a growing role in various aspects of our lives, the need for im-

proved understanding of their capabilities increases. Ranging in application from domestic

chores to bomb disposal, robots are playing pivotal roles inthe new technological frontier.

One such vital role is providing support for the nations’ troops on and off the battlefield.

Soldiers’ packs are increasing in weight as their needs in the field grow. Standard issue

equipment can reach upwards of 100 lbs. A possible solution to this weighty issue is to

remove non-essentials from the soldiers’ packs and redistribute these items to a robotic

convoy. Quadruped robots are one possibility that the military is pursuing to address this

issue. As with robots in general, the quadruped robots suffer from limited range due to

restricted on-board power density, slow speeds and constrained mobility.

Looking to biology for inspiration has led to many advances in robotics [(16), (42),

(76), (85), (128)] . From cockroaches to lizards, it is clearthat evolution has perfected

these systems to ensure survival. The animal kingdom, in general, provides a good starting

point for successful systems that excel in areas where robots have concerns. In particular,

speed is not an issue for many animals and especially membersof the biological family

Felidae. The member of this family of interest is theAcinonyx jubatus, more commonly

known as the cheetah. This phenomenal creature has statistics that would make a gearhead

drool- not only can it reach average speeds of 70 mph, it can accelerate from 0 to 60mph

in 3 seconds (134). This incredible speed can be linked to itslarge hind leg muscles and to

another feature that all mammals share to some degree. When watching a cheetah in pur-

suit of its prey, it is clear that the spine is not rigid, but rather a highly flexible part of the

anatomy. Using insight from this natural system, the research here focuses on extending

the capabilities of quadruped robots through the addition of a flexible spine. The primary

aim of the research is to develop an articulated model of a quadruped in order to determine

changes in speed, mobility and energetic costs to improve the operating performance.

The applications, beyond military, where a highly mobile quadruped robot would be

of use, reach into the medical field (for hospice care [(34),(151)]), entertainment [(40),

(46),(69)], search and rescue operations (33), and law enforcement (102).

1.3 Outline

The dissertation is composed of several parts, beginning with the background. This sec-

tion gives an overview and brief history of robotic technology, focusing on the use of legs.

The biological motivation for the present study is presented with particular emphasis on
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quadruped mammals. The modeling chapter provides the details on the construction of the

simulations used to prove the hypothesis, including all constraints, bounds, assumptions

and modeling parameters. The results and analysis chapter organize the outcomes of the

various trials to evaluate the inclusion of the spine in a quantitative fashion. Lastly, the

conclusions from the study are presented and further research directions addressed.
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Chapter 2

Background

2.1 Literature Review

The literature review looks at the state-of-the-art in articulated robotic research and how the

current research provides a meaningful contribution. Thischapter is organized as follows:

a history of relevant robots, a discussion of the advantagesand disadvantages of various

modes of mobility, and finally, an overview of the robots and models that are pertinent to

the development of the current simulation.

2.1.1 A Brief History

In order to have a more complete understanding of robotics, it is useful to look at their

history, starting with automata. Some of the most famous automata were built by Jacques

Vaucanson, including a flute player with complicated mechanisms to simulate the different

air pressures, tongue positions, and fingering needed to produce a tune, as well as a duck

that acted (quacked, flapped, swam, moved) like a real duck (124) including the consump-

tion, digestion, and excretion of food (Fig. 2.1). These mechanical marvels employed a

mechanism similar to that of a music box- a cartridge with subtle pockets and pads that

activated a series of levers and gears to allow the automatonto move, seemingly of its own

accord.

Following the duck, Vaucanson developed an automatic loom based on his success with

his automata. One of the initial responses to the machine wasa revolt by the workers, mo-

tivated by the fear that they would be replaced, a theme that has echoed throughout history

in connection with robots. In 1804, Joseph-Marie Jacquard introduced punch cards into his

version of the automatic loom, based on Vaucanson’s original design, to create complex

patterns. This addition of punch cards would later influenceCharles Babbage during the

1830’s, when he attempted to create the Difference Engine, aprecursor to early computers.
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Figure 2.1 Vaucanson’s Automaton Duck

In terms of etymology, the word ‘robot’ first appeared in Karel Capek’s play R.U.R.

(Rossum’s Universal Robots, (28)) in 1921, from the Czech word for forced labor. The

artificial people (known as ‘robots’ in the play) were created as a way for the worker to

have someone to do their monotonous work for them.

“I wanted man to become the master, so that he shouldn’t live merely for a
crust of bread.”

Figure 2.2 Rossum’s Universal Robot

And thus, the motivation for mechanical creatures was codified. The fascination with

the machines has continued to play a prominent role in movies, books, plays and songs,

playing with the notion of exactly how far machine intelligence will go.
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Aside from the Hollywood versions, the scientific field of robotics continued to progress

with the development of the CNC Machine at MIT in the 1950’s, and the Unimate robot

by George Devol and Jospeh Engelberger in 1956 (Fig. 2.3). The first Unimate to be in-

stalled was at GM in 1961 to work with heated die-casting machines, fulfilling its role of

performing jobs that were dirty, dull and dangerous.

Figure 2.3 Unimate Robot

Along with their progression into the entertainment mainstream, most notably Honda’s

humanoid ASIMO, and Sony’s robotic dog AIBO (41) and dancinghumanoid QRIO (69),

robots have also taken on domestic duties. The 21st century has seen a surge in the popular-

ity of robotics and witnessed its progression into previously unseen facets of life. From the

socially interactive Kismet (25), to the babysitter bot PaPeRo (109) (Fig. 2.4), robots are

becoming more sophisticated with enhanced sensors and materials, allowing for advanced

interactions with a softer, human-like touch, facial recognition and learning algorithms,

improving a multitude of tasks.

The recent insurgence of robots into every day life has also been seen in the military,

where robot use has risen dramatically. With the field’s continual advances, robots have

proven their mettle as life-saving tools. As Sgt. FranciscoHuereque explains in a Nov.

2004 Wired News article (“Save Soldiers by Remote Control”),

“We fill some of the gaps in the intelligence field. We put one ofthese in harm’s
way instead of a soldier. It’s all about saving lives.”

iRobot is a company that has bridged the gap between domesticand military robots. The
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Figure 2.4 Kismet and Papero robots

company is most well known for its household autonomous vacuum cleaner Roomba and

their highly durable and mobile man-packable military robot, PackBot. PackBot has be-

come a regular in the military, with tasks ranging from cave scouting, vehicle inspections,

mine retrieval and bomb disposal, to name a few. During a search for roadside bombs,

“One robot was blown up. That was a cause for celebration, because the robot
saved the life of a soldier.”

The quote is from retired Vice Adm. Joe Dyer, general managerof iRobot’s government

and industrial robotics division (Wired News, “Robots May Fight for the Army”, April 13,

2004).

When thinking of lightweight unmanned ground vehicles (UGV’s) for use in the mil-

itary, wheeled and tracked configurations of robots will certainly come to mind. Systems

like the three-wheeled Omni-Directional Inspection System (ODIS) are used to inspect ve-

hicles passing through checkpoints and come equipped with vision and chemical sensors

to detect possible hazardous materials. The aforementioned PackBot is used for activities

ranging from scouting to improvised explosive device (IED)detection. However, legged

systems are quickly on their way to being integrated into therobotic military. One such sys-

tem, known as BigDog, may be used as part of a robotic convoy for transporting mission

supplies.

As the face of war changes and the battlefields are shifted to increasingly remote, inac-

cessible portions of the world, the necessity for legged transport becomes more apparent.

A US Army report stated that only 50% of the Earth’s land surface is accessible to wheeled
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or tracked vehicles (125), and in a 2002Foreign Affairsarticle, Donald Rumsfeld describes

the new war zone:

[The troops] sported beards and traditional scarves and rode horses trained
to run into machine gun fire. They used pack mules to transportequipment
across some of the roughest terrain in the world, riding at night, in darkness,
near minefields and along narrow mountain trails with drops so sheer that, as
one soldier put it,‘it took me a week to ease the death grip on my horse’.

His conclusion was that the old paradigms of battle are changing, and the military needs to

change with them. Robots are one aspect of how the military isaddressing these needs.

The narrow trails and unstructured ground of this new battlefield (requiring specially

trained horses) is well-suited to the use of legged robots which don’t have the disadvantages

of live animals. Although wheeled and tracked robots have the advantage of a simpler, more

commonly used platform, they are limited to relatively flat terrain with minimal obstruc-

tions, whereas legs are not. The various benefits and drawbacks of these systems will be

evaluated in the following section.

2.1.2 Wheels, Tracks or Legs?

The following section describes a small subset of UGV’s of growing interest for the

military. These systems weigh under 300 lbs and are primarily used for government ap-

plications. The three main categories of robots, from a mobility standpoint, are wheeled,

tracked, and legged (Fig. 2.5). Wheels and tracks compose the majority of military robots,

with new legged systems close to being fielded.

Figure 2.5 Wheels, Tracks and Legs

2.1.2.1 Configurations

The wheeled robots discussed here have wheels as their primary mobility mechanism, us-

ing two to six wheels and a total weight under 300 lbs. Solid rubber or inflated rubber
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tires with various types of tread are used. Depending on the number of wheels and layout,

various steering mechanisms are employed like Ackerman or differential.

The highlights of this technology are the speed (when on paved roads or defined paths)

and the commonality of platform. These characteristics allow for easy commercial, off-

the-shelf part integration and replacement. Wheels have also been one of the most popular

commercial means of mobility, creating a rich history and expansive knowledge base.

Wheels are a reliable technology, therefore a logical first choice.

However, there are some constraints to the system. Their high speed achievement is

limited to well structured environments. Obstacle negotiation is typically half the height of

the wheel (unless some articulation is used).

Tracked robots have various configurations. The majority ofthose in the lightweight

military category have a band of tread that is wrapped aroundthe entire length of their body

and can be made of either continuous rubber or interlocking pieces of metal / plastic to cre-

ate the track. Some of these have additional flippers for mobility. This added feature allows

some of these machines to overcome obstacles that would otherwise be insurmountable.

This will be addressed in more detail when discussing the individual robots. Directionality

is accomplished through variable speed of the left/right treads (skid steering).

The main advantage of the tracked systems is the distribution of weight over a large

area, decreasing the ground pressure, as opposed to wheeledvehicles. This enables the

tracked vehicles to venture into less structured terrain, such as mud and sand, with veritable

ease when compared to their wheeled and legged counterparts.

Disadvantages include slower speeds and less maneuverability but a tighter turn radius

than wheeled. The tracked robots are still limited in their obstacle negotiation, although

they have some advantage to the wheeled robots. With the continuity of the tread in con-

tact with an obstacle, the tracked robots can overcome obstacles that are the height of their

guide wheel.

The last type of mobility methodology, for the purposes of this discussion, are legs.

As in nature, there are a variety of configurations for these.Typically, the robots in this

category have either two, four, or six legs. Leg design is a key feature in the robots and is

one determinant of how quickly and agilely the robot can move. Steering is accomplished

similarly to tanks using something akin to skid steering- speeding up or slowing down the

limbs on either the left or right hand side. These machines can also turn around on the spot.

Foot design is also an important design characteristic of these robots but the majority use

the approximation of a point foot contact. Obstacle negotiation is not easily classifiable but

is usually around shoulder height for the legged robot.

While legged robots are still relatively young in terms of their technology, they hold
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a great deal of promise. A legged platform enables the robot to have an isolated foothold

that provides for a more precise placement of the foot in unstructured terrain, allowing ac-

cess to areas wheeled and tracked vehicles cannot reach (Fig. 2.6). This isolated foothold

also enhances the potential stealth capabilities as path traversal is less obvious for a legged

system in comparison to a wheeled or tracked vehicle where anobvious path remains after

traversal. The potential for increased speed and maneuverability over comparable wheeled

or tracked vehicles of similar size in off-road terrain is possible. These characteristics and

power / efficiency benefits will be discussed later.

Figure 2.6 Wheel and leg moving out of a localized depression

The major disadvantage is that many of these advantages are still theoretical. Looking

at existing legged robot technologies, there are a myriad ofissues. Power density is a prob-

lem (although this can be said of wheels and tracks of similarsize). Fall recovery can be

difficult or non-existent. The increased complexity of the designs is also an issue. With

increased complexity comes increased cost and repair/replacement difficulties. Control of

walking machines is more complex than in wheeled and trackedvehicles.

One such government funded project to extend legged systemsknown as Big Dog (see

Fig. 2.7), hopes to fill this gap in technology with a quadruped robot used to assist soldiers

by carrying equipment and supplies. A typical soldier carries about 100 lbs of supplies in

his pack. Lightening some of this load would enable the soldier to go for longer periods of

time with less fatigue and a decreased likelihood of injury.The goal of the Big Dog project

is to develop a ‘power autonomous quadruped capable of carrying significant payloads,

operating outdoors, with static and dynamic mobility, and fully integrated sensing’ (113).

Boston Dynamics, the main contributor to Big Dog, has done just that. Their physical pro-

totype walks over loose rocks, through ankle-deep snow, on ice, and carries 50 kg or more

of payload. It is an amazing prototype, but there is always room for improvement. What

if it were possible to increase the speed, stability, robustness and mobility, and/or reduce

power and energy requirements, giving soldiers better range, maneuverability or efficiency

over more difficult terrain with fewer stumbles and able to keep pace with their human

counterparts? One possible solution is to look at what biology has done to address these

issues- the inclusion of an articulated spine.
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Figure 2.7 Boston Dynamics’ Big Dog Quadruped Robot

2.1.3 Advantages of an Articulated Spine

Consider the cheetah. It is the fastest land animal, runningat speeds close to 60 mph.

As a cheetah runs, it is visually apparent that the back is nota rigid entity but rather a

fluid, bending part of the body that enables the animal to movequickly and lithely. With

the additional movement provided by the spine, a larger range of body configurations are

available for the animal, creating possibilities for mass distributions that enhance stability

and mobility, otherwise unavailable to a rigid-spined system. In addition, the flexibility of

the spine can be likened to a spring which has energy storage capabilities. In this mode, the

articulated spine can decrease energy and power requirements. Each of these advantages

will be addressed from a biological standpoint in order to gain an understanding of spines’

overall contribution to the system.

2.1.3.1 Speed

Hildebrand (60) pioneered much of the work regarding locomotion studies with the horse

and cheetah. He lists the major contributions of the flexion and extension of the back on

the animals’ speed as the following:

• As the swing of the limbs increases, the distance covered during the aerial phase is
increased.
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• With the combination of spine muscles and limb muscles working concurrently, the
limbs move faster than a single group of muscles working alone.

• The spine adds to the maximum forward extension of the legs, increasing the maxi-
mum backward acceleration of the limbs before they strike the ground.

• The spine aids in moving the body forward in an inch-worm fashion.
• The spine reduces the relative forward velocity of the girdles when their respective

limbs are moving the body.

Additional studies by Hildebrand (61), showed an increase in speed of 10% due to the

flexion / extension of the spine in the cheetah. Increasing the speed of current legged robots

by 10% would benefit time-sensitive situations like reconnaissance missions, critical in the

military. It would also allow a larger range based on an equivalent power supply (assuming

all other factors held constant).

Figure 2.8 Hildebrand’s sketches of flexion / extension in spine of horse and cheetah

2.1.3.2 Robustness and Mobility

Other critical characteristics of legged robots are the robustness and mobility of the sys-

tem. If a robot is out in the field and cannot recover from a simple system perturbation,

such as a bump or push from a solider, then the mission will be afailure. As in traditional

systems, a marginally stable system can gain great advantages in speed and maneuverabil-

ity. Incorporating a flexible spine has the potential to increase speed and maneuverability,

while extending the robustness and mobility. The flexibility of an articulated spine provides

added configuration options of the body and feet within the appropriate support polygon.

Biological insight has been provided by Hackert [(49), (50)] with the pika, and by Gra-

12



covetsky (45) in humans. In the experiments with the pikas, cineradiography was used to

analyze the kinematics of the body to observe how the spine moves during the half-bound

gait (Fig. 2.9). The study shows the flexion of the spine causes a change in the trunk’s mass

distribution aiding in the body’s self-stabilization. Thelarge flexion-extension of the spine

enables the body to maintain a flatter trajectory of the center of mass, decreasing inertial

effects that contribute to destabilization of the biological system. Although not directly

related to the spine, the work of Daley and Biewener [(32)], demonstrates that as long

as the center of mass remains relatively flat, the body is ableto recover from unexpected

perturbations. Their findings suggested that the limb contact angle, rather than the spring

coefficient of the leg, dominates the stability parameters of the system.

Figure 2.9 Pika in half-bound

Hackert’s work [(50),(129)] with the pikas is also key in regards to system robustness.

The self-stabilization characteristics of the flexible spine enable a wide range of dynami-

cally stable, statically unstable gaits. The mobility, as discussed subsequently, allows the

system to recover from falls and move in ways to enable a greater range of movement- both

contributing to the robustness of the system.

English’s work (36) looked at the function of the lower spinewhen a cat walks. His

work demonstrates that the flexion of the spine adds to the step length of the cat and damp-

ens vertical fluctuations in the center of mass during walking and trotting. The spine is a

stabilization mechanism, and for many quadruped mammals, used to control the pelvis.
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Although the main focus of the work is on quadrupeds, bipeds can also provide insight

into the advantages of a flexible spine (138). Gracovetsky pioneered much of the work in

looking at how the spine drives motion. In one of his experiments, he placed human test

subjects in back braces that prevented the upper torso of thebody from rotating during nor-

mal walking gait experiments. The restriction of the upper body caused abnormal gaiting

and difficulties in maintaining balance. The rotation of thespine enabled stabilization of

the head, also affecting the balance of the body.

From the studies in spinal fusion, it can be seen that the gaitadjusts to accommodate

for the impaired mobility, with increased energy requirements and lateral stability issues

[(26),(30),(35),(89)]. Much of the work focused on the immobility of systems due to spinal

injury centers around quadrupeds and humans [(35), (107), (138)] but some work done with

insects sheds light on the link between the spine and stability. The simpler construction of

insects provides insights into the mobility advantages of an articulated spine. Many insect

species’ articulating spine can be simplified to a single node in the back, operating be-

tween the thorax and abdomen. The work done by Ritzmann on cockroaches (126) clearly

shows a decrease in obstacle negotiation with a fixed spine versus a segmented spine. His

experiments focus on how the spine and pelvis are connected to each other and the me-

chanical advantage of the limbs when a) the body is allowed tomove normally and b) the

thorax region is fixed. With the thorax region fixed (in essence, removing the articulation

of the spine), the cockroach ‘high-centers’- a case in whichthe center of mass of the animal

cannot be adjusted to bring it closer to the obstacle. This high-centering results in an elon-

gation of the limbs that decreases their mechanical advantage, necessary for the creature to

overcome certain obstacles (see Fig. 2.10).

Other demonstrations of the mobility of the spine can be seenin the climbing ability

Figure 2.10 Ritzmann’s A) Articulated and B) Fixed Spine Cockroaches
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(23) of some cursorial animals. Leopards, especially, spend a great deal of time in trees.

Without the articulation of the spine, this would be a difficult feat. Another animal using

the articulation of its spine for unique mode of mobility is the click beetle (37). This partic-

ular species stores potential energy during the flexion of the spine, aided by a peg. Once the

animal is ready, it catapults its body in a legless jump. Looking at the most extreme case of

an articulated spine is the serpent. This animal has the capability of many different gaits,

giving it surprising mobility in a variety of environments,even without the use of legs. In

contrast, one could look at the tortoise which has a rigid body, short segmented legs and

limited mobility. Once on its back, the tortoise has difficulty in righting itself. Even using

a model with single node of articulation can increase the mobility and stability of a system

as demonstrated in the two-link cat robot (144).

The main difficulty with robustness and mobility is quantifying them. There are few

metrics that are able to concretely describe these system qualities. Rather, they are pre-

sented in order to give additional benefits for an articulated system.

2.1.3.3 Power and Energy Requirements

Another metric aided through the inclusion of a segmented spine deals with the reduction

of power and energy requirements for a system. Without the necessary power, a system can

be easily incapacitated. Most robotic systems utilize sometype of battery, although battery

technology is still limiting. The quadruped Big Dog uses a 17hp, two cylinder combustion

engine with hydraulic actuators for its power source (113).If it were possible to increase

the range of a robot by decreasing its power and energy requirements, it would be a highly

attractive prospect for an unmanned system. Experiments inthe biological field have pro-

vided insight into the energy storage capacity of elastic structures in the backs of animals.

Using nature as a guide, it may be possible to reduce the powerand energy requirements in

a robotic system through the use of an articulated spine.

Hoyt and Taylor (64) conducted experiments to calculate theamount of oxygen con-

sumption by horses trained at various gaits. Their hypothesis was that nature optimizes

itself and adjusts the gait to minimize energy requirements. The particular unforced gait

chosen by the animal reflects an energetic minimum. The theory was corroborated through

experiments demonstrating the subjects (horses) changingfrom a walk to a trot, and a trot to

a gallop, when oxygen consumption increased, revealing that each particular gait required

approximately the same amount of energy (Fig. 2.11) at the animals’ naturally selected

gait for a particular speed range. This indicates that for a certain critical speed, galloping

is more economical than trotting.
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Figure 2.11 Hoyt and Taylor’s Oxygen Consumption Plot for Horses at Different Gaits

R.M. Alexander has done substantial research on the gait andenergetics of biological

systems [(6), (7), (9), (10), (11), (142)]. One key work thataddresses the biological op-

timization observed by Hoyt and Taylor details the energy saving mechanisms of elastic

structures in the back (8). This work looks at the energies (internal and external) during

the gallop of fallow deer and dogs. At high speeds, the internal energy fluctuations are at

their maximum. During these large changes, the elastic structures, specifically the aponeu-

rosis (a tendon-like mechanism in the back that acts like a spring), are able to store energy,

reducing the power necessary during high speed gaits. Fig. 2.12 shows a sketch of the vari-

ation of the energies during the flexion/extension of the body in a galloping gait. Without

articulation, this energy savings would not be possible.

All of these characteristics (speed, robustness/mobility, power/energy requirements)

interrelate and work together in biological systems to create the optimal creatures that are

observed in the world around us. The field of biomimetic robots takes its cue from this ideal

and looks to build systems that make use of the optimization that evolution has provided as

guidelines [(4), (14), (56), (76), (128)]. In the process ofbuilding these robots, much about

their biological counterparts has been revealed. In the next section, the prior art, critical to

the development of articulating robots, is evaluated to seewhere the field stands.
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Figure 2.12 Alexander’s Diagram of the Energy Fluctuations in a Galloping Mammal

2.1.4 Prior Art

After looking at the biological evidence of the benefits of the articulated spine, it is im-

portant to see how the robotics community has implemented these concepts and compare

those prototypes to their rigid-spined counterparts. As has been noted with legged vehi-

cles in general, the advantages range from enhanced terrainnegotiation, due to the use of

isolated footholds, to the decoupling of the payload from the body allowing for smooth

transportation of goods over unstructured terrain (118).

2.1.4.1 Non-articulating Quadruped Robots

There are a number of legged walkers and their history has been well-documented [(118),

(140)]. From Chebyshev’s early walking mechanism in 1850, to GE’s walking truck in

1968, legged robots have made great strides. Some rigid-spined quadrupeds of note in-

clude the Tekken series (76), which focuses on a small dog-like quadruped using a central

pattern generator to study reactive control methodologies, Patrush (75), another quadruped

in a similar vein to Tekken using a neural oscillator for control, and the group of dog-like

quadrupeds from the AI Lab in Zurich known as Puppy and Mini-dog (68). The MIT Leg

Lab also put together a quadruped robot that trotted, paced and bounded (120). Boston

Dynamics’ Big Dog has captured the spotlight in terms of quadruped robotic research.

2.1.4.2 Articulating Quadruped Robots

There has been considerably less work done in the field of articulating robots. To traverse

the spectrum of articulation, there are the continuum robots (for example, the elephant trunk
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(51) and eel robots (3)), the multi-segmented robots (Choset’s snake robots and Bornstein’s

Omni-tread robots), and the single articulation models. These will be addressed in detail.

Stumpy is a simple hopping robot (66) with a pegged base and single articulation in

the middle of the body (Fig. 2.13). The robot moves through anapplied torque at this

articulation point and hops around. The system uses an open-loop reactive based control

structure to achieve some simple gaits and directionality.This robot is part of a series of

prototypes based on cheap design and ecological balance (112). The use of the articulation

to drive the motion of the robot is confirmation of one of the biological experiments done

with a quadriplegic test subject inThe Spinal Engine(45). These works demonstrate that

the use of an articulated spine can be the primary motion generator in an animal or human.

Figure 2.13 Stumpy, the Hopping Robot

A four-segment legged robot with single joint articulation, BISAM (Fig. 2.14), can

rotate in the sagittal plane for mammalian gaits, and, in thetransverse plane, for reptil-

ian gaits. The articulation in the spine (19) was investigated using a biologically inspired

adaptive control concept. Subsequent research with this robot (5) focused on learning gaits

using advanced reinforcement learning techniques for posture control during movement.

ELIRO is a unique example of an articulating robot (Fig. 2.15). Its main focus is not ar-

ticulation, but rather eating (ELIRO stands for Eating LIzard RObot). It can bend passively
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Figure 2.14 BISAM Robot

in the transverse plane and actively in the dorsal plane. Theinitial work looked at a zig-zag

gaiting methodology [(74), (110)] utilizing the articulation in the spine for the negotiation

of narrow spaces and direction changes, based on rotation around the articulating node.

Subsequent work focused on the autonomous eating mechanismof the robot (70).

Figure 2.15 ELIRO Robot

Ikuo Mizuuchi created a line of articulated robots, starting with a quadruped known as

SQ43 ((88) , Fig. 2.16). More robots followed but all in the humanoid articulated spine

form [(90), (91), (93), (94)]. In the SQ43 prototype, the spine is a multi-segmented body

integrated into the quadruped with a genetic algorithm as the motion generator (92). The

system incorporated finite element methods to model the spine. The motivation for using an

articulated spine in these works addresses the physicalsoftnessof the interaction between

humans and robots (in the cases of the humanoids Kenta and Kenji), the limited walking

speed (in the quadruped SQ43), and more generally, the ability to perform a plethora of

tasks and motions inside of the diverse environments robotsoperate. The use of the spine

is also able to diffuse harsh forces by applying the load along its length rather than at a

localized point.

GEO has a three degree of freedom spine (Fig. 2.17). Its control uses central pattern

generators (CPG), postural reflexes, and forward models to adaptively tune the CPG’s (86).

The body was able to rotate in and out of the sagittal and transverse planes with a twist-slide
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Figure 2.16 SQ43 Robot

mechanism. Other interesting experiments involved using the reflex controller to adjust the

stability of the robot in response to different weights placed in various locations on the

body. Since then, the group has moved on to CPG’s for bipeds.

Figure 2.17 GEO Robot

Leeser at MIT’s leg lab developed a planar quadruped robot with articulated spine (Fig.

2.18). The work looked at the role of the spine and trunk as providing three functions:

increasing the effective leg length, storing / transferring energy, and providing auxiliary

power to legs (84). Future applications were suggested using the spine as a way to control

mass distribution in-flight for better foot placement when landing. Leeser also suggested

an additional translational degree of freedom to mimic the inch-worm effect, including an

extension of the body through the spine. This would allow forbetter acceleration of the

forequarters of the body but was not included in this iteration.

The Whegs (Fig. 2.19) series of robots from Roger Quinn’s group at Case Western

uses a passively compliant, actively controlled body jointthat allows the body to rotate in

and out of the dorsal plane [(5), (14), (96)]. The robot is a six-legged, wheel-leg hybrid

prototype moving into full production. Although this is a hexapod robot, it shows the sim-

ple and effective implementation of the articulated back ina physical system. The passive

compliance in the axles allowed for additional mobility of the robot and gait changes with a

timing mechanism that responded to a leg encountering an obstacle or variations in terrain

(preflexive locomotion control system embedded in the mechanics of the robot).

An example of a multi-segmented, articulated robot with passive legs is the salamander

robot (Fig. 2.20) moving between water and land using CPG’s and reflex controllers to

swim, crawl and walk [(24), (31), (111)]. One major difference between this classification
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Figure 2.18 MIT’s Planar Quadruped Robot with Articulated Spine

Figure 2.19 Whegs: Production-ready Robot from Roger Quinn’s Group

of robot (serpentine) is the way in which the spine moves. In this case, a wave travels down

the length of the robot, whereas in most mammalian systems, the entire spine is active in

extension or flexion. The legs are passive and assist in the transition between gaits.

Figure 2.20 Salamander Robot

Along with the aforementioned Big Dog, Boston Dynamics’ latest project is the con-

struction of a biomimetic cheetah-inspired robot. The initial prototype will be developed

over a 20 month period with an initial speed goal of 30 mph. Thecompany says their
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purpose in developing the robot will not necessarily be for field deployment, but rather to

explore the possibilities of a high-speed quadruped robot.The project is funded by DARPA

and the initial model is presented in Fig. 2.21. Another similar project from the Biomimetic

Laboratory at MIT was discussed in 2009 and featured a lightweight, high-speed articulat-

ing quadruped robot (Fig. 2.22).

Figure 2.21 Boston Dynamics’ Cheetah Robot

Figure 2.22 MIT’s Cheetah Robot

In general, the overall motivation for the articulation in the robots is to mimic nature.

The majority of these robots focused on developing controllers (most used a CPG or rein-

forcement learning technique) to enable a stable gait. These are still very relevant problems,

however as technology moves forward, it is important to moveforward in thinking. Big

Dog has captured the public’s eye with its eerie movements and astounding response to an

intense perturbation (a kick from the side), but imagine it now with a flexible spine, mov-

ing like a cheetah, sprinting when needed and walking at other times. With the MIT and

Boston Dynamics’ cheetah robots in production, this futureis not far off.

Modeling and simulation are the first steps to the creation ofa successful prototype.

The next section focuses on the models available, some of which were used to create the

physical prototypes mentioned above. Most of the articulating robots, the exception being

Leeser’s at 3.6 m/s, were operated at low speeds. The goal of high speed locomotion may

not be obtained with a rigid back. Understanding how articulation was incorporated in the

past, lends insight to its integration in future systems.
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2.2 Existing Models

Many of the physical robots were built upon principles guided by the researchers’ work

done in modeling and simulation prior to construction. The following section describes

various analytical and computational models used to createthe physical prototypes men-

tioned in the previous section and other models used to test various hypotheses. The

models described below cover a large range of work divided into the following categories:

computational and analytical models, operating speeds andimplemented gaits, rigid and

articulated modes, and lastly, the model application. The goal of this section is to provide

the reader with an idea of the depth of the modeling work in this area, show the limitations

of the available models, and where the current model addresses this deficiency. As such,

the models will be addressed individually and their contribution to the critical aspects of

the current work discussed.

2.2.1 Gaiting

Before the models found in describing literature and their relevance, general terminology

for gaits [(7),(62)] is reviewed to provide background information, specifically within the

context of high speed.

Gaiting is the coordinated movement of an animals’ limbs in its simplest form or as

described by Alexander (9),

Gait A gait is a pattern of locomotion characteristic of a limitedrange of speeds described

by quantities of which one or more change discontinuously attransitions to other

gaits.

For quadrupeds, the general selection of gaits from low to high speed progresses from

symmetric gaits (walk and trot) to asymmetrical gaits (bound and gallop). Most curso-

rial animals exhibit these gaits depending on their operation speed. Symmetric gaits have

paired footfalls equally spaced in time. During walking, the articulation in the back is

demonstrably rigid and does not affect the gait in nominal ways. There are no flight phases

during the walking gait and the paired legs are on the left andright sides of the body. The

gait used at moderate speeds, trot, pairs cross-body limbs.Intermediate gaits exist between

these but most work focuses on these two gaits in the low to moderate speed range. Two

additional terms useful when discussing gait arestride frequency, the number of steps per

unit time strides/s or s−1 andduty factor, the ratio of the time spent in stance over the total

time.
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The gallop is a gait used at high-speeds, with unequal footfalls. Since the system mod-

eled in this work uses a planar model, the gallop is approximated by the bound gait. Both

are considered asymmetric, however, the bound can be simplified by pairing the fore and

hind legs. It is during these high-speed gaits, where the motion of the spine is most promi-

nent. As with the lower speeds, variations exist; however, these are the high-speed gaits

most often discussed.

Although observed only in rare cases in animals such as mule-deer and mountain goats,

the in-phase gait known as pronk is often used in quadrupedalmodeling. All four feet leave

the ground simultaneously, causing the body to leap. There is no torso rotation, reducing

modeling complications. Several models discussed here employ this gait.

Animals choose gaits within a range of speed to minimize energy (64). As animals

transition from low to high speed, a non-dimensional value known as the Froude number

reasonably predicts the transitions between gaits (7). TheFroude number is an approxima-

tion for the ratio of the kinetic and potential energies of the system and is given in Eqn. 2.1.

F =
v2

gl
(2.1)

Here,v is the velocity of locomotion,g is gravity, andl is a characteristic length (usu-

ally the height of the hip joint from the ground). One reason for the energetic attractiveness

of the gallop at high speeds is that the peak gravitational potential energy is very nearly

in phase with the peak kinetic energy (29). A smaller variation in vertical height of the

center of mass is also observed in galloping. In general, animals transition from walking to

running gaits when the Froude number is between 2 and 3.

As shown in the work by Hoyt and Taylor, there is an energetically optimal gait for a

range of speeds. One of the reasons, conjectured for the decrease in metabolic energy con-

sumption at high speed with a gallop (64), is based on the number of legs in the return phase

at any given time. The larger the number of legs in return (averaged over the stride cycle),

the faster the speed. Song and Waldron (139) proved this for statically stable locomotion.

The work of Gambaryan and Hardin (44) stated that the time taken to return a leg to its

starting position is relatively constant; however, at higher speeds, there are mechanisms

that allow an animal to have higher leg cycling frequencies.Two main ideas hypothesized

are:

• When animals run fast, they fold the legs in as close to the hip/shoulder. This
decreases the moment of inertia of the leg about the joint, increasing the natural
frequency of oscillation (like a pendulum that has the string shortened).

• Elastic energy storage in the muscles act to rotate the leg forward or back about the
hip/shoulder (like a torsional spring) and also increases the natural frequency of the
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pendular motion.

Therefore, the coordinated movement of the segmented legs and spine, in conjunction

with elastic energy storage mechanisms acting like springs, allow for greater stride fre-

quencies. Stride frequency is one way to increase the system’s speed but changes little in

the preferred speed range (acting mostly at the transitionsand lower speed). At high-speed,

the system relies on the extension of the limbs and back to go beyond this, as suggested by

Hildebrand’s work (54).

Now that some of the definitions pertaining to gait are defined, the models and their

applicability to the current work are discussed. With an energetic minima at high-speed

using the gallop gait, models displaying these characteristics are the most pertinent.

2.2.2 Models

There are a variety of quadruped models and those presented here are organized based on

the following characteristics:

Model Execution This topic refers to how the model is executed- is an existingsimulation

program used or did the work use analytical expressions to derive its results.

Speed / Gait The models are implemented at a range of speeds with one or more gait-

ing methodologies employed. High-speed models with bounding or gallop gaits are

keenly inspected.

Torso Construction The focus of the work employs an articulating node in the torso. Most

models use a rigid implementation. Rigid models provide thebaseline against which

the articulation is compared.

Model Implementation This classification refers to how the model is utilized- is its pri-

mary purpose as a skeleton for a controller, stability studies, or some other purpose.

Any other metrics and their application to the work are addressed.

One of the seminal works in quadruped models is the work of Raibert (120). The model

is analytic with a rigid torso. Its primary function was to provide an architecture for a con-

troller, tested on a physical prototype. The top speed was 3 m/s (2.86 bodylengths/s). In

addition to the actual robot, an important contribution of this work is the introduction of

the virtual leg concept. This idea allows two separate legs to be represented by a single

‘virtual leg’. The control is decomposed into three separate parts regulating the body’s:
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1. Hopping Height- Controlled by the leg thrust during the stance phase.
2. Forward Running Speed- Position feet during the flight phase to influence acceler-

ation of the body during the next stance phase.
3. Body Attitude - Exert torques about hip during stance to keep body level.

These low level controls enabled trotting, pacing and bounding gaits for a rigid-legged,

four-legged robot with only slight parameter variations inthe model. The controller was

demonstrated to display the various gaits on a tethered prototype with axially actuated legs

and hip torques. Raibert’s other work continued to enrich the modeling and implementa-

tion of quadruped controllers (121), with his current work centering around BigDog and

the future Cheetah robot at Boston Dynamics.

Leeser’s work builds off Raibert’s original hopper research [(117), (118)] and the con-

cept of a virtual monopod. The system is planar and composed of three segments with

actuated joints. The controller is based on a three part methodology: control of the forward

running speed, hopping height and body attitude. The results of the work show that the

back can be used to augment the thrust provided by the legs. The back also effectively

modulates the energy state of the leg spring. The work suggests that the flexible back can

be used to modify the damping characteristics of the legs in the system. Leeser’s com-

putational model was used primarily for testing the controller and was built with dynamic

modeling software called the Creature Library. The highestspeed run at was 3.6 m/s, or

3.7 bodylengths/s with the total back measuring 0.98 m.

Figure 2.23 Leeser’s Planar Quadruped Model

In the most basic sense, an articulating model can be constructed as shown in Fig. 2.24

taken from Alexander’s paper (13). This simplified model hasrigid legs and is planar. The

front legs move together, as do the back legs. The trunk is constructed of two symmetric

rigid sections hinged together for the articulated model and a single solid trunk for the rigid

one. The purpose of this analysis was to look at a simplified system and compare the en-

ergy cost in the galloping versus rigid-backed model. The results of the analysis showed

that the only difference between the two models was the kinetic energy due to the internal

motion of the hinged bodies with respect to each other in the articulated model. All other

system energies were consistent between the two models whencomparing the models at

the same speed, gait and ground force profiles. The results are intuitive, although do not

corroborate with the experimental data (as demonstrated in(64)). During galloping, inter-

nal energy does increase in flexible-spined animals, but it would seem that the elastic strain
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energy storage / transfer provided by the back muscles, balance or mitigate this increase in

internal energy. This simple model does not take this into account.

Figure 2.24 Alexander’s ’Why Mammals Gallop’ Model

Another important contributor to quadrupedal models is P. Nanua. His work on

quadrupedal galloping [(98), (99), (100)] linked stride frequency, initial compression of

the models’ springy legs (linked to internal energy) and speed. The model is a rigid bar that

has four compliant legs: two legs connected to a pin in the front and two connected via a

pin in the rear. Each leg is modeled as a constant stiffness, massless spring [(98), (100)],

with one model including the addition of a viscous damper andforce actuator in parallel

(99). For these systems, Nanua uses two free variables,u (horizontal speed) andE (total

energy of the system), to describe the system. The focus of the work was to generate a

control scheme to enable a stable gait for a given energy level and speed. The gaits inves-

tigated were the trot, bound and gallop. The speeds investigated were 2.78, 4.17, 6.94 and

11.11 m/s with stride frequencies of 1.25, 1.67, 2, 2.08 s−1, respectively.

One of the simulations in (98) incorporates a torsional spring into the model. The

spring operates between the two halves of an articulated back. The leg springs are ini-

tially compressed and the body set at a constant speed (11.11m/s, 4.13 s−1). The initial

angular velocity of the back segments is set to zero and the back angles are symmetric,

θ1,i = θ2,i ,θ1,i = 4.75◦. The initial compression and stiffness are varied to searchfor a

stable solution, which the author was unable to find based on the conditions specified.

The model demonstrated in the work by Nanua and Waldron (100)is a 2D model with

a rigid beam. Two massless spring legs are attached in the front and back. For a periodic

solution to the trot system, two initial conditionsyi andui are selected, whereyi is the

initial vertical displacement andui is the initial horizontal speed. In order to find a unique

solution, experimental data was used to fixyi at a given speed. A 680 kg horse with a leg

length of 1.5 m and a non-dimensionalized spring stiffnessKleg = 14 was used to set the

stride frequency at 100 min−1 for a speed of 15 mph (from (55)).

The first set of experiments look at running each model at a fixed speed (2.78, 4.17,

6.94 and 11.11 m/s) with the same energy level obtained by running the trot at 2.78 and

4.17 m/s and the gallop at 6.94 and 11.11 m/s. At trotting speeds, stride frequency of the
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trot has the least energy requirement, and at gallop speeds,stride frequency of the gallop

has the least.

The second experiment forced the simulations to follow the speed-stride frequency

curve of Heglund. The energy levels were calculated and plotted against speeds. They also

did the experiments using a dog with a similar procedure. Their conclusion stated, even

without back flexion, choosing an appropriate gait for a particular speed had an energetic

advantage.

Another set of models, based on horses, is provided by Herr. His work [(58),(59)] de-

scribes a ten DoF model, with two DoF per leg, one back joint and one neck joint. The

mass is distributed in a realistic manner based on morphological data. The foot is modeled

as a point contact with the compliant ground (modeled using springs and dampers so slip

on initial contact does not occur). Ideal linear springs areused to simulate the limb, back

and neck behavior during stance. The controller does a number of things during the stance

and aerial phases, but generally comes down to regulating thrusting / braking torques at the

shoulder and knees to maintain a system galloping at constant speed. The results reason-

ably predict a horse trotting and galloping when compared toexperimental data. With the

use of the morphological data as driving parameters for the system, postural stability is an

emergent system characteristic. Unique to this model is thenon-symmetric placement of

the back articulation. The simulation is run at 5.2, 6.8, and7.4 m/s. The torso length is

estimated (48) to be 0.97 m, assuming a mass of 140 kg, resulting in speeds of 5.36, 7.01

and 7.63 bodylengths/s.

Figure 2.25 Herr’s Galloping Horse Model

The next model of interest is from Berkemeier’s work (18) andNeishtadt and Li’s (101).

The model observed the stability properties of a quadruped running in place (no forward

velocity). The body is a rigid, two degree of freedom model with two massless legs consist-

ing of a spring, damper and position-controlled actuator. The main difference between the

two models is Berkemeier includes gravity in the formulation of the equations of motion.

The angular speed of the torso ranged from 1.5 rads/s to 10 rads/s. Two periodic solutions
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were obtained, corresponding to the bound and pronk gaits. The bound was stable, pro-

vided the dimensionless body inertia was less than one. The pronk’s stability is related

to height and inertia. The major contribution of the study displayed how body inertia is a

critical design parameter.

Schmiedeler’s model [(130), (132)] uses a five DoF model witha rigid trunk and mass-

less legs. The work gives a mathematical explanation for thegait changes in the quadruped

model, as related to the effective drag of the system. In thiscase, the effective drag is the

component force of gravity acting transversely on the body as it is moving uphill. The

conclusion of the work shows animals select in-phase gaits with large stride periods as

drag increases because it allows the legs to be positioned properly relative to the trunk for

efficiently generating thrust. The gallop and its variations are featured in (132), but (130)

describes the range of gaits from walk to gallop, as well as the many different gaits in be-

tween. The 33 kg model with a torso length of 0.6 m was investigated at 2.37 to 5.14 m/s

(3.95 to 8.57 bodylengths/s). The main goal of (130) was to design a compliant leg for a

prototype galloping quadruped robot based on the effectiveleg stiffness determined by the

previous gaiting studies.

The work presented by Zou and Schmiedeler in (152) demonstrates bounding with a

model similar to Berkemeier’s. The model runs in place and isplanar with massless legs,

incorporating a spring and damper in parallel. The primary difference between the models

is the asymmetric placement of the center of mass on the rigidtorso. The model is passively

stable when the dimensionless moment of inertia of the body is less than 1−β 2, whereβ
is a dimensionless measure of the asymmetry. The model runs in place but has a center of

mass that is weighted more towards the front legs, presenting a more biologically realistic

mass distribution. The primary purpose of the model is to analyze how the center of mass

placement affects the stability and dynamics of a simple quadruped model.

Schmiedeler et al. ’s work in 2001 (131) presents a study on a simulated galloping gait

from a biological perspective, followed by the implementation on a prototype to test the re-

sults. The model consists of four legs: each leg consists of an upper and lower mass. There

is a torque at the hip actuating the upper leg mass and linear actuator in series with a spring

/ damper combination actuating the lower leg mass. A direct adaptive fuzzy controller is

used to control the speed and height. The inputs to the controller are the state at top of

flight and those desired at the next top of flight. Therefore, the height, velocity, pitch and

pitch rate are the inputs with the outputs being the leg touchdown angles and leg thrusts.

The proof of concept is in a single leg design followed by later work in (103), presenting

the entire design of the robotic system.
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The next set of models are related to a five DoF system and were used in tandem with

the Scout II robot to develop stable running gaits.

Poulakakis et al. presented an analytical model used for theanalysis of the Scout II

robot (115). The model is composed of three bodies- two legs and one torso. A linear

spring/damper system models the leg compliance during the stance phase. Initially, the

model was employed with simplified conditions to demonstrate stable bounding gaits up to

speeds of 1.3 m/s (for the torso length of 0.55 m, 2.36 bodylengths/s). Their second goal

was to experimentally validate the model; therefore, additional complexity relevant to the

robotic system, including models for the motor driving the system, the battery, amplifier,

actuator and gearbox units, were added to improve the correlation between the physical

robot and the model. The model was also used to implement and test a simple controller

based on methodology similar to Raibert’s in (120) and was unique in its open loop leg

positioning control law

Other research done by Poulakakis et al. [(114), (116)] focused on identifying the con-

ditions necessary for the generation of passive running cycles and studying their stability

properties. The work uses the self-stabilization properties in the spring-loaded inverted

pendulum (SLIP) in order to aid in their search. Their work demonstrated globally fixed

points at higher speeds require flatter touchdown angles (119). The paper presents stud-

ies on convergent forward speeds and subsequent investigations on those speeds’ relation

to the touchdown angle. From these observations, two feasible variations on the bound-

ing gait were shown mathematically, as well as experimentally observed on the Scout II

quadruped robot. These correspond to the front leg moving away from the body (inner

branch) or towards the body (outer branch). In each of these gait variations there exists

a stable region where the model does not need control. The work emphasizes the notion

of self-stabilization as an aid in the design of simple and robust controllers for complex

motions like bound.

The SLIP model was studied by Cavagna et al. (29) and others [(22), (38), (63), (77)]

as a simple way to describe fast locomotion in animals. The inverted pendulum description

of walking was also investigated. Both of these models describe behaviors observed via a

series of experiments where humans and animals walked, hopped, trotted or ran across a

force platform. Blickhan further studied the behavior (22)with a massless spring connected

to a point mass, while Mochon and McMahon extended the inverted pendulum concept to

ballistic walking (95). From the SLIP model observations, anecessary and sufficient con-

dition for the existence of fixed points is a symmetric stancephase- the liftoff angle is

equal to the negative of the touchdown angle. Speeds investigated in the single point mass

connected to a massless spring ranged from 5.5 to 7.0 m/s.
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The model presented by Hyon et al. in (65) has a rigid torso with springy telescopic legs

rotating about the torso with hip springs. Their legs have mass, but no knees, and all springs

are linear. The results showed two types of gait (including astance and flight phase), nei-

ther of which were passively stable for the quadruped model.A simple controller was used

to stabilize the bound gait. The speed for simulations was set at 2 m/s (4 bodylengths/s).

Silva’s model (135) is constructed withn-legs (equally distributed on both sides of the

body) with two degrees of freedom per leg (hip and knee). The trunk of the system is

divided inton-segments and a linear spring-dashpot system is adopted forthe intra-body

compliance. The foot-ground interaction of the model is handled by two methodologies-

exact force-deflection relationships or approximate models of ground deformation based

on soil mechanics. The controller for the system utilizes a fractional order and proportional

controller for the gait planning. Their results showed thatthe system response was reason-

able for a hexapod configuration. Subsequent studies characterized additional metrics such

as gait efficiency (136) and system stability (137).

Figure 2.26 Silva’s Multi-Legged Compliant Model

The last major group of models of relevance for this researchare variations on the For-

mal’sky et al. work from (39), used as the template for the baseline model of the current

research. More detail on the model will be addressed in the next section but is briefly given

here for completeness.

Formal’sky et al. present a rigid model with knees (39). The legs and rigid torso have

mass and the system ballistically traverses from one stancephase to the next through the

use of fixed points. There is no flight phase in the model; however, the use of passive-

dynamic step phases with impulsive transitions and construction of fixed points to set a

cyclic gait are the crux of the model created herein. The speeds investigated are 1.5 to 4.0

bodylengths/s.

Muraro et al. (97) followed up on the work of Formal’sky (39) by seeking optimal cyclic

reference trajectories based on including actuator characteristics in the model. The actu-
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ated joint evolution is chosen as a polynomial function of time with the coefficients as the

optimization parameters. The costs used for the optimization are torque cost (integral of

the torque norm) and energetic cost (absolute value of the integral of work done by external

forces). Both are calculated for a fixed displacement of one meter. Their studies show that

the bound is the least efficient gait at slow speeds, with the trot showing the best results

(the speed varied from 0.1 to 1.3 m/s, 0.27 to 3.58 bodylengths/s). The walk permits the

fastest motion with the same actuators.

Work by Aoustin et al. in (15) used the model from (97) to test acontrol strategy on

a robotic platform called SemiQuad (Fig. 2.14). The controlstrategy uses the previously

determined passive trajectories as reference for the actuators at the hips / knees. During

the single support phase, reference trajectories are computed for three of the joint angles as

polynomials, and a proportional derivate controller is used to track these preset paths. The

speeds for the simulations and experiments ranged from 0.0125 to 0.0133 m/s (0.03 to 0.04

bodylengths/s).

Another group used a similar model to (39) but included a flight phase. Furusho et al.

(43) used the model to create a control strategy using three modes: position control mode,

velocity control mode and free rotation mode. The robot was able to use the controller in

combination with its sensors and actuators to realize the bound gait (noted as bounce in the

paper). The simulations and trials were run at 2 m/s (2.86 bodylengths/s) and employed on

the physical robot Scamper.

Model (Primary Author) Max Speed Investigated (bodylengths/s)
Poulakakis 2.36

Raibert 2.86
Furusho 2.86
Muraro 3.58
Leeser 3.70
Hyon 4.00

Formal’sky 4.00
Nanua 7.41
Herr 7.63

Schmiedeler 8.57

Table 2.1 Max Speeds of Quadruped Models

The models presented here cover the key research done in the area of quadrupedal mod-

eling. Table (2.1) lists the max speeds for which quadruped models have been investigated.

Although there are some models that operate at high speeds with a rigid back (Nanua, Herr

and Schmiedeler), there are no analytical models that quantify the energetic consequences

of employing an articulation at high speed. The work presented here fills this void by devel-
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oping and analyzing a high-speed, bounding articulated model (running at speeds of 10.0

to 15.0 bodylengths/s) compared to a similar system with a rigid back. The construction of

these models, and their subsequent analysis, are presentedin the following chapters.
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Chapter 3

Model Description

This chapter presents the development of the rigid and articulated quadruped models, in-

cluding all assumptions, bounds and constraints. Various local and global optimization

methods were employed, first to find admissible gaits and second, to minimize the ener-

getic cost within the biological constraints supplied. A pseudo-code diagram can be found

in Appendix A for visual reference.

The methodology, associated constraints and objective functions used to obtain admis-

sible and optimized gaits are described. With an understanding of the model development,

its limitations and assumptions, the subsequent results ofthe simulations conducted for op-

timization, presented in the next chapter, are justified andgiven the necessary background

to present a meaningful analysis.

3.1 Dynamics

The equations of motion of the system, including initial conditions, constraints and assump-

tions, determine the dynamics of the system. General aspects of both models are discussed

(gaiting, virtual leg, impulsive transitions, equations of motion, constraints), followed by

individual discussions on the rigid and articulated models.

3.1.1 Gaiting

A gait is defined as the timing and sequencing of an animals’ legs as it moves from one

place to another. From Hoyt and Taylor’s work (64), an energetic minimum exists at an an-

imals’ naturally selected gait within a speed range. For high-speed, the gallop is the chosen

gait. Using the cheetah as the biological archetype, the gallop is deconstructed into various

phases. Hildebrand’s work (61) provides a visual breakdownof the cheetah’s stride and is

shown in Fig. 3.1.
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Gathered Flight (3) Rear Stance (4) Extended Flight (1a,1b) Front Stance (2)

Rear Stance to Extended Flight (41a) Extended Flight to Front Stance (1b2) Front Stance to Gathered Flight (23) Gathered Flight to Rear Stance (34)

PHASES

TRANSITIONS

gh (1a, )

Figure 3.1 Hildebrand’s (61) cheetah stride images

The top and bottom portions of the image are divided into the phases (top half of the

image) and the transitions (bottom half of the image). The top left position of Fig. 3.1

shows the cheetah in the gathered flight phase, where the feetare tucked under the body.

The next image to the right, shows the start of the rear stancephase leading up to the launch

phase (this phase is the power stance phase). Following the launch phase is the extended

flight phase. During this phase, the body is stretched out to its full extents. After the ex-

tended flight phase, the front stance phase begins. This phase has a double step out that

helps to minimize the energy at impact (127) and is the braking stance phase. From these

descriptions, the system is broken down into four primary phases, beginning with the start

of the launch phase, referred to as rear stance:

• 4: System is in rear stance and is preparing for take-off.
• 1a,1b: The system is in flight and fully extended.
• 2: The rear legs move forward in preparation for the next phase.
• 3: The rear legs cross over the front in order to position the rear legs under the body

while the body is in flight.

One full cycle is taken to be the system at the top of the extended flight phase, to the next

consecutive top of the extended flight phase. The extended flight phase is denoted by the

alphanumeric labels of1a, 1bfrom the definition of the full gait cycle. The first portion,1a

is the ascending part of the trajectory, while1b is the descending part of the trajectory. The

split in the extended flight phase is necessary to provide an additional impulsive transition.

More details are provided in the next section.

3.1.2 Impulsive Transitions

The bottom half of Fig. 3.1 shows the transitions, which represent the change between the

phases. The first image shows the transition from the rear stance phase to the extended
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flight phase- the animal is launching into the air and entering the extended flight phase.

The next transition occurs between the extended flight phaseand the front stance phase.

The last transition is between the gathered flight phase and the rear stance phase. An addi-

tional transition for modeling purposes occurs at the midpoint of the extended flight phase.

This transition is necessary to bring the legs back underneath the body in preparation for

the front stance phase. Without active torques during the flight phases, the system needs a

mechanism to reverse the direction of the legs and a mid-flight impulsive transition fulfills

that task. The impulsive transitions are denoted by the following alphanumeric labels:

• 41a: Transition from the rear stance phase to the first half of theextended flight
phase.

• 1a1b: Transition at mid-flight of the extended flight phase.
• 1b2: Transition from the second half of the extended flight phaseto the front stance

phase.
• 23: Transition from the front stance phase to the gathered flight phase.
• 34: Transition from the gathered flight phase to the rear stancephase.

Leveraging the work of Mochon and McMahon (95), the model uses ballistic trajec-

tories during the flight phases. This implies that, given an initial set of positions and

velocities, the system moves through a timet from point A to point B with the only force

applied due to gravity. Since the system moves across a flat, level surface, the energy lost

at impact with the ground needs to be replaced to maintain a cyclic gait. A cyclic gait is

one in which the system, starting at a set a of positions of velocities, returns to the same

set of positions and velocities at the end of one complete stride. Energy can be injected

into the system through the actuation of the joints either continuously (active torques and

forces) or as a ‘whack’ to the system (impulsive torques and forces). Both types are used

in the models developed for this research. At the above notedtransitions, instantaneous

impulsive forces and torques can be applied to transition the system from the end velocity

state of the prior phase (before impulse) to the desired initial velocity state at the start of

the next phase (after impulse). Using instantaneous impulsive actuations has been shown

to be a valid approximation for phase transitions (2) and is acommon technique employed

for injecting energy into ballistic systems [(39),(81),(130)].

The phases and transitions of the cheetah gallop were mappedto the models used here,

as shown in Fig. 3.2, using the rigid model as the example system, recognizing that the

articulated model follows the same gait phases and transitions.

The various forces and torques applied during the impulsivetransitions are shown in

Fig. 3.3 for example front stance, rear stance and flight phases. For the rear stance, only

the rear foot can have an impulsive force and ankle torque, while for the front stance, the

converse is true (the front foot has the impulsive force and ankle torque). The mid-flight
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Figure 3.2 Phase transitions and stance phases over the duration of theentire gait
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Figure 3.3 Impulsive forces and torques at the phase transitions

3.1.3 Virtual Leg Simplification

Although the inspiration for this research, the cheetah, isa quadruped, a simplification in-

volving coupled pairs of legs can be effectively used to describe an approximation of the

gait. The four jointed legs of the system are combined into two coupled pairs using the

virtual leg construct. The virtual leg construct was introduced by Marc Raibert (122) to

simplify the control and dynamics of a multi-legged system.The premise of the virtual leg
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stems from observations on animal gaiting behavior. When ananimal selects an in-phase

gait (also known as a symmetric gait), studies of the gait patterns show limbs moving to-

gether in distinct couplings. When the limbs act in unison, they can be combined into a

single virtual leg, thereby simplifying the construction of the model from a four-legged

system into a two-legged one.

Walk

Trot

Bound

Figure 3.4 Virtual leg coupling for the walk, trot and bound

With the virtual leg construct, the gaits are defined using the pairs shown in Fig. 3.4:

the walk couples the limbs on either side of the sagittal plane (the left fore-hind limbs and

the right fore-hind limbs), the trot couples the left fore-limb / right hind-limb together and

the right fore-limb and left hind-limb, and the bound couples the limbs on either side of the

transverse plane- the fore limbs and the hind limbs. Fig. 3.5describes the planes used to

couple the limbs.

At high speeds, the bound is a simplification of the rotary gallop, the typical running

gait of the cheetah and greyhound. Most of the phases listed in Sect. 3.1.1 are approximated

well by the virtual leg simplification (additional evidenceis provided in Sect. 3.1.8.1),

with the exception of the front step-out. Condensing the step-out motion to a single front

stance phase increases the energy lost at collision (127) and the time spent in stance. The

biological approximation of this simplification is a front leg amputee quadruped gallop.

Despite its limitation of a single foreleg, such an animal isable to achieve fast running

speeds (www.tripawds.com), providing some biological feasibility to the simplification of

the front step-out.
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3.1.4 Equations of Motion

The general form of the equations of motion defining the overall dynamics of both systems

is given in Eqn. 3.1.

A(~q)~̈q+B(~q,~̇q) = DG(~q)G+D1(~q)F1+D2(~q)F2 (3.1)

A(~q)~̈q+B(~q,~̇q) = DG(~q)G+D1(~q)F1 (3.2)

A(~q)~̈q+B(~q,~̇q) = DG(~q)G+D2(~q)F2 (3.3)

A(~q)~̈q+B(~q,~̇q) = 0 (3.4)

Here,A represents the mass matrix andB contains all of the centrifugal, Coriolis and

gravity terms on the left-hand side. TheD’s on the right-hand side are the coefficient ma-

trices for the (impulsive) forces and torques, where the subscript 1 applies to the rear foot

and subscript 2, to the front foot. The state variables (represented byq) are the seven

(rigid model) or eight (articulated model) independent measures used to define the location

and orientation of the planar system. TheG’s are the (impulsive) torques andF1 is the

(impulsive) force on the rear foot andF2 is the (impulsive) force on the front foot.

3.1.5 Rigid Mode: Description and Verification

The rigid model is based on the work of Formal’sky, Chevallereau and Perrin, (39). A brief

description of the work conducted in (39) is recounted here to provide a foundation for the

rigid model. The general model parameters are given in Table3.1.

These dimensions and masses are similar to those of a medium-sized dog and are about
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Model Parameter Variable Value
Lower / upper leg massesm1,m2 2.25kg
Torso mass m3 15 kg
Lower / upper leg lengths l1, l2 0.3m
Torso length l3 0.6m
Lower / upper leg inertias Il1, Il2 0.0173kg·m2

Torso inertia Il3 0.4625kg·m2

Table 3.1 Rigid model parameters from (39)

half the dimensions and a third of the mass of the BigDog robot.

Formal’sky (39) used two phases to construct the various gaits- front stance and rear

stance with an instantaneous double support transition. The first phase is in rear stance

(starting at timet = 0 and ending at timet = T) and the second phase is in front stance.

The phases are linked by an instantaneous double support (starting at timet = T and ending

at timet = 2T). Bounding at low speed was one of the gaits simulated (1.2 - 2.1 m/s or 2 -

3 bodylengths/s).

As depicted in Fig. (3.6),q= [x,z,θ ,α1,α2,α3,α4] is the state variable vector, where

x andz are the respective horizontal and vertical positions of thecenter of the torso,θ is

the angle of the torso with respect to the horizontal axis,α1 is the angle of the bottom half

of the hind leg with respect to the top portion of the leg,α2 is the angle of the top half of

the hind leg with respect to the perpendicular of the torso,α3 is the angle of the top half of

the fore leg with respect to the perpendicular of the torso, andα4 is the angle of the bottom

half of the fore leg with respect to the top portion of the leg.For this system, clockwise is

positive for rotations, withx positive moving from left to right on the page andz positive

moving from bottom to top on the page.
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Figure 3.6 Rigid model generalized coordinate description

The equations of motion were symbolically generated using Mathematica and the re-

sultant expressions were transferred into MATLAB to solve for the forward dynamics. The

equations of motion were solved numerically using the ODE45integrator with the initial
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positions as specified in Table 3.2, the initial velocities set by the fixed point analysis (Sect.

3.2.1) and an event function which stopped the integration routine if foot/ground contact

occurred.
Variable t = 0 t = T t = 2T

θ 0◦ 0◦ 0◦

α1 −10◦ −α2(0) −10◦

α2 −20◦ −α1(0) −20◦

α3 −α1(0) −α1(T) −α1(0)
α4 −α2(0) −α2(T) −α2(0)

Table 3.2 Rigid model test case initial conditions

The resultant ground reaction force time histories for the bound gait at 1.2 m/s are pro-

vided in Fig. 3.7. The force follows trends of low-speed, inverted pendulum system - an

inverted parabola that peaks as the system vaults over the planted foot.

Figure 3.7 Formal’sky (39) force results for the bound at 1.2 m/s

The model was verified using MSC.ADAMS, a commercial, general purpose multi-

body dynamics software package. The model is constructed based on the given parameters

(moments of inertia, masses, and initial body translational and angular velocities). See Ap-

pendix C for information on the ADAMS model construction process. Results from the 1.2

m/s simulations are shown in Figs. 3.8 and 3.9. Agreement between the two models was

observed at all speeds investigated.

3.1.6 Articulated Model: Description and Verification

The articulated model is the same as the rigid model of the previous section, except for the

addition of a single node of articulation in the torso. This node, placed at the midpoint, di-

vides the torso into two equal length, equal mass bodies. Thearticulated model parameters
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Figure 3.9 Comparison of rigid model results using MATLAB and ADAMS forfront stance, 1.2
m/s with (39)

are provided in Table 3.3.

Model Parameter Variable Value
Lower / upper leg massesm1,m2 2.25 kg
Torso masses m3 7.5 kg
Lower / upper leg lengths l1, l2 0.3 m
Torso lengths l3 0.3 m
Lower / upper leg inertias Il1, Il2 0.0173 kg·m2

Torso inertias Il3 0.0578 kg·m2

Table 3.3 Articulated model parameters

The vector of generalized coordinates are given by the statevector

q = [x,y,θ1,θ2,α1,α2,α3,α4]. The horizontal and vertical position of the torso joint is

specified byx,y, θ1 is the angle with respect to the horizontal of the caudal portion of the

body,θ2 is the angle with respect to the horizontal of the cranial portion of the body,α1
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Figure 3.10 Articulated model general description

is the angle of the distal, caudal portion of the leg with respect to the proximal portion of

the hind limb,α2 is the angle of the proximal portion of the hind leg with respect to the

perpendicular of the caudal torso,α3 is the angle of the proximal portion of the foreleg with

respect to the perpendicular of the cranial torso, andα4 is the angle of the distal portion of

the foreleg with respect to the proximal foreleg.

As a test case, the initial positions in Tab. 3.4 and initial velocities set by the fixed point

analysis (Sect. sect:fixps) were input into the ODE45 integrator in MATLAB to determine

the ground reaction forces during the rear and front stance phases.

Variable t = 0 t = T t = 2T
θ1 0◦ 0◦ 0◦

θ2 0◦ 0◦ 0◦

α1 −10◦ −α2(0) −10◦

α2 −20◦ −α1(0) −20◦

α3 −α1(0) −α1(T) −α1(0)
α4 −α2(0) −α2(T) −α2(0)

Table 3.4 Articulated model test case initial conditions

To validate the articulated model developed in MATLAB, an articulated model was

constructed using ADAMS. Figs. 3.11 and 3.12 show foot forcetime histories from both

the ADAMS and MATLAB models for a speed of 1.2 m/s. Excellent agreement between

the force time histories is evident.

3.1.7 Foot contact

When the foot is in contact with the ground, several different constraints and requirements

need to be met. Discussions follow regarding a no-slip constraint, friction cone bound,

compressive foot contact force limit, and a bound on the allowable foot torque.
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3.1.7.1 No-slip Constraint

During the support phases of the systems, the equations of motion reduce to a subset of

Eqn. 3.1. This is accomplished by ‘locking’ the foot to the ground at contact and rewriting

the equations of motion. The degrees of freedom of the systems are reduced by two. The

front and rear stance equations are given by Eqn. 3.5, fori = 1 andi = 2 respectively.

A(~q)~̈q+B(~q,~̇q) = DG(~q)G+Di(~q)Fi (3.5)

For the rigid model,~q,~̇q,~̈q andG are 1 x 5 vectors,A,B andDG are 5 x 5 matrices,

Di is a 2 x 5 matrix andFi is a 1 x 2 vector. For the articulated model,~q,~̇q,~̈q andG are

1 x 6 vector,A,B andDG are 6 x 6 matrices,Di is a 2 x 6 matrix andFi is a 1 x 2 vector.

Additional information on the construction of these matrices is provided in Appendix B.
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3.1.7.2 Compressive Foot Force and Friction Constraint

During any ground-foot contact, the ground reaction force in the vertical direction must be

compressive for a physically realizable system (the foot ispushing against the ground). The

results presented in Figs. 3.8 and 3.9 follow the inverted-pendulum trend for a low-speed

gait (29). At higher speeds, the foot force positivity becomes more of an issue because

the initial velocities of the stance phases increase. The compressive vertical force is a

requirement during the stance phases and at the impulsive transitions.

The friction constraint bounds the ratio between the horizontal and vertical forces, also

known as thefriction cone. Friction coefficients from 0.5 to 0.8 have been used by others

[(17), (67), (80)]. In this research, the friction coefficient was set to 0.65 for all simulations.

3.1.7.3 Foot/Ankle Torque

A foot/ankle torque between the foot and ground was added to the model, which was

found to increase the stance duration, permitting a wider range of feasible solutions. This

additional torque helped to somewhat mitigate the loss of the multi-legged step-out (as

described in Sect. 3.1.3) due to the virtual leg simplification. There is also a biological

motivation for including a foot torque. The canine’s metatarsophalangeal joint connects

biarticular muscles from the pelvis to the ankle, exerting afairly significant ankle torque

(149) that enables the toe-off motion exhibited during high-speed running. The value at-

tributed to the extensor muscle joint torque is approximately 80 N·m. Multiplying this by

typical durations of the stance phases from the simulationsperformed in this research gives

an approximate impulsive ankle torque of 4 to 4.8 N·m·s.

Another method for approximating a foot / ankle torque bounduses the stance phase

duration and maximum vertical force from the simulation results. A typical canine paw is

about 0.05 m long (104) and the maximum vertical force duringstance varies from 250 N

to 350 N. Assuming no horizontal force contribution to the foot torque, results in a range of

impulsive torque ankle values from 0.63 to 1.05 N·m·s for stance times ranging from 0.05

to 0.06 s (typical stance durations). Consequently, a foot torque upper bound was set to 2

N·m·s for both the rigid and articulated models.

3.1.7.4 Foot Velocity Minimization

Simulations of the models as described exhibited extremelylarge sensitivities to the place-

ment of the front foot at the transition between the extendedflight and front stance phases.

In particular, large impulsive ground reaction forces, both compressive (admissible but
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infeasible), and tensile (inadmissible and infeasible) were observed. To minimize these

impulsive forces, a horizontal foot velocity minimizationroutine was included at the ex-

tended flight to front stance phase transition. Reducing thevelocity of the foot to match the

ground speed can mitigate the energy lost at impact [(21),(60),(61)] and when combined

with the mid-flight impulsive torques, mimics the early retraction phase noted in high-speed

cursorial locomotion [(59), (60)]. Since the flight phase isballistic, the initial height and

configuration angles at the end of the extended flight phase determine the foot velocity at

touchdown. A linear interpolation was employed to solve forthe height of the torso mid-

point at the mid-flight transition to set the horizontal footvelocity to within 10% of a zero

horizontal foot velocity. The value of 10% was chosen through trial and error and visual

inspection of the simulated gaits, enabling a sufficient amount of solutions to proceed to

the next phase while generating biologically feasible motions.

3.1.8 Impulsive Transition Bounds

As discussed in Sect. 3.1.2, the transitions between the velocities of the end of one phase

and the velocities at the start of the next phase are accomplished through a balance of

instantaneous impulsive forces and torques.

3.1.8.1 Force bounds

In the search to find a reasonable gait (one that meets all of the desired requirements and

specifications), limits on the impulsive forces are included to frame the problem within a

biological perspective. The discussion below provides references and background informa-

tion for bounds on impulsive forces.

To estimate the impulsive vertical force bound, one can lookat commonly reported

values of the maximum vertical ground reaction force or impulsive force measures from

biological experiments. From [(20), (73), (83), (105), (145), (146)], the maximum ground

reaction vertical force for animals and humans is most commonly cited at 2 to 3 times the

average body weight. The impulsive forces are represented by Eqn. 3.6.

IF =

∫

Fdt (3.6)

Under the assumption of a step pulse force time history, the impulsive force is given

as IF = F · δ t, in which F is the maximum value of the force, andδ t is the pulse time

duration. With the total mass of both models as 24 kg, the maximum force is 706 N, with a
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corresponding maximum impulsive force of 42.4 N·s (assuming aδ t = 0.06 s, the average

stance duration from the simulations). It is worth noting that these impulsive force bounds

are in agreement with Schmiedeler’s impulsive model in (130).

Walter and Carrier (143) recorded impulsive forces of galloping dogs with masses rang-

ing from 23.3 to 34.2 kg and speeds from 8.4 to 10.2 m/s. The measured maximum

impulsive vertical force was 90 BW·ms for a single hind leg, where the units are body

weight milliseconds. The hind legs have a coupled impulsivevalue of 180 BW·ms, respec-

tively. For a 24 kg animal, this is an impulsive force of 42.34N·s. Bryant (27) recorded a

maximum vertical impulsive force of 26.5 N·s for a single hind leg in a dog of mass 27 kg,

galloping at a speed of 6.9 m/s, giving a maximum coupled value of 53 N·s.

In summary, for this research, a value of 50 N·s is selected as a reasonable bound on

the magnitude of the impulsive forces.

3.1.8.2 Mid-flight Impulse

A(~q)~̈q+B(~q,~̇q) = DI ,G(~q)IG (3.7)

During the flight phases, there are no active torques or ground reaction forces as shown

in Eqn. 3.4. Hildebrand (60) observed in his work with cheetahs that the forelimbs begin to

move backwards prior to contact with the ground during the extended flight phase. Adding

the impulsive torques in the middle of the extended flight phase, reverses the counter-

clockwise progression of the legs. This brings the foot in line with the shoulder, preparing

for the next phase and reducing the impact with the ground, assuggested in Sect. 3.1.7.4.

Another way to look at this is during the extended flight phase, the legs are opening up and

out in both the front and rear portions of the body. Without any applied joint torques dur-

ing the extended flight phase, the model would continue to open up, which is an infeasible

trajectory. Consequently, mid-flight impulsive torques, represented byIG (a 1 x 4 vector

for the rigid model and a 1 x 5 vector for the articulated model) in Eqn. 3.7, were added

to engender a more biologically realistic model by reversing the opening of the legs. After

the impulsive torques at mid-flight are applied, the legs transition to a closing movement,

bringing them down and in, underneath the body. This movement is clearly substantiated

by observations of the biological system. There are no impulsive forces at mid-flight since

the model is not in contact with the ground.
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3.1.9 Active Torques

To ensure physically realistic solutions during the stancephases, a constant torque, herein

referred to as an active torque, was activated on the joints connecting the legs to the torso.

Active torques during stance phases are biologically realistic and expanded the feasible

solutions found during the gait optimizations. The active torques are applied at the shoul-

der during front stance and at the haunch during rear stance.The inclusion of this torque

is corroborated by other researchers studying biological systems and quadrupeds [(20),

(47),(79),(82),(83)].

For model simplicity, only one joint torque, with a constantvalue, is activated in each

of the stance phases. Adding the active torque proved necessary for the high-speed gaits.

As the speed of the system increases, the ground reaction force drops when modeled us-

ing a purely ballistic model (39). The active torques have been limited (60 N·m) based on

previous work (98) and physical experiments (148). Initially, the shoulder torque magni-

tude (active during the front stance) was set at 45 N·m while the haunch torque magnitude

(active during the rear stance) was set at 60 N·m.

3.2 Optimization

With the equations of motion for the various phases fully defined, the dynamics of each

phase are determined by a fixed point optimization. After thetrajectories during each phase

are set, the impulsive torques at the transitions are minimized, enabling a complete gait cy-

cle consisting of the descending part of the extended flight phase, the front stance phase,

the gathered flight phase, the rear stance phase and the ascending part of the extended flight

phase. Once the full gait is defined, the initial foot placement and angular configurations

are varied until a simulation converges to a reasonable gaitfor a given step frequency and

speed. The last step in the process uses the cost of transport(CoT) to optimize the gait

with respect to energy costs. Due to the large search space and nonlinearity of the problem,

evolutionary algorithms are used to find a valid gait and thenfurther refine and optimize

the gait.

Several topics are addressed in this section, including a description of the fixed points

and their function, what optimization technique is employed, how to generate the optimiza-

tion seed, initial conditions, comparative metrics, additional bounds, the objective function

construction and challenges encountered.
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3.2.1 Fixed Points

A fixed point is the set of angular velocities that allows the system to move between one

set of angles to another. The Newton-Raphson method is used to find the appropriate set

of velocities between the start configuration (A ) and end configuration (B ) of a phase. In

order to set the trajectory for a phase, a fixed point must be found. This section describes

the general procedure for finding this fixed point and how it was incorporated in the current

set of models.

~qB−~P(~qA,~̇q) = 0 (3.8)

The general form of the fixed point is presented in Eqn. (3.8).The vector~P(~q,~̇q) is the

resultant vector of positions after running the equations of motion with the start configu-

ration,~q, and the initial guess,~̇q. The fixed point is the set of velocities (~̇q) that allow the

system to get from the configuration atA (~qA) to the configuration atB (~qB). The method

used to solve for the fixed points is the Newton-Raphson method. The solution procedure

starts with an initial guess (~̇q), then constructs the partial derivative by looking at the system

states after a smallδ t has passed. The partial derivative is subsequently used to construct a

line passing through~q and~P(~q,~̇q). The guess is adjusted until~q= ~P(~q,~̇q) or the difference

between the~P(~̇q)desired−~P(~̇q)actual is within the specified tolerance.

~̇qk+1 = ~̇qk−∇~P(~̇qk)−1 ·~P(~̇qk) (3.9)

If the initial guess is close to a desired solution, the system will converge. The range

in which this convergence occurs varies but is known as the basin of attraction. In the

simulations conducted for this investigation, the large range of values and sensitivity of the

systems to the initial conditions, necessitated the construction of an automated fixed point

routine within the evolutionary algorithm. A check was usedto exit the routine if a solu-

tion was unstable. Instability in this instance was determined by the change in the velocity

vector. If the differences continued to increase, rather than decreasing within the specified

tolerance, then the solution was deemed unstable and the fixed point routine would end. A

new initial guess was selected and the program continues until either a suitable solution is

found or all points are exhausted and a new point is attempted.

The automated fixed point subroutine consists of two portions. The first part of the rou-

tine loops through an existing table of previously acceptable fixed points. These are fixed

points initially found by trial and error when searching fora converged set of velocities

over one given phase. Each phase has its own table of acceptable fixed points. To prioritize

the search, the fixed points and their initial angular configuration are arranged according to
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the sum of the squared differences of the angular configuration currently under evaluation

and then each fixed point is attempted to see if it is within thebasin of attraction (providing

a converged solution).

If all fixed points in the list have been exhausted, a secondary procedure is called. This

procedure attempts to find the fixed point on its own, using themost likely candidate from

the first routine and decreasing the phase duration. If a fixedpoint is found, the phase dura-

tion is increased until the actual phase duration is reached. The new fixed point is added to

the table, otherwise, the simulation exits and looks for another feasible solution. With this

procedure, a large number of fixed points were accumulated for the fixed point reference

table.

3.2.2 Simulated Annealing

The large number of variables and the problems’ susceptibility to getting mired in local op-

tima led to the use of a global optimizer to search for valid gaits. Global optimizers search

through multiple basins of attraction, whereas local optimizers tend to locate a minimum

in the nearest basin of attraction to the initial seed. Although the possibility of finding

more and better solutions increases with a global optimizer, there are disadvantages. The

largest impediments to a global optimizer is the time necessary to cover the search space

adequately and convergence.

Typically, evolutionary algorithms best are used for nonlinear, global optimization

problems. Amongst the evolutionary algorithms, the simulated annealing (SA) was chosen

for the gait optimization studied herein.

3.2.3 Seed and Initial Conditions

As with any evolutionary algorithm, starting with an appropriate seed enables the opti-

mizer to narrow the search space and converge more quickly. The seed for the simulated

annealing algorithm consists of the angles at the start of each way point and the initial foot

placement at touchdown of the extended flight phase. The termway point is used as the

description of the kinematics at the start of a phase (the setof angles defining configura-

tion A ). There are four main way points, specifying the angles at the start of the four gait

phases: extended flight, front stance, gathered flight and rear stance. The fifth way point is

the set of angles at mid-flight. The other variable is the firstfoot plant location.

For the rigid system, the full number of variables is 26 and for the articulated, 31. Ini-

tially, to reduce the complexity of the system, symmetric boundary conditions (39) were
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used. The angles were set by using the images from Hildebrand’s work, scaling these to

find appropriate limb lengths, and extracting the resultantangles and foot placement. Using

symmetry enabled a reasonable range of gait trajectories tobe found quickly. This sym-

metry constraint was subsequently removed to open the search space. Once the seed was

chosen, the dynamics of each phase were computed by integrating the equations of motion

using the initial conditions: the angles and foot placementset by the user and the velocities

determined by the fixed point analysis. The prescribed kinematics and solved dynamics

define the motion of the system during a phase. If all contact forces are positive, all fric-

tion cone values are less than 0.65, all impulsive ankle torques are less than 2 N·s and the

horizontal foot velocity at the extended flight to front stance transition is less than 0.5 m/s,

the resultant force and torque information is passed to the objective function to determine

the fitness of the solution.

3.2.4 Cyclic Gait

A cyclic gait occurs when the gait is repeatable. Mathematically, a cyclic gait is defined

when the difference between the angular velocities (and positions) of a single instance in

the gait and those of the next repeated instance are zero. Thegait cycle starts at the top of

the extended flight phase and ends at the next top of the extended flight phase. Therefore,

the final check in the simulation compares the angular velocities at the start of the gait cycle

(the beginning of the descending part of the extended flight phase) to the angular velocities

at the end of the gait cycle (at the end of the ascending part ofthe extended flight phase,

immediately after the mid-flight impulsive torques have been applied). Since the full stride

transition occurs in the middle of the extended flight phase,the ballistic trajectory dictates

the horizontal and vertical velocities of the system. The height of the body at the start of the

extended flight phase is set by the acceptable solution for the foot velocity minimization.

The sum squared difference of the angular velocities determines if the solution is promoted

to the next stage, where the objective function is calculated and sent to the optimizer. A

tolerance of 0.01◦/s was used as the upper limit in the maximum difference for allowable

solutions.

3.2.5 Optimization Bounds

As noted above, the simulated annealing algorithm is a good choice for a bounded nonlinear

optimization. Bounds on the variables (angles and foot placement) needed to be carefully

specified for effective optimization. The initial phase of the optimization searched for a
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viable gait. During this initial search, the bounds on the angles were fairly large- starting

at ±40◦ and decreasing to±20◦. Then, as the simulations progressed (and the symmet-

ric boundary conditions were released), the angular boundswere reduced and varied from

±2.5◦.

The other optimization variable was the foot placement after the extended flight phase

(δ f oot). The foot placement after the gathered flight phase was set by the speed and stride

frequency relationship, and so was not considered as a variable. Because the model had

to continually move forward for feasible motion, the horizontal position of the second foot

has to be greater than the horizontal position of the first foot placement. The speed, step

frequency, and initial foot plant explicitly define the second foot plant, therefore, the first

foot plant is bounded- it has to be less than the total step length for the system to make

reasonable forward progress.

3.2.6 Objective Function

Optimization algorithms require at least one objective function whose value is minimized

(or maximized). Two objective functions were employed in this research, one to guide the

gait selection optimization, and a second using cost of transport (CoT) to maximize gait

efficiency, once a reasonable gait was found.

3.2.6.1 Gait Selection

The gait selection objective function underwent several variations in order to find the right

balance of competing variables. Eqn. 3.10 shows the final objective function used to find a

suitable gait.

SM= ΣI2
G,i +c1 · (I

2
F,x+ I2

F,y)+c2 · (IF,x/IF,y)+c3 · IF,y,max+(Gi · tstance)
2 (3.10)

The subscripti corresponds to the joint (i = 1 : 5 for the rigid model andi = 1 : 6 for the

articulated model).IG,i is the impulsive torque at jointi; IF,x andIF,y are the horizontal and

vertical components of the impulsive forces andGi is the active torque joint i (noting that

only the haunch and shoulder joints have any non-zero activetorque values). The variables

c1,c2 andc3 are weights on the sum of the squares of the impulsive forces,the friction cone

weight and the weight of the impulsive vertical force, respectively. These weights were set

based on trial and error and have values assigned via a step function. For example, if the

sum of the squares of the impulsive forces is less than 502, thenc1 = 0.1. If it is greater,
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thenc1 = 0.5. The friction cone ratio is the relationship between the horizontal and vertical

forces (see Sect. 3.1.7.2). The value is weighted based on the friction limit- if the value is

less than 0.65, thenc2 = 0.1, otherwisec2 = 500. If the vertical impulsive force is negative,

then a large penalty is incurred (c3 = 103), otherwisec3 = 0.

3.2.6.2 Gait Optimization

After a reasonable gait was found, the energetics of the system were analyzed to optimize

the system for a given speed and stride frequency. The cost oftransport (CoT) is a common

metric used to evaluate legged systems [(12),(29),(54),(71),(106)] and provides a fair com-

parison because it is a non-dimensionalized measure of the total work done by the system

to move through one full gait cycle.

The CoT is the amount of work as specified by Eqn. 3.11 necessary to move a weight

over a unit distance and is given by Eqn. 3.12. Note that, since the system returns to the

same height at the start and end of the cycle, the change in potential energy is not included

in the total work equation.

Wj = Σ[1/2 ·mi(~v
2

ai,i −~v 2
bi,i)+1/2 · Ii(~ω 2

ai,i −~ω 2
bi,i)]

Wtotal =
5

∑
j=1

|Wj |+ |∆KEFS|+ |∆KERS| (3.11)

Wtotal

m·g ·SL
(3.12)

The subscripti in the equations refers to the body,ai is after impulseandbi is before

impulse, mi is the mass of bodyi, ~vi is the component vector of bodyi’s center of mass

velocity, Ii is the moment of inertia of bodyi and~ωi is the angular velocity component of

body i. The subscriptj references the impulsive transition. The other terms in thetotal

work equation (∆KE) are the change of the kinetic energy over the stance phases,where

the active torques are turned on. The subscripts describe the phase-FS denotes front stance

andRS, the rear stance.

3.2.7 Challenges

There were many challenges during the development of the models. While working through

these, many lessons were gleaned. For instance, the ankle torque was a physically realistic
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aspect of the biological system not initially captured in the modeling (due to the use of the

point foot). Moreover, its inclusion reduced the simulation convergence time significantly.

Another instance involved the active torques. Without the addition of these torques during

stance, the number of converged solutions was much smaller and often not biologically

realistic. It also has a physical corollary and is a sensiblemodel addition.

As expected, the articulated model, with its additional degree of freedom, has a much

larger configuration space in which a valid gait could be found. Once a gait was found for

the rigid model, very little change to the objective function was observed; whereas with the

articulated model, there was more room for the simulated annealing algorithm to optimize

the solution based on the chosen objective function. However, enforcing the cyclic gait was

also more difficult than anticipated with the articulated model. Adjustments were made to

ensure start and end conditions were matched, including a subroutine to optimize the avail-

able joint torques. The rigid model was able to minimize the error between the mid-flight

velocity jumps much better than the articulated model.

This chapter presented all of the necessary and appropriateconstraints, bounds, simu-

lation settings and parameters required to run both models,generate reasonable gaits and

optimize those gaits. Understanding all of the pieces in themodel, as well as the inherent

limitations introduced through the various assumptions and constraints, provides a context

for the interpretation of the results. The results, and a detailed analysis of their implications,

are provided in the next chapter.
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Chapter 4

Results and Discussion

This chapter presents the results from the gait generation and optimization. Using the mod-

els described in the last chapter, gaits for the rigid and articulated models were found and

subsequently optimized. Speed and step frequency were the primary design parameters,

incrementally varied and optimized. Since the rigid and articulated models demonstrate

different trends, the results are addressed individually,followed by a comparison of the

two. The outcomes of the many trials are evaluated and the effect of the spine’s articulation

on the energy demands analyzed.

For the purposes of optimization and comparison, a suitablemeasure is necessary. A

common metric used when observing these types of systems is the dimensionless measure

cost of transport (CoT) [(12),(29),(54),(71),(106)]. Thecost of transport is the amount of

work given by Eqn. 4.1 necessary to move a weight over a unit distance as shown in Eqn.

4.2.

Wj = Σ[1/2 ·mi(~v
2

ai,i −~v 2
bi,i)+1/2 · Ii(~ω 2

ai,i −~ω 2
bi,i)]

Wtotal =
5

∑
j=1

|Wj |+ |∆KEFS|+ |∆KERS| (4.1)

Wtotal

m·g ·SL
(4.2)

In Eqn. 4.1,Wtotal is the total work done on the system. The other variables arem, total

mass (24 kg for both models),g is gravity andSL is the stride length, the total distance

traveled from the top of flight to the next top of flight measured from the same location

on the body. Although CoT is dimensionless, units of J/(N·m) are typically given. Typical

values for biological systems range from 0.1 to 0.25 J/(N·m) [(59), (78), (147)], providing

a general range for potential solutions.

The subscripti in Eqn. 4.1 refers to theith body, bi is the state just prior to the in-

stantaneous impulsive transition (before impulse), ai is the state immediately after the
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instantaneous impulsive transition (after impulse), mi is the mass of bodyi,~vi is the com-

ponent vector of bodyi’s velocity,Ii is the moment of inertia of bodyi and~ωi is the angular

velocity component of bodyi. The subscriptj references the impulsive transition. The

other terms in the total work equation (∆KE) are the changes of the kinetic energy over the

stance phases, where the active torques are turned on. Subscripts FS andRS denote front

stance and rear stance, respectively.

In order to understand the terminology regarding the organization of the full stride de-

scribed in the following plots, the gait is broken down into pieces corresponding to their

energetic contribution. These parts have impulsive torques and impulsive forces, acting

at the instantaneous transitions, or an active torque, turned on during the stance phase,

contributing to the total work of the system.

• 41a: Transition from the rear stance phase to the first half of theextended flight
phase.

• 1a1b: Transition at mid-flight.
• 1b2: Transition from the second half of the extended flight phaseto the front stance

phase.
• 2: Front stance phase (active torque during forward stance phase).
• 23: Transition from the front stance phase to the gathered flight phase.
• 34: Transition from the gathered flight phase to the rear stancephase.
• 4: Rear stance phase (active torque during rear stance phase).

These transitions and stance phases are shown in Figs. 4.1 and 4.13, for the rigid and

articulated models respectively, with each colored configuration representing a correspond-

ing shared end / start of a phase. The active torques (2, 4) are turned on for the duration

of the front and rear stance phases, whereas the others-41a, 1a1b, 1b2, 23, and34- are

instantaneous impulsive transitions linking the ballistic flight phases (non-stance) to each

other (1a1b) or the appropriate stance phase.

4.1 Results: Rigid Model

The rigid model consists of five bodies connected by frictionless pin joints. All simulations

were run in Matlab using an evolutionary algorithm to initially find a reasonable gait and

subsequently, further refine the solution to minimize the total work necessary for a full,

cyclic stride.
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Figure 4.1 Phase transitions and stance phases of the rigid models’ gait

4.1.1 Cost of Transport

In order to answer the question of how the spine affects a quadruped system at high speeds,

a baseline model with a rigid spine was constructed. Many simulations were conducted for

speeds ranging from 6.0 m/s to 9.0 m/s and stride frequenciesranging from 0.90 s−1 to 3.0

s−1. The speeds were chosen based on the analysis of existing quadruped models (Table

2.1), most of which operated at slow speeds of 4 bodylengths/s. The models presented here

attempt to fill this gap, with simulations running at speeds of 10 - 15 bodylengths/s. The

primary metric for the gait optimization is the cost of transport.

All values of the CoT from the optimized speed and stride frequency trials are pre-

sented in Fig. 4.2. Different mechanisms are at work on either side of the stride frequency

range investigated. Each set will be addressed separately to step through the various trends

present.

There are two primary metrics at work in the CoT- the total work and the stride length.

The CoT is proportional to the total work (Fig. 4.3) and inversely proportional to the stride

length (Eqn. 4.2). The total work is driven by the changes in kinetic energy of the bodies,

linked to the velocity jumps across the transitions. The impulsive forces (Fig. 4.4) and

torques (Fig. 4.5) are the energetic inputs to the system, necessary to transition to the de-

sired ballistic velocities at the start of the next phase. The haunch torque at the34 transition

is the maximum (Fig. 4.6), associated with the start of the phase that requires the largest

angular reconfiguration.

For stride frequencies greater than 2 s−1, the increase in CoT with increasing stride fre-

quency is attributed to the rear stance phase (Phase 4). There is a large shoulder torque after

the gathered flight phase to accommodate the amount of reconfiguration required (Fig. 4.7)
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Figure 4.2 Cost of transport as a function of stride frequency

in the rear stance phase over a decreasing amount of time. Therear stance phase (Phase 4)

has the highest ratio of angular change to time with the frontleg accounting for the majority

of this change, stretching from the tucked position under the body to a forward extension

in front of the body. The gait has a more biological distribution between stance and flight

phases (20% / 80%), and is typical of values seen in gallopinggreyhounds (141).

At the lower stride rates (2 s−1 and lower), the CoT reaches a minimum value near

1.4 s−1 and then begins to increase as stride frequency decreases. The gait in the low

stride frequency region (less than 1.4 s−1) is different than the expected biological gait. By

lengthening the flight phases, the system is able to accommodate the long stride lengths

(Fig. 4.8). These long flight phases lead to a gait similar to akangaroo or a triple jumper.

The impulsive torques start to increase rapidly after 1.4 s−1, but are balanced by the long

stride lengths resulting in a less dramatic increase in the CoT. The long flight phases are the

primary cause for the sharp increase in the impulsive torques. In the low stride frequency

range, a large impulsive torque occurs at the haunch and shoulder, while the high stride fre-

quencies are dominated by the large shoulder torque. The torques at the lower stride rates

are all working to adjust the body velocities at the pre- and post-gathered flight transitions.

In the range of stride frequencies evaluated, the CoT increases at the extents (high and
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low stride frequencies). For the given gait, it is unlikely that the CoT will decrease at stride

frequency values higher or lower than those investigated, as evidenced by the impulsive

torques’ parabolic relationship. Physically, the cost to move the system the long distances

at the low stride frequencies starts to quickly overcome thebenefit of the amount of ground

covered. At the opposite end of the spectrum (high stride frequencies), the system is limited

by its foot placement and the time available for configuration (speed is fixed). The search

algorithm has increasingly more difficulty finding feasiblesolutions in this range.

In summation, the rigid system favors a low stride frequencywith an optimal value of

1.45 s−1 for the ranges investigated. Although the gait demonstrated with these conditions

is non-biological in nature, it emphasizes the awkwardnessof the rigid back, underscor-

ing the energetic preference of a long gathered flight phase to accomplish the crossover

necessary to provide a smooth and continuous gait. Even though the gait is biologically

unusual for a quadruped, the values for the CoT of the rigid system have a median around

typical biological values, albeit at lower stride frequencies than a canine-sized galloping

quadruped.

4.1.2 Total Work

The total work is the absolute value of the sum of kinetic energy changes of all bodies

across the impulsive transitions and stance phases (Eqn. 4.1). It is proportional to the CoT

and as a metric, it focuses on the energetics of the system without the influence of the stride

length introduced with the CoT definition.

The minimum total work value occurs at the minimization of the velocity changes

across all transitions. Across all speeds and stride frequencies, the majority of the energy is

involved in moving the system through the rear stance phase and preparing for the extended

launch phase. It is only at the very low stride frequencies that this trend shifts towards the

gathered flight phase. Stepping through the gait time histories, fractional energy plots and

internal work plots will clarify these relationships.

4.1.3 Maximum Impulsive Forces

An analysis of the energetic components provide a better understanding of the physical

limitations affecting the system. There are three main components changing the kinetic

energy of the system: 1) impulsive forces, 2) impulsive torques, and 3) active torques. The

potential energy affects the instantaneous energy, but haszero contribution overall since

the system returns to its original position at the end of the gait cycle.
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Figure 4.3 Total work as a function of stride frequency

The maximum vertical impulsive force is the primary force ofinterest. With the friction

cone constraint in place (see Sect. 3.1.7.2), the horizontal impulsive force will always be

less than the vertical force. The maximum vertical impulsive forces plot in Fig. 4.4, shows

a large variation (20 - 135 N·s) over the range of stride frequencies investigated. The forces

are increasing at stride frequencies less than 2 s−1 and approach an asymptotic minimum

at those greater than 2 s−1.

At the low stride frequencies, the system has a long gatheredflight phase, necessitating

a large vertical impulse to propel the system into the air. There is also a correspondingly

large impulse on landing. At the other end of the spectrum, with increasing stride fre-

quency, the center of mass trajectory becomes flatter, reducing the vertical impulsive forces

necessary to move the system. The gray line superimposed on Fig. 4.4 indicates the stride

frequency of the minimum CoT and is used as a reference for observations when applicable.

4.1.4 Maximum Impulsive Torques

As mentioned in the stride frequency and CoT discussion, theimpulsive torques are deter-

mined by the disparity between the velocities at the end of a phase and the initial velocities

required at the start of the next phase. Fig. 4.5 displays themaximum impulsive torques

60



0.5 1 1.5 2 2.5 3
20

40

60

80

100

120

140  

Stride Frequency 1/s

 

Im
p

. 
F

o
rc

e
 (

N
*s

)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Speeds (m/s):

Figure 4.4 Maximum vertical impulsive forces across all phases and joints

over the course of the entire gait cycle (all phases, all joints).

The maximum impulsive torque values are generally increasing above a stride fre-

quency of 2.25 s−1, as well as below a stride frequency of 1.45 s−1, although at the lower

stride frequencies, the increase is much sharper than at thehigher stride frequencies. The

torques range from 10 to 20 N·m·s, and are the primary method for the system to match the

velocities desired.

The gray line on the plot indicates the minimum CoT’s stride frequency. The maximum

impulsive torques corresponding to this line show the last set of values before the sharp

increase the torques and represents the ideal stride frequency that minimizes the velocity

changes at the transitions. The joints and transitions responsible for these large torques will

be discussed in the next section.

With increasing speed, the impulsive torques get larger. Asthe system moves faster,

the time available for a phase is decreased (at a constant stride frequency), necessitating

a larger torque to accomplish a similar reconfiguration in a shorter amount of time. The

reconfigurations are nearly the same since the way points change little between speeds.
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Figure 4.5 Max impulsive torques across all phases and joints

4.1.5 Impulsive Torques by Joint

Fig. 4.6 presents the scatter of the impulsive torque magnitudes as a function of stride fre-

quency for the joints of primary interest, the haunch and theshoulder. The other joints are

not included since the torques are smaller and are relatively constant across stride frequen-

cies. The colors represent the speed and the symbols signifythe phase transition.

At low stride frequencies, the maximum impulsive torque occurs in the transition just

prior to the launch phase-34 transition- in the haunch. The shoulder joint at the23 transi-

tion has a similar magnitude. Both values occur at the loweststride frequencies. The gray

curved arrows pointing to the left show the general trend of the haunch and shoulder torques

at these transitions, starting low at the high stride frequencies and reaching their maximum

at the lower ones. The large haunch torque after the gatheredflight phase is pushing the

hips forward, while the shoulder torque before the gatheredflight phase is acting to pick up

the front of the body, rotating the body from nose down (before gathered flight) to nose up

(after gathered flight).

The arrow pointing to the right shows the trend for the shoulder torque at the34 transi-

tion. The torque is a maximum at the highest stride frequencyinvestigated, then decreases

in the middle range and increases slightly at the low stride frequencies. The haunch and

shoulder torques at the34 transition are opening up the body to prepare for launch into
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Figure 4.6 Impulsive torques at the haunch and shoulder for all impulsive transitions as a function
of stride frequency

the extended flight phase. The magnitudes are linked to the amount of reconfiguration oc-

curring in the rear stance phase. Since the stance durationsare about the same for the two

stride frequencies (0.064 s and 0.072 s, for 2.9 s−1 and 1.6 s−1 respectively), the veloci-

ties at the start of the rear stance phase (after impulse) aresimilar between the two cases,

with the exception of the lower front leg. The velocities of the front leg at the lower stride

frequencies are significantly lower, reducing the internalwork and lowering the CoT value.

4.1.6 Reconfiguration

To clarify how the impulsive torques are acting on the bodies, Fig. 4.7 shows the configu-

rations for transitions34 and41aat the example stride frequencies of 1.6 s−1 and 2.9 s−1.

The corresponding signed impulsive torques at the start of phase 4 (the34 transition) are

indicated on the diagrams. The angular velocity signs follow the convention of positive,

counter-clockwise rotation. The impulsive torques and forces are acting on the bodies to

transition the system from the before-impulse velocities to the desired after-impulse veloc-

ities. The figure clarifies how the bodies are moving in relation to each other and whether

the selected limb pair is either opening or closing. Both theshoulder and haunch torques

are large, necessary for the desired reconfiguration to prepare for launch into the extended

flight phase. This is the dominant transition at the intermediate and high stride frequencies,

shifting to the23 transition at the lower stride frequencies, correspondingto the pre-launch
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of the gathered flight phase.
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Figure 4.7 Impulsive torques at43 transition, 7.5 m/s at high (2.9 s−1) and low (1.6 s−1) stride
frequencies

4.1.7 Gait Time History

To visually inspect how the gaits differ across the range of stride frequencies, a represen-

tative speed of 7.5 m/s is investigated. The trends are similar for the other speeds. Fig.

4.8 shows a range of stride frequencies to better illustratehow the system is behaving by

capturing a single frame after aδ t, creating a time / position history of the system in a

single image. The figures are zeroed to the hip location at thetop of flight. At the lower

stride frequencies, the rigid model displays a gait similarto a long jumper, with a lengthen-

ing gathered flight phase. In general, with a decrease in stride frequency, the rigid system

increases the time in flight, with the majority occurring in the gathered portion.

4.1.8 Fractional Energy Plots

Evaluating which part of the gait has the largest contribution to the total energy change pro-

vides an understanding of the increase in CoT. The impulsivetorques for each transition

and the active torques during stance phases are plotted as a fraction of the total change in

energy for all speeds and stride frequencies in Fig. 4.9.
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Figure 4.8 Stick figure plots at 7.5 m/s
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The dominant phase, evident in the majority of the fractional energy contribution charts,

is the impulsive transition prior to the extended flight phase (41a). Biologically, this is the

primary propulsion portion of the gait cycle and is expectedto have the highest contribu-

tion. At the lower stride frequencies, the23 and34 transitions tend to contribute a large

fraction of the total energy as these bound the gathered flight phase, where the largest

distance is covered, requiring large torques and forces forlaunch and landing.

4.1.9 Potential and Kinetic Energies

Although these charts give a simple overall picture of the fractional energies, it is useful to

view the changes of the absolute energy over time. To visualize how the energy changes

over the total duration of the gait cycle, the changes in potential energy (PE) and kinetic

energy (KE ) are plotted in Fig. 4.10. The plots are zeroed to the start ofthe extended flight

phase.
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Figure 4.10 Change inPE andKE over the total time of one gait cycle

Summing the absolute values of the changes in the kinetic energy plot gives the total

work, providing a visual representation of the time historyof the changes in energy over

the full gait cycle. The potential energy plot shows a decreasing amplitude as the stride

frequency increases. At the lower stride frequencies, the impulsive force is greater due to
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the high vertical leap in the gathered flight phase and is reflected by the large changes in the

center of mass height (change in potential energy). At the higher stride rate, the maximum

impulsive force decreases, mostly due to the lack of the long, gathered (ballistic) flight

phase, the presence of which necessitates a trajectory withenough height to cover the large

distance, shown in the time-lapse stick figures of Fig. 4.8.

In the kinetic energy plot, the legs of the higher stride frequency system are moving

quicker and the acceleration (then subsequent deceleration) of the rear stance phase is the

origin of the large energetic cost. This plot will be discussed in more detail in the next

section.

4.1.10 Kinetic Energy in Detail

The final energy plot, Fig. 4.11, in this section details the kinetic energy changes, starting

with the instantaneous kinetic energy change plot from the internal work section, the frac-

tional energy charts appropriate for the four stride frequencies used to investigate trends

in more detail and lastly, the translational and rotationalkinetic energies for the individual

bodies. All of these are for 7.5 m/s. All other speeds can be found in the appendix but

follow similar trends to those described in the 7.5 m/s.
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Figure 4.11 Kinetic energy changes in detail for 7.5 m/s
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The first plot is the instantaneous change in the kinetic energy as a function of the total

stride duration. The colors overlaid on top of the curves correspond to the transitions and

stance phases that contribute to the total work. The colors correlate to the fractional energy

plots, displayed in the next level of the plot. The fractional energy is a relative measure but

provides a visual corollary to the kinetic energy plots. Thefinal set of plots in this group

displays the translational and rotational changes in kinetic energy for the34 transition (left

set of bar graphs) and the41a transition (right set of bar graphs). The main components

of the energies to be investigated in detail are the largest impulsive torque transition (34

transition) and the largest fractional energy contribution (41a transition).

Each curve corresponds to one pane of the gait time history plot. The high stride fre-

quency curve (SF = 2.94 s−1) has the shortest time duration. The total change in energy of

the system (TE) (also the total work) is the highest of all four sampled values (TE = 419.67

J). This coupled with the short stride length results in a high CoT value (0.71). From the

fractional energy plots, the large contributions of the41a and34 transitions are evident.

These are reflected in the kinetic energy plot, with the system accelerating to the start of

the rear stance phase and then decelerating to the start of the extended flight phase. The

acceleration / deceleration caused by the large amount of reconfiguration happening in a

short time span is driving the high energetic cost of this gait.

The final set of bar plots in Fig. 4.11 displays the change in translational and rotational

kinetic energies at the34 transition (bar plots on the left) and at the41atransition (bar plots

on the right). The bar plots are organized by limbs, with the abbreviations standing for the

lower hind leg (LHL), upper hind leg (UHL), torso (T), upper fore leg (UFL) and lower

fore leg (LFL). The trends are similar across all stride frequencies- the lower hind leg, up-

per hind leg and torso have velocities closing the body, while the upper fore leg and lower

fore leg are opening up, moving away from the ground. Although the rotational change in

kinetic energies are much smaller in magnitude than the translational, some of the rotation

of the bodies is tied into the translational energies. The sum of each bodies’ translational

and rotational change in kinetic energies are then summed over all bodies to give the total

work for that particular phase. This value is found to the right of the corresponding legend

entry.

Returning to the discussion on the high stride frequency (SF= 2.94 s−1), the lower

fore leg at the34 transition is moving much quicker than the other limbs, driving the high

energy value (TE = 128.46 J) in this transition. At the next transition,41a, the deceleration

of the lower fore leg is driving the high energy value (TE = -206.60 J). The change in the

kinetic energy plot shows this on a global scale, while the bar plots show the limb or limbs

responsible for the high energetic cost.
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The middle two stride frequencies (SF = 1.38 s−1, SF = 1.65 s−1) show the flatter pro-

files necessary for a low CoT. As the change in the velocities at the transitions become

smaller, the discontinuities in the kinetic energy plot arereduced. If the acceleration / de-

celeration of the limbs is properly balanced, the total change in energy is reduced. For the

value nearest the ideal stride frequency (SF = 1.38 s−1), the total energy at the34 transition

is very small (TE = -3.15 J). At the41a transition, energy needs to be injected to get the

system airborne, although at all stride frequencies, the change in kinetic energy is negative,

reflecting a slowing of the leg rotations.

At the other end of the stride frequency spectrum (the loweststride frequency, SF = 0.92

s−1), the energetic costs are driven by the23 and34 transition. In the23 transition, the

primary body driving the change in the kinetic energy is the torso. The changes are driven

by the rotation from nose down to nose up, the large vertical /horizontal motions associated

with the leaping body into the gathered flight phase, and the subsequent deceleration into

the rear stance phase.

Although the gait discovered may not be the absolute global optimum, it represents an

energetically efficient trajectory with minimal velocity changes across the transitions. The

high and low stride frequencies demonstrate the issues at the extents from the high speed

necessary for the rear stance phase at SF = 2.94 s−1 to the large amount of energy required

to accomplish the very long gathered flight phase at SF = 0.92 s−1. The best balance be-

tween velocities occurs between the end of the long gatheredflight phase and the start of

the rear stance phase in the gait at SF = 1.38 s−1.

4.1.11 Best Cost of Transport

Fig. 4.12 displays the best possible CoT values as a functionof speed across the range of

stride frequencies investigated. These values occur between stride frequencies of 1.2 and

1.45 s−1. The increase in the CoT at the very low stride frequencies isdue to the increased

impulsive torques. These start to increase below a stride frequency of 2 s−1, although the

CoT doesn’t start to increase until a lower stride rate because of the linear change in the

stride length with decreasing stride rate, delaying the CoTincrease.

However, as discussed previously in Sect. 3.1.8.1, there isa biological limitation im-

posed on the system. Setting a peak maximum vertical impulsive force of 50 N·m·s and

using a linear interpolation from the data, these impulsive-force limited CoT values are

included in Fig. 4.12, designated by the red circles in the plot (listed as “Fit” data in the

legend). The new values shift up, indicating an increase in the physically acceptable CoT.

In general, the CoT is parabolic, with a minimum at 6.5 m/s, becoming more costly with
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Figure 4.12 Best cost of transport values as a function of speed

higher speeds, driven by the increase in the maximum impulsive torque. Using the data

fit1, the trend is linear with respect to speed.

In summary, the rigid system favors a low stride frequency atall speeds to minimize

the cost of transport, until the impulsive torques increasefaster than the decrease in stride

length. The rear stance phase drives the higher energetic cost at the high stride frequencies

and the transitions before and after the gathered flight phase dominate at the low stride fre-

quencies. The system is best suited for lower speeds and lower stride frequencies, within

the bounds of reasonable impulsive force values.

4.2 Results: Articulated Model

The articulated system was simulated using Matlab with an evolutionary algorithm for the

optimization. Simulations were conducted to first find a reasonable gait, and secondly, to

optimize the gait. The results of these simulations are presented, focusing on the relation-

ships between speed, stride frequency and cost of transport(CoT).

The gait is broken down into parts based on their energetic contribution. These parts

have either an impulsive (transition) or active torque (stance phase) component, contribut-

ing to the total work of the system.

• 41a: Transition from the rear stance phase to the first half of theextended flight

1Parabolic fits were created for the stride frequency / impulsive force relations and the corresponding stride
frequency for an impulsive force of 50 N·m·s was interpolated. This value was then used in the parabolicfit
for the stride frequency / CoT data to find the expected CoT value.
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phase.
• 1a1b: Transition at mid-flight.
• 1b2: Transition from the second half of the extended flight phaseto the front stance

phase.
• 2: Front stance phase (active torque during forward stance phase).
• 23: Transition from the front stance phase to the gathered flight phase.
• 34: Transition from the gathered flight phase to the rear stancephase.
• 4: Rear stance phase (active torque during rear stance phase).

These transitions and stance phases are shown in Fig. 4.13, with each colored configu-

ration representing one of the states described above.
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Figure 4.13 Phase transitions and stance phases of the articulated models’ gait

4.2.1 Cost of Transport

Fig. 4.14) presents the optimized results of the speed and stride frequency trials for the

articulated system. The speed and stride frequencies investigated range from 6.0 m/s to 9.0

m/s and 2.2 s−1 to 4.5 s−1, respectively.

For the range of speeds and stride frequencies investigated, the articulated system shows

a minimum in the stride frequency range of 2.8 to 3.3 s−1, close to the biologically favored

2.83 strides/s (54) for systems of a similar size. The systemshowed better convergence

characteristics at the higher stride frequencies and faster speeds, compared to the rigid

model. The following subsections provide detailed analyses of the mechanisms associated

with the CoT variations.
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Figure 4.14 Cost of transport as a function of stride frequency

4.2.2 Total Work

The total work is the absolute value of the sum of kinetic energy changes of all bodies

across the impulsive transitions and stance phases (Eqn. 4.1) and is proportional to the

CoT.

2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

Stride Frequency (1/s)

W
o

rk
 (

J)

 

 

6.0

6.5

7.0

7.5

8.0

8.5

9.0

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Speeds (m/s):

Figure 4.15 Total work as a function of stride frequency
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Fig. 4.15 shows the relationship of the stride frequency to the total work of the system.

The total work is flatter than the CoT plot with the exception of speeds 8.5 and 9.0 m/s. The

majority of the total work contribution is attributable to the deceleration over the duration

of the rear stance phase. Other trends are present but are related more to the shape of the

gait, rather than speed or stride frequency relationships.As such, they will be addressed in

the following subsections.

4.2.3 Maximum Impulsive Forces

Fig. 4.16 displays the maximum value of the vertical impulsive force for all simulations

and all phases.
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Figure 4.16 Maximum vertical impulsive force across all phases and joints

The points are fairly scattered but the general trend is a decreasing vertical impulsive

force with increasing stride frequency. The shorter the stride length, the shorter the flight

phases and the less amount of propulsion necessary to get thebody into the air. The shorter

stride length also provides a better range for the foot placement, to balance the transitions

between phases.
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4.2.4 Maximum Impulsive Torques

The impulsive torques, along with the impulsive forces, aretransitioning the body between

phases by instantaneously adjusting the velocity at the joints. The maximum absolute value

of impulsive torques across all phases and joints are shown in Fig. 4.17.

2 2.5 3 3.5 4 4.5 5
12

14

16

18

20

22

24

26

28  

Stride Frequency (1/s)

 

Im
p

. T
o

rq
u

e
 (

N
*m

*s
)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Speeds (m/s):

Figure 4.17 Maximum impulsive torques across all phases and joints

Very nearly all of the speeds collapse onto a single line witha slope of 7, increasing

with increasing stride frequency. All of these values are from the back joint with the major-

ity of the maxima occurring at the front stance to flight transition (23). It is only at stride

frequencies greater than 3.75 s−1 that the maximum back torque occurs at the mid-flight

transition (1a1b). At these very high stride frequencies, the stride length is shorter, and

consequently, the flight phases are shorter. With the short flight phase and the body still

opening up at mid-flight, the back torque reaches a maximum. Imagine doing a jumping

jack- there is not enough room for the body to have a more gradual increase to its fully

extended position and both legs are swinging up and out. The large mid-flight back torque

prevents the back from collapsing.

At stride frequencies less than 3.75 s−1, the23 transition is driving the maximum back

torque. The functionality is the same, just with the gathered flight phase. During this phase,

the rear leg is crossing over the front leg, however, the backstays relatively flat. The large

torque just before this phase is preventing the system from collapsing as the haunch pushes

the rear leg forward to plant it for the rear stance phase. In both cases, the back torque is
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acting like a contracting abdomen muscle rather than a flexing back.

4.2.5 Impulsive Torques by Joint

Fig. 4.18 presents the scatter of the impulsive torque magnitudes as a function of stride fre-

quency for the back, haunch and shoulder joints. The other joints are not included since the

torques are smaller and are relatively constant across stride frequencies (5 N·m·s or less).

The colors represent the speed and the symbols signify the phase transition.
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Figure 4.18 Impulsive torques at the back, haunch and shoulder joints for each transition as a
function of stride frequency

The maximum torque is in the back joint for every simulation.The two phases clus-

tered together at these maximum values are the mid-flight transition (1a1b) and the front

stance to gathered flight transition (23). Although the absolute values of the torques are

displayed, both of these back torques are similar to the contracting of the abdomen rather

than the flexing of the back. At the lower stride frequencies,the 23 transition is higher,

but switches to the1a1b transition at the higher stride frequencies (based on the cluster-

ing). Overall, the cluster of values is increasing with higher stride frequencies. The other

transitions for the back are also banded, but remain relatively constant.

The next highest joint is the haunch, with the maximum occurring in the23 transition,

followed by the1a1b transition. Both of these bands are growing with increasingstride

frequency, showing a similar trend to the back joint. This seems to indicates that the back

and haunch are working synchronously to make the necessary adjustments to meet the ini-

tial velocity requirements of the next phase. All other transitions (1b2, 34 and41a) show a

decreasing trend with increasing stride frequency.

The high torques at the23 transition in the back and haunch joints are caused by the

launch into the gathered flight phase. The back is fairly flat during this phase, flattening
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out during the forward stance phase. The activation of both joints implies a synchronicity

between similar muscle groups- the back torque is acting to prevent the back from collaps-

ing and the haunch is pushing the rear leg over the front leg toget ready for the rear stance

phase.

The shoulder torque is not as high as the other two joint torques and its highest cluster

of values are the gathered flight phase to rear stance transition (34) and mid-flight transition

(1a1b). Both groups are increasing with increasing stride frequency. All other transition

torques are decreasing with increasing stride frequency. The higher values of the shoulder

in the34 transition are due to the rear stance reconfiguration in preparation for the launch

into the extended flight phase.

The back, haunch and shoulder are all highly active during the mid-flight transition

(1a1b). With the articulation in the back, the system can easily collapse on itself if the

torques are not properly balanced. At the rear stance to extended flight transition (41a),

the body begins to open up, the rear leg opening with respect to the hip and the front leg

opening with respect to the shoulder. With both legs openingfor the body to reach its full

extension, the two halves of the back are quickly collapsingtowards each other (think of

the letter ‘V’ collapsing to the letter ‘I’). At mid-flight, to prevent this motion continuing

through the second half of the phase and to begin bringing therear and front legs back

underneath the body, a very large torque at the back joint is necessary, followed by large,

albeit smaller, torques in the haunch and shoulder. All three of these large impulsive torques

are preventing the legs from swinging beyond the realistic limits of the joints and the back

from collapsing in on itself.

4.2.6 Gait Time History

To visually inspect how the gaits differ across the range of stride frequencies, a represen-

tative speed of 7.5 m/s is investigated. The gaits for all other speeds are similar. Fig. 4.19

shows a range of stride frequencies to better illustrate howthe system is behaving by cap-

turing a single frame after aδ t, creating a time / position history of the system in a single

image. The figures are zeroed to the hip location at the top of flight.

The extended flight phase is the dominant portion of this gait. There is very little change

in the overall structure of the gait, with the majority of thestride frequency variation ac-

complished through the foot placement rather than any significant changes in the angular

orientation of the limbs.

78



−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

COT: 0.2

SF: 4.5/s

COT: 0.16

SF: 3.4/s

COT: 0.097

SF: 3.2/s

COT: 0.26

SF: 2.5/s

Distance (m)

Distance (m)

Distance (m)

Distance (m)

D
is

ta
n

ce
 (

m
)

D
is

ta
n

ce
 (

m
)

D
is

ta
n

ce
 (

m
)

D
is

ta
n

ce
 (

m
)

Figure 4.19 Stick figure plots of 7.5 m/s
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4.2.7 Fractional Energy Plots

The impulsive torques for each transition and the active torques during stance phases are

plotted as a fraction of the total change in energy for all speeds and stride frequencies in Fig.

4.20. The offset piece in each subplot represents the phase with the maximum contribution

to the total change in kinetic energies.

80



6.0 m/s

COT = 0.19, SF = 3.7/s  

 

6.5 m/s

COT = 0.13, SF = 4.1/s
7.0 m/s

COT = 0.13, SF = 4.4/s
7.5 m/s

COT = 0.18, SF = 3.9/s
8.0 m/s

COT = 0.22, SF = 4.3/s
8.5 m/s

COT = 0.21, SF = 4/s

COT = 0.25, SF = 4.1/s

COT = 0.2, SF = 4.5/s

COT = 0.18, SF = 4.4/s

COT = 0.18, SF = 2.2/s

COT = 0.15, SF = 2.5/s

COT = 0.26, SF = 2.5/s

COT = 0.26, SF = 2.5/s

COT = 0.22, SF = 2.4/s

COT = 0.41, SF = 2.5/s

COT = 0.35, SF = 2.7/s

9.0 m/s

COT = 0.2, SF = 3.3/s

COT = 0.17, SF = 3.9/s

COT = 0.17, SF = 3.9/s

COT = 0.16, SF = 3.4/s

COT = 0.15, SF = 3.8/s

COT = 0.21, SF = 3.4/s

COT = 0.24, SF = 3.8/s COT = 0.31, SF = 4.2/s

41a

1a1b

1b2

ST2

23

34

ST4

Transitions

COT = 0.17, SF = 2.5/s

COT = 0.094, SF = 2.8/s

COT = 0.091, SF = 2.8/s

COT = 0.22, SF = 2.8/s

COT = 0.15, SF = 2.8/s

COT = 0.36, SF = 2.8/s

COT = 0.24, SF = 2.9/s

COT = 0.14, SF = 3.1/s

COT = 0.14, SF = 3.2/s

COT = 0.12, SF = 3.2/s

COT = 0.097, SF = 3.2/s

COT = 0.083, SF = 3.1/s

COT = 0.078, SF = 3.1/s

COT = 0.077, SF = 3.3/s

COT = 0.12, SF = 2.9/s

COT = 0.085, SF = 3/s

COT = 0.094, SF = 3/s

COT = 0.14, SF = 3/s

COT = 0.08, SF = 2.9/s

COT = 0.098, SF = 2.9/s

COT = 0.13, SF = 3/s

Figure 4.20 Fractions of energy changes for all speeds and stride frequencies, with red boxes denoting minimum CoT for each speed

8
1



The major component of the fractional energy for the minimumCoT values is the rear

stance phase. From a biological viewpoint, the expected phase for the majority of the en-

ergy contribution would be the41atransition- the beginning of the launch into the extended

flight phase. Although many of the articulated simulations have the rear stance phase as the

primary contributor to the total work, rather than having all of the power at the pre-launch

transition and relying on the flight phase to accomplish all the reconfiguration, the phase

leading up to the launch (Phase 4) and the articulation provide the necessary mechanisms

to match the desired speeds to propel the system into flight. The transition from rear stance

to flight is very efficient, closely matching the speeds at theend of the stance phase to those

necessary for the extended ballistic trajectory.

4.2.8 Potential and Kinetic Energy

The changes in potential energy (PE) and kinetic energy (KE ) are plotted in Fig. 4.21. The

plots are zeroed to the start of the extended flight phase.
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Figure 4.21 Change inPE andKE over the total time of one gait cycle

The first plot shows the instantaneous potential energy of the system. With increasing

stride frequency, the center of mass trajectory decreases in amplitude, correlating to the

reduction in the maximum impulsive force with increasing stride frequency. As a general
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observation, the extended flight phase takes up the majorityof the total time for a single

stride with a 25% / 75% between stance and flight phases.

The change in kinetic energy will be discussed in more detailin the next section. The

plot shows the change in the sum of the translational and rotational kinetic energies at any

instant in the stride cycle.

4.2.9 Kinetic Energy in Detail

The plots in this section detail the kinetic energy changes,starting with the instantaneous

kinetic energy change, the fractional energy charts, and the translational kinetic energies of

the individual bodies at 6.0, 7.5, and 9.0 m/s.
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Figure 4.22 Kinetic energy changes in detail for 6.0 m/s
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The initial speed scrutinized is 6.0 m/s in Fig. 4.22. The first plot on the page shows

the change in kinetic energy. The colored overlays correspond to the transitions and stance

phases. At the lower stride frequency (2.24 s−1), the system accelerates from the front

stance into the gathered flight phase, followed by a deceleration over the rear stance phase.

These accelerations / decelerations constitute the majority of energy changes increasing the

total work.

The pie charts next to the kinetic energy time history plots display the fractional en-

ergies of the observed stride frequencies. At the highest stride frequencies, the mid-flight

transition dominates. This correlates to the contraction of the abdomen to start bringing the

extended limbs underneath the body. At the lower stride frequencies, the rear stance phase

is prominent. Overall, it is an important feature in this gaiting methodology and is a driving

cost in many of the optimized gaits. The time spent in front stance, gathered flight and rear

stance are almost the same.

The final set of bar plots show the translational changes in kinetic energy for all of the

transitions. The bar plots are organized by limbs, with the abbreviations standing for the

lower hind leg (LHL), upper hind leg (UHL), rear torso (RT), front torso (FT), upper fore

leg (UFL) and lower fore leg (LFL). The rotational kinetic energy changes are included

only for the phase 4 stance phase (ST4), since for the other phases, they are small and

tied in with the translational change in kinetic energies. The sums of the changes in both

translational and rotational kinetic energies are included on the plot.

Besides the rear stance phase, the other transitions contributing to the energetic cost are

the mid-flight transition for all bodies, the front stance toflight transition for the lower hind

leg and the flight to rear stance transition for the lower foreleg. At mid-flight, the rear half

of the body is not able to balance out the motion of the front half of the body, creating a

large change in the velocities at mid-flight. These are also the most difficult to match since

the impulsive torques are the only means available to adjustthe velocities, whereas all other

phase transitions have a set of impulsive forces to assist inadjusting the velocities.

The lower hind leg in the front stance to flight transition (23) in all stride frequencies is

slowing down (even though it is crossing over the body duringthe gathered flight phase) be-

cause of the large amount of reconfiguration it goes through during the front stance phase.

The low stride frequency has the most difficulty finding a balance between the velocities at

this transition. The large haunch torque at the23 transition acts to slow down the rear leg.

The lower fore leg in the flight to rear stance transition (34) is undergoing a large

amount of reconfiguration, most noticeably at the highest stride frequency when the stance

time decreases. The large impulsive torque at the shoulder is accelerating the leg outward

from underneath the body in preparation for the launch into the extended flight phase.
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Fig. 4.23 presents a detailed analysis of the kinetic energychanges for 7.5 m/s. With

the exception of the 2.51 s−1 stride frequency, the rear stance phase dominates. Walking

through the stride frequencies individually can provide insight into the particular disjoints

causing the higher energy costs.

At the low stride frequency, the23 and41a transitions dominate the energetic cost.

Much of this is tied in with the deceleration from the front stance phase into the gathered

flight and the subsequent accelerations in the rear stance phase and stance to flight transi-

tion. The rest of the stride frequencies are heavily weighted by the deceleration in the rear

stance phase.

The high cost at the lowest stride frequency is tied to the lengthening of the gathered

flight phase. The system slows down when entering this phase.The better stride frequen-

cies have a shorter gathered flight phase.
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For the 9.0 m/s, the large energetic costs occur at several ofthe transitions, most fol-

lowing trends previously discussed. The poor velocity matching at the transitions (a lot of

speeding up and slowing down between phases) is magnified at the higher speed, causing

large discontinuities that drive up the total work value.

The majority of the total work at the low stride frequency features the23 and34 transi-

tions, bracketing the slower gathered flight phase. The longgathered flight phase becomes

more prominent at the high speed / low stride frequency as thesystem attempts to cover

the dictated distance by increasing the flight phases. The system slows down substantially

at the start of the gathered flight phase, and then has to reaccelerate for the last part of the

total stride. The best value (3.32 s−1) has a much shorter gathered flight phase, providing

a better balance over the transition with less deceleration. This behavior worsens with the

slower stride frequencies, as both flight phase durations increase.

4.2.10 Active Torques

The active torques are turned on during the stance and were initially put in place to keep

the simulation in the stance phase for a longer period of time. For the initial set of opti-

mizations, the active torques were set to a constant value (Sect. 3.1.9). Once acceptable

solutions meeting the specified constraints were discovered, a clear trend began to emerge

with the articulated fractional energies. The rear stance phase was continuously showing

up as a dominant energetic cost.

After some initial experiments, it was clear that the activetorques played a critical role

in the energetics of the articulated system. Both the shoulder and haunch torque were tuned

by hand to find a constant value that provided the system with better performance charac-

teristics. The benefits of tuning the active torques is most visible at high speed. An example

of one set of a converged set of optimized simulations varying the active torque is shown

in Fig. 4.25 for 9.0 m/s.
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Overall, the shape and duration of all phases remains relatively constant over all trials.

This is to be expected since the changes to the angular valuesare very small. The most

noticeable difference in the kinetic energy plot is in the gathered flight phase. Using the

largest haunch torque (60 N·m), the system decelerates upon entering the gathered flight

phase. The first decrease of the haunch torque reduces the deceleration into the flight phase

by a significant amount. After the initial drop, the other changes to the active torque fine

tune the transitions.

The best torque match for the system reduces the1b2, 23 and34 transitions to a nearly

seamless matching of speeds over those transitions. At1b2, the loss of kinetic energy from

the front half of the body (FT, UFL and LFL) is transferred to the rear portion of the body

(LHL, UHL and RT) at impact. At the23 transition, the back leg (LHL, UHL) is swinging

across the front part of the body, getting ready to plant the rear foot for the34 transition.

At the rear foot plant, the momentum of the rear leg swinging through the front stance

and gathered flight phases is transferred to the front part ofthe body, as the body starts to

unfold itself in preparation for the extended flight phase. The closer to zero the sum of the

change in torques is across the transition, the more efficient the transfer of energy between

the bodies at impact / flight, reducing the total work of the system. The tuned values found

here minimize these transitional changes quite effectively. Adjusting the active torques by

less than 20% resulted in a three-fold decrease in the CoT.

4.2.11 Best Cost of Transport

Fig. 4.26 plots the best CoT value as a function of speed for all stride frequencies inves-

tigated. The scale of the plot ordinate skews the results slightly. As discussed in the last

section, it is possible to nearly eliminate the change in kinetic energy associated with three

of the phase transitions-1b2, 23 and34- through adjustment of the haunch torque. The 8.0

and 9.0 m/s plots confirm this, and the 8.5 m/s points in this same direction. From these

observations, it may be possible to reduce the CoT values in the slower speeds, unless there

is another constraint at these speeds such as a limitation onthe foot placement at the lower

speeds.

4.3 Comparison of the Rigid and Articulated Systems

Now that both models and their underlying trends have been addressed, a comparison be-

tween the two systems is made and the effect of the addition ofthe articulated spine on the
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Figure 4.26 Best cost of transport values as a function of speed

energetics of the system is evaluated.

4.3.1 Best Cost of Transport

Fig. 4.27 overlays the best CoT values from the rigid and articulated models, as a func-

tion of speed. The optimal values for the rigid model occur ata stride frequency of 1.4

s−1, while the articulated model favors stride frequencies between 2.8 to 3.3 s−1. The

CoT is proportional to the total work of the system and inversely proportional to the stride

length. The rigid system takes advantage of this by using as large a stride length as possible,

while the articulated favors a shorter stride length, reducing the maximum height reached

during the flight trajectory while using the back articulation to achieve the necessary leg

reconfiguration.

While each system found a minimal CoT for the various speeds investigated, there is

a penalty to pay. In the rigid model, the vertical height of the center of mass increases

with the longer stride length accomplished through a long gathered flight phase. The long

flight phase drives up the impulsive forces. Such an increasecan be detrimental to a sys-

tem and, as discussed in Sect. 4.1.11, a biological limit is imposed, with the resultant CoT

values shown in Fig. 4.27) as the gray circles connected by the line. Although the artic-

ulated system keeps its impulsive forces below the maximum values as suggested in the

literature (Sect. 3.1.8.1), the maximum impulsive torquesare much larger than those in the
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Figure 4.27 Best cost of transport values as a function of speed for both models

rigid system, all of which are related to the back (or more biologically correct, abdomen)

torques.

4.3.2 Model Robustness

While less quantitative than other metrics analyzed, modelrobustness was a key tool in

determining the favorable ranges for each system. This measure is related to the number of

converged solutions passed on to the optimizer.

The number of feasible solutions for the rigid model at higher stride frequencies, ob-

tained from the optimization methodology employed, was substantially smaller than the

number of solutions obtained for the articulated model. Most solutions at new speeds or

stride frequencies were found using the seed from a nearby speed or stride frequency. At

the higher stride frequencies, the solutions did not converge and were therefore not pur-

sued. At the opposite end of the spectrum, the low stride frequencies converged in less than

100 iterations.

The articulated model, with its extra degree of freedom, hasa larger configuration

space, allowing more opportunities for converged solutions, and later optimized gaits. The

articulated optimization fell into three separate bands ofsolution. The first set of solutions

had CoT values larger than the rigid converged solutions. After running the simulations at
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increasing speeds, better foot placement was obtained for the articulated model. This set of

solutions converged onto the best rigid values (second bandof solutions). The third band

came with the tuning of the active torques and dropped the high speed articulated values

much smaller than the rigid. The same phenomenon witnessed with the rigid when run-

ning simulations at the higher stride frequencies, was alsoobserved in the articulated when

pushing the stride frequencies below 2.5 s−1.

4.3.3 Gait Comparison

As discussed above, the rigid model favors low stride frequencies, while the articulated

model favors high stride frequencies. To visually inspect the difference in the gaits at their

preferred stride frequency, a time history of both the rigidand articulated gaits are pre-

sented in Fig. 4.28. The median speed of 7.5 m/s is presented as an example speed. The

only significant difference in the configuration time histories at different speeds is the foot

placement since the angles vary only slightly with speed.
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Figure 4.28 Time history of rigid and articulated model gaits at 7.5 m/s

The rigid model has a much longer gathered flight phase, traversing the long distance

dictated by the low stride frequency. The articulated model, besides the angle in the back,

differs primarily in its use of a very short gathered flight phase. The majority of the dis-

tance (small at the higher stride frequencies) is covered through the extended flight phase.

Both choices correspond to the observed trends of the low impulsive forces at high stride

frequencies and low impulsive torques at low stride frequencies.
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4.3.4 Potential and Kinetic Energies

Comparison plots for the low (6.0 m/s), medium (7.5 m/s) and high (9.0 m/s) speed op-

timized values are presented in the figures below. The first plot, Fig. 4.29), compares the

optimized values of the rigid and articulated models at 6.0 m/s. The total energy changes in

the articulated model are only slightly larger than those for the rigid model (59 J versus 50

J), but the rigid model’s CoT is less than half the articulated model’s value. The long stride

length makes up for the deficit. The interesting trend in the rigid model’s change in kinetic

energy curve is the very short stance phases, that are nearlymatched to flight phases. The

rigid model’s potential energy curve looks like the trajectory of a pogo stick, similar to the

gaiting of a kangaroo. The largest contribution to the energy is the mid-flight transition

for the rigid. The articulated model follows similar trendsas at other speeds, but the short

stride length and slow speed count against the system.
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Figure 4.29 Instantaneous change in potential and kinetic energy for best gaits at 6.0 m/s

Fig. 4.30 corroborates the observations of the impulsive forces. The figure presents the

instantaneous changes in potential and kinetic energies asa fraction of the total gait cycle

for the optimized gaits of the rigid and articulated models at 7.5 m/s.
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Figure 4.30 Instantaneous change in potential and kinetic energy for best gaits at 7.5 m/s

As shown in the time history of the gaits, the center of mass has a much lower trajectory

at the high stride frequency (articulated model) than that of the low stride frequency (rigid

model). The large change in the potential energy of the center of mass over the stride cycle

for the rigid is responsible for the large vertical impulsive forces. The forces are necessary

to enable the system to leap into the air.

The second plot presents the change in the kinetic energy over the fraction of the stride

cycle. The rigid model (solid line) has a much shorter set of stance phases (as a fraction of

the total time). The system accelerates at the start of the gathered flight phase, necessary to

cover the long distance, then accelerates through the rear stance phase. This phase has the

largest angular change and a short amount of time to completeit. The system slows down

at the start of the extended flight phase. If the system was able to take advantage of the

energy from the rear stance phase, the transition would be more efficient.

The low total work values for the articulated model stem fromthe better foot placement

options provided by the joint in the back. The additional degree of freedom in the spine

allows for smoother transitions without the sharp increaseor decrease at the junctions be-
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Figure 4.31 Instantaneous change in kinetic energy for best gaits at 7.5m/s

tween phases, shown by the vertical lines on the∆ KE plots. Fig. 4.31 shows the details

of the instantaneous change in kinetic energy plots for the medium speed simulated. The

stick figure representation of the rigid and articulated gaits are overlaid on the plot to pro-

vide visual correlation between the gait and the change in kinetic energy. Starting from the

beginning of the cycle, both models are accelerating duringthe second half of the extended

flight phase. The rigid model has no discernible change at the1b2 transition, showing a

very efficient transfer of the energy between the extended flight and front stance phases.

On the other hand, the articulated system has to increase theenergy for the front stance

phase due to the large amount of angular reconfiguration thatoccurs in this phase. The

change over the stance phase is not significant for either model, although the articulated

model spends more time in the front stance phase than the rigid model. The primary differ-

ence between the systems becomes evident during the gathered flight phase, however little

change is necessary at the34 transition for either model. The articulated system is decel-

erating from the start of the rear stance phase to the start ofthe extended flight phase and

the rigid is accelerating. While the front stance phase had the largest reconfiguration for

the articulated model, the rear stance phase has the largestamount of reconfiguration for

the rigid model. As such, the transition between the rear stance and extended flight phases

is very inefficient due to the deceleration necessary after the increase in energy needed to

move the system through the angles in the short amount of time. Increasing the stance time

or decreasing the angular change would both have benefitted the rigid model but seeds with

solutions taking into account one or the other characteristic were either unusable gaits or

energetically costly in some other portion of the gait.

The final figure, Fig. 4.32, presents the optimized values forthe 9.0 m/s trials. The

articulated model has a fairly flat change in kinetic energy profile, although, the large tran-

sitions of the rigid model alter the ordinate scale, compared to the previous plots at the

97



0 10 20 30 40 50 60 70 80 90 100
−20

0

20

40

60

80

100

120

∆
 P
E
 (
J)

Fraction of gait cycle (%)

 

 

0 10 20 30 40 50 60 70 80 90 100
−200

−150

−100

−50

0

50

∆
 K
E
 (
J)

Rig: SF = 1.20/s

Art: SF = 3.32/s
COT = 0.21

COT = 0.10

Fraction of gait cycle (%)

Figure 4.32 Instantaneous change in potential and kinetic energy for best gaits at 9.0 m/s

lower speeds. The transitions between the phases are very well balanced between the ac-

celeration and deceleration of the limbs (Fig. 4.25). The rigid system’s lengthy gathered

flight phase (long flight phases overall, with only about 5% ofthe time spent in stance), is

not well proportioned with the other phases. The system has to accelerate to cover the long

distance, and then decelerate from the rear stance into the extended flight phase, another

very costly transition with speeds that are poorly matched at the transitions. The articu-

lated model is able to find a nearly seamless set of transitions over the full stride phase,

displaying an efficient, high speed gait.

4.3.5 Final Recommendation

With all of the information provided in the sections above, the choice is clear: at high

speeds, the inclusion of an articulating spine provides a reduction in the cost of transport

by a factor of 2.5. The preferred stride frequency is more closely related to that favored by

biological systems and the maximum vertical impulsive force is much lower than those for
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the optimized rigid solution at the same speed.
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Chapter 5

Conclusions and Future Research

The objective of this research was to develop models, conduct simulations, and compare

the performance of two quadrupedal systems, similar in sizeto a medium sized dog, one

with a rigid back and the other with a single node of articulation in the spine. Both systems

were planar with equally distributed mass in the torso(s) and legs, employing frictionless

pin joints and instantaneous impulsive transitions between the ballistic flight phases and

active stance phases. The virtual leg concept was employed to simplify the analysis and to

reduce the system from four legs down to two. The consequenceof this simplification led

to the high-speed gallop gait becoming a high-speed bound. The resultant motion mim-

icked the motion of a front-leg amputee canine, still able torun fast, despite its missing

limb.

The results of the simulations are summarized below, conclusions regarding the anal-

ysis, discussion of the contributions of the work, lessons learned and future areas of

exploration are listed.

5.1 Conclusions

Despite the simplicity of the model, the results confirmed the biological trends witnessed

in nature. The contributions of an articulating spine to an animal’s speed from Hildebrand

(60) as evidenced in the simulations are addressed below.

Flight phase distanceAs the swing of the limbs increases, the distance covered during the

aerial phase is increased.As the speed increases, the limbs of the body are moving

faster relative to the center of mass, therefore the distance in flight increases. This is

clear in both models and as speed increases, the duty factor decreases, indicating an

increase in the flight duration.

Biarticular muscles With the combination of spine muscles and limb muscles working

concurrently, the limbs move faster than a single group of muscles working alone.
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Figure 5.1 Horizontal foot velocities of the front foot over the descending portion of the extended
flight phase for 9.0 m/s

Even though muscular models are not included in the simulation, the same general

principle holds true for torques. Multiple torques workingtogether are able to move

the system quicker. Therefore, the back, haunch and knee canall work together in

the articulated system, while the rigid can only use the haunch and knee. With the ad-

ditional degree of freedom the back joint allows, the systemis able to rotate the legs

underneath the body more effectively, allowing for more efficient application of the

impulsive forces. Fig. 5.1 shows the horizontal component of the front foot velocity

during the latter portion of the extended flight phase at highspeed. The articulated

model’s front foot velocity is able to move quicker than the rigid model’s due to the

increased number of joints.

Touchdown foot velocity The spine adds to the maximum forward extension of the legs,

increasing the maximum backward acceleration of the limbs before they strike the

ground. Part of this is tied in with the larger angular span that can beachieved via

the articulation in the back. With the increased range of angles, the front legs have
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more angle to swing through after the mid-flight transition,allowing higher back-

ward acceleration. Both models accomplish this through theenforced horizontal

foot velocity, but the rigid model develops a non-biological gaiting to incorporate

the constraint. The rigid front foot has a slower magnitude of acceleration than the

articulated front foot as shown in Fig. 5.1, supporting the claim.

Stance torso velocityThe spine reduces the relative forward velocity of the girdles when

their respective limbs are moving the body.This effect is most clear at the front

stance phase, when the foreleg is locked to the ground, as shown in Fig. 5.2. For the

articulated system, the forward velocity of the rear torso maintains its speed after the

impulsive transition, but the forward velocity is transferred into a vertical component,

lifting the rear portion of the body, allowing the back legs to move through and under

the body in preparation for the cross over during front stance. In the rigid model, the

torso is a single rigid body, so all of the forward momentum istransferred along the

spine to the rear of the body. The darker arrows represent theweighted contributions

of each half of the body (cranial and caudal).
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Figure 5.2 Body velocities at the1b2 transition of best solutions for 7.5 m/s

All of these items contribute to the better CoT value for the articulated model in com-

parison to the rigid model at high speed.
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5.1.1 Summary

Many simulations were conducted at speeds ranging from 6.0 to 9.0 m/s and stride fre-

quencies from 0.95 to 4.5 s−1. An objective function using the sum squared impulsive

torques and forces, along with other weighted constraints,was used to obtain a reason-

able gait. Once a converged gait was discovered, the solution was subsequently optimized

with an objective function minimizing the total work required to travel a fixed distance, as

determined by the step frequency and speed.

The results from this work show a decrease in the cost of transport (the work necessary

to move a unit weight over a unit distance, Eqn. (3.12), as speed increases, for the artic-

ulated model and an increase in the cost of transport with increasing speed for the rigid

system over the range of speeds investigated. Cost of transport (CoT) is proportional to

mechanical work, defined as the sum of the absolute values of the sum of the changes in

the limb kinetic energy over the impulsive transitions and stance phases. This metric is

non-dimensional and represents more of a biological cost, rather than a physical cost if ac-

tuators were used. Using the absolute value includes the external work done on the system

and the internal work of the legs moving relative to the center of mass. Whether a muscle

is flexing or extending, energy is consumed. Including the motion of the limbs relative to

the mass center, gives a more biologically realistic measure of the energy demands of the

systems. Under this definition, the cost of transport for thearticulated system is less than

the rigid system at speeds greater than 7 m/s.

The height of the mass center of the system changes less in thearticulated model than

in the rigid and results in substantially lower impulsive forces than in the optimized rigid,

but at the cost of higher impulsive joint torques. The maximum impulsive torque in the

articulated model is in the back at the mid-flight transition, corresponding in a physical

sense, to the contraction of the abdomen muscles. The rigid’s large impulsive torque is in

the haunch at the gathered flight to rear stance transition and is linked to the large amount

of reconfiguration in a short amount of time.

5.1.2 Contributions

The hypothesis of this research was primarily interested inquantitatively evaluating the

articulation in the back as a key component of efficient, high-speed running in quadrupeds.

To make a fair and reasonable assessment of the flexible spineas a necessary artifact in fast

gaits, two models operating under the same constraints, assumptions and parameters were

constructed and evaluated. The only difference between themodels was either locking the
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single joint in the spine to create a rigid back or allowing itto rotate freely, as in the articu-

lating model. The claim was verified, subject to the constraints and assumptions employed

to ensure a tractable problem, through a rigorous parameterstudy evaluating the optimized

energetics of converged solutions for a range of speeds and stride frequencies pertinent to

the discussion. Although there are many quadruped models available in the literature, there

were no models that evaluatedboth a rigid and articulated system at high speeds of10 - 15

bodylengths/s. The models provided insight into the effectiveness of biological systems,

despite their simple construction.

5.2 Future Research

The analysis and results of this research present a startingpoint for additional avenues of

investigation. With the advent of a high-speed quadruped robot on the horizon, there are

further areas related to this work worthy of pursuit. The main topics addressed in this

section are the virtual leg constraint, compliant mechanisms and the system stability char-

acterization. Most of these areas of further study stem fromthe relaxation or removal of a

constraint or assumption.

5.2.1 Virtual Leg

The virtual leg concept was employed to simplify the model. The use of point feet was also

employed since leg and foot interaction are complicated mechanisms in and of themselves.

Removing the virtual leg simplification or adding an arc-like foot would allow for a

better distribution of the impulsive forces, a primary concern in these systems where large

impacts can damage the on-board electronics and structuralcomponents of the system. The

impulsive forces and changes in kinetic energy were highestin the transitions before and

after the rear stance phase in most cases. A continuous challenge with these models was

the decrease in stance phase duration with increasing speed. With a four-legged quadruped

model, the multi-limbed step out benefits the system by lengthening the duration the ani-

mal spends in stance, allowing for the necessary time to perform the desired reconfiguration

while reducing the impulsive forces with the ground (127). Using large, arc-like feet could

also accomplish this goal (1), without the additional limbs.
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5.2.2 Active Torques

Another suggestion is to fine tune the models through the use of time-varying active torques

(ones that change over the duration of the stance phase). These could be incorporated by

including them as design variables and allowing the optimizer to search for their best val-

ues, turning on a combination of torques during stance rather than a single torque, or using

time-varying torques.

The active torques could also be turned on during the flight phases to decrease the re-

liance on the impulsive transitions. The use of the impulsive transitions has been shown to

be a reasonable methodology for intra-phase transfers, however their use limits the system

in several different ways. Impulsive forces and torques aremathematical entities used to

simplify the transitions, however, there are no true biological corollaries. Applying torques

over a finite time period is of practical import, particularly when considering real motors

and actuators.

5.2.3 Compliant Mechanisms

The definition of total work used for the energy minimization(150) uses an absolute value

to count positive and negative work, since both flexion and extension of muscles contribute

to the total metabolic cost of the system. However, it is observed [(8), (10), (22), (47),

(64), (108)] that energy storage in elastic mechanisms contributes to efficient high-speed

transport. Utilizing compliant mechanisms to store and release energy the stance phases,

could further reduce the energy requirements of the systems.

A spring or other mechanism could be used in lieu of an active torque. One of the fail-

ings of the articulated model was clear in the precarious balance of the back joint. Without

an active (torque) or passive (spring) mechanism in place toprevent the back from col-

lapsing in on itself, some of the phases were rushed and purposefully short to avoid this

problem. It was most noticeable in the gathered flight phase.At the lower stride frequen-

cies, the articulating system had more issues due to the lengthening of this phase due to the

absence of a mechanism to prevent the back from folding in on itself. Therefore, in order

to achieve a more biologically realistic model and take advantage of acceleration / decel-

eration during the phases, compliant mechanisms should be included in the next model

iteration.
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5.2.4 Stability Characterization and Controller Development

Stability is a critical element in the design of a controllerfor any robotic system. Us-

ing a stable set of reference trajectories as a basis for the controller can reduce controller

complexity (97), as well as reducing actuator demand and increasing energy efficiency

by using the unforced system dynamics to partially drive thesystem (114). Gaiting and

the transitions between gaits is also driven by stability measures (72). High-speed gaits

are dynamically stable but are statically unstable, whereas walking gaits are the reverse.

Other important functions of a quadruped’s mobility, such as high-speed turning (80), are

addressed through the exploitation of stability margins.

Controller development is a widely discussed and well-researched issue [(67), (87),

(99), (115), (120), (123), (133)] and is a necessary component to translate this system into

a physically realizable form. The ballistic trajectories developed herein can provide a basis

for this controller (52). Choosing a controller that provides a balance between stability

and maneuverability will be a challenging task, but one worth investigating. Not only are

cheetahs able to attain high speed, but they are able to turn quickly and jump, aiding in

their pursuit and evasion capabilities. These features on arobot (80) would be useful for

military applications, and with the inclusion of an articulated spine, should allow better

system maneuverability, otherwise lost or impaired with a rigid spine.

5.2.5 Anthropomorphic Variation

Another avenue to pursue worth investigating is the variation of the model’s geometry to

better represent biological system components by adjusting the masses and limb lengths.

One of the energetic sinks in the models was the large amount of reconfiguration required

during the rear stance phase. The kinetic energy changes of the lower forelimb contributed

substantially to the high cost associated with this phase. Shortening the forelimb would de-

crease the kinetic energy associated with moving the leg from underneath the body, and is

reflected in animal limb proportions. Implementing these simple variations would allow for

allometric studies to categorize stride frequency and energetic costs related to speed [(53),

(57), (54)], providing corroboration to prior work and demonstrating the scalability of the

model to other species and quadruped variations other than the cheetah and greyhound.
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Appendix A

Code Diagram

108



Figure A.1 Pseudo-code diagram for the simulations
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Appendix B

Model Derivations

The following section presents the equations of motion for the rigid and articulated models.

Mathematica Code, Rigid Model

The text below represents the implementation of Kane’s equations intoMathematicafor

the rigid model. The parameters for the model are repeated inTable (B.1 for completeness.

Model Parameter Variable Value
Lower / upper leg masses m1,m2 2.25kg
Torso mass m3 15 kg
Lower / upper leg lengths l1, l2 0.3m
Torso length l3 0.6m
Lower / upper leg inertias Il1, Il2 0.0173kg·m2

Torso inertia Il3 0.4625kg·m2

Distance to leg CoM from leg end s1,s2 0.15m
Distance to torso CoM from torso enda 0.3m

Table B.1 Model Parameters for the Rigid Model

Mathematica Inputs for the Rigid Model, Flight

Setup the angular velocities from (39).

OM = {0, θ ’[t], 0};

O1 ={0, α1’[t] + θ ’[t], 0};

O2 ={0, α2’[t] + θ ’[t], 0};

O3 ={0, α3’[t] + θ ’[t], 0};

O4 ={0, α4’[t] + θ ’[t], 0};

110



Create the position vectors from (39).

rO2M = {-(a)*Cos[θ [t]], 0, (a)*Sin[θ [t]] };

rO2cO2 ={-(s2)*Sin[θ [t] + α2[t]], 0, -(s2)*Cos[θ [t] + α2[t]]};

rO1O2 ={-(l2)*Sin[θ [t] + α2[t]], 0, -(l2)*Cos[θ [t] + α2[t]]};

rO1cO1 ={-(s1)*Sin[θ [t] + α1[t]], 0, -(s1)*Cos[θ [t] + α1[t]]};

rf1O1 ={-(l1)*Sin[θ [t] + α1[t]], 0, -(l1)*Cos[θ [t] + α1[t]]};

rO3M = {(a)*Cos[θ [t]], 0, -(a)*Sin[θ [t]] };

rO3cO3 ={-(s2)*Sin[θ [t] + α3[t]], 0, -(s2)*Cos[θ [t] + α3[t]]};

rO4O3 ={-(l2)*Sin[θ [t] + α3[t]], 0, -(l2)*Cos[θ [t] + α3[t]]};

rO4cO4 ={-(s1)*Sin[θ [t] + α4[t]], 0, -(s1)*Cos[θ [t] + α4[t]]};

rf2O4 ={-(l1)*Sin[θ [t] + α4[t]], 0, -(l1)*Cos[θ [t] + α4[t]]};

rf1 = {x[t], 0, z[t]} + rO2M + rO1O2 + rf1O1;

rf2 = {x[t], 0, z[t]} + rO3M + rO4O3 + rf2O4;

Construct the velocity vectors for the system.

vM = {x’[t], 0, z’[t] } + OM×{0, 0, 0};

vO2 = vM + OM×rO2M;

v2 = vO2 + O2×rO2cO2;

vO1 = vO2 + O2×rO1O2;

v1 = vO1 + O1×rO1cO1;

vf1 = vO1 + O1×rf1O1;

vO3 = vM + OM×rO3M;

v3 = vO3 + O3×rO3cO3;

vO4 = vO3 + O3×rO4O3;

v4 = vO4 + O4×rO4cO4;

vf2 = vO4 + O4×rf2O4;

Take the derivative of the velocity vectors to obtain the accelerations of the system.

aM = D[vM, t];

a1 = D[v1, t];

a2 = D[v2, t];

a3 = D[v3, t];

a4 = D[v4, t];

111



Calculate the forces acting on the system.

FM = m3*aM;

F1 = m1*a1;

F2 = m2*a2;

F3 = m2*a3;

F4 = m1*a4;

Calculate the center of mass position, velocity and acceleration.

rCoM = ((rO2M + rO2cO2)*m2 + (rO2M + rO1O2 + rO1cO1)*m1 + ({0, 0, 0})*m3 +

(rO3M + rO3cO3)*m2 + (rO3M + rO4O3 + rO4cO4)*m1)/(2*m1 + 2*m2+ m3);

vCoM = (vM*m3 + v1*m1 + v2*m2 + v3*m2 + v4*m1)/(2*m1 + 2*m2 + m3);

aCoM = (aM*m3 + a1*m1 + a2*m2 + a3*m2 + a4*m1)/(2*m1 + 2*m2 + m3);

Mathematica Inputs for the Rigid Model, Rear Stance

Setup the angular velocities from (39).

OM = {0, θ ’[t], 0};

O1 ={0, α1’[t] + θ ’[t], 0};

O2 ={0, α2’[t] + θ ’[t], 0};

O3 ={0, α3’[t] + θ ’[t], 0};

O4 ={0, α4’[t] + θ ’[t], 0};

Create the position vectors from (39).

rO1cf1 ={(s1)*Sin[θ [t] + α1[t]], 0, (s1)*Cos[θ [t] + α1[t]]};

rO1f1 ={(l1)*Sin[θ [t] + α1[t]], 0, (l1)*Cos[θ [t] + α1[t]]};

rO2cO1 ={(s2)*Sin[θ [t] + α2[t]], 0, (s2)*Cos[θ [t] + α2[t]]};

rO2O1 ={(l2)*Sin[θ [t] + α2[t]], 0, (l2)*Cos[θ [t] + α2[t]]};

rMO2 = {(a)*Cos[θ [t]], 0, -(a)*Sin[θ [t]] };

rO3M = {(a)*Cos[θ [t]], 0, -(a)*Sin[θ [t]] };

rO3cO3 ={-(s2)*Sin[θ [t] + α3[t]], 0, -(s2)*Cos[θ [t] + α3[t]]};

rO4O3 ={-(l2)*Sin[θ [t] + α3[t]], 0, -(l2)*Cos[θ [t] + α3[t]]};

rO4cO4 ={-(s1)*Sin[θ [t] + α4[t]], 0, -(s1)*Cos[θ [t] + α4[t]]};

rf2O4 ={-(l1)*Sin[θ [t] + α4[t]], 0, -(l1)*Cos[θ [t] + α4[t]]};

rf1 = {0, 0, 0};
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rf2 = rO1f1 + rO2O1 + rMO2 + rO3M + rO4O3 + rf2O4;

rM = rO1f1 + rO2O1 + rMO2;

Construct the velocity vectors for the system.

vf1 = {0, 0, 0};

v1 = vf1 + O1×rO1cf1;

vO1 = vf1 + O1×rO1f1;

v2 = vO1 + O2×rO2cO1;

vO2 = vO1 + O2×rO2O1 ;

vM = vO2 + OM×rMO2;

vO3 = vM + OM×rO3M;

v3 = vO3 + O3×rO3cO3;

vO4 = vO3 + O3×rO4O3;

v4 = vO4 + O4×rO4cO4;

vf2 = vO4 + O4×rf2O4;

Take the derivative of the velocity vectors to obtain the accelerations of the system.

aM = D[vM, t];

a1 = D[v1, t];

a2 = D[v2, t];

a3 = D[v3, t];

a4 = D[v4, t];

Calculate the forces acting on the system.

FM = m3*aM;

F1 = m1*a1;

F2 = m2*a2;

F3 = m2*a3;

F4 = m1*a4;

Calculate the center of mass position, velocity and acceleration.

rCoM = (m1*rO1cf1 + m2*(rO2cO1 + rO1f1) + m3*(rO1f1 + rO2O1 + rMO2) +

m2*(rO1f1 + rO2O1 + rMO2 + rO3M + rO3cO3) + m1*(rO1f1 + rO2O1 + rMO2 + rO3M

+ rO4O3 + rO4cO4))/(2*m1 + 2*m2 + m3);
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vCoM = (vM*m3 + v1*m1 + v2*m2 + v3*m2 + v4*m1)/(2*m1 + 2*m2 + m3);

aCoM = (aM*m3 + a1*m1 + a2*m2 + a3*m2 + a4*m1)/(2*m1 + 2*m2 + m3);

Mathematica Inputs for the Rigid Model, Front Stance

Setup the angular velocities from (39).

OM = {0, θ ’[t], 0};

O1 ={0, α1’[t] + θ ’[t], 0};

O2 ={0, α2’[t] + θ ’[t], 0};

O3 ={0, α3’[t] + θ ’[t], 0};

O4 ={0, α4’[t] + θ ’[t], 0};

Create the position vectors from (39).

rO4cf2 ={(s1)*Sin[θ [t] + α4[t]], 0, (s1)*Cos[θ [t] + α4[t]]};

rO4f2 ={(l1)*Sin[θ [t] + α4[t]], 0, (l1)*Cos[θ [t] + α4[t]]};

rO3cO4 ={(s2)*Sin[θ [t] + α3[t]], 0, (s2)*Cos[θ [t] + α3[t]]};

rO3O4 ={(l2)*Sin[θ [t] + α3[t]], 0, (l2)*Cos[θ [t] + α3[t]]};

rMO3 = {-(a)*Cos[θ [t]], 0, (a)*Sin[θ [t]] };

rO2M = {-(a)*Cos[θ [t]], 0, (a)*Sin[θ [t]] };

rO2cO2 ={-(s2)*Sin[θ [t] + α2[t]], 0, -(s2)*Cos[θ [t] + α2[t]]};

rO1O2 ={-(l2)*Sin[θ [t] + α2[t]], 0, -(l2)*Cos[θ [t] + α2[t]]};

rO1cO1 ={-(s1)*Sin[θ [t] + α1[t]], 0, -(s1)*Cos[θ [t] + α1[t]]};

rf1O1 ={-(l1)*Sin[θ [t] + α1[t]], 0, -(l1)*Cos[θ [t] + α1[t]]};

rf1 = rO4f2 + rO3O4 + rMO3 + rO2M + rO1O2 + rf1O1;

rf2 = {0, 0, 0};

rM = rO4f2 + rO3O4 + rMO3;

Construct the velocity vectors for the system.

vf2 = {0, 0, 0};

v4 = vf2 + O4×rO4cf2;

vO4 = vf2 + O4×rO4f2;

v3 = vO4 + O3×rO3cO4;

vO3 = vO4 + O3×rO3O4;

vM = vO3 + OM×rMO3;

vO2 = vM + OM×rO2M;
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v2 = vO2 + O2×rO2cO2;

vO1 = vO2 + O2×rO1O2;

v1 = vO1 + O1×rO1cO1;

vf1 = vO1 + O1×rf1O1;

Take the derivative of the velocity vectors to obtain the accelerations of the system.

aM = D[vM, t];

a1 = D[v1, t];

a2 = D[v2, t];

a3 = D[v3, t];

a4 = D[v4, t];

Calculate the forces acting on the system.

FM = m3*aM;

F1 = m1*a1;

F2 = m2*a2;

F3 = m2*a3;

F4 = m1*a4;

Calculate the center of mass position, velocity and acceleration.

rCoM = (m1*rO4cf2 + m2*(rO3cO4 + rO4f2) + m3*(rO4f2 + rO3O4 + rMO3) +

m2*(rO4f2 + rO3O4 + rMO3 + rO2M + rO2cO2) + m1*(rO4f2 + rO3O4 + rMO3 + rO2M

+ rO1O2 + rO1cO1))/(2*m1 + 2*m2 + m3);

vCoM = (vM*m3 + v1*m1 + v2*m2 + v3*m2 + v4*m1)/(2*m1 + 2*m2 + m3);

aCoM = (aM*m3 + a1*m1 + a2*m2 + a3*m2 + a4*m1)/(2*m1 + 2*m2 + m3);

Construct Equations of Motion for the Rigid Model

List the various vectors necessary for calculations.

Forces = Transpose[{{FM, F1, F2, F3, F4}}];

Velocities = Transpose[{{vM, v1, v2, v3, v4}}];

Omegas = Transpose[{{OM, O1, O2, O3, O4}}];

qs = Transpose[{{x[t], z[t], θ [t], α1[t], α2[t], α3[t], α4[t]}}];

Inertias = Transpose[{{Il3, Il1, Il2, Il2, Il1 }}];
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Masses = Transpose[{{m3, m1, m2, m2, m1}}];

Torques = Transpose[{{GM, G1, G2, G3, G4}}];

Create the qdot vector for Kane’ s equations

For[i = 1, i <= Length[qs], i++, l[i] = Extract[D[qs, t],{i}]]

Construct the left hand side of the equations for Kane’ s method with partial deriva-

tives of velocities and omegas

For[i = 1, i <= Length[qs], i++, For[j = 1, j<= Length[Forces], j++, FFs[i, j] =

D[Velocities[[j, 1]], l[i]].Forces[[j, 1]] + D[Omegas[[j, 1]], l[i]].(Inertias[[j, 1]]*D[Omegas[[j,

1]], t])]]

FFsT = Total[Table[FFs[i, j],{i, 7}, {j, 5}], {2}];

Start creating the mass matrix and right hand side equationsto solve the system for

the accelerations

For[i = 1, i <= Length[qs], i++, FFsTA[i] = CoefficientArrays[Extract[FFsT, {i}], Flat-

ten[D[qs,{t, 2}]]]];

Mass matrix creation

For[i = 1, i <= Length[qs], i++, FaMMrhs[i] = Normal[Extract[FFsTA[i],{1}]]];

FaRHSt = Table[FaMMrhs[i],{i, 7}];

For[i = 1, i <= Length[qs], i++, FaMM[i] = Normal[Extract[FFsTA[i],{2}]]];

MM = Table[FaMM[i], {i, 7}] // FullSimplify;

Right hand side matrix creation

Construct the inertial forces for Kane’ s method

For[i = 1, i <= Length[qs], i++, For[j = 1, j<= Length[Forces], j++, FFa[i, j] =

Masses[[j]]*g*{0, 0, 1}.D[Velocities[[j, 1]], l[i]]]];

FFaT = Total[Table[FFa[i, j],{i, 7}, {j, 5}], {2}];

Construct the active force component of Kane’ s equations.

For[i = 1, i <= Length[qs], i++, Dvfs[i] ={1, 0, 0}.D[vf1, l[i]]*FF1x[t] + {0, 0, 1}.D[vf1,

l[i]]*FF1z[t] + {1, 0, 0}.D[vf2, l[i]]*FF2x[t] + {0, 0, 1}.D[vf1, l[i]]*FF2z[t]];
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DvfsT = Total[Table[Dvfs[i],{i, 7}], {2}];

Construct the active torques component of Kane’ s equations.

DgsT=



























0 0 0 0

0 0 0 0

0 −1 −1 0

1 0 0 0

−1 1 0 0

0 0 1 −1

0 0 0 1



























.Transpose
[(

G1 G2 G3 G4
)]

;

RHS = FFaT + FaRHSt;

Set up the constraints for the equations.

T1x = x[t] - a*Cos[θ [t]] - l1*Sin[ θ [t] + α1[t]] - l2*Sin[ θ [t] + α2[t]];

T1z = z[t] + a*Sin[θ [t]] - l1*Cos[θ [t] + α1[t]] - l2*Cos[θ [t] + α2[t]];

T2x = x[t] + a*Cos[θ [t]] - l1*Sin[ θ [t] + α4[t]] - l2*Sin[ θ [t] + α3[t]];

T2z = z[t] - a*Sin[θ [t]] - l1*Cos[θ [t] + α4[t]] - l2*Cos[θ [t] + α3[t]];

V1x = D[T1x, t]; V1z = D[T1z, t]; V2x = D[T2x, t]; V2z = D[T2z, t];

A1x = D[T1x, {t, 2}]; A1z = D[T1z,{t, 2}]; A2x = D[T2x, {t, 2}]; A2z = D[T2z,{t, 2}];

D1a = Extract[CoefficientArrays[D[T1x, t], Flatten[D[qs,t]]], {2}];

D1b = Extract[CoefficientArrays[D[T1z, t], Flatten[D[qs,t]]], {2}];

D2a = Extract[CoefficientArrays[D[T2x, t], Flatten[D[qs,t]]], {2}];

D2b = Extract[CoefficientArrays[D[T2z, t], Flatten[D[qs,t]]], {2}];

D1 = Transpose[{Normal[D1a], Normal[D1b]}];

D2 = Transpose[{Normal[D2a], Normal[D2b]}];

E1 = Join[{Extract[CoefficientArrays[A1x, Flatten[D[qs,{t, 2}]]], {1}]},

{Extract[CoefficientArrays[A1z, Flatten[D[qs,{t, 2}]]], {1}]}];

E2 = Join[{Extract[CoefficientArrays[A2x, Flatten[D[qs,{t, 2}]]], {1}]}, {

Extract[CoefficientArrays[A2z, Flatten[D[qs,{t, 2}]]], {1}]}];

Mathematica Code, Articulated Model

The text below represents the implementation of Kane’s equations intoMathematicafor

the articulated model. The parameters for the model are repeated in Table (B.2 for com-

pleteness.
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Model Parameter Variable Value
Lower / upper leg masses m1,m2 2.25kg
Torso masses m3 7.5kg
Lower / upper leg lengths l1, l2 0.3m
Torso lengths l3 0.3m
Lower / upper leg inertias Il1, Il2 0.0173kg·m2

Torso inertias Il3 0.0578kg·m2

Lower / upper leg distance to CoMs1,s2 0.15m
Torso distance to CoM a/2 0.15m

Table B.2 Model Parameters for the Articulated Model

Mathematica Inputs for the Articulated Model, Flight

Setup the angular velocities.

OM1 = {0, 0,θ1’[t] };

OM2 = {0, 0,θ2’[t] };

O1 ={0, 0,θ1’[t] + α1’[t] };

O2 ={0, 0,θ1’[t] + α2’[t] };

O3 ={0, 0,θ2’[t] + α3’[t] };

O4 ={0, 0,θ2’[t] + α4’[t] };

Create the position vectors.

rMm1 = {-a/2*Cos[θ1[t]], -a/2*Sin[θ1[t]], 0};

rO2M = {-a*Cos[θ1[t]], -a*Sin[θ1[t]], 0};

rO2cO2 ={s2*Sin[θ1[t] + α2[t]], -(s2)*Cos[θ1[t] + α2[t]], 0};

rO1O2 ={l2*Sin[θ1[t] + α2[t]], -(l2)*Cos[θ1[t] + α2[t]], 0};

rO1cO1 ={s1*Sin[θ1[t] + α1[t]], -(s1)*Cos[θ1[t] + α1[t]], 0};

rf1O1 ={l1*Sin[θ1[t] + α1[t]], -(l1)*Cos[θ1[t] + α1[t]], 0};

rMm2 = {a/2*Cos[θ2[t]], a/2*Sin[θ2[t]], 0};

rO3M = {a*Cos[θ2[t]], a*Sin[θ2[t]], 0};

rO3cO3 ={(s2)*Sin[θ2[t] + α3[t]], -(s2)*Cos[θ2[t] + α3[t]], 0};

rO4O3 ={(l2)*Sin[θ2[t] + α3[t]], -(l2)*Cos[θ2[t] + α3[t]], 0};

rO4cO4 ={(s1)*Sin[θ2[t] + α4[t]], -(s1)*Cos[θ2[t] + α4[t]], 0};

rf2O4 ={(l1)*Sin[θ2[t] + α4[t]], -(l1)*Cos[θ2[t] + α4[t]], 0};

rf1 = {x[t], y[t], 0} + rO2M + rO1O2 + rf1O1;

rf2 = {x[t], y[t], 0} + rO3M + rO4O3 + rf2O4;
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Construct the velocity vectors for the system.

vM = {0, 0, 0};

vm1 = vM + OM1×rMm1;

vO2 = vM + OM1×rO2M;

v2 = vO2 + O2×rO2cO2;

vO1 = vO2 + O2×rO1O2;

v1 = vO1 + O1×rO1cO1;

vf1 = vO1 + O1×rf1O1;

vm2 = vM + OM2×rMm2;

vO3 = vM + OM2×rO3M;

v3 = vO3 + O3×rO3cO3;

vO4 = vO3 + O3×rO4O3;

v4 = vO4 + O4×rO4cO4;

vf2 = vO4 + O4×rf2O4;

Take the derivative of the velocity vectors to obtain the accelerations of the system.

am1 = D[vm1, t];

am2 = D[vm2, t];

a1 = D[v1, t];

a2 = D[v2, t];

a3 = D[v3, t];

a4 = D[v4, t];

Calculate the forces acting on the system.

Fm1 = m3/2*am1;

Fm2 = m3/2*am2;

F1 = m1*a1;

F2 = m2*a2;

F3 = m2*a3;

F4 = m1*a4;

Calculate the center of mass position, velocity and acceleration.

rCoM = (rMm1*m3/2 + rMm2*m3/2 + (rO2M + rO2cO2)*m2 + (rO2M + rO1O2 +

rO1cO1)*m1 + (rO3M + rO3cO3)*m2 + (rO3M + rO4O3 + rO4cO4)*m1)/(2*m1 + 2*m2
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+ m3);

vCoM = (vm1*m3/2 + vm2*m3/2 + v1*m1 + v2*m2 + v3*m2 + v4*m1)/(2*m1 +

2*m2 + m3);

aCoM = (am1*m3/2 + am2*m3/2 + a1*m1 + a2*m2 + a3*m2 + a4*m1)/(2*m1 + 2*m2

+ m3);

Mathematica Construction of Equations of Motion (Articulated, Rear

Stance)

Setup the angular velocities.

OM1 = {0, 0,θ1’[t] };

OM2 = {0, 0,θ2’[t] };

O1 ={0, 0,θ1’[t] + α1’[t] };

O2 ={0, 0,θ1’[t] + α2’[t] };

O3 ={0, 0,θ2’[t] + α3’[t] };

O4 ={0, 0,θ2’[t] + α4’[t] };

Create the position vectors.

r01cf1 ={-s1*Sin[θ1[t] + α1[t]], (s1)*Cos[θ1[t] + α1[t]], 0};

rO1f1 ={-l1*Sin[θ1[t] + α1[t]], (l1)*Cos[θ1[t] + α1[t]], 0};

rO2cO1 ={-s2*Sin[θ1[t] + α2[t]], (s2)*Cos[θ1[t] + α2[t]], 0};

rO2O1 ={-l2*Sin[θ1[t] + α2[t]], (l2)*Cos[θ1[t] + α2[t]], 0};

rm102 ={a/2*Cos[θ1[t]], a/2*Sin[θ1[t]], 0};

rM02 = {a*Cos[θ1[t]], a*Sin[θ1[t]], 0};

rMm2 = {a/2*Cos[θ2[t]], a/2*Sin[θ2[t]], 0};

rO3M = {a*Cos[θ2[t]], a*Sin[θ2[t]], 0};

rO3cO3 ={(s2)*Sin[θ2[t] + α3[t]], -(s2)*Cos[θ2[t] + α3[t]], 0};

rO4O3 ={(l2)*Sin[θ2[t] + α3[t]], -(l2)*Cos[θ2[t] + α3[t]], 0};

rO4cO4 ={(s1)*Sin[θ2[t] + α4[t]], -(s1)*Cos[θ2[t] + α4[t]], 0};

rf2O4 ={(l1)*Sin[θ2[t] + α4[t]], -(l1)*Cos[θ2[t] + α4[t]], 0};

rf1 = {0, 0, 0};

rf2 = rO1f1 + rO2O1 + rM02 + rO3M + rO4O3 + rf2O4;

rM = rO1f1 + rO2O1 + rM02;

120



Construct the velocity vectors for the system.

vf1 = {0, 0, 0};

v1 = vf1 + O1×r01cf1;

vO1 = vf1 + O1×rO1f1;

v2 = vO1 + O2×rO2cO1;

vO2 = vO1 + O2×rO2O1;

vm1 = vO2 + OM1×rm102;

vM = vO2 + OM1×rM02;

vm2 = vM + OM2×rMm2;

vO3 = vM + OM2×rO3M;

v3 = vO3 + O3×rO3cO3;

vO4 = vO3 + O3×rO4O3;

v4 = vO4 + O4×rO4cO4;

vf2 = vO4 + O4×rf2O4;

Take the derivative of the velocity vectors to obtain the accelerations of the system.

am1 = D[vm1, t];

am2 = D[vm2, t];

a1 = D[v1, t];

a2 = D[v2, t];

a3 = D[v3, t];

a4 = D[v4, t];

Calculate the forces acting on the system.

Fm1 = m3/2*am1;

Fm2 = m3/2*am2;

F1 = m1*a1;

F2 = m2*a2;

F3 = m2*a3;

F4 = m1*a4;

Calculate the center of mass position, velocity and acceleration.

rCoM = ((rO1f1 + rO2O1 + rm102)*m3/2 + (rO1f1 + rO2O1 + rM02 + rMm2)*m3/2 +

(rO1f1 + rO2cO1)*m2 + (r01cf1)*m1 + (rO1f1 + rO2O1 + rM02 + rO3M + rO3cO3)*m2
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+ (rO1f1 + rO2O1 + rM02 + rO3M + rO4O3 + rO4cO4)*m1)/(2*m1 + 2*m2 + m3);

vCoM = (vm1*m3/2 + vm2*m3/2 + v1*m1 + v2*m2 + v3*m2 + v4*m1)/(2*m1 +

2*m2 + m3);

aCoM = (am1*m3/2 + am2*m3/2 + a1*m1 + a2*m2 + a3*m2 + a4*m1)/(2*m1 + 2*m2

+ m3);

Mathematica Construction of Equations of Motion (Articulated, Front

Stance)

Setup the angular velocities.

OM1 = {0, 0,θ1’[t] };

OM2 = {0, 0,θ2’[t] };

O1 ={0, 0,θ1’[t] + α1’[t] };

O2 ={0, 0,θ1’[t] + α2’[t] };

O3 ={0, 0,θ2’[t] + α3’[t] };

O4 ={0, 0,θ2’[t] + α4’[t] };

Create the position vectors.

rMm1 = {-a/2*Cos[θ1[t]], -a/2*Sin[θ1[t]], 0};

rO2M = {-a*Cos[θ1[t]], -a*Sin[θ1[t]], 0};

rO2cO2 ={s2*Sin[θ1[t] + α2[t]], -(s2)*Cos[θ1[t] + α2[t]], 0};

rO1O2 ={l2*Sin[θ1[t] + α2[t]], -(l2)*Cos[θ1[t] + α2[t]], 0};

rO1cO1 ={s1*Sin[θ1[t] + α1[t]], -(s1)*Cos[θ1[t] + α1[t]], 0};

rf1O1 ={l1*Sin[θ1[t] + α1[t]], -(l1)*Cos[θ1[t] + α1[t]], 0};

rO4cf2 ={-(s1)*Sin[θ2[t] + α4[t]], (s1)*Cos[θ2[t] + α4[t]], 0};

rO4f2 ={-(l1)*Sin[θ2[t] + α4[t]], (l1)*Cos[θ2[t] + α4[t]], 0};

rO3cO4 ={-(s2)*Sin[θ2[t] + α3[t]], (s2)*Cos[θ2[t] + α3[t]], 0};

rO3O4 ={-(l2)*Sin[θ2[t] + α3[t]], (l2)*Cos[θ2[t] + α3[t]], 0};

rm2O3 ={-a/2*Cos[θ2[t]], -a/2*Sin[θ2[t]], 0};

rMO3 = {-a*Cos[θ2[t]], -a*Sin[θ2[t]], 0};

rf2 = {0, 0, 0};

rf1 = rf1O1 + rO1O2 + rO2M + rMO3 + rO3O4 + rO4f2;

rM = rO4f2 + rO3O4 + rMO3;
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Construct the velocity vectors for the system.

vf2 = {0, 0, 0};

v4 = vf2 + O4×rO4cf2;

vO4 = vf2 + O4×rO4f2;

v3 = vO4 + O3×rO3cO4;

vO3 = vO4 + O3×rO3O4;

vm2 = vO3 + OM2×rm2O3;

vM = vO3 + OM2×rMO3;

vm1 = vM + OM1×rMm1;

vO2 = vM + OM1×rO2M;

v2 = vO2 + O2×rO2cO2;

vO1 = vO2 + O2×rO1O2;

v1 = vO1 + O1×rO1cO1;

vf1 = vO1 + O1×rf1O1;

Take the derivative of the velocity vectors to obtain the accelerations of the system.

am1 = D[vm1, t];

am2 = D[vm2, t];

a1 = D[v1, t];

a2 = D[v2, t];

a3 = D[v3, t];

a4 = D[v4, t];

Calculate the forces acting on the system.

Fm1 = m3/2*am1;

Fm2 = m3/2*am2;

F1 = m1*a1;

F2 = m2*a2;

F3 = m2*a3;

F4 = m1*a4;

Calculate the center of mass position, velocity and acceleration.

rCoM = ((rMm1 + rMO3 + rO3O4 + rO4f2)*m3/2 + (rm2O3 + rO3O4 + rO4f2)*m3/2 +

(rO2M + rO2cO2 + rMO3 + rO3O4 + rO4f2)*m2 + (rO2M + rO1O2 + rO1cO1 + rMO3 +
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rO3O4 + rO4f2)*m1 + (rO3cO4 + rO4f2)*m2 + (rO4cf2)*m1)/(2*m1 + 2*m2 + m3);

vCoM = (vm1*m3/2 + vm2*m3/2 + v1*m1 + v2*m2 + v3*m2 + v4*m1)/(2*m1 +

2*m2 + m3);

aCoM = (am1*m3/2 + am2*m3/2 + a1*m1 + a2*m2 + a3*m2 + a4*m1)/(2*m1 + 2*m2

+ m3);

Construct Equations of Motion for the Articulated Model

List the various vectors necessary for calculations.

Forces = Transpose[{{Fm1, Fm2, F1, F2, F3, F4}}];

Velocities = Transpose[{{vm1, vm2, v1, v2, v3, v4}}];

Omegas = Transpose[{{OM1, OM2, O1, O2, O3, O4}}];

qs = Transpose[{{x[t], y[t], θ1[t], θ2[t], α1[t], α2[t], α3[t], α4[t]}}];

Inertias = Transpose[{{Il3/8, Il3/8, Il1, Il2, Il2, Il1}}];

Masses = Transpose[{{m3/2, m3/2, m1, m2, m2, m1}}];

Torques = Transpose[{{GM1, GM2, G1, G2, G3, G4}}];

Create the qdot vector for Kane’ s equations

For[i = 1, i <= Length[qs], i++, l[i] = Extract[D[qs, t],{i}]]

Construct the left hand side of the equations for Kane’ s method with partial deriva-

tives of velocities and omegas

For[i = 1, i <= Length[qs], i++, For[j = 1, j<= Length[Forces], j++, FFs[i, j] =

D[Velocities[[j, 1]], l[i]].Forces[[j, 1]] + D[Omegas[[j, 1]], l[i]].(Inertias[[j, 1]]*D[Omegas[[j,

1]], t])]]

FFsT = Total[Table[FFs[i, j],{i, Length[qs]}, {j, Length[Forces]}], {2}];

Start creating the mass matrix and right hand side equationsto solve the system for

the accelerations

For[i = 1, i <= Length[qs], i++, FFsTA[i] = CoefficientArrays[Extract[FFsT, {i}], Flat-

ten[D[qs,{t, 2}]]]];

Mass matrix creation

For[i = 1, i <= Length[qs], i++, FaMMrhs[i] = Normal[Extract[FFsTA[i],{1}]]];
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FaRHSt = Table[FaMMrhs[i],{i, Length[qs]}];

For[i = 1, i <= Length[qs], i++, FaMM[i] = Normal[Extract[FFsTA[i],{2}]]];

MM = Table[FaMM[i], {i, Length[qs]}] // FullSimplify;

Construct the inertial forces for Kane’ s method

For[i = 1, i <= Length[qs], i++, For[j = 1, j<= Length[Forces], j++, FFa[i, j] =

Masses[[j]]*g*{0, 1, 0}.D[Velocities[[j, 1]], l[i]]]];

FFaT = Total[Table[FFa[i, j],{i, Length[qs]}, {j, Length[Forces]}], {2}];

Construct the active force component of Kane’ s equations.

For[i = 1, i <= Length[qs], i++, Dvfs[i] ={1, 0, 0}.D[vf1, l[i]]*FF1x[t] + {0, 0, 1}.D[vf1,

l[i]]*FF1y[t] + {1, 0, 0}.D[vf2, l[i]]*FF2x[t] + {0, 0, 1}.D[vf1, l[i]]*FF2y[t]];

DvfsT = Total[Table[Dvfs[i],{i, Length[qs]}], {2}];

Construct the active torques component of Kane’ s equations.

DgsT=

































0 0 0 0 0

0 0 0 0 0

1 0 −1 0 0

−1 0 0 −1 0

0 1 0 0 0

0 −1 1 0 0

0 0 0 1 −1

0 0 0 0 1

































.Transpose
[(

GM G1 G2 G3 G4
)]

;

RHS = FFaT + FaRHSt;

Set up the constraints for the equations.

T1x = x[t] - a*Cos[θ1[t]] + l2*Sin[ θ1[t] + α2[t]] + l1*Sin[ θ1[t] + α1[t]];

T1y = y[t] - a*Sin[θ1[t]] - l2*Cos[θ1[t] + α2[t]] - l1*Cos[θ1[t] + α1[t]];

T2x = x[t] + a*Cos[θ2[t]] + l2*Sin[ θ2[t] + α3[t]] + l1*Sin[ θ2[t] + α4[t]];

T2y = y[t] + a*Sin[θ2[t]] - l2*Cos[θ2[t] + α3[t]] - l1*Cos[θ2[t] + α4[t]];

V1x = D[T1x, t]; V1y = D[T1y, t]; V2x = D[T2x, t]; V2y = D[T2y, t];

A1x = D[T1x, {t, 2}]; A1y = D[T1y, {t, 2}]; A2x = D[T2x, {t, 2}]; A2y = D[T2y, {t, 2}];

D1a = Extract[CoefficientArrays[D[T1x, t], Flatten[D[qs,t]]], {2}];

D1b = Extract[CoefficientArrays[D[T1y, t], Flatten[D[qs,t]]], {2}];
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D2a = Extract[CoefficientArrays[D[T2x, t], Flatten[D[qs,t]]], {2}];

D2b = Extract[CoefficientArrays[D[T2y, t], Flatten[D[qs,t]]], {2}];

D1 = Transpose[{Normal[D1a], Normal[D1b]}];

D2 = Transpose[{Normal[D2a], Normal[D2b]}];

E1 = Join[{Extract[CoefficientArrays[A1x, Flatten[D[qs,{t, 2}]]], {1}]},

{Extract[CoefficientArrays[A1y, Flatten[D[qs,{t, 2}]]], {1}]}];

E2 = Join[{Extract[CoefficientArrays[A2x, Flatten[D[qs,{t, 2}]]], {1}]},

{Extract[CoefficientArrays[A2y, Flatten[D[qs,{t, 2}]]], {1}]}];
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Appendix C

ADAMS Model Parameters
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Figure C.1 Procedural outline for ADAMS model verification
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Appendix D

Rigid Kinetic Energy Detail Plots
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